1
|
McIntosh R, Lobo J, Szeto A, Hidalgo M, Kolber M. Medial prefrontal cortex connectivity with the nucleus accumbens is related to HIV serostatus, perceptions of psychological stress, and monocyte expression of TNF-a. Brain Behav Immun Health 2024; 41:100844. [PMID: 39328275 PMCID: PMC11424805 DOI: 10.1016/j.bbih.2024.100844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/06/2024] [Accepted: 08/10/2024] [Indexed: 09/28/2024] Open
Abstract
Post-menopausal persons living with HIV (PWH) report elevated levels of psychological stress and monocyte activation compared to persons living without HIV (PWOH). Resting state functional connectivity (rsFC) of mesolimbic brain regions underpinning stress and emotion regulation are susceptible to inflammatory insult. Although psychological stress is elevated, rsFC reduced, and CD16+ monocytes overexpressed in the brains of PWH, it is unclear whether the relationships amongst these variables differ compared to PWOH. An ethnically diverse sample of postmenopausal women, 24 PWH and 30 PWOH provided self-report mood surveys and provided peripheral blood specimens to quantify LPS-stimulated CD16+/- expression of TNF-α via flow cytometric analysis. An anatomical and resting state functional MRI scan were used to derive time-series metrics of connectivity between the medial prefrontal cortex (mPFC) and the nucleus accumbens (NAcc) as well as the amygdala. A positive association was observed between levels of perceived stress and CD16+/- TNF-α in both LPS-stimulated and unstimulated cells. PLWH showed lower connectivity between mPFC and NAcc. In turn, lower rsFC between these regions predicted greater psychological stress and proportion of CD16-, but not CD16+, cells expression of TNF-α. Neuroimmune effects of monocyte inflammation on the functional connectivity of mesolimbic regions critical for discrimination of uncertainty-safety and reward signals were observed in an ethnically diverse sample of postmenopausal women living with and without HIV. PWH showed lower mPFC-NAcc functional connectivity, which in turn was associated with greater perceived stress.
Collapse
Affiliation(s)
- Roger McIntosh
- University of Miami, College of Arts and Sciences Department of Psychology, United States
| | - Judith Lobo
- University of California San Diego, HIV Neurobehavioral Research Program, United States
| | - Angela Szeto
- University of Miami, College of Arts and Sciences Department of Psychology, United States
| | | | - Michael Kolber
- University of Miami, Miller School of Medicine, United States
| |
Collapse
|
2
|
Role of Stress-Related Dopamine Transmission in Building and Maintaining a Protective Cognitive Reserve. Brain Sci 2022; 12:brainsci12020246. [PMID: 35204009 PMCID: PMC8869980 DOI: 10.3390/brainsci12020246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
This short review presents the hypothesis that stress-dependent dopamine (DA) transmission contributes to developing and maintaining the brain network supporting a cognitive reserve. Research has shown that people with a greater cognitive reserve are better able to avoid symptoms of degenerative brain changes. The paper will review evidence that: (1) successful adaptation to stressors involves development and stabilization of effective but flexible coping strategies; (2) this process requires dynamic reorganization of functional networks in the adult brain; (3) DA transmission is amongst the principal mediators of this process; (4) age- and disease-dependent cognitive impairment is associated with dysfunctional connectivity both between and within these same networks as well as with reduced DA transmission.
Collapse
|
3
|
Kołosowska K, Gawryluk A, Wisłowska-Stanek A, Liguz-Lęcznar M, Hetmańczyk K, Ługowska A, Sobolewska A, Skórzewska A, Gryz M, Lehner M. Stress changes amphetamine response, D2 receptor expression and epigenetic regulation in low-anxiety rats. Prog Neuropsychopharmacol Biol Psychiatry 2019; 93:256-268. [PMID: 31022425 DOI: 10.1016/j.pnpbp.2019.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 04/18/2019] [Accepted: 04/19/2019] [Indexed: 11/17/2022]
Abstract
The aim of this study was to assess the influence of chronic restraint stress on amphetamine (AMPH)-related appetitive 50-kHz ultrasonic vocalisations (USVs) in rats differing in freezing duration in a contextual fear test (CFT), i.e. HR (high-anxiety responsive) and LR (low-anxiety responsive) rats. The LR and the HR rats, previously exposed to an AMPH binge experience, differed in sensitivity to AMPH's rewarding effects, measured as appetitive vocalisations. Moreover, chronic restraint stress attenuated AMPH-related appetitive vocalisations in the LR rats but had no influence on the HR rats' behaviour. To specify, the restraint LR rats vocalised appetitively less in the AMPH-associated context and after an AMPH challenge than the control LR rats. This phenomenon was associated with a decrease in the mRNA level for D2 dopamine receptor in the amygdala and its protein expression in the basal amygdala (BA) and opposite changes in the nucleus accumbens (NAc) - an increase in the mRNA level for D2 dopamine receptor and its protein expression in the NAc shell, compared to control conditions. Moreover, we observed that chronic restraint stress influenced epigenetic regulation in the LR and the HR rats differently. The contrasting changes were observed in the dentate gyrus (DG) of the hippocampus - the LR rats presented a decrease, but the HR rats showed an increase in H3K9 trimethylation. The restraint LR rats also showed higher miR-494 and miR-34c levels in the NAc than the control LR group. Our study provides behavioural and biochemical data concerning the role of differences in fear-conditioned response in stress vulnerability and AMPH-associated appetitive behaviour. The LR rats were less sensitive to the rewarding effects of AMPH when previously exposed to chronic stress that was accompanied by changes in D2 dopamine receptor expression and epigenetic regulation in mesolimbic areas.
Collapse
Affiliation(s)
- Karolina Kołosowska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland.
| | - Aleksandra Gawryluk
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Aleksandra Wisłowska-Stanek
- Department of Experimental and Clinical Pharmacology, Medical University of Warsaw, Centre For Preclinical Research and Technology (CePT), 1B Banacha Street, 02-097 Warsaw, Poland
| | - Monika Liguz-Lęcznar
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Katarzyna Hetmańczyk
- Department of Genetics, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Agnieszka Ługowska
- Department of Genetics, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Alicja Sobolewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Anna Skórzewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Marek Gryz
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| | - Małgorzata Lehner
- Department of Neurochemistry, Institute of Psychiatry and Neurology, 9 Sobieskiego Street, 02-957 Warsaw, Poland
| |
Collapse
|
4
|
Alves MB, Laureano DP, Dalle Molle R, Machado TD, Salvador APDA, Miguel PM, Lupinsky D, Dalmaz C, Silveira PP. Intrauterine growth restriction increases impulsive behavior and is associated with altered dopamine transmission in both medial prefrontal and orbitofrontal cortex in female rats. Physiol Behav 2019; 204:336-346. [PMID: 30880239 DOI: 10.1016/j.physbeh.2019.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/20/2019] [Accepted: 03/11/2019] [Indexed: 12/25/2022]
Abstract
Recent studies have implicated a role for impulsivity in the altered eating behaviors and the increased risk for obesity consistently associated with intrauterine growth restriction (IUGR). Changes in dopamine transmission within prefrontal areas are believed to contribute to these adverse outcomes. Here we investigated the impulsive behavior toward a delayed reward and evaluated dopamine levels and its receptors in the medial prefrontal (mPFC) and orbitofrontal (OFC) cortex of female adult rats exposed to IUGR. From day 10 of pregnancy and until birth, Sprague-Dawley dams received either an ad libitum (Adlib) or a 50% food-restricted (FR) diet. At birth, all pups were adopted by Adlib mothers, generating the groups Adlib/Adlib (control) and FR/Adlib (intrauterine growth-restricted). Adult impulsive behavior was evaluated using a Tolerance to Delay of Reward Task. In vivo dopamine responses to sweet food intake were measured by voltammetry, and D1, D2 and DAT levels were accessed by Western Blot. Animals from FR group showed a pronounced aversion to delayed rewards. DA response to sweet food was found to be blunted in the mPFC of FR animals, whereas in the OFC, the DA levels appear to be unaffected by reward consumption. Moreover, FR animals presented reduced D1 receptors in the OFC and a later increase in the mPFC D2 levels. These findings suggest that IUGR female rats are more impulsive and that the associated mechanism involves changes in the dopamine signaling in both the mPFC and OFC.
Collapse
Affiliation(s)
- Márcio Bonesso Alves
- Programa de Pós Graduação em Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Daniela Pereira Laureano
- Programa de Pós Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Roberta Dalle Molle
- Programa de Pós Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tania Diniz Machado
- Programa de Pós Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Patrícia Maidana Miguel
- Programa de Pós Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Derek Lupinsky
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Carla Dalmaz
- Programa de Pós Graduação em Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Pelufo Silveira
- Programa de Pós Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; Sackler Program for Epigenetics & Psychobiology, McGill University, Canada
| |
Collapse
|
5
|
Lupinsky D, Moquin L, Gratton A. Interhemispheric regulation of the rat medial prefrontal cortical glutamate stress response: role of local GABA- and dopamine-sensitive mechanisms. Psychopharmacology (Berl) 2017; 234:353-363. [PMID: 27822602 DOI: 10.1007/s00213-016-4468-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/21/2016] [Indexed: 11/26/2022]
Abstract
RATIONALE We previously reported that stressors increase medial prefrontal cortex (PFC) glutamate (GLU) levels as a result of activating callosal neurons located in the opposite hemisphere and that this PFC GLU stress response is regulated by GLU-, dopamine- (DA-), and GABA-sensitive mechanisms (Lupinsky et al. 2010). OBJECTIVES Here, we examine the possibility that PFC DA regulates the stress responsivity of callosal neurons indirectly by acting at D1 and D2 receptors located on GABA interneurons. METHODS Microdialysis combined with drug perfusion (reverse dialysis) or microinjections was used in adult male Long-Evans rats to characterize D1, D2, and GABAB receptor-mediated regulation of the PFC GABA response to tail-pinch (TP) stress. RESULTS We report that TP stress reliably elicited comparable increases in extracellular GABA in the left and right PFCs. SCH23390 (D1 antagonist; 100 μM perfusate concentration) perfused by reverse microdialysis attenuated the local GABA stress responses equally in the left and right PFCs. Intra-PFC raclopride perfusion (D2 antagonist; 100 μM) had the opposite effect, not only potentiating the local GABA stress response but also causing a transient elevation in basal (pre-stress) GABA. Moreover, unilateral PFC raclopride microinjection (6 nmol) attenuated the GLU response to TP stress in the contralateral PFC. Finally, intra-PFC baclofen perfusion (GABAB agonist; 100 μM) inhibited the local GLU and GABA stress responses. CONCLUSIONS Taken together, these findings implicate PFC GABA interneurons in processing stressful stimuli, showing that local D1, D2, and GABAB receptor-mediated changes in PFC GABA transmission play a crucial role in the interhemispheric regulation of GLU stress responsivity.
Collapse
Affiliation(s)
- Derek Lupinsky
- Department of Psychiatry, McGill University, Montréal, Québec, H4H 1R3, Canada.
- Douglas Institute Research Center, 6875 LaSalle Blvd, Montréal, Québec, H4H 1R3, Canada.
| | - Luc Moquin
- Douglas Institute Research Center, 6875 LaSalle Blvd, Montréal, Québec, H4H 1R3, Canada
| | - Alain Gratton
- Department of Psychiatry, McGill University, Montréal, Québec, H4H 1R3, Canada
- Douglas Institute Research Center, 6875 LaSalle Blvd, Montréal, Québec, H4H 1R3, Canada
| |
Collapse
|
6
|
Yildirim BO, Derksen JJL. Mesocorticolimbic dopamine functioning in primary psychopathy: A source of within-group heterogeneity. Psychiatry Res 2015; 229:633-77. [PMID: 26277034 DOI: 10.1016/j.psychres.2015.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 04/08/2015] [Accepted: 07/05/2015] [Indexed: 01/17/2023]
Abstract
Despite similar emotional deficiencies, primary psychopathic individuals can be situated on a continuum that spans from controlled to disinhibited. The constructs on which primary psychopaths are found to diverge, such as self-control, cognitive flexibility, and executive functioning, are crucially regulated by dopamine (DA). As such, the goal of this review is to examine which specific alterations in the meso-cortico-limbic DA system and corresponding genes (e.g., TH, DAT, COMT, DRD2, DRD4) might bias development towards a more controlled or disinhibited expression of primary psychopathy. Based on empirical data, it is argued that primary psychopathy is generally related to a higher tonic and population activity of striatal DA neurons and lower levels of D2-type DA receptors in meso-cortico-limbic projections, which may boost motivational drive towards incentive-laden goals, dampen punishment sensitivity, and increase future reward-expectancy. However, increasingly higher levels of DA activity in the striatum (moderate versus pathological elevations), lower levels of DA functionality in the prefrontal cortex, and higher D1-to-D2-type receptor ratios in meso-cortico-limbic projections may lead to increasingly disinhibited and impetuous phenotypes of primary psychopathy. Finally, in order to provide a more coherent view on etiological mechanisms, we discuss interactions between DA and serotonin that are relevant for primary psychopathy.
Collapse
Affiliation(s)
- Bariş O Yildirim
- Department of Clinical Psychology, Radboud University Nijmegen, De Kluyskamp 1002, 6545 JD Nijmegen, The Netherlands.
| | - Jan J L Derksen
- Department of Clinical Psychology, Room: A.07.04B, Radboud University Nijmegen, Montessorilaan 3, 6525 HR Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Luczynski P, Moquin L, Gratton A. Chronic stress alters the dendritic morphology of callosal neurons and the acute glutamate stress response in the rat medial prefrontal cortex. Stress 2015; 18:654-67. [PMID: 26364921 DOI: 10.3109/10253890.2015.1073256] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We have previously reported that interhemispheric regulation of medial prefrontal cortex (PFC)-mediated stress responses is subserved by glutamate (GLU)- containing callosal neurons. Evidence of chronic stress-induced dendritic and spine atrophy among PFC pyramidal neurons led us to examine how chronic restraint stress (CRS) might alter the apical dendritic morphology of callosal neurons and the acute GLU stress responses in the left versus right PFC. Morphometric analyses of retrogradely labeled, dye-filled PFC callosal neurons revealed hemisphere-specific CRS-induced dendritic retraction; whereas significant dendritic atrophy occurred primarily within the distal arbor of left PFC neurons, it was observed within both the proximal and distal arbor of right PFC neurons. Overall, CRS also significantly reduced spine densities in both hemispheres with the greatest loss occurring among left PFC neurons, mostly at the distal extent of the arbor. While much of the overall decrease in dendritic spine density was accounted by the loss of thin spines, the density of mushroom-shaped spines, despite being fewer in number, was halved. Using microdialysis we found that, compared to controls, basal PFC GLU levels were significantly reduced in both hemispheres of CRS animals and that their GLU response to 30 min of tail-pinch stress was significantly prolonged in the left, but not the right PFC. Together, these findings show that a history of chronic stress alters the dendritic morphology and spine density of PFC callosal neurons and suggest a mechanism by which this might disrupt the interhemispheric regulation of PFC-mediated responses to subsequent stressors.
Collapse
Affiliation(s)
- Pauline Luczynski
- a Department of Psychiatry , Douglas Hospital Research Centre, McGill University , Montréal, Québec , Canada
| | - Luc Moquin
- a Department of Psychiatry , Douglas Hospital Research Centre, McGill University , Montréal, Québec , Canada
| | - Alain Gratton
- a Department of Psychiatry , Douglas Hospital Research Centre, McGill University , Montréal, Québec , Canada
| |
Collapse
|
8
|
Abstract
Migraine is a debilitating neurological disorder with grave consequences for both the individual and society. This review will focus on recent literature investigating how brain structures implicated in reward and aversion contribute to the genesis of migraine pain. There exist many overlapping and interacting brain regions within pain and reward circuitry that contribute to negative affect and subjective experience of pain. The emotional component of pain has been argued to be a greater metric of quality of life than its sensory component, and thus understanding the processes that influence this pain characteristic is essential to developing novel treatment strategies for mitigating migraine pain. We emphasize and provide evidence that abnormalities within the mesolimbic cortical reward pathways contribute to migraine pain and that there are structural and functional neuroplasticity within the overlapping brain regions common to both pain and reward.
Collapse
|
9
|
Cahill CM, Taylor AMW, Cook C, Ong E, Morón JA, Evans CJ. Does the kappa opioid receptor system contribute to pain aversion? Front Pharmacol 2014; 5:253. [PMID: 25452729 PMCID: PMC4233910 DOI: 10.3389/fphar.2014.00253] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 10/30/2014] [Indexed: 01/18/2023] Open
Abstract
The kappa opioid receptor (KOR) and the endogenous peptide-ligand dynorphin have received significant attention due the involvement in mediating a variety of behavioral and neurophysiological responses, including opposing the rewarding properties of drugs of abuse including opioids. Accumulating evidence indicates this system is involved in regulating states of motivation and emotion. Acute activation of the KOR produces an increase in motivational behavior to escape a threat, however, KOR activation associated with chronic stress leads to the expression of symptoms indicative of mood disorders. It is well accepted that KOR can produce analgesia and is engaged in chronic pain states including neuropathic pain. Spinal studies have revealed KOR-induced analgesia in reversing pain hypersensitivities associated with peripheral nerve injury. While systemic administration of KOR agonists attenuates nociceptive sensory transmission, this effect appears to be a stress-induced effect as anxiolytic agents, including delta opioid receptor agonists, mitigate KOR agonist-induced analgesia. Additionally, while the role of KOR and dynorphin in driving the dysphoric and aversive components of stress and drug withdrawal has been well characterized, how this system mediates the negative emotional states associated with chronic pain is relatively unexplored. This review provides evidence that dynorphin and the KOR system contribute to the negative affective component of pain and that this receptor system likely contributes to the high comorbidity of mood disorders associated with chronic neuropathic pain.
Collapse
Affiliation(s)
- Catherine M Cahill
- Department of Anesthesiology and Perioperative Care, University of California Irvine Irvine, CA, USA ; Department of Pharmacology, University of California Irvine Irvine, CA, USA ; Department of Biomedical and Molecular Sciences, Queen's University Kingston, ON, Canada
| | - Anna M W Taylor
- Department of Anesthesiology and Perioperative Care, University of California Irvine Irvine, CA, USA ; Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles Los Angeles, CA, USA
| | - Christopher Cook
- Department of Anesthesiology and Perioperative Care, University of California Irvine Irvine, CA, USA ; Department of Pharmacology, University of California Irvine Irvine, CA, USA
| | - Edmund Ong
- Department of Anesthesiology and Perioperative Care, University of California Irvine Irvine, CA, USA ; Department of Biomedical and Molecular Sciences, Queen's University Kingston, ON, Canada
| | - Jose A Morón
- Department of Anesthesiology, Columbia University Medical Center, New York, NY USA
| | - Christopher J Evans
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles Los Angeles, CA, USA
| |
Collapse
|
10
|
Ahmadi H, Nasehi M, Rostami P, Zarrindast MR. Involvement of the nucleus accumbens shell dopaminergic system in prelimbic NMDA-induced anxiolytic-like behaviors. Neuropharmacology 2013; 71:112-23. [DOI: 10.1016/j.neuropharm.2013.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 03/21/2013] [Accepted: 03/23/2013] [Indexed: 01/21/2023]
|
11
|
Laplante F, Dufresne MM, Ouboudinar J, Ochoa-Sanchez R, Sullivan RM. Reduction in cholinergic interneuron density in the nucleus accumbens attenuates local extracellular dopamine release in response to stress or amphetamine. Synapse 2012; 67:21-9. [PMID: 23034725 DOI: 10.1002/syn.21612] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 01/24/2023]
Abstract
Depletion of cholinergic interneurons in the ventral striatum (nucleus accumbens or N.Acc.) in adult rats increases the locomotor activating effects of amphetamine. It also impairs sensorimotor gating processes, an effect reversed by the antipsychotic haloperidol. These behavioral effects are suggestive of pronounced hyper-responsiveness of the mesolimbic dopamine (DA) projection to the N.Acc. However, it is unclear whether local cholinergic depletion results predominantly in exaggerated presynaptic DA release or a postsynaptic upregulation of DAergic function. The purpose of the present study is to test the former possibility by employing in vivo voltammetry to examine changes in the levels of extracellular DA within the N.Acc. in response to either mild tail pinch stress or amphetamine administration. While both cholinergic-lesioned and control rats showed reliable stress-induced increases in extracellular DA on two consecutive test days, those in the lesioned rats were significantly less pronounced. In response to amphetamine, a separate cohort of lesioned rats also exhibited smaller increases in extracellular DA release than controls, despite showing greater locomotor activity. Moreover, the increased behavioral response to amphetamine in lesioned rats coincided temporally with decreasing levels of DA in the N.Acc. The results confirm that cholinergic depletion within the N.Acc. suppresses presynaptic DA release and suggest that lesion-induced behavioral effects are more likely due to postsynaptic DA receptor upregulation. The results are also discussed in the context of schizophrenia, where post mortem studies have revealed a selective loss of cholinergic interneurons within the ventral striatum.
Collapse
Affiliation(s)
- François Laplante
- Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | | | | | | | | |
Collapse
|
12
|
Hascup ER, Hascup KN, Pomerleau F, Huettl P, Hajos-Korcsok E, Kehr J, Gerhardt GA. An allosteric modulator of metabotropic glutamate receptors (mGluR₂), (+)-TFMPIP, inhibits restraint stress-induced phasic glutamate release in rat prefrontal cortex. J Neurochem 2012; 122:619-27. [PMID: 22578190 PMCID: PMC3970435 DOI: 10.1111/j.1471-4159.2012.07784.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The potential anxiolytic effects of a novel positive allosteric modulator (PAM) of the metabotropic glutamate receptor subgroup 2 (mGluR₂) were investigated using a self-referencing recording technique with enzyme-based microelectrode arrays (MEAs) that reliably measures tonic and phasic changes in extracellular glutamate levels in awake rats. Studies involved glutamate measures in the rat prefrontal cortex during subcutaneous injections of the following: vehicle, a mGluR₂/₃ agonist, LY354740 (10 mg/kg), or a mGluR₂ PAM, 1-Methyl-2-((cis-(R,R)-3-methyl-4-(4-trifluoromethoxy-2-fluoro)phenyl)piperidin-1-yl)methyl)-1H-imidazo[4,5-b]pyridine ((+)-TFMPIP; 1.0 or 17.8 mg/kg). Studies assessed changes in tonic glutamate levels and the glutamatergic responses to a 5-min restraint stress. Subcutaneous injection of (+)-TFMPIP at a dose of 1.0 mg/kg (day 3: -7.1 ± 15.1 net AUC; day 5: -24.8 ± 24.9 net AUC) and 17.8 mg/kg (day 3: -46.5 ± 33.0 net AUC; day 5: 34.6 ± 36.8 net AUC) significantly attenuated the stress-evoked glutamate release compared to vehicle controls (day 3: 134.7 ± 50.6 net AUC; day 5: 286.6 ± 104.5 net AUC), whereas the mGluR₂/₃ agonist LY354740 had no effect. None of the compounds significantly affected resting glutamate levels, which we have recently shown to be extensively derived from neurons. Taken together, these data support that systemic administration of (+)-TFMPIP produces phasic rather than tonic release of glutamate that may play a major role in the effects of stress on glutamate neuronal systems in the prefrontal cortex.
Collapse
Affiliation(s)
- Erin R Hascup
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | |
Collapse
|
13
|
Laplante F, Zhang ZW, Huppé-Gourgues F, Dufresne MM, Vaucher E, Sullivan RM. Cholinergic depletion in nucleus accumbens impairs mesocortical dopamine activation and cognitive function in rats. Neuropharmacology 2012; 63:1075-84. [PMID: 22842071 DOI: 10.1016/j.neuropharm.2012.07.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/21/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
Abstract
In rats, selective depletion of the cholinergic interneurons in the ventral striatum (nucleus accumbens or N.Acc.) results in heightened behavioural sensitivity to amphetamine and impaired sensorimotor gating processes, suggesting a hyper-responsiveness to dopamine (DA) activity in the N.Acc. We hypothesized that local cholinergic depletion may also trigger distal functional alterations, particularly in prefrontal cortex (PFC). Adult male Sprague-Dawley rats were injected bilaterally in the N.Acc. with an immunotoxin targeting choline acetyltransferase. Two weeks later, cognitive function was assessed using the delayed alternation paradigm in the T-maze. The rats were then implanted with voltammetric recording electrodes in the ventromedial PFC to measure in vivo extracellular DA release in response to mild tail pinch stress. The PFC was also examined for density of tyrosine hydroxylase (TH)-labelled varicosities. In another cohort of control and lesioned rats, we measured post mortem tissue content of DA. Depletion of cholinergic neurons (restricted to N.Acc.) significantly impaired delayed alternation performance across delay intervals. While (basal) post mortem indices of PFC DA function were unaffected by N.Acc. lesions, in vivo mesocortical DA activation was markedly reduced; this deficit correlated significantly with cognitive impairments. TH-labelled varicosities however, were unaffected in cortical layer V relative to controls. These data suggest that selective depletion of cholinergic interneurons in N.Acc. triggers widespread functional impairments in mesocorticolimbic DA function and cognition. The possible relevance of these findings is also discussed in relation to schizophrenia, where reduced density of cholinergic neurons in ventral striatum has been reported.
Collapse
|
14
|
Khajehpour L, Alizadeh-Makvandi A, Kesmati M, Eshagh-Harooni H. Involvement of basolateral amygdala GABAA receptors in the effect of dexamethasone on memory in rats. J Zhejiang Univ Sci B 2012; 12:900-8. [PMID: 22042654 DOI: 10.1631/jzus.b1000340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study we investigated whether GABA(A) receptors of the basolateral amygdala (BLA) interact with the effect of dexamethasone on the retrieval stage of memory. Adult male Wistar rats were bilaterally cannulated in the BLA by stereotaxic surgery. The animals were trained in step-through apparatus by induction of electric shock (1.5 mA, 3 s) and were tested for memory retrieval after 1 d. The time of latency for entering the dark compartment of the instrument and the time spent by rats in this chamber were recorded for evaluation of the animals' retrieval in passive avoidance memory. Administration of dexamethasone (0.3 and 0.9 mg/kg, subcutaneously (s.c.)), immediately after training, enhanced memory retrieval. This effect was reduced by intra-BLA microinjection of muscimol (0.125, 0.250 and 0.500 µg/rat), when administered before 0.9 mg/kg of dexamethasone. Microinjection of bicuculline (0.75 µg/rat, intra-BLA) with an ineffective dose of dexamethasone (0.1 mg/kg, s.c.) increased memory retrieval. However, the same doses of muscimol and bicuculline without dexamethasone did not affect memory processes. Our data support reports that dexamethasone enhances memory retrieval. It seems that GABA(A) receptors of the BLA mediate the effect of dexamethasone on memory retrieval in rats.
Collapse
Affiliation(s)
- Lotfollah Khajehpour
- Department of Biology, College of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | | | | |
Collapse
|
15
|
Mora F, Segovia G, Del Arco A, de Blas M, Garrido P. Stress, neurotransmitters, corticosterone and body-brain integration. Brain Res 2012; 1476:71-85. [PMID: 22285436 DOI: 10.1016/j.brainres.2011.12.049] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 12/22/2011] [Accepted: 12/23/2011] [Indexed: 12/26/2022]
Abstract
Stress can be defined as a brain-body reaction towards stimuli arising from the environment or from internal cues that are interpreted as a disruption of homeostasis. The organization of the response to a stressful situation involves not only the activity of different types of neurotransmitter systems in several areas of the limbic system, but also the response of neurons in these areas to several other chemicals and hormones, chiefly glucocorticoids, released from peripheral organs and glands. Thus, stress is probably the process through which body-brain integration plays a major role. Here we review first the responses to an acute stress in terms of neurotransmitters such as dopamine, acetylcholine, glutamate and GABA in areas of the brain involved in the regulation of stress responses. These areas include the prefrontal cortex, amygdala, hippocampus and nucleus accumbens and the interaction among those areas. Then, we consider the role of glucocorticoids and review some recent data about the interaction of these steroids with several neurotransmitters in those same areas of the brain. Also the actions of other substances (neuromodulators) released from peripheral organs such as the pancreas, liver or gonads (insulin, IGF-1, estrogens) are reviewed. The role of an environmental enrichment on these same responses is also discussed. Finally a section is devoted to put into perspective all these environmental-brain-body-brain interactions during stress and their consequences on aging. It is concluded that the integrative perspective framed in this review is relevant for better understanding of how the organism responds to stressful challenges and how this can be modified through different environmental conditions during the process of aging. This article is part of a Special Issue entitled: Brain Integration.
Collapse
Affiliation(s)
- Francisco Mora
- Department of Physiology, Faculty of Medicine, Universidad Complutense, Madrid, Spain.
| | | | | | | | | |
Collapse
|
16
|
Aversive stimulus differentially triggers subsecond dopamine release in reward regions. Neuroscience 2011; 201:331-7. [PMID: 22108611 DOI: 10.1016/j.neuroscience.2011.10.056] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/25/2011] [Accepted: 10/28/2011] [Indexed: 11/24/2022]
Abstract
Aversive stimuli have a powerful impact on behavior and are considered to be the opposite valence of pleasure. Recent studies have determined some populations of ventral tegmental area (VTA) dopaminergic neurons are activated by several types of aversive stimuli, whereas other distinct populations are either inhibited or unresponsive. However, it is not clear where these aversion-responsive neurons project, and whether alterations in their activity translate into dopamine release in the terminal field. Here we show unequivocally that the neurochemical and anatomical substrates responsible for the perception and processing of pleasurable stimuli within the striatum are also activated by tail pinch, a classical painful and aversive stimulus. Dopamine release is triggered in the dorsal striatum and nucleus accumbens (NAc) core by tail pinch and is time locked to the duration of the stimulus, indicating that the dorsal striatum and NAc core are neural substrates, which are involved in the perception of aversive stimuli. However, dopamine is released in the NAc shell only when tail pinch is removed, indicating that the alleviation of aversive condition could be perceived as a rewarding event.
Collapse
|
17
|
Garabadu D, Shah A, Ahmad A, Joshi VB, Saxena B, Palit G, Krishnamurthy S. Eugenol as an anti-stress agent: modulation of hypothalamic-pituitary-adrenal axis and brain monoaminergic systems in a rat model of stress. Stress 2011; 14:145-55. [PMID: 21034296 DOI: 10.3109/10253890.2010.521602] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Stress is the leading psychopathological cause for several mental disorders. Physiological and psychological responses to stress are mediated by the hypothalamic?pituitary?adrenal (HPA), sympathoadrenal system (SAS), and brain monoaminergic systems (BMS). Eugenol is reported to substantially modulate brain functions by regulating voltage-gated cation channels and release of neurotransmitters. This study was designed to evaluate the anti-stress effect of eugenol in the 4-h restraint model using rats. Ulcer index was measured as a parameter of the stress response. HPA axis and the SAS were monitored by estimating plasma corticosterone and norepinephrine (NE), respectively. Analysis of NE, serotonin (5-HT), dopamine, and their metabolites in discrete brain regions was performed to understand the role of BMS in the anti-stress effect of eugenol. Stress exposure increased the ulcer index as well as plasma corticosterone and NE levels. Eugenol pretreatment for 7 days decreased the stress-induced increase in ulcer index and plasma corticosterone but not NE levels, indicating a preferential effect on the HPA axis. Furthermore, eugenol showed a ?U?-shaped dose?response curve in decreasing ulcer index and plasma corticosterone levels. Eugenol also reversed the stress-induced changes in 5-HT levels in all brain regions, whereas NE levels were reversed in all brain regions except hippocampus. These results suggest that eugenol possesses significant anti-stress activity in the 4-h restraint model and the effect is due to modulation of HPA and BMS.
Collapse
Affiliation(s)
- Debapriya Garabadu
- Neurotherapeutics Lab, Department of Pharmaceutics, Institute of Technology, Banaras Hindu University, Varanasi 221005, UP, India
| | | | | | | | | | | | | |
Collapse
|
18
|
Lupinsky D, Moquin L, Gratton A. Interhemispheric regulation of the medial prefrontal cortical glutamate stress response in rats. J Neurosci 2010; 30:7624-33. [PMID: 20519537 PMCID: PMC6632388 DOI: 10.1523/jneurosci.1187-10.2010] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 04/20/2010] [Accepted: 04/27/2010] [Indexed: 11/21/2022] Open
Abstract
While stressors are known to increase medial prefrontal cortex (PFC) glutamate (GLU) levels, the mechanism(s) subserving this response remain to be elucidated. We used microdialysis and local drug applications to investigate, in male Long-Evans rats, whether the PFC GLU stress response might reflect increased interhemispheric communication by callosal projection neurons. We report here that tail-pinch stress (20 min) elicited comparable increases in GLU in the left and right PFC that were sodium and calcium dependent and insensitive to local glial cystine-GLU exchanger blockade. Unilateral ibotenate-induced PFC lesions abolished the GLU stress response in the opposite hemisphere, as did contralateral mGlu(2/3) receptor activation. Local dopamine (DA) D(1) receptor blockade in the left PFC potently enhanced the right PFC GLU stress response, whereas the same treatment applied to the right PFC had a much weaker effect on the left PFC GLU response. Finally, the PFC GLU stress response was attenuated and potentiated, respectively, following alpha(1)-adrenoreceptor blockade and GABA(B) receptor activation in the opposite hemisphere. These findings indicate that the PFC GLU stress response reflects, at least in part, activation of callosal neurons located in the opposite hemisphere and that stress-induced activation of these neurons is regulated by GLU-, DA-, norepinephrine-, and GABA-sensitive mechanisms. In the case of DA, this control is asymmetrical, with a marked regulatory bias of the left PFC DA input over the right PFC GLU stress response. Together, these findings suggest that callosal neurons and their afferentation play an important role in the hemispheric specialization of PFC-mediated responses to stressors.
Collapse
Affiliation(s)
- Derek Lupinsky
- Douglas Hospital Research Centre and Department of Psychiatry, McGill University, Montréal, Québec H4H 1R3, Canada
| | - Luc Moquin
- Douglas Hospital Research Centre and Department of Psychiatry, McGill University, Montréal, Québec H4H 1R3, Canada
| | - Alain Gratton
- Douglas Hospital Research Centre and Department of Psychiatry, McGill University, Montréal, Québec H4H 1R3, Canada
| |
Collapse
|
19
|
Inhibition of fatty-acid amide hydrolase and CB1 receptor antagonism differentially affect behavioural responses in normal and PCP-treated rats. Int J Neuropsychopharmacol 2010; 13:373-86. [PMID: 19607756 DOI: 10.1017/s146114570999023x] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The 'cannabinoid hypothesis' of schizophrenia tulates that over-activity of the endocannabinoid system might contribute to the aetiology of schizophrenia. In keeping with this hypothesis, increased expression of CB1 receptors, elevation of the endocannabinoid anandamide (AEA) and cannabinoid-induced cognitive changes have been reported in animal models of schizophrenia and psychotic patients. In this study we measured brain endocannabinoid levels and [35S]GTPgammaS binding stimulated by the CB receptor agonist CP55,940 in rats undergoing withdrawal from subchronic administration of phencyclidine (PCP), a well-established pharmacological model of schizophrenia. We also investigated whether systemic application of the fatty-acid amide hydrolase (FAAH) inhibitor URB597 or CB1 receptor blockade by AM251 affected the following PCP-induced behavioural deficits reminiscent of schizophrenia-like symptoms: (1) working-memory impairment (cognitive deficit), (2) social withdrawal (negative symptom), and (3) hyperactivity in response to d-amphetamine challenge (positive symptoms). PCP-treated rats showed increased endocannabinoid levels in the nucleus accumbens and ventral tegmental area, whereas CB1 receptor expression and CP55,940-stimulated [35S]GTPgammaS binding were unaltered. URB597 reversed the PCP-induced social withdrawal but caused social withdrawal and working-memory deficits in saline-treated rats that were comparable to those observed after PCP treatment. Administration of AM251 ameliorated the working-memory deficit in PCP-treated rats, but impaired working memory in saline-injected controls. Taken together, these results suggest that FAAH inhibition may improve negative symptoms in PCP-treated rats but produce deleterious effects in untreated animals, possibly by disturbing endocannabinoid tone. A similar pattern (beneficial for schizophrenia-related cognitive deficits, but detrimental under normal conditions) accompanies CB1 receptor blockade.
Collapse
|
20
|
Sullivan R, Duchesne A, Hussain D, Waldron J, Laplante F. Effects of unilateral amygdala dopamine depletion on behaviour in the elevated plus maze: Role of sex, hemisphere and retesting. Behav Brain Res 2009; 205:115-22. [DOI: 10.1016/j.bbr.2009.07.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 07/14/2009] [Accepted: 07/19/2009] [Indexed: 10/20/2022]
|
21
|
|
22
|
Uehara T, Sumiyoshi T, Matsuoka T, Itoh H, Kurachi M. Effect of prefrontal cortex inactivation on behavioral and neurochemical abnormalities in rats with excitotoxic lesions of the entorhinal cortex. Synapse 2007; 61:391-400. [PMID: 17372984 DOI: 10.1002/syn.20383] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Morphological studies report reductions in the volume of medial temporal lobe structures and the prefrontal cortex in subjects with schizophrenia. The present study was performed to clarify the role of prefrontal-temporo-limbic system in the manifestation of psychosis, using entorhinal cortical lesion rats as a vulnerability animal model. Quinolinic acid (lesion group) or phosphate buffer (sham group) was infused into the left entorhinal cortex (EC) of male Wistar rats. On the 28th postoperative day, methamphetamine (MAP; 1 mg/kg, i.p.)-induced dopamine (DA) release in the nucleus accumbens (NAC) and the basolateral amygdala (BLA), as well as locomotor activity and prepulse inhibition (PPI), was measured following microinfusion of lidocaine or the cerebrospinal fluid (CSF) into the medial prefrontal cortex (mPFC). Lesions of the EC resulted in enhancement of MAP-induced DA release in the NAC and BLA. Further analysis revealed that the enhancement by EC lesions of MAP-induce DA release in the NAC was particularly evident in the lidocaine-infused rats. EC lesions also enhanced MAP-induced locomotor activity, especially in the lidocaine-treated animals. By contrast, infusion of lidocaine into mPFC attenuated MAP-induced DA release in the BLA, irrespective of the lesion status. Both EC lesions and lidocaine infusion disrupted PPI. These results indicate that inactivation of the mPFC, as well as structural abnormalities in the EC, leads to dysregulation of DAergic neurotransmissions in the limbic regions. The implications of these findings in relation to the neural basis for psychosis vulnerability are discussed.
Collapse
Affiliation(s)
- Takashi Uehara
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Science, Toyama, Japan.
| | | | | | | | | |
Collapse
|
23
|
Pakdel R, Rashidy-Pour A. Microinjections of the dopamine D2 receptor antagonist sulpiride into the medial prefrontal cortex attenuate glucocorticoid-induced impairment of long-term memory retrieval in rats. Neurobiol Learn Mem 2007; 87:385-90. [PMID: 17118678 DOI: 10.1016/j.nlm.2006.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 09/30/2006] [Accepted: 10/07/2006] [Indexed: 10/23/2022]
Abstract
We recently reported that blockade of dopamine (DA) D2 receptors attenuated deficits in long-term memory retrieval induced by a systemic injection of corticosterone, but the anatomical sites of such interaction were not known. In this study, we investigated whether the DA D2 receptors located in the medial prefrontal cortex (mPFC) may play a role in the impairing effects of glucocorticoids on the memory retrieval process. Young adult male rats were trained in a one trial inhibitory avoidance task (0.5 mA, 3s footshock). On the retention test given 48 h after training, the latency to re-enter the dark compartment and the time spent in light compartment of the apparatus were recorded. Systemically administered corticosterone (1mg/kg) given to rats 30 min before retention testing impaired their memory retrieval. Bilateral microinjections of the DA D2 receptor antagonist sulpiride (10 or 100 ng/0.5 microl per side) into the mPFC 30 min before corticosterone administration attenuated the glucocorticoid-induced impairment of memory retrieval. Furthermore, applied doses of sulpiride alone were ineffective in modulating memory retrieval. These findings indicate that D2 receptors located in the mPFC play an important role in mediating the impairing effects of glucocorticoids on memory retrieval.
Collapse
Affiliation(s)
- Roghayeh Pakdel
- Laboratory of Learning and Memory, Physiological Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | | |
Collapse
|
24
|
Parsons MP, Li S, Kirouac GJ. Functional and anatomical connection between the paraventricular nucleus of the thalamus and dopamine fibers of the nucleus accumbens. J Comp Neurol 2007; 500:1050-63. [PMID: 17183538 DOI: 10.1002/cne.21224] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The shell of the nucleus accumbens (NacSh) receives a dense innervation from dopamine (DA) neurons in the ventral tegmental area (VTA) and from glutamate neurons in the paraventricular nucleus of the thalamus (PVT). The present study examined in urethane-anesthetized rats the effects of electrical stimulation of the PVT on DA levels in the NacSh as measured with amperometry and chronoamperometry. Stimulation of the PVT (40 Hz, 1.0 ms, 400 microA, 5 seconds) resulted in a brief increase in electrochemical currents detected in the NacSh. Inhibition of DA neurons in the VTA using lidocaine (4%, 500 nL) or intravenous apomorphine (0.15 mg/kg) decreased the resting voltammetric signal but had no effect on PVT-evoked responses. Blocking of ionotropic glutamate receptors in the NacSh with local administration of kynurenic acid attenuated the PVT-evoked responses. Anterograde tracing with biotinylated dextran amine demonstrated that PVT targets regions of very dense tyrosine hydroxylase fiber staining in the NacSh. Consistent with the projection pattern of the PVT to the NacSh, stimulation of the PVT evoked the largest oxidation current changes in the NacSh, whereas small or no changes were elicited in other areas of the striatum. This study suggests that glutamate release from PVT terminals can act on ionotropic glutamate receptors in the NacSh to induce DA efflux. Modulation of DA levels in the NacSh by the PVT may be linked to arousal-induced increases in DA tone and could be involved in the facilitation of specific behavioral patterns associated with arousal or stressful situations.
Collapse
Affiliation(s)
- Matthew P Parsons
- Division of Basic Medical Science, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, A1B 3V6, Canada
| | | | | |
Collapse
|
25
|
Cisneros FJ, Gough BJ, Patton RE, Ferguson SA. Serum levels of albumin, triglycerides, total protein and glucose in rats are altered after oral treatment with low doses of 13-cis-retinoic acid or all-trans-retinoic acid. J Appl Toxicol 2006; 25:470-8. [PMID: 16092084 DOI: 10.1002/jat.1082] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Currently used to treat severe acne, 13-cis-retinoic acid (13-cis-RA) is under investigation for its anticancer effects as is the isomer, all-trans-retinoic acid (all-trans-RA). Here, the effects of oral 13-cis-RA or all-trans-RA treatment on serum chemistry, leptin and adiponectin levels were evaluated. Adult Sprague-Dawley rats were gavaged once daily for 7 consecutive days with 13-cis-RA (7.5 or 15 mg kg(-1)), all-trans-RA (10 or 15 mg kg(-1)) (n=24/sex/dose), or soy oil (n=16/sex) and blood was sampled 30-480 min after the last gavage. The body weight was unaffected; however, the liver/body weight ratios were increased by both doses of all-trans-RA. Sex differences were noted for levels of cholesterol, creatine, triglycerides, albumin, alanine aminotransferase and total protein. Both doses of all-trans-RA reduced albumin levels to approximately 90% of the control and total protein levels to approximately 93% of the control while substantially elevating triglyceride levels to approximately 66%-99% above the control. Additionally, triglyceride levels of the 15 mg kg(-1) 13-cis RA group were approximately 62% higher than the controls and total protein levels were approximately 5% less. Glucose levels were affected by sex and RA treatment in that males treated with 15 mg kg(-1) of 13-cis-RA or 10 mg kg(-1) all-trans-RA had lower (13%-19%) levels than the same-sex controls; however, females were not similarly affected. Neither 13-cis-RA nor all-trans-RA treatment had significant effects on the levels of blood urea nitrogen, aspartate amino transferase, leptin or adiponectin. On a mg kg(-1) basis, all-trans-RA was more potent than 13-cis-RA. These results replicate previous findings of RA-induced increased triglyceride levels. Additionally, several new findings indicate there may be sex-specific effects of RA treatment. Finally, neither treatment appeared to alter the typical diurnal cycles of these endpoints.
Collapse
Affiliation(s)
- F J Cisneros
- Division of Neurotoxicology, NCTR/FDA, Jefferson, AR, USA.
| | | | | | | |
Collapse
|
26
|
Marinelli PW, Lam M, Bai L, Quirion R, Gianoulakis C. A Microdialysis Profile of Dynorphin A1-8 Release in the Rat Nucleus Accumbens Following Alcohol Administration. Alcohol Clin Exp Res 2006; 30:982-90. [PMID: 16737456 DOI: 10.1111/j.1530-0277.2006.00112.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Pharmacological studies have implicated the endogenous opioid system in mediating alcohol intake. Other evidence has shown that alcohol administration can influence endorphinergic and enkephalinergic activity, while very few studies have examined its effect on dynorphinergic systems. The aim of the present study was to investigate the effect of alcohol administration or a mechanical stressor on extracellular levels of dynorphin A(1-8) in the rat nucleus accumbens-a brain region that plays a significant role in the processes underlying reinforcement and stress. METHODS Male Sprague-Dawley rats were implanted with a microdialysis probe aimed at the shell region of the nucleus accumbens. Artificial cerebrospinal fluid was pumped at a rate of 1.5 microL/min in awake and freely moving animals and the dialysate was collected at 30-minute intervals. In one experiment, following a baseline period, rats were injected intraperitoneally with either physiological saline or 1 of 3 doses of alcohol, 0.8, 1.6, or 3.2 g ethanol/kg body weight. In a second experiment, following a baseline period, rats were applied a clothespin to the base of their tail for 20 minutes. The levels of dynorphin A(1-8) in the dialysate were analyzed with solid-phase radioimmunoassay. RESULTS Relative to saline-treated controls, an alcohol dose of 1.6 and 3.2 g/kg caused a transient increase in the extracellular levels of dynorphin A(1-8) in the first 30 minutes of alcohol administration. However, the effect resulting from the high 3.2 g/kg dose was far more pronounced and more significant than with the moderate dose. There was no effect of tail pinch on dynorphin A(1-8) levels in the nucleus accumbens. CONCLUSIONS In this experiment, a very high dose of alcohol was especially capable of stimulating dynorphin A(1-8) release in the nucleus accumbens. Dynorphin release in the accumbens has been previously associated with aversive stimuli and may thus reflect a system underlying the aversive properties of high-dose alcohol administration. However, the lack of effect of tail-pinch stress in the present study suggests that dynorphin A(1-8) is not released in response to all forms of stressful/aversive stimuli.
Collapse
Affiliation(s)
- Peter W Marinelli
- Department of Neurology and Neurosurgery, Douglas Hospital Research Centre and McGill University, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
27
|
STEVENSON CW, GRATTON A. Basolateral Amygdala Dopamine Modulation of Stress-Induced Dopamine Release in the Nucleus Accumbens and Medial Prefrontal Cortex. Ann N Y Acad Sci 2006. [DOI: 10.1111/j.1749-6632.2003.tb07125.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Zhang TY, Chrétien P, Meaney MJ, Gratton A. Influence of naturally occurring variations in maternal care on prepulse inhibition of acoustic startle and the medial prefrontal cortical dopamine response to stress in adult rats. J Neurosci 2005; 25:1493-502. [PMID: 15703403 PMCID: PMC6725982 DOI: 10.1523/jneurosci.3293-04.2005] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In rats, naturally occurring variations in maternal care contribute to the development of individual differences in the behavioral and neuroendocrine responses to stress during adulthood. The dopamine (DA) projection to the medial prefrontal cortex (mPFC) plays an important role in mediating stress responsivity and is thought to be involved also in regulating sensorimotor gating. In the present study, we compared prepulse inhibition (PPI) of acoustic startle as well as the left and right mPFC DA stress responses in the adult offspring of high- and low-licking/grooming (LG) dams. Our data indicate that the offspring of low-LG animals are impaired on measures of PPI compared with high-LG animals. We also observed in low-LG animals a significant blunting of the mPFC DA stress responses that was lateralized to the right hemisphere, whereas in high-LG animals, the left and right mPFC DA stress responses were equally attenuated. Although mPFC levels of DA transporter did not differ between the two groups of animals, mPFC levels of catechol-O-methyl transferase immunoreactivity of low-LG animals were significantly lower than those of high-LG animals. These data provide evidence that variations in maternal care can lead to lasting changes in mPFC DA responsivity to stress and suggest the possibility that such changes in mesocorticolimbic DA function can also lead to deficits in sensorimotor gating.
Collapse
Affiliation(s)
- T Y Zhang
- Douglas Hospital Research Centre, Department of Psychiatry, McGill University, Montréal, Québec, H4H 1R3 Canada
| | | | | | | |
Collapse
|
29
|
Hayley S, Poulter MO, Merali Z, Anisman H. The pathogenesis of clinical depression: stressor- and cytokine-induced alterations of neuroplasticity. Neuroscience 2005; 135:659-78. [PMID: 16154288 DOI: 10.1016/j.neuroscience.2005.03.051] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 03/11/2005] [Accepted: 03/22/2005] [Indexed: 11/18/2022]
Abstract
Stressful events promote neurochemical changes that may be involved in the provocation of depressive disorder. In addition to neuroendocrine substrates (e.g. corticotropin releasing hormone, and corticoids) and central neurotransmitters (serotonin and GABA), alterations of neuronal plasticity or even neuronal survival may play a role in depression. Indeed, depression and chronic stressor exposure typically reduce levels of growth factors, including brain-derived neurotrophic factor and anti-apoptotic factors (e.g. bcl-2), as well as impair processes of neuronal branching and neurogenesis. Although such effects may result from elevated corticoids, they may also stem from activation of the inflammatory immune system, particularly the immune signaling cytokines. In fact, several proinflammatory cytokines, such as interleukin-1, tumor necrosis factor-alpha and interferon-gamma, influence neuronal functioning through processes involving apoptosis, excitotoxicity, oxidative stress and metabolic derangement. Support for the involvement of cytokines in depression comes from studies showing their elevation in severe depressive illness and following stressor exposure, and that cytokine immunotherapy (e.g. interferon-alpha) elicited depressive symptoms that were amenable to antidepressant treatment. It is suggested that stressors and cytokines share a common ability to impair neuronal plasticity and at the same time altering neurotransmission, ultimately contributing to depression. Thus, depressive illness may be considered a disorder of neuroplasticity as well as one of neurochemical imbalances, and cytokines may act as mediators of both aspects of this illness.
Collapse
Affiliation(s)
- S Hayley
- Institute of Neuroscience, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6.
| | | | | | | |
Collapse
|
30
|
Macedo CE, Martinez RCR, de Souza Silva MA, Brandão ML. Increases in extracellular levels of 5-HT and dopamine in the basolateral, but not in the central, nucleus of amygdala induced by aversive stimulation of the inferior colliculus. Eur J Neurosci 2005; 21:1131-8. [PMID: 15787718 DOI: 10.1111/j.1460-9568.2005.03939.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Consistent evidence has shown that dopamine release in the prefrontal cortex is increased by electrical stimulation of the inferior colliculus (IC) as unconditioned stimulus. Recent reports have also demonstrated that inactivation of the basolateral nucleus of the amygdala (BLA) with muscimol enhances the behavioural consequences of the aversive stimulation of the IC and reduces the dopamine release in the prefrontal cortex. Moreover, neurotoxic lesions of the BLA enhance whereas those of the central nucleus of the amygdala (CeA) reduce the aversiveness of the electrical stimulation of the IC. Based on these findings the present study examined the effects of the electrical stimulation of the IC on the extracellular levels of serotonin and dopamine in the BLA and CeA. To this end, rats implanted with a stimulation electrode in the IC also bore a microdialysis probe in the BLA or CeA for determination of the release of dopamine and serotonin. IC electrical stimulation at the freezing and escape thresholds increased the levels of serotonin ( approximately 70%) and dopamine ( approximately 60%) in the BLA related to the basal values. Similarly, the metabolites DOPAC and 5-HIAA increased in a parallel fashion in BLA. No significant changes could be detected in these biogenic amines and metabolites in CeA following IC aversive stimulation. These findings point to a differential role of serotonergic and dopaminergic mechanisms of the BLA and CeA in the setting up of adaptive responses to fear states generated at the inferior colliculus level.
Collapse
Affiliation(s)
- Carlos Eduardo Macedo
- Laboratório de Psicobiologia, Faculdade Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP) 14040-901, Ribeirão Preto, SP Brazil
| | | | | | | |
Collapse
|
31
|
Macedo CE, Cuadra G, Molina V, Brandão ML. Aversive stimulation of the inferior colliculus changes dopamine and serotonin extracellular levels in the frontal cortex: modulation by the basolateral nucleus of amygdala. Synapse 2005; 55:58-66. [PMID: 15515004 DOI: 10.1002/syn.20094] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We have shown that stimulation of the neural substrates in the inferior colliculus (IC) causes a significant increase in the extracellular levels of dopamine (DA) in frontal cortex (FC). Also, it has been reported that the basolateral complex of the amygdala (BLA) serves as a filter for unconditioned and conditioned aversive information that ascend to higher structures from the brainstem. Linking these two kinds of information, this work examines whether inactivation of BLA interferes with the activation of cortical dopaminergic outputs produced by aversive stimulation of the IC. To this end, rats were implanted with an electrode in the IC for the determination of the threshold of escape responses. Each rat also bore a cannula implanted in the BLA for injections of lidocaine (10 microg/0.5 microL), muscimol (0.5 microg/0.5 microL), or its vehicle and a microdialysis probe in the FC for determination of the amount of DA and serotonin (5-HT). The data obtained show that IC electrical stimulation caused an increase in the DA release while it reduced the 5-HT release in the FC. BLA inactivation with both lidocaine or muscimol enhanced the aversiveness of the electrical stimulation of the IC and attenuated the increase in DA, while the reduction in 5-HT release in the FC remained unaffected. These findings suggest that ascending aversive information from IC on their way up to higher structures in the SNC courses with opposite modulation by DA/5-HT mechanisms in the FC. These processes are regulated by filters located in the BLA. It is proposed that the loss of these BLA regulatory mechanisms prevents the expression of these modulatory mechanisms in the FC that are adaptive responses in order to cope with unconditioned aversive stimulus triggered at the brainstem level.
Collapse
Affiliation(s)
- Carlos Eduardo Macedo
- Laboratório de Psicobiologia, Faculdade Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP) 14040-901, Ribeirão Preto, SP Brasil
| | | | | | | |
Collapse
|
32
|
Role of prefrontal cortex in stress responsivity. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s0921-0709(05)80043-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
33
|
Stevenson CW, Gratton A. Basolateral amygdala dopamine receptor antagonism modulates initial reactivity to but not habituation of the acoustic startle response. Behav Brain Res 2004; 153:383-7. [PMID: 15265633 DOI: 10.1016/j.bbr.2003.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Revised: 12/11/2003] [Accepted: 12/16/2003] [Indexed: 11/17/2022]
Abstract
Although the basolateral amygdala (BLA) plays a role in the habituation to sensory stimuli, the receptor mechanisms mediating this process remain unclear. In the present study, we investigated the role of BLA dopamine (DA) in the habituation of the acoustic startle response (ASR) with intra-BLA infusions of DA receptor antagonists. Male Long Evans rats were subjected to startle pulses over two consecutive once-daily sessions. Prior to testing on Day 1, separate groups of animals received bilateral intra-BLA infusions of a D1 (SCH 23390: 0, 3.2, 6.4 microg per side) or a D2/D3 (raclopride: 0, 2.5, 5.0 microg per side) receptor antagonist. Animals were retested 24h later (Day 2) without prior drug infusion in order to assess possible treatment effects on within- and between-session habituation of the ASR. As expected, within- and between-session habituation was observed in vehicle-treated controls. Within-session habituation was also seen in SCH 23390- and raclopride-treated animals both on Day 1 as well as 24h later (Day 2). Evidence of between-session habituation was observed in SCH 23390-treated animals. However, compared to vehicle, intra-BLA SCH 23390 or raclopride attenuated the initial startle response on Day 1, but not Day 2. No evidence of between-session habituation was found in raclopride-treated animals, although this probably reflected the attenuated initial response to the startling stimulus on Day 1 rather than a reduced rate of habituation on Day 2. The present study suggests that while BLA DA is not involved in habituation of the ASR, it may mediate the perceived aversive nature of the initially startling stimuli.
Collapse
Affiliation(s)
- C W Stevenson
- Douglas Hospital Research Centre, McGill University, 6875 Boul. LaSalle, Montréal, Que., H4H 1R3, Canada
| | | |
Collapse
|
34
|
Stevenson CW, Gratton A. Role of basolateral amygdala dopamine in modulating prepulse inhibition and latent inhibition in the rat. Psychopharmacology (Berl) 2004; 176:139-45. [PMID: 15114433 DOI: 10.1007/s00213-004-1879-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Accepted: 03/12/2004] [Indexed: 10/26/2022]
Abstract
RATIONALE The dopamine (DA) projection to the basolateral amygdala (BLA) modulates nucleus accumbens (NAc) and medial prefrontal cortex (mPFC) DA transmission. Given the involvement of the BLA, and of NAc and mPFC DA, in select forms of information processing, we sought to determine the role of BLA DA in modulating prepulse inhibition (PPI) and latent inhibition (LI). OBJECTIVE The effects of BLA D1 (SCH 23390) and D2/D3 (raclopride) receptor blockade on PPI and LI were examined. METHODS Separate groups of male Long-Evans rats received bilateral intra-BLA infusions of SCH 23390 (3.2 or 6.4 microg/0.5 microl per side), raclopride (2.5 or 5.0 microg/0.5 microl per side) or saline prior to testing. In two experiments, the effects of BLA DA receptor antagonism on PPI of the acoustic startle response (ASR) and LI of conditioned taste aversion were determined. A control group received bilateral intra-striatal infusions of SCH 23390 or raclopride prior to PPI testing. RESULTS Intra-BLA SCH 23390 or raclopride had no effect on the ASR. Intra-BLA SCH 23390 enhanced and raclopride disrupted PPI, both in a dose-related manner. Intra-striatal SCH 23390 or raclopride had no effect on PPI or ASR magnitude. Finally, BLA DA receptor blockade had no effect on LI. CONCLUSIONS These results indicate that PPI is modulated by BLA DA and suggest that this modulation occurs independently of changes in NAc and/or mPFC DA transmission. They also suggest that BLA DA is not involved in modulating LI and add to evidence indicating that PPI and LI are mediated by different neural substrates.
Collapse
Affiliation(s)
- C W Stevenson
- Douglas Hospital Research Centre, McGill University, 6875 Boulevard LaSalle, H4H 1R3, Montreal (Verdun), QC, Canada
| | | |
Collapse
|
35
|
McDougall SJ, Widdop RE, Lawrence AJ. Medial prefrontal cortical integration of psychological stress in rats. Eur J Neurosci 2004; 20:2430-40. [PMID: 15525283 DOI: 10.1111/j.1460-9568.2004.03707.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The present study aimed to determine whether the medial prefrontal cortex (mPFC) (prelimbic and infralimbic regions) is implicated in the integration of a stress response. Sprague-Dawely rats were implanted with telemetry probes and guide cannulae so that either muscimol or vehicle could be administered locally within the mPFC or dorsomedial hypothalamus (DMH). The heart rate and blood pressure of rats was continuously recorded as either muscimol or vehicle was administered centrally and rats were either exposed to restraint stress or left alone in their home cages. After the stress challenge, or equivalent period, rats that had received intra-mPFC injections were processed for immunohistochemical detection of Fos throughout the neuraxis. Bilateral microinjection of muscimol into the mPFC had no effect upon either baseline cardiovascular parameters or restraint stress-induced tachycardia or pressor responses whereas, in the DMH, pretreatment with muscimol attenuated the cardiovascular stress response. Analysis of Fos expression throughout the CNS of nonstressed rats showed no effect of muscimol injections into the mPFC on baseline expression in the nuclei examined. In contrast, rats that had received muscimol injections into their mPFC and were subsequently restrained exhibited an increase in the number of Fos-positive cells in the DMH, medial amygdala, and medial nucleus tractus solitarius as compared to vehicle-injected rats that experienced restraint stress. These results indicate that, during acute psychological stress, the mPFC does not modulate the cardiovascular system in rats but does inhibit specific subcortical nuclei to exert control over aspects of an integrated response to a stressor.
Collapse
Affiliation(s)
- S J McDougall
- Department of Pharmacology, Monash University, Victoria 3800, Australia
| | | | | |
Collapse
|
36
|
Zarrindast MR, Ahmadi S, Haeri-Rohani A, Rezayof A, Jafari MR, Jafari-Sabet M. GABA(A) receptors in the basolateral amygdala are involved in mediating morphine reward. Brain Res 2004; 1006:49-58. [PMID: 15047023 DOI: 10.1016/j.brainres.2003.12.048] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2003] [Indexed: 11/24/2022]
Abstract
In the present study, the effects of intra-basolateral amygdala (BLA) injection of GABA(A) receptor agonist and antagonist on morphine-induced conditioned place preference (CPP) in male Wistar rats have been investigated. Subcutaneous (s.c.) administration of different doses of morphine sulfate (1-9 mg/kg) produced a dose-dependent CPP. Using a 3-day schedule of conditioning, it was found that the GABA(A) receptor agonist, muscimol (0.125, 0.25 and 0.5 microg/rat) or the GABA(A) receptor antagonist, bicuculline (0.125, 0.25 and 0.5 microg/rat), did not produce a significant place preference or place aversion. Intra-BLA administration of muscimol (0.25 and 0.5 microg/rat) decreased the acquisition of CPP induced by morphine (6 mg/kg). On the other hand, intra-BLA injection of bicuculline (0.25 and 0.5 microg/rat) in combination with an ineffective dose of morphine (1 mg/kg) elicited a significant CPP. The response of different doses of muscimol was attenuated by bicuculline (0.125 and 0.25 microg/rat). Furthermore, intra-BLA administration of bicuculline but not muscimol before testing significantly decreased the expression of morphine (6 mg/kg)-induced place preference. The administration of the higher doses of bicuculline (0.25 and 0.5 microg/rat) during acquisition and the higher dose of muscimol (2 microg/rat) on the test day decreased the locomotor activity of the animals on the testing phase. It can be concluded that GABA(A) receptors in the amygdala are involved in morphine reward.
Collapse
|
37
|
Abstract
The prefrontal cortex (PFC) is known to play an important role not only in the regulation of emotion, but in the integration of affective states with appropriate modulation of autonomic and neuroendocrine stress regulatory systems. The present review highlights findings in the rat which helps to elucidate the complex nature of prefrontal involvement in emotion and stress regulation. The medial PFC is particularly important in this regard and while dorsomedial regions appear to play a suppressive role in such regulation, the ventromedial (particularly infralimbic) region appears to activate behavioral, neuroendocrine and sympathetic autonomic systems in response to stressful situations. This may be especially true of spontaneous stress-related behavior or physiological responses to relatively acute stressors. The role of the medial PFC is somewhat more complex in conditions involving learned adjustments to stressful situations, such as the extinction of conditioned fear responses, but it is clear that the medial PFC is important in incorporating stressful experience for future adaptive behavior. It is also suggested that mesocortical dopamine plays an important adaptive role in this region by preventing excessive behavioral and physiological stress reactivity. The rat brain shows substantial hemispheric specialization in many respects, and while the right PFC is normally dominant in the activation of stress-related systems, the left may play a role in countering this activation through processes of interhemispheric inhibition. This proposed basic template for the lateralization of stress regulatory systems is suggested to be associated with efficient stress and emotional self-regulation, and also to be shaped by both early postnatal experience and gender differences.
Collapse
Affiliation(s)
- R M Sullivan
- Department of Psychiatry, University of Montreal, Canada.
| |
Collapse
|
38
|
Kim JA, Pollak KA, Hjelmstad GO, Fields HL. A single cocaine exposure enhances both opioid reward and aversion through a ventral tegmental area-dependent mechanism. Proc Natl Acad Sci U S A 2004; 101:5664-9. [PMID: 15064402 PMCID: PMC397468 DOI: 10.1073/pnas.0401373101] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Indexed: 11/18/2022] Open
Abstract
Repeated exposure to drugs of abuse produces forms of experience-dependent plasticity including behavioral sensitization. Although a single exposure to many addicting substances elicits locomotor sensitization, there is little information regarding the motivational effects of such single exposures. This study demonstrates that a single cocaine exposure enhances both rewarding and aversive forms of opioid place conditioning. Rats were given a single injection of cocaine (15 mg/kg i.p.) in their home cage at different times before conditioning. This treatment enhanced conditioned place preference (CPP) to morphine (2 x 10 mg/kg s.c.) if training began 1 or 5 but not 10 days after the cocaine injection. A single cocaine exposure also enhanced conditioned place aversion (CPA) to the kappa-opioid receptor agonist U69593 (2 x 0.16 mg/kg s.c.). Compared to morphine CPP, U69593 CPA was delayed and persistent. It was not observed at 1 day but appeared if the conditioning began 5 or 10 days after the cocaine injection. Although the cocaine-induced enhancements of both morphine CPP and U69593 CPA followed different time courses, suggesting different mechanisms, both effects were blocked by injection of the N-methyl-d-aspartate receptor antagonist MK-801 (0.5 nmol bilaterally) into the ventral tegmental area, immediately before the cocaine injection. Thus, through a circuit involving the ventral tegmental area, a single cocaine exposure enhanced both micro-opioid receptor reward and kappa-opioid receptor aversion.
Collapse
Affiliation(s)
- Joseph A Kim
- Ernest Gallo Clinic and Research Center, Wheeler Center for the Neurobiology of Addiction and Department of Neurology, University of California, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
39
|
SATO W, MURAI T. CHARACTERISTICS OF THE INVOLVEMENT OF THE AMYGDALA IN THE RECOGNITION OF EMOTIONAL EXPRESSIONS: A REVIEW OF NEUROPSYCHOLOGICAL RESEARCH. PSYCHOLOGIA 2004. [DOI: 10.2117/psysoc.2004.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
40
|
Shah AA, Treit D. Infusions of midazolam into the medial prefrontal cortex produce anxiolytic effects in the elevated plus-maze and shock-probe burying tests. Brain Res 2004; 996:31-40. [PMID: 14670628 DOI: 10.1016/j.brainres.2003.10.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Previous research has shown that lesions of the medial prefrontal cortex (MPFC) inhibit fear-related behavior in rats (Brain Res. 969 (2003) 183-194). However, at present little is known about the role of specific neurotransmitter receptor systems within the MPFC in the mediation of fear and anxiety. For example, extensive research has demonstrated the effectiveness of benzodiazepines in decreasing fear-related behavior. However, no research has yet been published regarding the effects of micro-infusions of benzodiazepines, or any other GABA-A receptor agonist, into the MPFC. In addition, previous work has suggested that there may be functional differences between the dorsal and ventral subregions of the MPFC in regard to fear and anxiety. Therefore, the present study examined the effects of dorsal and ventral MPFC infusions of the benzodiazepine midazolam in two well-validated animal models of anxiety, the elevated plus maze and the shock probe burying test. The results showed that bilateral (5 microg/side) infusions of midazolam into the MPFC produced anxiolytic effects in both behavioural tests, without affecting general activity or pain sensitivity. Furthermore, these anxiolytic effects were found in both the dorsal and ventral regions of the MPFC. The present findings indicate that the benzodiazepine receptors of the MPFC are capable of modulating fear-related behaviors.
Collapse
Affiliation(s)
- Akeel A Shah
- Department of Psychology, University of Alberta, P217 Biological Sciences Building, T6G 2E9, Edmonton, AB, Canada.
| | | |
Collapse
|
41
|
Marinelli PW, Quirion R, Gianoulakis C. An in vivo profile of β-endorphin release in the arcuate nucleus and nucleus accumbens following exposure to stress or alcohol. Neuroscience 2004; 127:777-84. [PMID: 15283974 DOI: 10.1016/j.neuroscience.2004.05.047] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2004] [Indexed: 11/20/2022]
Abstract
The aim of the present study was to determine the effects of distinct categories of stressors on beta-endorphin (beta-EP) release in the arcuate nucleus (ArcN) and nucleus accumbens (NAcb) using in vivo microdialysis. Adult male rats were implanted with a cannula aimed at either the NAcb or the ArcN. On the day of testing, a 2 mm microdialysis probe was inserted into the cannula, and artificial cerebrospinal fluid was infused at 2.0 microl/min. After three baseline collections, animals either had a clothespin applied to the base of their tail for 20 min (a physical/tactile stressor), were exposed to fox urine odour for 20 min (a psychological stressor/species-specific threat), or were administered 2.4 g ethanol/kg body weight, 16.5% w/v, i.p. (a chemical/pharmacological stressor) with control animals receiving an equivalent volume of saline. Both tail-pinch and fox odour significantly increased beta-EP release from the ArcN (P<0.05), whilst only tail-pinch enhanced beta-EP release from the NAcb (P<0.01). On the other hand, alcohol stimulated beta-EP release in the NAcb as compared with saline-treated controls (P<0.01), but not in the ArcN. Although the increase in extracellular beta-EP produced by the other stressors was relatively rapid, there was a 90-min delay before alcohol administration caused beta-EP levels to exceed that of saline-injected controls. In conclusion, the fact that physical and fear-inducing psychological stressors stimulate beta-EP release in the ArcN and only physical stressors stimulate beta-EP release in the NAcb, indicates that stressors with different properties are processed differently in the brain. Also, an injection of alcohol caused a delayed increase of beta-EP in the NAcb but not the ArcN, indicating that alcohol may recruit a mechanism that is, at least partially, distinct from stress-related pathways.
Collapse
Affiliation(s)
- P W Marinelli
- Departments of Neurology and Neurosurgery, Douglas Hospital Research Centre and McGill University, Montréal, Québec, Canada
| | | | | |
Collapse
|
42
|
Merali Z, Michaud D, McIntosh J, Kent P, Anisman H. Differential involvement of amygdaloid CRH system(s) in the salience and valence of the stimuli. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27:1201-12. [PMID: 14659475 DOI: 10.1016/j.pnpbp.2003.09.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Anxiety is a heterogeneous term encompassing not only state or trait characteristics but also a wide range of pathologies such as generalized anxiety disorders, phobias, panic and obsessive-compulsive disorders, acute stress disorder, and posttraumatic stress disorder. Given that diverse forms of anxiety exist, numerous animal models have been developed, which are considered to be useful in identifying mechanisms underlying anxiety states. Examples of such animal models include paradigms that assess the behavioral response to neurogenic (or painful stimuli) or psychogenic stressors or to cues that had previously been associated with painful stimuli. The present report presents data regarding the impact of stressors on corticotropin-releasing hormone (CRH), and relates these to changes in anxiety-like states. Specifically, we demonstrate that (1) psychogenic stressors influence the in vivo release of CRH at the central nucleus of the amygdala (CeA); (2) although CRH changes within the CeA are exquisitely sensitive to stressors, they are also elicited by positive stimuli; and (3) while treatment with diazepam attenuates behavioral signs of anxiety, the CRH release associated with a stressor is unaffected by the treatment. The position is offered that although release of CRH within the CeA is increased under stressful conditions, it is not a necessary condition for the consequent behavioral expression of anxiety-like reactions, at least not in minimally threatening situations. We suggest that the CRH responses at the CeA may be involved in a preparatory capacity and, as such, may accompany a range of emotionally significant stimuli, be they appetitive or aversive.
Collapse
Affiliation(s)
- Zul Merali
- Institute of Mental Health Research, Royal Ottawa Hospital, University of Ottawa, 1145 Carling Avenue, K1Z 7K4, Ottawa, ON, Canada.
| | | | | | | | | |
Collapse
|
43
|
Stevenson CW, Gratton A. Basolateral amygdala modulation of the nucleus accumbens dopamine response to stress: role of the medial prefrontal cortex. Eur J Neurosci 2003; 17:1287-95. [PMID: 12670317 DOI: 10.1046/j.1460-9568.2003.02560.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The basolateral amygdala (BLA) is involved in modulating affective responses to stress and, along with the nucleus accumbens (NAc) and medial prefrontal cortex (mPFC), receives a stress-responsive dopamine (DA) projection from the ventral tegmental area. The present study was undertaken to characterize the role of BLA DA D1 and D2/D3 receptor subtypes in modulating the NAc and mPFC DA responses to stress. Voltammetry was used to monitor, in freely behaving rats, stress-induced DA release in NAc or mPFC after injection of D1 (SCH 23390) or D2/D3 (raclopride) receptor antagonist into BLA. Intra-BLA SCH 23390 injection potentiated stress-induced NAc DA release but attenuated the mPFC DA stress response; raclopride had no effect on either the NAc or mPFC DA responses to stress. Based on these results, we also examined the possibility that BLA can indirectly modulate the NAc DA stress response via its projection to mPFC. To do so we studied the effects of intra-mPFC co-administration of D1 (SKF 38393) and D2/D3 (quinpirole) receptor agonists on the potentiated NAc DA stress response resulting from intra-BLA SCH 23390 injection. Alone, mPFC D1 and D2/D3 receptor co-activation had no effect on stress-induced NAc DA release, but did prevent the potentiated NAc DA stress response produced by BLA D1 receptor blockade. These findings indicate that BLA DA modulates the NAc and mPFC DA stress responses via activation of the D1 receptor subtype. They also suggest that BLA DA modulates stress-induced NAc DA release indirectly by modulating the mPFC DA response to stress.
Collapse
Affiliation(s)
- C W Stevenson
- Douglas Hospital Research Centre, McGill University, Montréal, Québec, Canada, H4H 1R3
| | | |
Collapse
|