1
|
Spicarova D, Palecek J. Anandamide-Mediated Modulation of Nociceptive Transmission at the Spinal Cord Level. Physiol Res 2024; 73:S435-S448. [PMID: 38957948 PMCID: PMC11412359 DOI: 10.33549/physiolres.935371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Three decades ago, the first endocannabinoid, anandamide (AEA), was identified, and its analgesic effect was recognized in humans and preclinical models. However, clinical trial failures pointed out the complexity of the AEA-induced analgesia. The first synapses in the superficial laminae of the spinal cord dorsal horn represent an important modulatory site in nociceptive transmission and subsequent pain perception. The glutamatergic synaptic transmission at these synapses is strongly modulated by two primary AEA-activated receptors, cannabinoid receptor 1 (CB1) and transient receptor potential vanilloid 1 (TRPV1), both highly expressed on the presynaptic side formed by the endings of primary nociceptive neurons. Activation of these receptors can have predominantly inhibitory (CB1) and excitatory (TRPV1) effects that are further modulated under pathological conditions. In addition, dual AEA-mediated signaling and action may occur in primary sensory neurons and dorsal horn synapses. AEA application causes balanced inhibition and excitation of primary afferent synaptic input on superficial dorsal horn neurons in normal conditions, whereas peripheral inflammation promotes AEA-mediated inhibition. This review focuses mainly on the modulation of synaptic transmission at the spinal cord level and signaling in primary nociceptive neurons by AEA via CB1 and TRPV1 receptors. Furthermore, the spinal analgesic effect in preclinical studies and clinical aspects of AEA-mediated analgesia are considered.
Collapse
Affiliation(s)
- D Spicarova
- Laboratory of Pain Research, Institute of Physiology CAS, Praha 4, Czech Republic.
| | | |
Collapse
|
2
|
Pontearso M, Slepicka J, Bhattacharyya A, Spicarova D, Palecek J. Dual effect of anandamide on spinal nociceptive transmission in control and inflammatory conditions. Biomed Pharmacother 2024; 173:116369. [PMID: 38452657 DOI: 10.1016/j.biopha.2024.116369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/09/2024] Open
Abstract
Anandamide (AEA) is an important modulator of nociception in the spinal dorsal horn, acting presynaptically through Cannabinoid (CB1) and Transient receptor potential vanilloid (TRPV1) receptors. The role of AEA (1 µM, 10 µM, and 30 µM) application on the modulation of nociceptive synaptic transmission under control and inflammatory conditions was studied by recording miniature excitatory postsynaptic currents (mEPSCs) from neurons in spinal cord slices. Inhibition of the CB1 receptors by PF514273, TRPV1 by SB366791, and the fatty acid amide hydrolase (FAAH) by URB597 was used. Under naïve conditions, the AEA application did not affect the mEPSCs frequency (1.43±0.12 Hz) when all the recorded neurons were considered. The mEPSC frequency increased (180.0±39.2%) only when AEA (30 µM) was applied with PF514273 and URB597. Analysis showed that one sub-population of neurons had synaptic input inhibited (39.1% of neurons), the second excited (43.5%), whereas 8.7% showed a mixed effect and 8.7% did not respond to the AEA. With inflammation, the AEA effect was highly inhibitory (72.7%), while the excitation was negligible (9.1%), and 18.2% were not modulated. After inflammation, more neurons (45.0%) responded even to low AEA by mEPSC frequency increase with PF514273/URB597 present. AEA-induced dual (excitatory/inhibitory) effects at the 1st nociceptive synapse should be considered when developing analgesics targeting the endocannabinoid system. These findings contrast the clear inhibitory effects of the AEA precursor 20:4-NAPE application described previously and suggest that modulation of endogenous AEA production may be more favorable for analgesic treatments.
Collapse
Affiliation(s)
- Monica Pontearso
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jakub Slepicka
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Anirban Bhattacharyya
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Diana Spicarova
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Palecek
- Laboratory of Pain Research, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
3
|
Zamith Cunha R, Semprini A, Salamanca G, Gobbo F, Morini M, Pickles KJ, Roberts V, Chiocchetti R. Expression of Cannabinoid Receptors in the Trigeminal Ganglion of the Horse. Int J Mol Sci 2023; 24:15949. [PMID: 37958932 PMCID: PMC10648827 DOI: 10.3390/ijms242115949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Cannabinoid receptors are expressed in human and animal trigeminal sensory neurons; however, the expression in the equine trigeminal ganglion is unknown. Ten trigeminal ganglia from five horses were collected post-mortem from an abattoir. The expression of cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), and the cannabinoid-related receptors like transient receptor potential vanilloid type 1 (TRPV1), peroxisome proliferator-activated receptor gamma (PPARɣ), and G protein-related receptor 55 (GPR55) in the trigeminal ganglia (TG) of the horse were studied, using immunofluorescence on cryosections and formalin-fixed paraffin-embedded (FFPE) sections. Neurons and glial cells were identified using fluorescent Nissl staining NeuroTrace® and an antibody directed against the glial marker glial fibrillary acidic protein (GFAP), respectively. Macrophages were identified by means of an antibody directed against the macrophages/microglia marker ionized calcium-binding adapter molecule 1 (IBA1). The protein expression of CB1R, CB2R, TRPV1, and PPARɣ was found in the majority of TG neurons in both cryosections and FFPE sections. The expression of GPR55 immunoreactivity was mainly detectable in FFPE sections, with expression in the majority of sensory neurons. Some receptors were also observed in glial cells (CB2R, TRPV1, PPARγ, and GPR55) and inflammatory cells (PPARγ and GPR55). These results support further investigation of such receptors in disorders of equine trigeminal neuronal excitability.
Collapse
Affiliation(s)
- Rodrigo Zamith Cunha
- Department of Veterinary Medical Sciences, University of Bologna, 37200 Bologna, Italy; (R.Z.C.); (A.S.); (G.S.); (F.G.); (M.M.)
| | - Alberto Semprini
- Department of Veterinary Medical Sciences, University of Bologna, 37200 Bologna, Italy; (R.Z.C.); (A.S.); (G.S.); (F.G.); (M.M.)
| | - Giulia Salamanca
- Department of Veterinary Medical Sciences, University of Bologna, 37200 Bologna, Italy; (R.Z.C.); (A.S.); (G.S.); (F.G.); (M.M.)
| | - Francesca Gobbo
- Department of Veterinary Medical Sciences, University of Bologna, 37200 Bologna, Italy; (R.Z.C.); (A.S.); (G.S.); (F.G.); (M.M.)
| | - Maria Morini
- Department of Veterinary Medical Sciences, University of Bologna, 37200 Bologna, Italy; (R.Z.C.); (A.S.); (G.S.); (F.G.); (M.M.)
| | - Kirstie J. Pickles
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham LE12 5RD, UK;
| | - Veronica Roberts
- Bristol Vet School, University of Bristol, Bristol BS40 5DU, UK;
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences, University of Bologna, 37200 Bologna, Italy; (R.Z.C.); (A.S.); (G.S.); (F.G.); (M.M.)
| |
Collapse
|
4
|
Slivicki RA, Yi J, Brings VE, Huynh PN, Gereau RW. The cannabinoid agonist CB-13 produces peripherally mediated analgesia in mice but elicits tolerance and signs of central nervous system activity with repeated dosing. Pain 2022; 163:1603-1621. [PMID: 34961756 PMCID: PMC9281468 DOI: 10.1097/j.pain.0000000000002550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/24/2021] [Indexed: 11/25/2022]
Abstract
ABSTRACT Activation of cannabinoid receptor type 1 (CB 1 ) produces analgesia in a variety of preclinical models of pain; however, engagement of central CB 1 receptors is accompanied by unwanted side effects, such as psychoactivity, tolerance, and dependence. Therefore, some efforts to develop novel analgesics have focused on targeting peripheral CB 1 receptors to circumvent central CB 1 -related side effects. In the present study, we evaluated the effects of acute and repeated dosing with the peripherally selective CB 1 -preferring agonist CB-13 on nociception and central CB 1 -related phenotypes in a model of inflammatory pain in mice. We also evaluated cellular mechanisms underlying CB-13-induced antinociception in vitro using cultured mouse dorsal root ganglion neurons. CB-13 reduced inflammation-induced mechanical allodynia in male and female mice in a peripheral CB 1 -receptor-dependent manner and relieved inflammatory thermal hyperalgesia. In cultured mouse dorsal root ganglion neurons, CB-13 reduced TRPV1 sensitization and neuronal hyperexcitability induced by the inflammatory mediator prostaglandin E 2 , providing potential mechanistic explanations for the analgesic actions of peripheral CB 1 receptor activation. With acute dosing, phenotypes associated with central CB 1 receptor activation occurred only at a dose of CB-13 approximately 10-fold the ED 50 for reducing allodynia. Strikingly, repeated dosing resulted in both analgesic tolerance and CB 1 receptor dependence, even at a dose that did not produce central CB 1 -receptor-mediated phenotypes on acute dosing. This suggests that repeated CB-13 dosing leads to increased CNS exposure and unwanted engagement of central CB 1 receptors. Thus, caution is warranted regarding therapeutic use of CB-13 with the goal of avoiding CNS side effects. Nonetheless, the clear analgesic effect of acute peripheral CB 1 receptor activation suggests that peripherally restricted cannabinoids are a viable target for novel analgesic development.
Collapse
Affiliation(s)
- Richard A. Slivicki
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| | - Jiwon Yi
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
- Neuroscience Graduate Program, Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO
| | - Victoria E. Brings
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| | - Phuong Nhu Huynh
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
| | - Robert W. Gereau
- Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO
- Department of Neuroscience, Washington University, St. Louis, MO
- Department of Biomedical Engineering, Washington University, St. Louis, MO
| |
Collapse
|
5
|
Wang Y, Kang H, Jin M, Wang G, Ma W, Liu Z, Xue Y, Li C. Phenotypic and Transcriptomics Analyses Reveal Underlying Mechanisms in a Mouse Model of Corneal Bee Sting. Toxins (Basel) 2022; 14:toxins14070468. [PMID: 35878206 PMCID: PMC9323056 DOI: 10.3390/toxins14070468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
Corneal bee sting (CBS) is one of the most common ocular traumas and can lead to blindness. The ophthalmic manifestations are caused by direct mechanical effects of bee stings, toxic effects, and host immune responses to bee venom (BV); however, the underlying pathogenesis remains unclear. Clinically, topical steroids and antibiotics are routinely used to treat CBS patients but the specific drug targets are unknown; therefore, it is imperative to study the pathological characteristics, injury mechanisms, and therapeutic targets involved in CBS. In the present study, a CBS injury model was successfully established by injecting BV into the corneal stroma of healthy C57BL/6 mice. F-actin staining revealed corneal endothelial cell damage, decreased density, skeletal disorder, and thickened corneal stromal. The terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) assay showed apoptosis of both epithelial and endothelial cells. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that cytokine–cytokine interactions were the most relevant pathway for pathogenesis. Protein–protein interaction (PPI) network analysis showed that IL-1, TNF, and IL-6 were the most relevant nodes. RNA-seq after the application of Tobradex® (0.3% tobramycin and 0.1% dexamethasone) eye ointment showed that Tobradex® not only downregulated relevant inflammatory factors but also reduced corneal pain as well as promoted nerve regeneration by repairing axons. Here, a stable and reliable model of CBS injury was successfully established for the first time, and the pathogenesis of CBS and the therapeutic targets of Tobradex® are discussed. These hub genes are expected to be biomarkers and therapeutic targets for the diagnosis and treatment of CBS.
Collapse
Affiliation(s)
- Yanzi Wang
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.W.); (H.K.); (M.J.); (Z.L.)
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Honghua Kang
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.W.); (H.K.); (M.J.); (Z.L.)
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Mengyi Jin
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.W.); (H.K.); (M.J.); (Z.L.)
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Guoliang Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China;
| | - Weifang Ma
- Department of Ophthalmology, No.4 West China Teaching Hospital, Sichuan University, Chengdu 610041, China;
| | - Zhen Liu
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.W.); (H.K.); (M.J.); (Z.L.)
| | - Yuhua Xue
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China;
- Correspondence: (Y.X.); (C.L.); Tel./Fax: +86-592-2189698 (Y.X.)
| | - Cheng Li
- Eye Institute & Affiliated Xiamen Eye Center, School of Medicine, Xiamen University, Xiamen 361102, China; (Y.W.); (H.K.); (M.J.); (Z.L.)
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Xiamen University, Xiamen 361102, China
- Correspondence: (Y.X.); (C.L.); Tel./Fax: +86-592-2189698 (Y.X.)
| |
Collapse
|
6
|
Khasabova IA, Golovko MY, Golovko SA, Simone DA, Khasabov SG. Intrathecal administration of Resolvin D1 and E1 decreases hyperalgesia in mice with bone cancer pain: Involvement of endocannabinoid signaling. Prostaglandins Other Lipid Mediat 2020; 151:106479. [PMID: 32745525 PMCID: PMC7669692 DOI: 10.1016/j.prostaglandins.2020.106479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/07/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Pain produced by bone cancer is often severe and difficult to treat. Here we examined effects of Resolvin D1 (RvD1) or E1 (RvE1), antinociceptive products of ω-3 polyunsaturated fatty acids, on cancer-induced mechanical allodynia and heat hyperalgesia. Experiments were performed using a mouse model of bone cancer produced by implantation of osteolytic ficrosarcoma into and around the calcaneus bone. Mechanical allodynia and heat hyperalgesia in the tumor-bearing paw were assessed by measuring withdrawal responses to a von Frey monofilament and to radiant heat applied on the plantar hind paw. RvD1, RvE1, and cannabinoid receptor antagonists were injected intrathecally. Spinal content of endocannabinoids was evaluated using UPLC-MS/MS analysis. RvD1 and RvE1 had similar antinociceptive potencies. ED50s for RvD1 and RvE1 in reducing mechanical allodynia were 0.2 pg (0.53 fmol) and 0.6 pg (1.71 fmol), respectively, and were 0.3 pg (0.8 fmol) and 0.2 pg (0.57 fmol) for reducing heat hyperalgesia. Comparisons of dose-response relationships showed equal efficacy for reducing mechanical allodynia, however, efficacy for reducing heat hyperalgesia was greater for of RvD1. Using UPLC-MS/MS we determined that RvD1, but not RvE1, increased levels of the endocannabinoids Anandamide and 2-Arachidonoylglycerol in the spinal cord. Importantly, Resolvins did not alter acute nociception or motor function in naïve mice. Our data indicate, that RvD1 and RvE1 produce potent antiallodynia and antihyperalgesia in a model of bone cancer pain. RvD1 also triggers spinal upregulation of endocannabinoids that produce additional antinociception predominantly through CB2 receptors.
Collapse
Affiliation(s)
- Iryna A Khasabova
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, MN, USA
| | - Mikhail Y Golovko
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Svetlana A Golovko
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Donald A Simone
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, MN, USA
| | - Sergey G Khasabov
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, MN, USA.
| |
Collapse
|
7
|
Hossain MZ, Ando H, Unno S, Kitagawa J. Targeting Peripherally Restricted Cannabinoid Receptor 1, Cannabinoid Receptor 2, and Endocannabinoid-Degrading Enzymes for the Treatment of Neuropathic Pain Including Neuropathic Orofacial Pain. Int J Mol Sci 2020; 21:E1423. [PMID: 32093166 PMCID: PMC7073137 DOI: 10.3390/ijms21041423] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain conditions including neuropathic orofacial pain (NOP) are difficult to treat. Contemporary therapeutic agents for neuropathic pain are often ineffective in relieving pain and are associated with various adverse effects. Finding new options for treating neuropathic pain is a major priority in pain-related research. Cannabinoid-based therapeutic strategies have emerged as promising new options. Cannabinoids mainly act on cannabinoid 1 (CB1) and 2 (CB2) receptors, and the former is widely distributed in the brain. The therapeutic significance of cannabinoids is masked by their adverse effects including sedation, motor impairment, addiction and cognitive impairment, which are thought to be mediated by CB1 receptors in the brain. Alternative approaches have been developed to overcome this problem by selectively targeting CB2 receptors, peripherally restricted CB1 receptors and endocannabinoids that may be locally synthesized on demand at sites where their actions are pertinent. Many preclinical studies have reported that these strategies are effective for treating neuropathic pain and produce no or minimal side effects. Recently, we observed that inhibition of degradation of a major endocannabinoid, 2-arachydonoylglycerol, can attenuate NOP following trigeminal nerve injury in mice. This review will discuss the above-mentioned alternative approaches that show potential for treating neuropathic pain including NOP.
Collapse
Affiliation(s)
- Mohammad Zakir Hossain
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| | - Hiroshi Ando
- Department of Biology, School of Dentistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan;
| | - Shumpei Unno
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| | - Junichi Kitagawa
- Department of Oral Physiology, School of Dentistry, Matsumoto Dental University, 1780 Gobara Hirooka, Shiojiri, Nagano 399-0781, Japan; (S.U.); (J.K.)
| |
Collapse
|
8
|
Du S, Lin C, Tao YX. Updated mechanisms underlying sickle cell disease-associated pain. Neurosci Lett 2019; 712:134471. [PMID: 31505241 PMCID: PMC6815235 DOI: 10.1016/j.neulet.2019.134471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Sickle cell disease (SCD) is one of the most common severe genetic diseases around the world. A majority of SCD patients experience intense pain, leading to hospitalization, and poor quality of life. Opioids form the bedrock of pain management, but their long-term use is associated with severe side effects including hyperalgesia, tolerance and addiction. Recently, excellent research has shown some new potential mechanisms that underlie SCD-associated pain. This review focused on how transient receptor potential vanilloid 1, endothelin-1/endothelin type A receptor, and cannabinoid receptors contributed to the pathophysiology of SCD-associated pain. Understanding these mechanisms may open a new avenue in managing SCD-associated pain and improving quality of life for SCD patients.
Collapse
Affiliation(s)
- Shibin Du
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Corinna Lin
- Rutgers Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA; Rutgers Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA.
| |
Collapse
|
9
|
Sensitization of C-fiber nociceptors in mice with sickle cell disease is decreased by local inhibition of anandamide hydrolysis. Pain 2018; 158:1711-1722. [PMID: 28570479 DOI: 10.1097/j.pain.0000000000000966] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chronic pain and hyperalgesia, as well as pain resulting from episodes of vaso-occlusion, are characteristic features of sickle cell disease (SCD) and are difficult to treat. Since there is growing evidence that increasing local levels of endocannabinoids can decrease hyperalgesia, we examined the effects of URB597, a fatty acid amide hydrolase (FAAH) inhibitor, which blocks the hydrolysis of the endogenous cannabinoid anandamide, on hyperalgesia and sensitization of cutaneous nociceptors in a humanized mouse model of SCD. Using homozygous HbSS-BERK sickle mice, we determined the effects of URB597 on mechanical hyperalgesia and on sensitization of C-fiber nociceptors in vivo. Intraplantar administration of URB597 (10 μg in 10 μL) decreased the frequency of withdrawal responses evoked by a von Frey monofilament (3.9 mN bending force) applied to the plantar hind paw. This was blocked by the CB1 receptor antagonist AM281 but not by the CB2 receptor antagonist AM630. Also, URB597 decreased hyperalgesia in HbSS-BERK/CB2R sickle mice, further confirming the role of CB1 receptors in the effects produced by URB597. Electrophysiological recordings were made from primary afferent fibers of the tibial nerve in anesthetized mice. The proportion of Aδ- and C-fiber nociceptors that exhibited spontaneous activity and responses of C-fibers to mechanical and thermal stimuli were greater in HbSS-BERK sickle mice as compared to control HbAA-BERK mice. Spontaneous activity and evoked responses of nociceptors were decreased by URB597 via CB1 receptors. It is suggested that enhanced endocannabinoid activity in the periphery may be beneficial in alleviating chronic pain associated with SCD.
Collapse
|
10
|
GRK2 Constitutively Governs Peripheral Delta Opioid Receptor Activity. Cell Rep 2016; 16:2686-2698. [PMID: 27568556 DOI: 10.1016/j.celrep.2016.07.084] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 06/24/2016] [Accepted: 07/27/2016] [Indexed: 01/07/2023] Open
Abstract
Opioids remain the standard for analgesic care; however, adverse effects of systemic treatments contraindicate long-term administration. While most clinical opioids target mu opioid receptors (MOR), those that target the delta class (DOR) also demonstrate analgesic efficacy. Furthermore, peripherally restrictive opioids represent an attractive direction for analgesia. However, opioid receptors including DOR are analgesically incompetent in the absence of inflammation. Here, we report that G protein-coupled receptor kinase 2 (GRK2) naively associates with plasma membrane DOR in peripheral sensory neurons to inhibit analgesic agonist efficacy. This interaction prevents optimal Gβ subunit association with the receptor, thereby reducing DOR activity. Importantly, bradykinin stimulates GRK2 movement away from DOR and onto Raf kinase inhibitory protein (RKIP). protein kinase C (PKC)-dependent RKIP phosphorylation induces GRK2 sequestration, restoring DOR functionality in sensory neurons. Together, these results expand the known function of GRK2, identifying a non-internalizing role to maintain peripheral DOR in an analgesically incompetent state.
Collapse
|
11
|
Abstract
Psychiatric and neurological disorders are mostly associated with the changes in neural calcium ion signaling pathways required for activity-triggered cellular events. One calcium channel family is the TRP cation channel family, which contains seven subfamilies. Results of recent papers have discovered that calcium ion influx through TRP channels is important. We discuss the latest advances in calcium ion influx through TRP channels in the etiology of psychiatric disorders. Activation of TRPC4, TRPC5, and TRPV1 cation channels in the etiology of psychiatric disorders such as anxiety, fear-associated responses, and depression modulate calcium ion influx. Evidence substantiates that anandamide and its analog (methanandamide) induce an anxiolytic-like effect via CB1 receptors and TRPV1 channels. Intracellular calcium influx induced by oxidative stress has an significant role in the etiology of bipolar disorders (BDs), and studies recently reported the important role of TRP channels such as TRPC3, TRPM2, and TRPV1 in converting oxidant or nitrogen radical signaling to cytosolic calcium ion homeostasis in BDs. The TRPV1 channel also plays a function in morphine tolerance and hyperalgesia. Among psychotropic drugs, amitriptyline and capsazepine seem to have protective effects on psychiatric disorders via the TRP channels. Some drugs such as cocaine and methamphetamine also seem to have an important role in alcohol addiction and substance abuse via activation of the TRPV1 channel. Thus, we explore the relationships between the etiology of psychiatric disorders and TRP channel-regulated mechanisms. Investigation of the TRP channels in psychiatric disorders holds the promise of the development of new drug treatments.
Collapse
Affiliation(s)
- Mustafa Nazıroğlu
- Neuroscience Research Center, Süleyman Demirel University, Dekanlık Binası, TR-32260, Isparta, Turkey.
| | | |
Collapse
|
12
|
Kashem SW, Riedl MS, Yao C, Honda CN, Vulchanova L, Kaplan DH. Nociceptive Sensory Fibers Drive Interleukin-23 Production from CD301b+ Dermal Dendritic Cells and Drive Protective Cutaneous Immunity. Immunity 2016; 43:515-26. [PMID: 26377898 DOI: 10.1016/j.immuni.2015.08.016] [Citation(s) in RCA: 330] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/30/2015] [Accepted: 07/28/2015] [Indexed: 12/24/2022]
Abstract
Innate resistance to Candida albicans in mucosal tissues requires the production of interleukin-17A (IL-17A) by tissue-resident cells early during infection, but the mechanism of cytokine production has not been precisely defined. In the skin, we found that dermal γδ T cells were the dominant source of IL-17A during C. albicans infection and were required for pathogen resistance. Induction of IL-17A from dermal γδ T cells and resistance to C. albicans required IL-23 production from CD301b(+) dermal dendritic cells (dDCs). In addition, we found that sensory neurons were directly activated by C. albicans. Ablation of sensory neurons increased susceptibility to C. albicans infection, which could be rescued by exogenous addition of the neuropeptide CGRP. These data define a model in which nociceptive pathways in the skin drive production of IL-23 by CD301b(+) dDCs resulting in IL-17A production from γδ T cells and resistance to cutaneous candidiasis.
Collapse
MESH Headings
- Animals
- Candida albicans/immunology
- Candida albicans/physiology
- Candidiasis/genetics
- Candidiasis/immunology
- Candidiasis/microbiology
- Cells, Cultured
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Dermis/cytology
- Flow Cytometry
- Host-Pathogen Interactions/immunology
- Immunity/genetics
- Immunity/immunology
- Interleukin-17/genetics
- Interleukin-17/immunology
- Interleukin-17/metabolism
- Interleukin-23/genetics
- Interleukin-23/immunology
- Interleukin-23/metabolism
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Mice, Inbred Strains
- Mice, Knockout
- Mice, Transgenic
- Oligonucleotide Array Sequence Analysis
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Calcitonin Gene-Related Peptide/genetics
- Receptors, Calcitonin Gene-Related Peptide/immunology
- Receptors, Calcitonin Gene-Related Peptide/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sensory Receptor Cells/immunology
- Sensory Receptor Cells/metabolism
- Skin/immunology
- Skin/metabolism
- Skin/microbiology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Transcriptome/genetics
- Transcriptome/immunology
Collapse
Affiliation(s)
- Sakeen W Kashem
- Department of Dermatology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Maureen S Riedl
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Chen Yao
- Department of Dermatology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher N Honda
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel H Kaplan
- Department of Dermatology, Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
13
|
Kim MS, Shutov LP, Gnanasekaran A, Lin Z, Rysted JE, Ulrich JD, Usachev YM. Nerve growth factor (NGF) regulates activity of nuclear factor of activated T-cells (NFAT) in neurons via the phosphatidylinositol 3-kinase (PI3K)-Akt-glycogen synthase kinase 3β (GSK3β) pathway. J Biol Chem 2014; 289:31349-60. [PMID: 25231981 DOI: 10.1074/jbc.m114.587188] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Ca(2+)/calcineurin-dependent transcription factor nuclear factor of activated T-cells (NFAT) plays an important role in regulating many neuronal functions, including excitability, axonal growth, synaptogenesis, and neuronal survival. NFAT can be activated by action potential firing or depolarization that leads to Ca(2+)/calcineurin-dependent dephosphorylation of NFAT and its translocation to the nucleus. Recent data suggest that NFAT and NFAT-dependent functions in neurons can also be potently regulated by NGF and other neurotrophins. However, the mechanisms of NFAT regulation by neurotrophins are not well understood. Here, we show that in dorsal root ganglion sensory neurons, NGF markedly facilitates NFAT-mediated gene expression induced by mild depolarization. The effects of NGF were not associated with changes in [Ca(2+)]i and were independent of phospholipase C activity. Instead, the facilitatory effect of NGF depended on activation of the PI3K/Akt pathway downstream of the TrkA receptor and on inhibition of glycogen synthase kinase 3β (GSK3β), a protein kinase known to phosphorylate NFAT and promote its nuclear export. Knockdown or knockout of NFATc3 eliminated this facilitatory effect. Simultaneous monitoring of EGFP-NFATc3 nuclear translocation and [Ca(2+)]i changes in dorsal root ganglion neurons indicated that NGF slowed the rate of NFATc3 nuclear export but did not affect its nuclear import rate. Collectively, our data suggest that NGF facilitates depolarization-induced NFAT activation by stimulating PI3K/Akt signaling, inactivating GSK3β, and thereby slowing NFATc3 export from the nucleus. We propose that NFAT serves as an integrator of neurotrophin action and depolarization-driven calcium signaling to regulate neuronal gene expression.
Collapse
Affiliation(s)
- Man-Su Kim
- From the Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242 and the College of Pharmacy, Inje University, Gimhae 621-749, Korea
| | - Leonid P Shutov
- From the Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242 and
| | - Aswini Gnanasekaran
- From the Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242 and
| | - Zhihong Lin
- From the Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242 and
| | - Jacob E Rysted
- From the Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242 and
| | - Jason D Ulrich
- From the Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242 and
| | - Yuriy M Usachev
- From the Department of Pharmacology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242 and
| |
Collapse
|
14
|
Zhang Y, Xie H, Lei G, Li F, Pan J, Liu C, Liu Z, Liu L, Cao X. Regulatory effects of anandamide on intracellular Ca(2+) concentration increase in trigeminal ganglion neurons. Neural Regen Res 2014; 9:878-87. [PMID: 25206906 PMCID: PMC4146256 DOI: 10.4103/1673-5374.131607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2014] [Indexed: 12/20/2022] Open
Abstract
Activation of cannabinoid receptor type 1 on presynaptic neurons is postulated to suppress neurotransmission by decreasing Ca2+ influx through high voltage-gated Ca2+ channels. However, recent studies suggest that cannabinoids which activate cannabinoid receptor type 1 can increase neurotransmitter release by enhancing Ca2+ influx in vitro. The aim of the present study was to investigate the modulation of intracellular Ca2+ concentration by the cannabinoid receptor type 1 agonist anandamide, and its underlying mechanisms. Using whole cell voltage-clamp and calcium imaging in cultured trigeminal ganglion neurons, we found that anandamide directly caused Ca2+ influx in a dose-dependent manner, which then triggered an increase of intracellular Ca2+ concentration. The cyclic adenosine and guanosine monophosphate-dependent protein kinase systems, but not the protein kinase C system, were involved in the increased intracellular Ca2+ concentration by anandamide. This result showed that anandamide increased intracellular Ca2+ concentration and inhibited high voltage-gated Ca2+ channels through different signal transduction pathways.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Anesthesiology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hong Xie
- Jingzhou Central Hospital, Jingzhou, Hubei Province, China
| | - Gang Lei
- Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fen Li
- Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jianping Pan
- Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Changjin Liu
- Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zhiguo Liu
- Department of Bioengineering, Wuhan Institute of Engineering, Wuhan, Hubei Province, China
| | - Lieju Liu
- Department of Bioengineering, Wuhan Institute of Engineering, Wuhan, Hubei Province, China
| | - Xuehong Cao
- Department of Physiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China ; Department of Bioengineering, Wuhan Institute of Engineering, Wuhan, Hubei Province, China
| |
Collapse
|
15
|
Activation of CB1 inhibits NGF-induced sensitization of TRPV1 in adult mouse afferent neurons. Neuroscience 2014; 277:679-89. [PMID: 25088915 DOI: 10.1016/j.neuroscience.2014.07.041] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 06/12/2014] [Accepted: 07/02/2014] [Indexed: 01/02/2023]
Abstract
Transient receptor potential vanilloid 1 (TRPV1)-containing afferent neurons convey nociceptive signals and play an essential role in pain sensation. Exposure to nerve growth factor (NGF) rapidly increases TRPV1 activity (sensitization). In the present study, we investigated whether treatment with the selective cannabinoid receptor 1 (CB1) agonist arachidonyl-2'-chloroethylamide (ACEA) affects NGF-induced sensitization of TRPV1 in adult mouse dorsal root ganglion (DRG) afferent neurons. We found that CB1, NGF receptor tyrosine kinase A (trkA), and TRPV1 are present in cultured adult mouse small- to medium-sized afferent neurons and treatment with NGF (100ng/ml) for 30 min significantly increased the number of neurons that responded to capsaicin (as indicated by increased intracellular Ca(2 +) concentration). Pretreatment with the CB1 agonist ACEA (10nM) inhibited the NGF-induced response, and this effect of ACEA was reversed by a selective CB1 antagonist. Further, pretreatment with ACEA inhibited NGF-induced phosphorylation of AKT. Blocking PI3 kinase activity also attenuated the NGF-induced increase in the number of neurons that responded to capsaicin. Our results indicate that the analgesic effect of CB1 activation may in part be due to inhibition of NGF-induced sensitization of TRPV1 and also that the effect of CB1 activation is at least partly mediated by attenuation of NGF-induced increased PI3 signaling.
Collapse
|
16
|
Uhelski ML, Cain DM, Harding-Rose C, Simone DA. The non-selective cannabinoid receptor agonist WIN 55,212-2 attenuates responses of C-fiber nociceptors in a murine model of cancer pain. Neuroscience 2013; 247:84-94. [PMID: 23673278 DOI: 10.1016/j.neuroscience.2013.05.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 04/24/2013] [Accepted: 05/03/2013] [Indexed: 02/07/2023]
Abstract
Pain from cancer can be severe, difficult to treat, and greatly diminishes patients' quality of life. It is therefore important to gain new information on the mechanisms of cancer pain and develop new treatment strategies. We have used a murine model of bone cancer pain to investigate underlying peripheral neural mechanisms and novel treatment approaches. In this model, implantation of fibrosarcoma cells into and around the calcaneous bone produces mechanical and thermal hyperalgesia in mice. C-fiber nociceptors in tumor-bearing mice develop spontaneous ongoing activity and sensitization to thermal stimuli. However, it is unclear whether sensitization of nociceptors to mechanical stimuli underlies the mechanical hyperalgesia seen in tumor-bearing mice. We therefore examined responses of C-fiber nociceptors to suprathreshold mechanical stimuli in tumor-bearing mice and found they did not differ from those of C-nociceptors in control mice. Thus, sensitization of C-fiber nociceptors to mechanical stimulation does not appear to underlie tumor-evoked mechanical hyperalgesia in this murine model of bone cancer pain. We also examined the effect of the non-selective cannabinoid receptor agonist, WIN 55,212-2, on spontaneous activity and responses evoked by mechanical stimuli of C-fiber nociceptors innervating the tumor-bearing paw. Selective CB1 and CB2 antagonists were administered to determine the contribution of each receptor subtype to the effects of WIN 55,212-2. Intraplantar administration of WIN 55,212-2 attenuated spontaneous discharge and responses evoked by mechanical stimulation of C-fiber nociceptors. These effects were inhibited by prior intraplantar administration of selective CB1 (AM281) or CB2 (AM630) receptor antagonists but not by vehicle. These results indicate that activation of either CB1 or CB2 receptors reduced the spontaneous activity of C-fiber nociceptors associated with tumor growth as well as their evoked responses. Our results provide further evidence that activation of peripheral cannabinoid receptors may be a useful target for the treatment of cancer pain.
Collapse
Affiliation(s)
- M L Uhelski
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, MN 55447, United States
| | | | | | | |
Collapse
|
17
|
Veress G, Meszar Z, Muszil D, Avelino A, Matesz K, Mackie K, Nagy I. Characterisation of cannabinoid 1 receptor expression in the perikarya, and peripheral and spinal processes of primary sensory neurons. Brain Struct Funct 2012; 218:733-50. [PMID: 22618437 DOI: 10.1007/s00429-012-0425-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 04/25/2012] [Indexed: 11/24/2022]
Abstract
The cannabinoid 1 (CB1) receptor is expressed by a sub-population of primary sensory neurons. However, data on the neurochemical identity of the CB1 receptor-expressing cells, and CB1 receptor expression by the peripheral and central terminals of these neurons are inconsistent and limited. We characterised CB1 receptor expression in dorsal root ganglia (DRG) and spinal cord at the lumbar 4-5 level, as well as in the urinary bladder and glabrous skin of the hindpaw. About 1/3 of DRG neurons exhibited immunopositivity for the CB1 receptor, the majority of which showed positivity for the nociceptive markers calcitonin gene-related peptide (CGRP) or/and Griffonia (bandeiraea) simplicifolia IB4 isolectin-binding. Virtually all CB1 receptor-immunostained fibres showed immunopositivity for CGRP in the skin, while very few did in the urinary bladder. No CB1 receptor-immunopositive nerve fibres were IB4 positive in either peripheral tissue. Spinal laminae I and II-outer showed the highest density of CB1 receptor-immunopositive punctae, the majority of which showed positivity for CGRP or/and IB4 binding. These data indicate that a major sub-population of nociceptive primary sensory neurons expresses CB1 receptors that are transported to both peripheral and central terminals of these cells. Therefore, the present data suggest that manipulation of endogenous CB1 receptor agonist levels in these areas may significantly reduce nociceptive input into the spinal cord.
Collapse
MESH Headings
- Analysis of Variance
- Animals
- Calcitonin Gene-Related Peptide/metabolism
- Cholera Toxin/metabolism
- Epidermal Cells
- Ganglia, Spinal/cytology
- Hippocampus/cytology
- Hippocampus/metabolism
- Horseradish Peroxidase/metabolism
- Keratinocytes/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Confocal
- Nerve Fibers/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred WKY
- Receptor, Cannabinoid, CB1/deficiency
- Receptor, Cannabinoid, CB1/metabolism
- Sensory Receptor Cells/metabolism
- Spinal Cord/cytology
Collapse
Affiliation(s)
- Gabor Veress
- Pathology Unit, Kaposi Mór Teaching Hospital, Kaposvár H7400, Hungary
| | | | | | | | | | | | | |
Collapse
|
18
|
Patil M, Patwardhan A, Salas MM, Hargreaves KM, Akopian AN. Cannabinoid receptor antagonists AM251 and AM630 activate TRPA1 in sensory neurons. Neuropharmacology 2011; 61:778-88. [PMID: 21645531 DOI: 10.1016/j.neuropharm.2011.05.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 05/17/2011] [Accepted: 05/19/2011] [Indexed: 12/28/2022]
Abstract
Cannabinoid receptor antagonists have been utilized extensively in vivo as well as in vitro, but their selectivity has not been fully examined. We investigated activation of sensory neurons by two cannabinoid antagonists - AM251 and AM630. AM251 and AM630 activated trigeminal (TG) sensory neurons in a concentration-dependent fashion (threshold 1 μM). AM251 and AM630 responses are mediated by the TRPA1 channel in a majority (90-95%) of small-to-medium TG sensory neurons. AM630 (1-100 μM), but not AM251, was a significantly more potent agonist in cells co-expressing both TRPA1 and TRPV1 channels. We next evaluated AM630 and AM251 effects on TRPV1- and TRPA1-mediated responses in TG neurons. Capsaicin (CAP) effects were inhibited by pre-treatment with AM630, but not AM251. Mustard oil (MO) and WIN55,212-2 (WIN) TRPA1 mediated responses were also inhibited by pre-treatment with AM630, but not AM251 (25 uM each). Co-treatment of neurons with WIN and either AM630 or AM251 had opposite effects: AM630 sensitized WIN responses, whereas AM251 inhibited WIN responses. WIN-induced inhibition of CAP responses in sensory neurons was reversed by AM630 pre-treatment and AM251 co-treatment (25 μM each), as these conditions inhibit WIN responses. Hindpaw injections of AM630 and AM251 did not produce nocifensive behaviors. However, both compounds modulated CAP-induced thermal hyperalgesia in wild-type mice and rats, but not TRPA1 null-mutant mice. AMs also partially regulate WIN inhibition of CAP-induced thermal hyperalgesia in a TRPA1-dependent fashion. In summary, these findings demonstrate alternative targets for the cannabinoid antagonists, AM251 and AM630, in peripheral antihyperalgesia which involve certain TRP channels.
Collapse
Affiliation(s)
- Mayur Patil
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | | | | | | | | |
Collapse
|
19
|
Mode of action of cannabinoids on nociceptive nerve endings. Exp Brain Res 2009; 196:79-88. [PMID: 19306092 DOI: 10.1007/s00221-009-1762-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 02/27/2009] [Indexed: 12/22/2022]
Abstract
In recent years, cannabinoids have emerged as attractive alternatives or supplements to therapy for chronic pain states. However, in humans the activation of cannabinoid receptors in neurons of the central nervous system is associated with psychotropic side effects, temporary memory impairment and dependence, which arise via the effects of cannabinoids on forebrain circuits. For clinical exploitation of the analgesic properties of cannabinoids, a major challenge is to devise strategies that reduce or abolish their adverse effects on cognitive, affective and motor functions without attenuating their analgesic effects. The cannabinoid receptor family currently includes two cloned metabotropic receptors: CB1, CB2 and possibly GPR55 which are distributed widely across many key loci in pain-modulating pathways, including the peripheral terminals of primary afferents. Modulation of transducer ion channels expressed at nociceptive terminals occurs upon activation of metabotropic cannabinoid receptors, but direct cannabinoid action on ion channels involved in sensory transduction or regulation of neuron excitability likely contributes to the peripheral cannabinoid effects.
Collapse
|
20
|
A decrease in anandamide signaling contributes to the maintenance of cutaneous mechanical hyperalgesia in a model of bone cancer pain. J Neurosci 2008; 28:11141-52. [PMID: 18971457 DOI: 10.1523/jneurosci.2847-08.2008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Tumors in bone are associated with pain in humans. Data generated in a murine model of bone cancer pain suggest that a disturbance of local endocannabinoid signaling contributes to the pain. When tumors formed after injection of osteolytic fibrosarcoma cells into the calcaneus bone of mice, cutaneous mechanical hyperalgesia was associated with a decrease in the level of anandamide (AEA) in plantar paw skin ipsilateral to tumors. The decrease in AEA occurred in conjunction with increased degradation of AEA by fatty acid amide hydrolase (FAAH). Intraplantar injection of AEA reduced the hyperalgesia, and intraplantar injection of URB597, an inhibitor of FAAH, increased the local level of AEA and also reduced hyperalgesia. An increase in FAAH mRNA and enzyme activity in dorsal root ganglia (DRG) L3-L5 ipsilateral to the affected paw suggests DRG neurons contribute to the increased FAAH activity in skin in tumor-bearing mice. Importantly, the anti-hyperalgesic effects of AEA and URB597 were blocked by a CB1 receptor antagonist. Increased expression of CB1 receptors by DRG neurons ipsilateral to tumor-bearing limbs may contribute to the anti-hyperalgesic effect of elevated AEA levels. Furthermore, CB1 receptor protein-immunoreactivity as well as inhibitory effects of AEA and URB597 on the depolarization-evoked Ca(2+) transient were increased in small DRG neurons cocultured with fibrosarcoma cells indicating that fibrosarcoma cells are sufficient to evoke phenotypic changes in AEA signaling in DRG neurons. Together, the data provide evidence that manipulation of peripheral endocannabinoid signaling is a promising strategy for the management of bone cancer pain.
Collapse
|
21
|
Potenzieri C, Brink TS, Pacharinsak C, Simone DA. Cannabinoid modulation of cutaneous Adelta nociceptors during inflammation. J Neurophysiol 2008; 100:2794-806. [PMID: 18784270 PMCID: PMC2585399 DOI: 10.1152/jn.90809.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 09/04/2008] [Indexed: 01/26/2023] Open
Abstract
Previous studies have demonstrated that locally administered cannabinoids attenuate allodynia and hyperalgesia through activation of peripheral cannabinoid receptors (CB(1) and CB(2)). However, it is currently unknown if cannabinoids alter the response properties of nociceptors. In the present study, correlative behavioral and in vivo electrophysiological studies were conducted to determine if peripheral administration of the cannabinoid receptor agonists arachidonyl-2'-chloroethylamide (ACEA) or (R)-(+)-methanandamide (methAEA) could attenuate mechanical allodynia and hyperalgesia, and decrease mechanically evoked responses of Adelta nociceptors. Twenty-four hours after intraplantar injection of complete Freund's adjuvant (CFA), rats exhibited allodynia (decrease in paw withdrawal threshold) and hyperalgesia (increase in paw withdrawal frequency), which were attenuated by both ACEA and methAEA. The antinociceptive effects of these cannabinoids were blocked by co-administration with the CB(1) receptor antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophen yl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) but not with the CB(2) receptor antagonist 6-iodo-2-methyl-1-[2-(4-morpholinyl)ethyl]-1H-indol-3-y l](4-methoxyphenyl)methanone (AM630). ACEA and methAEA did not produce antinociception under control, non-inflamed conditions 24 h after intraplantar injection of saline. In parallel studies, recordings were made from cutaneous Adelta nociceptors from inflamed or control, non-inflamed skin. Both ACEA and methAEA decreased responses evoked by mechanical stimulation of Adelta nociceptors from inflamed skin but not from non-inflamed skin, and this decrease was blocked by administration of the CB(1) receptor antagonist AM251. These results suggest that attenuation of mechanically evoked responses of Adelta nociceptors contributes to the behavioral antinociception produced by activation of peripheral CB(1) receptors during inflammation.
Collapse
Affiliation(s)
- Carl Potenzieri
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, 515 Delaware St. SE, 17-252 Moos Tower, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
22
|
Potenzieri C, Harding-Rose C, Simone DA. The cannabinoid receptor agonist, WIN 55, 212-2, attenuates tumor-evoked hyperalgesia through peripheral mechanisms. Brain Res 2008; 1215:69-75. [PMID: 18486111 DOI: 10.1016/j.brainres.2008.03.063] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 03/25/2008] [Accepted: 03/26/2008] [Indexed: 11/19/2022]
Abstract
Several lines of evidence suggest that cannabinoids can attenuate various types of pain and hyperalgesia through peripheral mechanisms. The development of rodent cancer pain models has provided the opportunity to investigate novel approaches to treat this common form of pain. In the present study, we examined the ability of peripherally administered cannabinoids to attenuate tumor-evoked mechanical hyperalgesia in a murine model of cancer pain. Unilateral injection of osteolytic fibrosarcoma cells into and around the calcaneus bone resulted in tumor formation and mechanical hyperalgesia in the injected hindpaw. Mechanical hyperalgesia was defined as an increase in the frequency of paw withdrawals to a suprathreshold von Frey filament (3.4 mN) applied to the plantar surface of the hindpaw. WIN 55, 212-2 (1.5 to 10 microg) injected subcutaneously into the tumor-bearing hindpaw produced a dose-dependent decrease in paw withdrawal frequencies to suprathreshold von Frey filament stimulation. Injection of WIN 55,212-2 (10 microg) into the contralateral hindpaw did not decrease paw withdrawal frequencies in the tumor-bearing hindpaw. Injection of the highest antihyperalgesic dose of WIN 55,212-2 (10 microg) did not produce catalepsy as determined by the bar test. Co-administration of WIN 55,212-2 with either cannabinoid 1 (AM251) or cannabinoid 2 (AM630) receptor antagonists attenuated the antihyperalgesic effects of WIN 55, 212-2. In conclusion, peripherally administered WIN 55,212-2 attenuated tumor-evoked mechanical hyperalgesia by activation of both peripheral cannabinoid 1 and cannabinoid 2 receptors. These results suggest that peripherally-administered cannabinoids may be effective in attenuating cancer pain.
Collapse
Affiliation(s)
- Carl Potenzieri
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
23
|
Cannabinoids desensitize capsaicin and mustard oil responses in sensory neurons via TRPA1 activation. J Neurosci 2008; 28:1064-75. [PMID: 18234885 DOI: 10.1523/jneurosci.1565-06.2008] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Although the cannabinoid agonists R-(+)-(2,3-dihydro-5-methyl-3-[(4-morpholinyl)methyl]pyrol[1,2,3-de]-1,4-benzoxazin-6-yl)-(1-naphthalenyl) methanone mesylate [WIN 55,212-2 (WIN)] and (R,S)-3-(2-iodo-5-nitrobenzoyl)-1-(1-methyl-2-piperidinylmethyl)-1H-indole (AM1241) exert peripheral antihyperalgesia in inflammatory pain models, the mechanism for cannabinoid-induced inhibition of nociceptive sensory neurons has not been fully studied. Because TRPV1 and TRPA1 channels play important roles in controlling hyperalgesia in inflammatory pain models, we investigated their modulation by WIN and AM1241. The applications of WIN (>5 microM) and AM1241 (>30 microM) inhibit responses of sensory neurons to capsaicin and mustard oil. To determine potential mechanisms for the inhibition, we evaluated cannabinoid effects on nociceptors. WIN and AM1241 excite sensory neurons in a concentration-dependent manner via a nonselective Ca2+-permeable channel. The expression of TRP channels in CHO cells demonstrates that both WIN and AM1241 activate TRPA1 and, by doing so, attenuate capsaicin and mustard oil responses. Using TRPA1-specific small interfering RNA or TRPA1-deficient mice, we show that the TRPA1 channel is a sole target through which WIN and mustard oil activate sensory neurons. In contrast, AM1241 activation of sensory neurons is mediated by TRPA1 and an unknown channel. The knockdown of TRPA1 activity in neurons completely eliminates the desensitizing effects of WIN and AM1241 on capsaicin-activated currents. Furthermore, the WIN- or AM1241-induced inhibition of capsaicin-evoked nocifensive behavior via peripheral actions is reversed in TRPA1 null-mutant mice. Together, this study demonstrates that certain cannabinoids exert their peripheral antinocifensive actions via activation of the TRPA1 channel on sensory neurons.
Collapse
|
24
|
Khasabova IA, Stucky CL, Harding-Rose C, Eikmeier L, Beitz AJ, Coicou LG, Hanson AE, Simone DA, Seybold VS. Chemical interactions between fibrosarcoma cancer cells and sensory neurons contribute to cancer pain. J Neurosci 2007; 27:10289-98. [PMID: 17881535 PMCID: PMC6672679 DOI: 10.1523/jneurosci.2851-07.2007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In an experimental model of cancer pain, the hyperalgesia that occurs with osteolytic tumor growth is associated with the sensitization of nociceptors. We examined functional and molecular changes in small-diameter dorsal root ganglion (DRG) neurons to determine cellular mechanisms underlying this sensitization. The occurrence of a Ca2+ transient in response to either KCl (25 mM) or capsaicin (500 nM) increased in small neurons isolated from murine L3-L6 DRGs ipsilateral to fibrosarcoma cell tumors. The increased responses were associated with increased mRNA levels for the Ca2+ channel subunit alpha2delta1 and TRPV1 receptor. Pretreatment with gabapentin, an inhibitor of the alpha2delta1 subunit, blocked the increased response to KCl in vitro and the mechanical hyperalgesia in tumor-bearing mice in vivo. Similar increases in neuronal responsiveness occurred when DRG neurons from naive mice and fibrosarcoma cells were cocultured for 48 h. The CC chemokine ligand 2 (CCL2) may contribute to the tumor cell-induced sensitization because CCL2 immunoreactivity was present in tumors, high levels of CCL2 peptide were present in microperfusates from tumors, and treatment of DRG neurons in vitro with CCL2 increased the amount of mRNA for the alpha2delta1 subunit. Together, our data provide strong evidence that the chemical mediator CCL2 is released from tumor cells and evokes phenotypic changes in sensory neurons, including increases in voltage-gated Ca2+ channels that likely underlie the mechanical hyperalgesia in the fibrosarcoma cancer model. More broadly, this study provides a novel in vitro model to resolve the cellular and molecular mechanisms by which tumor cells drive functional changes in nociceptors.
Collapse
Affiliation(s)
| | - Cheryl L. Stucky
- Department of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | | | - Laura Eikmeier
- Comparative and Molecular Biosciences Graduate Program and
| | - Alvin J. Beitz
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota 55108, and
| | | | - Amy E. Hanson
- Pharmacology Graduate Program, University of Minnesota, Minneapolis, Minnesota 55455
| | | | | |
Collapse
|
25
|
Evans RM, Scott RH, Ross RA. Chronic exposure of sensory neurones to increased levels of nerve growth factor modulates CB1/TRPV1 receptor crosstalk. Br J Pharmacol 2007; 152:404-13. [PMID: 17700720 PMCID: PMC2042953 DOI: 10.1038/sj.bjp.0707411] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Anandamide (AEA) activates both cannabinoid CB(1) and TRPV1 receptors, which are expressed on cultured dorsal root ganglion neurones. Increased levels of nerve growth factor (NGF) are associated with chronic pain states. EXPERIMENTAL APPROACH The aim of this study was to compare of the effects of AEA on CB(1) receptor signalling and TRPV1-CB(1) crosstalk in low and high concentrations of NGF, using voltage-clamp electrophysiology and Fura-2 calcium imaging. KEY RESULTS Chronic exposure to high NGF (200 ng ml(-1)) as compared to low NGF (20 ng ml(-1)) increases the proportion of neurones that exhibit an inward current in response to AEA (1 microM), from 7 to 29%. In contrast, inhibition of voltage-gated calcium currents by AEA is not significantly different in low NGF (33+/-9%, compared to high NGF 28+/-6%). Crosstalk between CB and TRPV1 receptors is modulated by exposure to high NGF. In low NGF, exposure to the CB(1) receptor antagonist, SR141716A, (100 nM) increases the percentage of neurones in which AEA elicits an increase in [Ca(2+)](i), from 10 to 23%. In high NGF, the antagonist does not alter the percentage of responders (33 to 30%). In low NGF, exposure to the CB receptor agonist, WIN55 (1 microM) reduces capsaicin-mediated increases in [Ca(2+)](i) to 28+/-8% of control as compared to an enhancement to 172+/-26% of control observed in high NGF. CONCLUSIONS AND IMPLICATIONS We conclude that cannabinoid-mediated modulation of TRPV1 receptor activation is altered after exposure to high NGF.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Arachidonic Acids/pharmacology
- Calcium/metabolism
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Cannabinoid Receptor Modulators/pharmacology
- Cells, Cultured
- Chronic Disease
- Dose-Response Relationship, Drug
- Electrophysiology
- Endocannabinoids
- Fura-2
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/metabolism
- Nerve Growth Factor/administration & dosage
- Nerve Growth Factor/pharmacology
- Pain/drug therapy
- Pain/physiopathology
- Patch-Clamp Techniques
- Polyunsaturated Alkamides/pharmacology
- Rats
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/metabolism
- Signal Transduction/drug effects
- TRPV Cation Channels/drug effects
- TRPV Cation Channels/metabolism
Collapse
Affiliation(s)
- R M Evans
- Medical Faculty, University of Calgary Calgary, Canada
| | - R H Scott
- Institute of Medical Sciences, University of Aberdeen Aberdeen, Scotland, UK
| | - R A Ross
- Institute of Medical Sciences, University of Aberdeen Aberdeen, Scotland, UK
- Author for correspondence:
| |
Collapse
|
26
|
Lever IJ, Pheby TM, Rice ASC. Continuous infusion of the cannabinoid WIN 55,212-2 to the site of a peripheral nerve injury reduces mechanical and cold hypersensitivity. Br J Pharmacol 2007; 151:292-302. [PMID: 17375083 PMCID: PMC2013951 DOI: 10.1038/sj.bjp.0707210] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 01/23/2007] [Accepted: 01/25/2007] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Cannabinoids have analgesic and anti-inflammatory properties but their use is limited by psychotropic activity at CNS receptors. Restricting cannabinoid delivery to peripheral tissues at systemically inactive doses offers a potential solution to this problem. EXPERIMENTAL APPROACH WIN 55,212-2 was continuously delivered to the site of a partial ligation injury to the sciatic nerve via a perineural catheter connected to a mini-osmotic pump implanted at the time of injury. Bilateral reflex limb withdrawal behaviour was measured in adult male Wistar rats in response to mechanical and cooling stimulation of the hind paw. KEY RESULTS Compared with vehicle treatment, WIN 55,212-2 (1.4 microg microl(-1) hr(-1)) reduced hypersensitivity to stimuli applied to the injured limb at 2, 4 and 6 days after injury. The effects of WIN 55,212-2 (0.6-2.8 microg microl(-1) hr(-1)) were dose-dependent. Estimated EC(50) values for reduction in mean responses to mechanical and cooling stimulation (day 4 post-surgery) were 1.55 (95% C.I, [1.11-2.16]) microg microl(-1) hr(-1) and 1.52 (95% C.I, [1.07-2.18]) microg microl(-1) hr(-1), respectively. When delivered to the contralateral side to injury, WIN 55,212-2 (1.4 or 2.8 microg microl(-1) hr(-1)) did not significantly affect nerve injury-associated hypersensitivity. Co-perineural application of a CB(1) receptor antagonist SR141716a and WIN 55,212-2 prevented the effects of WIN 55,212-2 on hypersensitivity. Co-application of CB(2) receptor antagonist SR144528 reversed WIN 55,212-2's effect on mechanical hypersensitivity on day 2 only. CONCLUSIONS AND IMPLICATIONS These data support a peripheral antihyperalgesic effect of WIN 55,212-2 when delivered directly to the site of a nerve injury at systemically inactive doses.
Collapse
Affiliation(s)
- I J Lever
- Pain Research Group, Department of Anaesthetics, Intensive Care and Pain Medicine, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital Campus London, UK
| | - T M Pheby
- Pain Research Group, Department of Anaesthetics, Intensive Care and Pain Medicine, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital Campus London, UK
| | - A S C Rice
- Pain Research Group, Department of Anaesthetics, Intensive Care and Pain Medicine, Faculty of Medicine, Imperial College London, Chelsea and Westminster Hospital Campus London, UK
| |
Collapse
|
27
|
Starowicz K, Nigam S, Di Marzo V. Biochemistry and pharmacology of endovanilloids. Pharmacol Ther 2007; 114:13-33. [PMID: 17349697 DOI: 10.1016/j.pharmthera.2007.01.005] [Citation(s) in RCA: 275] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Accepted: 01/24/2007] [Indexed: 11/28/2022]
Abstract
Endovanilloids are defined as endogenous ligands and activators of transient receptor potential (TRP) vanilloid type 1 (TRPV1) channels. The first endovanilloid to be identified was anandamide (AEA), previously discovered as an endogenous agonist of cannabinoid receptors. In fact, there are several similarities, in terms of opposing actions on the same intracellular signals, role in the same pathological conditions, and shared ligands and tissue distribution, between TRPV1 and cannabinoid CB(1) receptors. After AEA and some of its congeners (the unsaturated long chain N-acylethanolamines), at least 2 other families of endogenous lipids have been suggested to act as endovanilloids: (i) unsaturated long chain N-acyldopamines and (ii) some lipoxygenase (LOX) metabolites of arachidonic acid (AA). Here we discuss the mechanisms for the regulation of the levels of the proposed endovanilloids, as well as their TRPV1-mediated pharmacological actions in vitro and in vivo. Furthermore, we outline the possible pathological conditions in which endovanilloids, acting at sometimes aberrantly expressed TRPV1 receptors, might play a role.
Collapse
Affiliation(s)
- Katarzyna Starowicz
- Institute of Biomolecular Chemistry, Endocannabinoid Research Group, C.N.R., Pozzuoli, Naples, Italy
| | | | | |
Collapse
|
28
|
Abstract
Convincing evidence from preclinical studies demonstrates that cannabinoids can reduce pain responses in a range of inflammatory and neuropathic pain models. The anatomical and functional data reveal cannabinoid receptor-mediated analgesic actions operating at sites concerned with the transmission and processing of nociceptive signals in brain, spinal cord and the periphery. The precise signalling mechanisms by which cannabinoids produce analgesic effects at these sites remain unclear; however, significant clues point to cannabinoid modulation of the functions of neurone and immune cells that mediate nociceptive and inflammatory responses. Intracellular signalling mechanisms engaged by cannabinoid receptors-like the inhibition of calcium transients and adenylate cyclase, and pre-synaptic modulation of transmitter release-have been demonstrated in some of these cell types and are predicted to play a role in the analgesic effects of cannabinoids. In contrast, the clinical effectiveness of cannabinoids as analgesics is less clear. Progress in this area requires the development of cannabinoids with a more favourable therapeutic index than those currently available for human use, and the testing of their efficacy and side-effects in high-quality clinical trials.
Collapse
Affiliation(s)
- I J Lever
- Pain Research Group, Department of Anaesthetics, Intensive Care and Pain Medicine, Imperial College London, Chelsea and Westminster Hospital Campus, 369 Fulham Road, London SW10 9NH, UK
| | | |
Collapse
|
29
|
Hamamoto DT, Giridharagopalan S, Simone DA. Acute and chronic administration of the cannabinoid receptor agonist CP 55,940 attenuates tumor-evoked hyperalgesia. Eur J Pharmacol 2006; 558:73-87. [PMID: 17250825 PMCID: PMC1995024 DOI: 10.1016/j.ejphar.2006.11.062] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 11/13/2006] [Accepted: 11/21/2006] [Indexed: 11/17/2022]
Abstract
Patients with cancer frequently report pain that can be difficult to manage. This study examined the antihyperalgesic effects of a cannabinoid receptor agonist, CP 55,940, in a murine model of cancer pain. Implantation of fibrosarcoma cells into and around the calcaneous bone in mice produced mechanical hyperalgesia (decreased paw withdrawal thresholds and increased frequency of paw withdrawals). On day 13 after implantation, mechanical hyperalgesia, nociception, and catalepsy were assessed. Mice were randomly assigned to receive CP 55,940 (0.01-3 mg/kg, i.p.) or vehicle and behavioral measures were redetermined. CP 55,940 dose-dependently attenuated tumor-evoked mechanical hyperalgesia. To examine the effect of catalepsy on the antihyperalgesic effect of CP 55,940, mice with tumor-evoked hyperalgesia were pretreated with the dopamine agonist apomorphine prior to administration of CP 55,940. Apomorphine attenuated the cataleptic effect of CP 55,940 but did not attenuate its antihyperalgesic effect. In a separate group of mice with tumor-evoked hyperalgesia, administration of the dopamine antagonist spiperone produced catalepsy that was approximately 2.5 fold greater than that produced by CP 55,490. Whereas this dose of CP 55,940 completely reversed tumor-evoked mechanical hyperalgesia, spiperone only attenuated mechanical hyperalgesia by approximately 35%. Thus, the cataleptic effects of CP 55,940 did not fully account for its antihyperalgesic effect. The antihyperalgesic effect of CP 55,940 was mediated via the cannabinoid CB1 but not CB2 receptor. Finally, repeated administration of CP 55,940 produced a short-term and a longer-term attenuation of tumor-evoked hyperalgesia. These results suggest that cannabinoids may be a useful alternative or adjunct therapy for treating cancer pain.
Collapse
Affiliation(s)
- Darryl T Hamamoto
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
30
|
Trang T, Ma W, Chabot JG, Quirion R, Jhamandas K. Spinal modulation of calcitonin gene-related peptide by endocannabinoids in the development of opioid physical dependence. Pain 2006; 126:256-71. [PMID: 16935424 DOI: 10.1016/j.pain.2006.07.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2006] [Revised: 06/12/2006] [Accepted: 07/06/2006] [Indexed: 11/16/2022]
Abstract
Studies implicate endocannabinoids in the acute and chronic actions of opioid drugs, including the genesis of physical dependence. Previous evidence suggests that spinal release of calcitonin gene-related peptide (CGRP) and activation of its receptors contribute to opioid physical dependence. The release of CGRP at the spinal level is modulated by cannabinoid (CB1)-receptors. Thus, this study examined whether CB1-receptor activity mediates changes in CGRP underlying development of opioid physical dependence. Systemic morphine administration for 5-days elevated CGRP-immunoreactivity in the rat spinal dorsal horn. In situ hybridization of dorsal root ganglion (DRG) neurons revealed an increase in CGRP mRNA during initial (day 1-3) but not later phase (day 4-5) of morphine treatment. CGRP-immunoreactivity in DRG neurons, however, was increased in the later phase of morphine treatment. Naloxone challenge to morphine-treated animals precipitated an intense withdrawal syndrome that depleted CGRP-immunoreactivity and increased Fos expression in the dorsal horn. The Fos-response primarily occurred in neurons that expressed CGRP receptor component protein (RCP) suggesting CGRP activity contributes to neuronal activation during precipitated withdrawal. Spinal slices obtained from morphine-treated animals showed higher levels of CGRP release than from saline controls. Intrathecal co-administration of CB1-receptor antagonists, AM-251 or SR141716A, with daily morphine attenuated the behavioral manifestations of withdrawal. Treatment with AM-251 also reduced the depletion of CGRP, suppressed Fos-induction, and prevented the increase in capsaicin-evoked spinal CGRP release. Altogether, this study suggests that endocannabinoid activity, expressed via CB1-receptors, contributes to the induction of opioid physical dependence through spinal modulation of CGRP.
Collapse
Affiliation(s)
- Tuan Trang
- Department of Pharmacology and Toxicology and Anesthesiology, Queen's University Kingston, Ont., Canada K7L 3N6
| | | | | | | | | |
Collapse
|
31
|
Krishtal O, Lozovaya N, Fedorenko A, Savelyev I, Chizhmakov I. The agonists for nociceptors are ubiquitous, but the modulators are specific: P2X receptors in the sensory neurons are modulated by cannabinoids. Pflugers Arch 2006; 453:353-60. [PMID: 16741755 DOI: 10.1007/s00424-006-0094-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Accepted: 04/18/2006] [Indexed: 10/24/2022]
Abstract
P2X2 and P2X3 receptors expressed in mammalian sensory neurons participate in nociception. Cannabinoid receptors modulate nociceptive processing in various models of pain. They are also expressed in nociceptive sensory neurons. We have examined the effect of cannabinoids on the slow P2X2 and P2X2/3 receptors in the cells isolated from nodosal and dorsal root ganglia of rat. The study was carried out by means of the whole-cell patch clamp and rapid superfusion methods. We have found that both endogenous and synthetic cannabinoids (anandamide, WIN55,212-2, and (R)-(+)-methanandamide) inhibit the slow response to ATP mediated by P2X2 and P2X2/3 receptors in a majority of tested neurons. This inhibition was significant but only partial: anandamide (0.5-1 microM) inhibited the response to 51+/-21% of control. In the remaining minority of tested neurons, the response was transiently facilitated. The effect of cannabinoids appears to be mediated via cannabinoid CB(1) receptors: it was reversibly inhibited by selective CB(1) antagonist, SR141716A (10 microM). Introduction of cyclic AMP (0.5 mM) into the cell potently facilitated the inhibitory effect of cannabinoids: the ATP-activated current was inhibited to 13+/-10% of control. These data indicate that cannabinoids may inhibit nociceptive responses produced by P2X receptors.
Collapse
Affiliation(s)
- O Krishtal
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Bogomoletz Street 4, Kiev, 01024, Ukraine.
| | | | | | | | | |
Collapse
|
32
|
Abstract
A large body of literature indicates that cannabinoids suppress behavioral responses to acute and persistent noxious stimulation in animals. This review examines neuroanatomical, behavioral, and neurophysiological evidence supporting a role for cannabinoids in suppressing pain at spinal, supraspinal, and peripheral levels. Localization studies employing receptor binding and quantitative autoradiography, immunocytochemistry, and in situ hybridization are reviewed to examine the distribution of cannabinoid receptors at these levels and provide a neuroanatomical framework with which to understand the roles of endogenous cannabinoids in sensory processing. Pharmacological and transgenic approaches that have been used to study cannabinoid antinociceptive mechanisms are described. These studies provide insight into the functional roles of cannabinoid CB1 (CB1R) and CB2 (CB2R) receptor subtypes in cannabinoid antinociceptive mechanisms, as revealed in animal models of acute and persistent pain. The role of endocannabinoids and related fatty acid amides that are implicated in endogenous mechanisms for pain suppression are discussed. Human studies evaluating therapeutic potential of cannabinoid pharmacotherapies in experimental and clinical pain syndromes are evaluated. The potential of exploiting cannabinoid antinociceptive mechanisms in novel pharmacotherapies for pain is discussed.
Collapse
MESH Headings
- Animals
- Cannabinoid Receptor Modulators/physiology
- Cannabinoids/pharmacology
- Cannabinoids/therapeutic use
- Humans
- Hyperalgesia/physiopathology
- Nociceptors/physiology
- Pain/drug therapy
- Pain/physiopathology
- RNA, Messenger/analysis
- Receptor, Cannabinoid, CB1/analysis
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/physiology
- Receptor, Cannabinoid, CB2/drug effects
- Receptor, Cannabinoid, CB2/physiology
- Spinal Cord/drug effects
- Spinal Cord/physiology
Collapse
Affiliation(s)
- J M Walker
- Department of Psychology, Indiana University Bloomington, IN 47405-7007, USA
| | | |
Collapse
|
33
|
Sagar DR, Kelly S, Millns PJ, O'Shaughnessey CT, Kendall DA, Chapman V. Inhibitory effects of CB1 and CB2 receptor agonists on responses of DRG neurons and dorsal horn neurons in neuropathic rats. Eur J Neurosci 2005; 22:371-9. [PMID: 16045490 DOI: 10.1111/j.1460-9568.2005.04206.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cannabinoid 2 (CB2) receptor mediated antinociception and increased levels of spinal CB2 receptor mRNA are reported in neuropathic Sprague-Dawley rats. The aim of this study was to provide functional evidence for a role of peripheral, vs. spinal, CB2 and cannabinoid 1 (CB1) receptors in neuropathic rats. Effects of the CB2 receptor agonist, JWH-133, and the CB1 receptor agonist, arachidonyl-2-chloroethylamide (ACEA), on primary afferent fibres were determined by calcium imaging studies of adult dorsal root ganglion (DRG) neurons taken from neuropathic and sham-operated rats. Capsaicin (100 nm) increased [Ca2+]i in DRG neurons from sham and neuropathic rats. JWH-133 (3 microm) or ACEA (1 microm) significantly (P<0.001) attenuated capsaicin-evoked calcium responses in DRG neurons in neuropathic and sham-operated rats. The CB2 receptor antagonist, SR144528, (1 microm) significantly inhibited the effects of JWH-133. Effects of ACEA were significantly inhibited by the CB1 receptor antagonist SR141716A (1 microm). In vivo experiments evaluated the effects of spinal administration of JWH-133 (8-486 ng/50 microL) and ACEA (0.005-500 ng/50 microL) on mechanically evoked responses of neuropathic and sham-operated rats. Spinal JWH-133 attenuated mechanically evoked responses of spinal neurons in neuropathic, but not sham-operated rats. These inhibitory effects were blocked by SR144528 (0.001 microg/50 microL). Spinal ACEA inhibited mechanically evoked responses of neuropathic and sham-operated rats, these effects were blocked by SR141716A (0.01 microg/50 microL). Our data provide evidence for a functional role of CB2, as well as CB1 receptors on DRG neurons in sham and neuropathic rats. At the level of the spinal cord, CB2 receptors have inhibitory effects in neuropathic, but not sham-operated rats suggesting that spinal CB2 may be an important analgesic target.
Collapse
MESH Headings
- Action Potentials/drug effects
- Action Potentials/physiology
- Animals
- Arachidonic Acids/pharmacology
- Behavior, Animal
- Calcium/metabolism
- Camphanes/pharmacology
- Cannabinoids/pharmacology
- Capsaicin/pharmacology
- Cells, Cultured
- Diagnostic Imaging/methods
- Dose-Response Relationship, Drug
- Drug Interactions
- Evoked Potentials/drug effects
- Evoked Potentials/physiology
- Ganglia, Spinal/cytology
- Hyperalgesia/drug therapy
- Hyperalgesia/physiopathology
- Ligation/methods
- Male
- Neural Inhibition/drug effects
- Neurons/drug effects
- Neurons/metabolism
- Pain Measurement/methods
- Piperidines/pharmacology
- Posterior Horn Cells/drug effects
- Posterior Horn Cells/metabolism
- Pyrazoles/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Rimonabant
- Spinal Cord Diseases/drug therapy
- Spinal Cord Diseases/physiopathology
- Touch
Collapse
Affiliation(s)
- Devi Rani Sagar
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG9 2UH, UK.
| | | | | | | | | | | |
Collapse
|
34
|
Bickmeyer U, Assmann M, Köck M, Schütt C. A secondary metabolite, 4,5-dibromopyrrole-2-carboxylic acid, from marine sponges of the genus Agelas alters cellular calcium signals. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2005; 19:423-427. [PMID: 21783507 DOI: 10.1016/j.etap.2004.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A secondary metabolite from sponges of the genus Agelas, 4,5-dibromopyrrole-2-carboxylic acid, which is well known as feeding deterrent, was investigated for effects on the cellular calcium homeostasis in PC12 cells. 4,5-Dibromopyrrole-2-carboxylic acid did not change intracellular calcium levels if applied alone without cell depolarization. During depolarization of the cellular membrane using high potassium solution, a dose dependent reduction of intracellular calcium elevation was revealed utilizing Fura II as calcium indicator. Significant reduction was seen at concentrations higher than 30μM in a series of experiments, but in single experiments a concentration of 300nM was still reversible effective. In the same concentration range, the onset of depolarization induced calcium elevations was significantly delayed by 4,5-dibromopyrrole-2-carboxylic acid. Dose dependent reduction and delay of depolarization evoked calcium elevations are probably due to a reduction of calcium entry via voltage operated calcium channels. One cellular mode of action of the feeding deterrent potential of 4,5-dibromopyrrole-2-carboxylic acid to fishes may be an interaction with the cellular calcium homeostasis of exposed cells.
Collapse
Affiliation(s)
- Ulf Bickmeyer
- Alfred-Wegener-Institut für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft, Biologische Anstalt Helgoland, Kurpromenade, D-27498 Helgoland, Germany
| | | | | | | |
Collapse
|
35
|
Johanek LM, Simone DA. Cannabinoid Agonist, CP 55,940, Prevents Capsaicin-Induced Sensitization of Spinal Cord Dorsal Horn Neurons. J Neurophysiol 2005; 93:989-97. [PMID: 15385593 DOI: 10.1152/jn.00673.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Low doses of cannabinoids applied intrathecally attenuate capsaicin-evoked heat and mechanical hyperalgesia via CB1 receptors. Although cannabinoids produce antinociception, in part, by attenuating responses of nociceptive neurons in the spinal cord, few studies have examined the effect of cannabinoids on sensitization of spinal neurons. We therefore investigated whether a cannabinoid receptor agonist, CP 55,940, attenuated excitation and sensitization of spinal nociceptive neurons produced by intraplantar injection of 0.1% capsaicin (10 μl). In rats, wide-dynamic-range (WDR) and high-threshold (HT) neurons were classified according to responses evoked by mechanical stimuli of varying intensity. CP 55,940 (10 μg in 50 μl) or vehicle was applied directly to the spinal cord and responses to mechanical (von Frey monofilament) and heat stimuli were recorded 10 min after drug treatment. CP 55,940 alone did not alter responses to mechanical stimuli; however the enhanced responses to mechanical stimuli after injection of capsaicin into the receptive field were dose dependently attenuated in both HT and WDR neurons. Vehicle-treated neurons increased their response to 300.6 ± 52.1% of baseline after capsaicin, whereas CP 55,940-treated neurons responded at 153.0 ± 27.1% of baseline. The effects of CP 55,940 on sensitization to heat were less pronounced; however, CP 55,940 attenuated the capsaicin-evoked decrease in heat threshold in HT neurons. The attenuation by CP 55,940 of sensitization to mechanical stimuli was blocked by pretreatment of the spinal cord with the CB1 receptor antagonist, SR141716A. These studies demonstrate that cannabinoid application to the spinal cord prevents central sensitization.
Collapse
Affiliation(s)
- Lisa M Johanek
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
36
|
Anderson LE, Seybold VS. Calcitonin gene-related peptide regulates gene transcription in primary afferent neurons. J Neurochem 2005; 91:1417-29. [PMID: 15584918 DOI: 10.1111/j.1471-4159.2004.02833.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although primary afferent neurons express receptors for calcitonin gene-related peptide (CGRP), understanding of the cellular effects of these receptors is limited. We determined that CGRP receptors regulate gene transcription in primary afferent neurons through a cyclic AMP (cAMP)-dependent pathway. CGRP increased cAMP in neonatal dorsal root ganglion (DRG) neurons in a concentration-dependent manner that was blocked by the receptor antagonist CGRP(8-37). The response to CGRP also occurred in adult DRG cells. In contrast, CGRP did not alter the concentration of free intracellular calcium in neonatal or adult DRG neurons. Immunohistochemical data showed that one downstream effect of the cAMP signaling pathway was phosphorylation of cAMP response element binding (CREB) protein, suggesting that CGRP regulates gene expression. This interpretation was supported by evidence that CGRP increased CRE-dependent gene transcription in neurons transiently transfected with a CRE-luciferase DNA reporter construct. The effect of CGRP on gene transcription was inhibited by H89, myristoylated-protein kinase A inhibitor(14-22)-amide and U0126, indicating that protein kinase A and mitogen-activated protein kinase/extracellular receptor kinase kinase are enzymes that mediate effects of CGRP on gene transcription. Therefore, CGRP receptors may regulate expression of proteins by primary afferent neurons during development and in response to tissue-damaging stimuli.
Collapse
Affiliation(s)
- L E Anderson
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | |
Collapse
|
37
|
Oshita K, Inoue A, Tang HB, Nakata Y, Kawamoto M, Yuge O. CB1 Cannabinoid Receptor Stimulation Modulates Transient Receptor Potential Vanilloid Receptor 1 Activities in Calcium Influx and Substance P Release in Cultured Rat Dorsal Root Ganglion Cells. J Pharmacol Sci 2005; 97:377-85. [PMID: 15750287 DOI: 10.1254/jphs.fp0040872] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Cannabinoids have been reported to have analgesic properties in animals of acute nociception or of inflammatory and neuropathic pain models, but the mechanisms by which they exert such alleviative effects are not yet fully understood. We investigated whether the CB(1)-cannabinoid-receptor agonist HU210 modulates the capsaicin-induced (45)Ca(2+) influx and substance P like-immunoreactivity (SPLI) release in cultured rat dorsal root ganglion (DRG) cells. HU210 attenuated the capsaicin-induced (45)Ca(2+) influx and this effect was reversed by the CB(1) antagonist AM251. Treatment of DRG cells with 100 nM bradykinin for 3 h potentiated capsaicin-induced SPLI release accompanied with the induction of cyclooxygenase-2 mRNA expression. The potentiation of SPLI release by bradykinin was reversed by HU210 or the protein kinase A (PKA) inhibitor H-89. HU210 also reduced forskolin-induced cyclic AMP production and forskolin-induced potentiation of SPLI release. These results suggest that CB(1) could inhibit either the capsaicin-induced Ca(2+) influx or the potentiation of capsaicin-induced SPLI release by a long-term treatment with bradykinin through involvement of a cyclic-AMP-dependent PKA pathway. In conclusion, CB(1)-receptor stimulation modulates the activities of transient receptor potential vanilloid receptor 1 in cultured rat DRG cells.
Collapse
Affiliation(s)
- Kyoko Oshita
- Department of Anesthesiology and Critical Care, Division of Clinical Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima.
| | | | | | | | | | | |
Collapse
|
38
|
Price TJ, Patwardhan A, Akopian AN, Hargreaves KM, Flores CM. Cannabinoid receptor-independent actions of the aminoalkylindole WIN 55,212-2 on trigeminal sensory neurons. Br J Pharmacol 2004; 142:257-66. [PMID: 15155534 PMCID: PMC1574952 DOI: 10.1038/sj.bjp.0705778] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The prototypical aminoalkylindole cannabinoid WIN 55,212-2 (WIN-2) has been shown to produce antihyperalgesia through a peripheral mechanism of action. However, it is not known whether WIN-2 exerts this action directly via cannabinoid receptors located on primary afferents or if other, perhaps indirect or noncannabinoid, mechanisms are involved. To address this question, we have examined the specific actions of WIN-2 on trigeminal ganglion (TG) neurons in vitro by quantifying its ability to modulate the evoked secretion of the proinflammatory neuropeptide CGRP as well as the inflammatory mediator-induced generation of cAMP. WIN-2 evoked CGRP release from TG neurons in vitro (EC(50)=26 microm) in a concentration- and calcium-dependent manner, which was mimicked by the cannabinoid receptor-inactive enantiomer WIN 55,212-3 (WIN-3). Moreover, WIN-2-evoked CGRP release was attenuated by the nonselective cation channel blocker ruthenium red but not by the vanilloid receptor type 1 (TRPV1) antagonist capsazepine, suggesting that, unlike certain endogenous and synthetic cannabinoids, WIN-2 is not a TRPV1 agonist but rather acts at an as yet unidentified cation channel. The inhibitory effects of WIN-2 on TG neurons were also examined. WIN-2 neither inhibited capsaicin-evoked CGRP release nor did it inhibit forskolin-, isoproteranol- or prostaglandin E(2)-stimulated cAMP accumulation. On the other hand, WIN-2 significantly inhibited (EC(50)=1.7 microm) 50 mm K(+)-evoked CGRP release by approximately 70%. WIN-2 inhibition of 50 mm K(+)-evoked CGRP release was not reversed by antagonists of cannabinoid type 1 (CB1) receptor, but was mimicked in magnitude and potency (EC(50)=2.7 microm) by its cannabinoid-inactive enantiomer WIN-3. These findings indicate that WIN-2 exerts both excitatory and inhibitory effects on TG neurons, neither of which appear to be mediated by CB1, CB2 or TRPV1 receptors, but by a novel calcium-dependent mechanism. The ramifications of these results are discussed in relation to our current understanding of cannabinoid/vanilloid interactions with primary sensory neurons.
Collapse
Affiliation(s)
- Theodore J Price
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, U.S.A
- Department of Endodontics, The University of Texas Health Science Center at San Antonio, U.S.A
| | - Amol Patwardhan
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, U.S.A
| | - Armen N Akopian
- Department of Endodontics, The University of Texas Health Science Center at San Antonio, U.S.A
| | - Kenneth M Hargreaves
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, U.S.A
- Department of Endodontics, The University of Texas Health Science Center at San Antonio, U.S.A
| | - Christopher M Flores
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, U.S.A
- Department of Endodontics, The University of Texas Health Science Center at San Antonio, U.S.A
- Author for correspondence:
| |
Collapse
|
39
|
Sagar DR, Smith PA, Millns PJ, Smart D, Kendall DA, Chapman V. TRPV1 and CB(1) receptor-mediated effects of the endovanilloid/endocannabinoid N-arachidonoyl-dopamine on primary afferent fibre and spinal cord neuronal responses in the rat. Eur J Neurosci 2004; 20:175-84. [PMID: 15245490 DOI: 10.1111/j.1460-9568.2004.03481.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
N-arachidonoyl-dopamine (NADA) is an endogenous ligand at TRPV1 and CB(1) receptors, which are expressed on primary afferent nociceptors. The aim of this study was to determine contributions of proposed pronociceptive TRPV1 and antinociceptive CB(1) receptors to effects of peripheral NADA on primary afferent fibre function. Effects of NADA on primary afferent nociceptor function, determined by whole cell patch clamp and calcium imaging studies of adult dorsal root ganglion (DRG) neurons, were determined. Application of NADA (1 microm) to DRG neurons depolarized the resting membrane potential (Vm) from -58 +/- 1 to -44 +/- 3 mV (P < 0.00001) and evoked a significant increase (P < 0.0001) in intracellular calcium (74 +/- 11% of response to 60 mm KCl), compared to basal. The TRPV1 receptor antagonist capsazepine abolished NADA-evoked depolarization of Vm (P < 0.0001) and NADA-evoked calcium responses (P < 0.001), which were also blocked by the CB(1) receptor antagonist SR141716A (P < 0.001). Effects of NADA (1.5 microg and 5 microg/50 microL) on mechanically evoked responses of dorsal horn neurons in anaesthetized Sprague-Dawley rats were studied. Intraplantar injection of the higher dose of NADA (5 microg/50 microL) studied significantly inhibited innocuous (8, 10 g) mechanically evoked responses of dorsal horn neurons compared to vehicle, effects blocked by intraplantar injection of SR141716A. Higher weight (26-100 g) noxious-evoked responses of dorsal horn neurons were also significantly inhibited by NADA (5 microg/50 microL), effects blocked by intraplantar injection of the TRPV1 antagonist, iodo-resiniferatoxin. NADA has a complex pattern of effects on DRG neurons and primary afferent fibres, which is likely to reflect its dual site of action at TRPV1 and CB(1) receptors and the differential expression of these receptors by primary afferent fibres.
Collapse
Affiliation(s)
- Devi R Sagar
- School of Biomedical Sciences, University of Nottingham, E Floor Medical School, Queen's Medical Centre, Nottingham, NG7 2UH
| | | | | | | | | | | |
Collapse
|
40
|
Bickmeyer U, Drechsler C, Köck M, Assmann M. Brominated pyrrole alkaloids from marine Agelas sponges reduce depolarization-induced cellular calcium elevation. Toxicon 2004; 44:45-51. [PMID: 15225561 DOI: 10.1016/j.toxicon.2004.04.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2003] [Revised: 04/01/2004] [Accepted: 04/07/2004] [Indexed: 11/18/2022]
Abstract
Seven pyrrole alkaloids isolated from Agelas sponges were tested for interactions with the cellular calcium homeostasis. Brominated pyrrole alkaloids reduced voltage dependent calcium elevation in PC12 cells. Dibromosceptrin was the most potent alkaloid with a half maximal concentration of 2.8 microM followed by sceptrin (67.5 microM) and oroidin (75.8 microM). 4,5-Dibromopyrrole-2-carboxylic acid reduced calcium elevation at concentrations exceeding 30 microM but did not eliminate calcium elevation at concentrations up to 1 mM. 4-Bromopyrrole-2-carboxylic acid and pyrrole-2-carboxylic acid were not active in this respect. The aminoimidazole group appeared to have a significant effect on voltage dependent calcium elevation shown by the comparison of oroidin with 4,5-dibromopyrrole-2-carboxylic acid. The degree of bromination of the pyrrole moiety is another important factor, as was shown by the comparison of 4,5-dibromopyrrole-2-carboxylic acid with 4-bromopyrrole-2-carboxylic acid, as well as oroidin with hymenidin and dibromosceptrin with sceptrin. The previously reported feeding deterrent activity of brominated pyrrole alkaloids in Agelas sponges against predatory reef fish may partly be explained by a general interaction of these alkaloids with the cellular calcium homeostasis. The chemoreception of bromopyrrole alkaloids in sea water is shown using sensory neurons in the rhinophore of the sea slug Aplysia punctata.
Collapse
Affiliation(s)
- Ulf Bickmeyer
- Alfred-Wegener-Institut für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft, Biologische Anstalt Helgoland, Kurpromenade, D-27498 Helgoland, Germany.
| | | | | | | |
Collapse
|
41
|
Johanek LM, Simone DA. Activation of peripheral cannabinoid receptors attenuates cutaneous hyperalgesia produced by a heat injury. Pain 2004; 109:432-442. [PMID: 15157704 DOI: 10.1016/j.pain.2004.02.020] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Revised: 02/06/2004] [Accepted: 02/23/2004] [Indexed: 11/21/2022]
Abstract
Accumulating evidence suggests that cannabinoids can produce antinociception through peripheral mechanisms. In the present study, we determined whether cannabinoids attenuated existing hyperalgesia produced by a mild heat injury to the glabrous hindpaw and whether the antihyperalgesia was receptor-mediated. Anesthetized rats received a mild heat injury (55 degrees C for 30 s) to one hindpaw. Fifteen minutes after injury, animals exhibited hyperalgesia as evidenced by lowered withdrawal latency to radiant heat and increased withdrawal frequency to a von Frey monofilament (200 mN force) delivered to the injured hindpaw. Separate groups of animals were then treated with an intraplantar (i.pl.) injection of vehicle or the cannabinoid receptor agonist WIN 55,212-2 at doses of 1, 10, or 30 microg in 100 microl. WIN 55,212-2 attenuated both heat and mechanical hyperalgesia dose-dependently. The inactive enantiomer WIN 55,212-3 did not alter mechanical or heat hyperalgesia, suggesting the effects of WIN 55,212-2 were receptor-mediated. The CB1 receptor antagonist AM 251 (30 microg) co-injected with WIN 55,212-2 (30 microg) attenuated the antihyperalgesic effects of WIN 55,212-2. The CB2 receptor antagonist AM 630 (30 microg) co-injected with WIN 55,212-2 attenuated only the early antihyperalgesic effects of WIN 55,212-2. I.pl. injection of WIN 55,212-2 into the contralateral paw did not alter the heat-injury induced hyperalgesia, suggesting that the antihyperalgesia occurred through a peripheral mechanism. These data demonstrate that cannabinoids primarily activate peripheral CB1 receptors to attenuate hyperalgesia. Activation of this receptor in the periphery may attenuate pain without causing unwanted side effects mediated by central CB1 receptors.
Collapse
MESH Headings
- Animals
- Benzoxazines
- Burns/drug therapy
- Burns/physiopathology
- Cannabinoid Receptor Agonists
- Cannabinoid Receptor Antagonists
- Disease Models, Animal
- Hot Temperature/adverse effects
- Hyperalgesia/drug therapy
- Hyperalgesia/physiopathology
- Indoles/pharmacology
- Male
- Morpholines/pharmacology
- Naphthalenes/pharmacology
- Nerve Fibers, Myelinated/drug effects
- Nerve Fibers, Myelinated/metabolism
- Nerve Fibers, Unmyelinated/drug effects
- Nerve Fibers, Unmyelinated/metabolism
- Nociceptors/drug effects
- Nociceptors/metabolism
- Pain/drug therapy
- Pain/physiopathology
- Pain Measurement
- Physical Stimulation
- Piperidines/pharmacology
- Pyrazoles/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, Cannabinoid/metabolism
- Reflex/drug effects
- Reflex/physiology
- Skin/innervation
- Skin/physiopathology
Collapse
Affiliation(s)
- Lisa M Johanek
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA Department of Oral Sciences, University of Minnesota, 515 Delaware Street SE, 17-252 Moos Tower, Minneapolis, MN 55455, USA
| | | |
Collapse
|
42
|
Khasabova IA, Harding-Rose C, Simone DA, Seybold VS. Differential effects of CB1 and opioid agonists on two populations of adult rat dorsal root ganglion neurons. J Neurosci 2004; 24:1744-53. [PMID: 14973253 PMCID: PMC6730464 DOI: 10.1523/jneurosci.4298-03.2004] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inhibition of primary afferent neurons contributes to the antihyperalgesic effects of opioid and CB1 receptor agonists. Two bioassays were used to compare the effects of the CB1 receptor agonist CP 55,940 and morphine on dissociated adult rat DRG neurons. Both agonists inhibited the increase in free intracellular Ca2+ concentration evoked by depolarization; however, effects of CP 55,940 occurred primarily in large neurons (cell area, >800 microm2), whereas morphine inhibited the response in smaller neurons. Cotreatment with selective blockers of L-, N-, and P/Q-type voltage-dependent Ca2+ channels indicated that CB1 receptors on DRG neurons couple solely with N-type channels but opioid receptors couple with multiple subtypes. Experiments with selective agonists and antagonists of opioid receptors indicated that mu and delta, but not kappa, receptors contributed to the inhibitory effect of morphine on voltage-dependent Ca2+ influx. Because Ca2+ channels underlie release of transmitters from neurons, the effects of opioid agonists and CP 55,940 on depolarization-evoked release of calcitonin gene-related peptide (CGRP) were compared. Morphine inhibited release through delta receptors but CP 55,940 had no effect. Colocalization of CGRP with delta-opioid but not mu-opioid or CB1 receptor immunoreactivity in superficial laminae of the dorsal horn of the spinal cord was consistent with the data for agonist inhibition of peptide release. Therefore, CB1 and opioid agonists couple with different voltage-dependent Ca2+ channels in different populations of DRG neurons. Furthermore, differences occur in the distribution of receptors between the cell body and terminals of DRG neurons. The complementary action of CB1 and opioid receptor agonists on populations of DRG neurons provides a rationale for their combined use in modulation of somatosensory input to the spinal cord.
Collapse
Affiliation(s)
- I A Khasabova
- Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
43
|
Evans RM, Scott RH, Ross RA. Multiple actions of anandamide on neonatal rat cultured sensory neurones. Br J Pharmacol 2004; 141:1223-33. [PMID: 15023857 PMCID: PMC1574891 DOI: 10.1038/sj.bjp.0705723] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. We have investigated the effects of the endocannabinoid anandamide (AEA) on neuronal excitability and vanilloid TRPV1 receptors in neonatal rat cultured dorsal root ganglion neurones. 2. Using whole-cell patch-clamp electrophysiology, we found that AEA inhibits high-voltage-activated Ca(2+) currents by 33+/-9% (five out of eight neurones) in the absence of the CB(1) receptor antagonist SR141716A (100 nM) and by 32+/-6% (seven out of 10 neurones) in the presence of SR141716A. 3. Fura-2 fluorescence Ca(2+) imaging revealed that AEA produced distinct effects on Ca(2+) transients produced by depolarisation evoked by 30 mM KCl. In a population of neurones of larger somal area (372+/-20 microM(2)), it significantly enhanced Ca(2+) transients (80.26+/-13.12% at 1 microM), an effect that persists after pertussis toxin pretreatment. In a population of neurones of smaller somal area (279+/-18 microM(2)), AEA significantly inhibits Ca(2+) transients (30.75+/-3.54% at 1 microM), an effect that is abolished by PTX pretreatment. 4. Extracellular application of 100 nM AEA failed to evoke TRPV1 receptor inward currents in seven out of eight neurones that responded to capsaicin (1 microM), with a mean inward current of -0.94+/-0.21 nA. In contrast, intracellular application of 100 nM AEA elicited robust inward currents in approximately 62% of neurones, the mean population response was -0.85+/-0.21 nA. When AEA was applied to the intracellular environment with capsazepine (1 microM), the mean population inward current was -0.01+/-0.01 nA. Under control conditions, mean population current fluctuations of -0.09+/-0.05 nA were observed.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Arachidonic Acids/pharmacology
- Calcium Channels/drug effects
- Calcium Channels/physiology
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Capsaicin/analogs & derivatives
- Capsaicin/pharmacology
- Cells, Cultured
- Drug Synergism
- Endocannabinoids
- Fura-2/chemistry
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/physiology
- Neurons, Afferent/drug effects
- Pertussis Toxin/pharmacology
- Piperidines/pharmacology
- Polyunsaturated Alkamides
- Potassium Chloride/pharmacology
- Pyrazoles/pharmacology
- Rats
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/physiology
- Receptors, Drug/antagonists & inhibitors
- Receptors, Drug/drug effects
- Rimonabant
- TRPV Cation Channels
Collapse
Affiliation(s)
- Rhian M Evans
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland
| | - Roderick H Scott
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland
| | - Ruth A Ross
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland
- Author for correspondence:
| |
Collapse
|
44
|
Price TJ, Patwardhan A, Akopian AN, Hargreaves KM, Flores CM. Modulation of trigeminal sensory neuron activity by the dual cannabinoid-vanilloid agonists anandamide, N-arachidonoyl-dopamine and arachidonyl-2-chloroethylamide. Br J Pharmacol 2004; 141:1118-30. [PMID: 15006899 PMCID: PMC1574881 DOI: 10.1038/sj.bjp.0705711] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
1. Peripheral cannabinoids have been shown to suppress nociceptive neurotransmission in a number of behavioral and neurophysiological studies. It is not known, however, whether cannabinoids exert this action through direct interactions with nociceptors in the periphery and/or if other processes are involved. To gain a better understanding of the direct actions of cannabinoid-vanilloid agonists on sensory neurons, we examined the effects of these compounds on trigeminal ganglion (TG) neurons in vitro. 2. AEA (EC(50)=11.0 microM), NADA (EC(50)=857 nM) and arachidonyl-2-chloroethylamide ACEA (EC(50)=14.0 microM) each evoked calcitonin gene-related peptide (CGRP) release from TG neurons. The TRPV1 antagonists iodo-resiniferatoxin (I-RTX) and capsazepine (CPZ) each obtunded AEA-, NADA-, ACEA- and capsaicin (CAP)-evoked CGRP release with individually equivalent IC(50)'s for each of the compounds (I-RTX IC(50) range=2.6-4.0 nM; CPZ IC(50) range=523-1140 microM). 3. The pro-inflammatory mediator prostaglandin E(2) significantly increased the maximal effect of AEA-evoked CGRP release without altering the EC(50). AEA, ACEA and CAP stimulated cAMP accumulation in TG neurons in a calcium- and TRPV1-dependent fashion. Moreover, the protein kinase inhibitor staurosporine significantly inhibited AEA- and CAP-evoked CGRP release. 4. The pungency of AEA, NADA, ACEA and CAP in the rat eye-wipe assay was also assessed. Interestingly, when applied intraocularly, NADA or CAP each produced nocifensive responses, while AEA or ACEA did not. 5. Finally, the potential inhibitory effects of these cannabinoids on TG nociceptors were evaluated. Neither AEA nor ACEA decreased CAP-evoked CGRP release. Furthermore, neither of the cannabinoid receptor type 1 antagonists SR141716A nor AM251 had any impact on either basal or CAP-evoked CGRP release. AEA also did not inhibit 50 mM K(+)-evoked CGRP release and did not influence bradykinin-stimulated inositol phosphate accumulation. 6. We conclude that the major action of AEA, NADA and ACEA on TG neurons is excitatory, while, of these, only NADA is pungent. These findings are discussed in relation to our current understanding of interactions between the cannabinoid and vanilloid systems and nociceptive processing in the periphery.
Collapse
MESH Headings
- Aminobutyrates/pharmacology
- Animals
- Arachidonic Acid/antagonists & inhibitors
- Arachidonic Acid/chemistry
- Arachidonic Acid/pharmacology
- Arachidonic Acids/antagonists & inhibitors
- Arachidonic Acids/chemistry
- Arachidonic Acids/pharmacology
- Calcitonin Gene-Related Peptide/antagonists & inhibitors
- Calcitonin Gene-Related Peptide/metabolism
- Calcium Channels/drug effects
- Capsaicin/analogs & derivatives
- Capsaicin/antagonists & inhibitors
- Capsaicin/pharmacology
- Dinoprostone/pharmacology
- Diterpenes/pharmacology
- Dopamine/analogs & derivatives
- Dopamine/chemistry
- Dopamine/pharmacology
- Endocannabinoids
- Ganglia, Spinal/cytology
- Ganglia, Spinal/drug effects
- Ganglia, Spinal/physiology
- Male
- Polyunsaturated Alkamides
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/drug effects
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/agonists
- Receptor, Cannabinoid, CB2/drug effects
- Receptor, Cannabinoid, CB2/metabolism
- Receptors, Drug/agonists
- Receptors, Drug/drug effects
- Staurosporine/pharmacology
- TRPC Cation Channels
- TRPV Cation Channels
- Trigeminal Ganglion/cytology
- Trigeminal Ganglion/drug effects
- Trigeminal Ganglion/physiology
Collapse
Affiliation(s)
- Theodore J Price
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, U.S.A
| | - Amol Patwardhan
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, U.S.A
| | - Armen N Akopian
- Department of Endodontics, The University of Texas Health Science Center at San Antonio, U.S.A
| | - Kenneth M Hargreaves
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, U.S.A
- Department of Endodontics, The University of Texas Health Science Center at San Antonio, U.S.A
| | - Christopher M Flores
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, U.S.A
- Department of Endodontics, The University of Texas Health Science Center at San Antonio, U.S.A
- Author for correspondence:
| |
Collapse
|
45
|
Papanastassiou AM, Fields HL, Meng ID. Local application of the cannabinoid receptor agonist, WIN 55,212–2, to spinal trigeminal nucleus caudalis differentially affects nociceptive and non-nociceptive neurons. Pain 2004; 107:267-275. [PMID: 14736589 DOI: 10.1016/j.pain.2003.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cannabinoid receptor agonists produce analgesia for pains of non-cranial origin. However, their effectiveness for craniofacial pains is currently unclear. In the present study, the cannabinoid CB1/CB2 receptor agonist, WIN 55,212-2 (WIN), was bath applied to the brainstem while activity of spinal trigeminal nucleus caudalis (Vc) neurons evoked by transcutaneous electrical stimulation was recorded in isoflurane anesthetized rats. Neurons were characterized using mechanical and electrical stimulation of the face, and were classified as either low-threshold mechanoreceptive (LTM) or wide dynamic range (WDR). LTM neurons responded to light brushing of the receptive field and received only Abeta primary afferent fiber input. WDR neurons showed a graded response to mechanical stimulation, responding maximally to noxious stimuli, and demonstrated both A- and C-fiber evoked activity. In addition, WDR neurons displayed longer latency, C-fiber mediated post-discharge (PDC) activity after repetitive stimulation. Local bath application of 2.0 mg/ml WIN significantly reduced PDC activity (3+/-1% control, P<0.01), C-fiber evoked activity (58+/-9% control, P<0.01), and Abeta evoked activity (57+/-10% control, P<0.01) in WDR neurons. In contrast, LTM Abeta-fiber evoked activity increased after local administration of WIN (204+/-52% control, P<0.01). SR141716A, a CB1 receptor antagonist, prevented the effects of WIN on WDR PDC and LTM Abeta evoked activity. These results indicate that cannabinoid receptor agonists may be effective agents for craniofacial pain. Furthermore, the particular sensitivity of PDC activity, a measure of neuronal hyperexcitability, to cannabinoid receptor agonists may be relevant to the treatment of persistent craniofacial pain.
Collapse
Affiliation(s)
- Alex M Papanastassiou
- Department of Neurology, University of California, San Francisco, CA 94143-0114, USA
| | | | | |
Collapse
|
46
|
Hohmann AG, Farthing JN, Zvonok AM, Makriyannis A. Selective activation of cannabinoid CB2 receptors suppresses hyperalgesia evoked by intradermal capsaicin. J Pharmacol Exp Ther 2004; 308:446-53. [PMID: 14610224 DOI: 10.1124/jpet.103.060079] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present studies were conducted to test the hypothesis that activation of peripheral cannabinoid CB(2) receptors would suppress hyperalgesia evoked by intradermal administration of capsaicin, the pungent ingredient in hot chili peppers. The CB(2)-selective cannabinoid agonist (2-iodo-5-nitro-phenyl)-[1-(1-methyl-piperidin-2-ylmethyl)-1H-indol-3-yl]-methanone (AM1241) (33, 330 microg/kg i.p.) suppressed the development of capsaicin-evoked thermal and mechanical hyperalgesia and allodynia. AM1241 also produced a dose-dependent suppression of capsaicin-evoked nocifensive behavior. The AM1241-induced suppression of each parameter of capsaicin-evoked pain behavior was completely blocked by the CB(2) antagonist N-[(1S)-endo-1,3,3-trimethyl bicycle [2.2.1] heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528) but not by the CB(1) antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamidehydrochloride (SR141716A). AM1241 (33 microg/kg i.pl.) suppressed capsaicin-evoked thermal and mechanical hyperalgesia and allodynia after local administration to the capsaicin-treated (ipsilateral) paw but was inactive after administration to the capsaicin-untreated (contralateral) paw. Our data indicate that AM1241 suppresses capsaicin-evoked hyperalgesia and allodynia through a local site of action. These data provide evidence that actions at cannabinoid CB(2) receptors are sufficient to normalize nociceptive thresholds and produce antinociception in persistent pain states.
Collapse
Affiliation(s)
- Andrea G Hohmann
- Neuroscience and Behavior Program, Department of Psychology, University of Georgia, Athens, GA 30602-3013, USA.
| | | | | | | |
Collapse
|
47
|
Abstract
A large body of evidence now exists to substantiate that the endocannabinoid, anandamide, activates TRPV1 receptors. It is a low intrinsic efficacy TRPV1 agonist that behaves as a partial agonist in tissues with a low receptor reserve, while in tissues with high receptor reserve and in circumstances associated with certain disease states, it behaves as a full agonist. The efficacy of anandamide as a TRPV1 agonist is influenced by a succession of factors including receptor reserve, phosphorylation, metabolism and uptake, CB1 receptor activation, voltage, temperature, pH and bovine serum albumin. There are indications that the endocannabinoid system may play a role in the modulation of TRPV1 receptor activation. The activation of TRPV1 receptors by anandamide has potential implications in the treatment of inflammatory, respiratory and cardiovascular disorders. The relative importance of anandamide as a physiological and/or pathophysiological TRPV1 receptor agonist in comparison to other potential candidates has yet to be revealed.
Collapse
Affiliation(s)
- Ruth A Ross
- Department of Biomedical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland.
| |
Collapse
|
48
|
Bridges D, Rice ASC, Egertová M, Elphick MR, Winter J, Michael GJ. Localisation of cannabinoid receptor 1 in rat dorsal root ganglion using in situ hybridisation and immunohistochemistry. Neuroscience 2003; 119:803-12. [PMID: 12809701 DOI: 10.1016/s0306-4522(03)00200-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study we used in situ hybridisation and double-labelling immunohistochemistry to characterise cannabinoid receptor 1 (CB(1)) expression in rat lumbar dorsal root ganglion (DRG) neurons.Approximately 25% of DRG neurons expressed CB(1) mRNA and displayed immunoreactivity for CB(1). Sixty-nine percent to 82% of CB(1)-expressing cells were also immunoreactive for neurofilament 200, indicative of myelinated A-fibre neurons, which tend to be large- and medium-sized DRG neurons (>600 microm(2)). Approximately 10% of CB1-expressing cells also expressed transient receptor potential vanilloid family ion channel 2 (TRPV2), the noxious heat-transducing channel found in medium to large lightly myelinated Adelta-fibre DRG neurons. Seventeen percent to 26% of CB(1)-expressing cells co-stained using Isolectin B4, 9-10% for calcitonin gene-related peptide and 11-20% for transient receptor potential vanilloid family ion channel 1 (TRPV1), predominantly markers of small non-myelinated C-fibre DRG neurons (<600 microm(2)). These findings suggest that whilst a wide range of DRG neuron phenotypes express CB(1), it is predominantly associated with myelinated fibres.
Collapse
MESH Headings
- Animals
- Calcitonin Gene-Related Peptide/metabolism
- Cell Size/physiology
- Fluorescent Antibody Technique
- Ganglia, Spinal/cytology
- Ganglia, Spinal/metabolism
- Glycoproteins
- Lectins/metabolism
- Male
- Mechanoreceptors/cytology
- Mechanoreceptors/metabolism
- Mice
- Mice, Knockout
- Nerve Fibers, Myelinated/metabolism
- Nerve Fibers, Myelinated/ultrastructure
- Nerve Fibers, Unmyelinated/metabolism
- Nerve Fibers, Unmyelinated/ultrastructure
- Neurofilament Proteins/metabolism
- Neurons, Afferent/cytology
- Neurons, Afferent/metabolism
- Nociceptors/cytology
- Nociceptors/metabolism
- Pain/genetics
- Pain/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptors, Cannabinoid
- Receptors, Drug/genetics
- Receptors, Drug/metabolism
Collapse
Affiliation(s)
- D Bridges
- Pain Research, Department of Anaesthetics, Faculty of Medicine, Imperial College, Chelsea and Westminster Hospital Campus, London, UK
| | | | | | | | | | | |
Collapse
|
49
|
Kelly S, Chapman V. Cannabinoid CB1 receptor inhibition of mechanically evoked responses of spinal neurones in control rats, but not in rats with hindpaw inflammation. Eur J Pharmacol 2003; 474:209-16. [PMID: 12921864 DOI: 10.1016/s0014-2999(03)02085-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Spinally administered cannabinoid receptor agonists are anti-nociceptive in a variety of models of acute and persistent pain. The present study investigated the effects of activation of spinal cannabinoid CB(1) receptors on mechanically evoked responses of spinal neurones in acute and inflammatory pain states. In vivo electrophysiology studies were carried out in anaesthetised rats. Effects of spinal administration of a selective cannabinoid CB(1) receptor agonist, arachidonyl-2-chloroethylamide (ACEA), on mechanically evoked responses of dorsal horn neurones in control rats and rats with peripheral hindpaw carrageenan-induced inflammation were compared. ACEA (0.27 nM-27 microM) significantly inhibited innocuous and noxious mechanically evoked responses of dorsal horn neurones in control rats. Pre-administration of the CB(1) receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1(2,4-dichlorophenyl)-4-methyl-1-H-pyrazole-3-carboxyamide, SR141716A, (0.43 microM) attenuated the inhibitory effects of ACEA (27 microM). ACEA did not alter mechanically evoked responses of dorsal horn neurones in rats with hindpaw carrageenan-induced inflammation. Following peripheral inflammation, there is a loss of spinal CB(1) receptor-mediated inhibition of mechanically evoked responses, which is suggestive of a functional down-regulation of CB(1) receptors under these conditions.
Collapse
MESH Headings
- Animals
- Arachidonic Acids/pharmacology
- Dose-Response Relationship, Drug
- Evoked Potentials/drug effects
- Evoked Potentials/physiology
- Hindlimb/drug effects
- Hindlimb/metabolism
- Inflammation/chemically induced
- Inflammation/metabolism
- Male
- Nerve Fibers, Unmyelinated/drug effects
- Nerve Fibers, Unmyelinated/physiology
- Neural Inhibition/drug effects
- Neural Inhibition/physiology
- Pain Measurement/drug effects
- Pain Measurement/methods
- Physical Stimulation/methods
- Posterior Horn Cells/drug effects
- Posterior Horn Cells/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
Collapse
Affiliation(s)
- Sara Kelly
- University of Nottingham Medical School, Queen's Medical Centre, NG7 2UH Nottingham, UK
| | | |
Collapse
|