1
|
Chen L, Sun J, Gao L, Wang J, Ma J, Xu E, Zhang D, Li L, Wu T. Dysconnectivity of the parafascicular nucleus in Parkinson's disease: A dynamic causal modeling analysis. Neurobiol Dis 2023; 188:106335. [PMID: 37890560 DOI: 10.1016/j.nbd.2023.106335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Recent animal model studies have suggested that the parafascicular nucleus has the potential to be an effective deep brain stimulation target for Parkinson's disease. However, our knowledge on the role of the parafascicular nucleus in Parkinson's disease patients remains limited. OBJECTIVE We aimed to investigate the functional alterations of the parafascicular nucleus projections in Parkinson's disease patients. METHODS We enrolled 72 Parkinson's disease patients and 60 healthy controls, then utilized resting-state functional MRI and spectral dynamic causal modeling to explore the effective connectivity of the bilateral parafascicular nucleus to the dorsal putamen, nucleus accumbens, and subthalamic nucleus. The associations between the effective connectivity of the parafascicular nucleus projections and clinical features were measured with Pearson partial correlations. RESULTS Compared with controls, the effective connectivity from the parafascicular nucleus to dorsal putamen was significantly increased, while the connectivity to the nucleus accumbens and subthalamic nucleus was significantly reduced in Parkinson's disease patients. There was a significantly positive correlation between the connectivity of parafascicular nucleus-dorsal putamen projection and motor deficits. The connectivity from the parafascicular nucleus to the subthalamic nucleus was negatively correlated with motor deficits and apathy, while the connectivity from the parafascicular nucleus to the nucleus accumbens was negatively associated with depression. CONCLUSION The present study demonstrates that the parafascicular nucleus-related projections are damaged and associated with clinical symptoms of Parkinson's disease. Our findings provide new insights into the impaired basal ganglia-thalamocortical circuits and give support for the parafascicular nucleus as a potential effective neuromodulating target of the disease.
Collapse
Affiliation(s)
- Lili Chen
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Junyan Sun
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Linlin Gao
- Department of General Medicine, Tianjin Union Medical Center, Tianjin, China
| | - Junling Wang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Jinghong Ma
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Erhe Xu
- Department of Neurobiology, Beijing Institute of Geriatrics, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Dongling Zhang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Liang Li
- Brain Science Center, Beijing Institute of Basic Medical Sciences, China.
| | - Tao Wu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
2
|
Méndez JC, Perry BAL, Premereur E, Pelekanos V, Ramadan T, Mitchell AS. Variable cardiac responses in rhesus macaque monkeys after discrete mediodorsal thalamus manipulations. Sci Rep 2023; 13:16913. [PMID: 37805650 PMCID: PMC10560229 DOI: 10.1038/s41598-023-42752-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 09/14/2023] [Indexed: 10/09/2023] Open
Abstract
The control of some physiological parameters, such as the heart rate, is known to have a role in cognitive and emotional processes. Cardiac changes are also linked to mental health issues and neurodegeneration. Thus, it is not surprising that many of the brain structures typically associated with cognition and emotion also comprise a circuit-the central automatic network-responsible for the modulation of cardiovascular output. The mediodorsal thalamus (MD) is involved in higher cognitive processes and is also known to be connected to some of the key neural structures that regulate cardiovascular function. However, it is unclear whether the MD has any role in this circuitry. Here, we show that discrete manipulations (microstimulation during anaesthetized functional neuroimaging or localized cytotoxin infusions) to either the magnocellular or the parvocellular MD subdivisions led to observable and variable changes in the heart rate of female and male rhesus macaque monkeys. Considering the central positions that these two MD subdivisions have in frontal cortico-thalamocortical circuits, our findings suggest that MD contributions to autonomic regulation may interact with its identified role in higher cognitive processes, representing an important physiological link between cognition and emotion.
Collapse
Affiliation(s)
- Juan Carlos Méndez
- Department of Clinical and Biomedical Sciences, University of Exeter, College House, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU, UK
| | - Brook A L Perry
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford, OX1 3TH, UK
| | - Elsie Premereur
- Laboratory for Neuro- and Psychophysiology, KU Leuven, Leuven, Belgium
| | | | - Tamara Ramadan
- Department of Biological Sciences, University of Oxford, Oxford, UK
| | - Anna S Mitchell
- Department of Psychology, Speech and Hearing, University of Canterbury, Christchurch, 8041, New Zealand.
| |
Collapse
|
3
|
Pérez-Santos I, García-Cabezas MÁ, Cavada C. Mapping the primate thalamus: systematic approach to analyze the distribution of subcortical neuromodulatory afferents. Brain Struct Funct 2023:10.1007/s00429-023-02619-w. [PMID: 36890350 DOI: 10.1007/s00429-023-02619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/09/2023] [Indexed: 03/10/2023]
Abstract
Neuromodulatory afferents to thalamic nuclei are key for information transmission and thus play critical roles in sensory, motor, and limbic processes. Over the course of the last decades, diverse attempts have been made to map and describe subcortical neuromodulatory afferents to the primate thalamus, including axons using acetylcholine, serotonin, dopamine, noradrenaline, adrenaline, and histamine. Our group has been actively involved in this endeavor. The published descriptions on neuromodulatory afferents to the primate thalamus have been made in different laboratories and are not fully comparable due to methodological divergences (for example, fixation procedures, planes of cutting, techniques used to detect the afferents, different criteria for identification of thalamic nuclei…). Such variation affects the results obtained. Therefore, systematic methodological and analytical approaches are much needed. The present article proposes reproducible methodological and terminological frameworks for primate thalamic mapping. We suggest the use of standard stereotaxic planes to produce and present maps of the primate thalamus, as well as the use of the Anglo-American school terminology (vs. the German school terminology) for identification of thalamic nuclei. Finally, a public repository of the data collected under agreed-on frameworks would be a useful tool for looking up and comparing data on the structure and connections of primate thalamic nuclei. Important and agreed-on efforts are required to create, manage, and fund a unified and homogeneous resource of data on the primate thalamus. Likewise, a firm commitment of the institutions to preserve experimental brain material is much needed because neuroscience work with non-human primates is becoming increasingly rare, making earlier material still more valuable.
Collapse
Affiliation(s)
- Isabel Pérez-Santos
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain.,PhD Program in Neuroscience, Universidad Autónoma de Madrid-Cajal, Madrid, Spain
| | - Miguel Ángel García-Cabezas
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain.,PhD Program in Neuroscience, Universidad Autónoma de Madrid-Cajal, Madrid, Spain.,Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA
| | - Carmen Cavada
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, 28029, Madrid, Spain. .,PhD Program in Neuroscience, Universidad Autónoma de Madrid-Cajal, Madrid, Spain.
| |
Collapse
|
4
|
Tian C, Zha D. Sympathetic Nervous System Regulation of Auditory Function. Audiol Neurootol 2021; 27:93-103. [PMID: 34407531 DOI: 10.1159/000517452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 05/26/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The auditory system processes how we hear and understand sounds within the environment. It comprises both peripheral and central structures. Sympathetic nervous system projections are present throughout the auditory system. The function of sympathetic fibers in the cochlea has not been studied extensively due to the limited number of direct projections in the auditory system. Nevertheless, research on adrenergic and noradrenergic regulation of the cochlea and central auditory system is growing. With the rapid development of neuroscience, auditory central regulation is an extant topic of focus in research on hearing. SUMMARY As such, understanding sympathetic nervous system regulation of auditory function is a growing topic of interest. Herein, we review the distribution and putative physiological and pathological roles of sympathetic nervous system projections in hearing. Key Messages: In the peripheral auditory system, the sympathetic nervous system regulates cochlear blood flow, modulates cochlear efferent fibers, affects hair cells, and influences the habenula region. In central auditory pathways, norepinephrine is essential for plasticity in the auditory cortex and affects auditory cortex activity. In pathological states, the sympathetic nervous system is associated with many hearing disorders. The mechanisms and pathways of sympathetic nervous system modulation of auditory function is still valuable for us to research and discuss.
Collapse
Affiliation(s)
- Chaoyong Tian
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dingjun Zha
- Department of Otolaryngology Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Pérez-Santos I, Palomero-Gallagher N, Zilles K, Cavada C. Distribution of the Noradrenaline Innervation and Adrenoceptors in the Macaque Monkey Thalamus. Cereb Cortex 2021; 31:4115-4139. [PMID: 34003210 PMCID: PMC8328208 DOI: 10.1093/cercor/bhab073] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 11/14/2022] Open
Abstract
Noradrenaline (NA) in the thalamus has important roles in physiological, pharmacological, and pathological neuromodulation. In this work, a complete characterization of NA axons and Alpha adrenoceptors distributions is provided. NA axons, revealed by immunohistochemistry against the synthesizing enzyme and the NA transporter, are present in all thalamic nuclei. The most densely innervated ones are the midline nuclei, intralaminar nuclei (paracentral and parafascicular), and the medial sector of the mediodorsal nucleus (MDm). The ventral motor nuclei and most somatosensory relay nuclei receive a moderate NA innervation. The pulvinar complex receives a heterogeneous innervation. The lateral geniculate nucleus (GL) has the lowest NA innervation. Alpha adrenoceptors were analyzed by in vitro quantitative autoradiography. Alpha-1 receptor densities are higher than Alpha-2 densities. Overall, axonal densities and Alpha adrenoceptor densities coincide; although some mismatches were identified. The nuclei with the highest Alpha-1 values are MDm, the parvocellular part of the ventral posterior medial nucleus, medial pulvinar, and midline nuclei. The nucleus with the lowest Alpha-1 receptor density is GL. Alpha-2 receptor densities are highest in the lateral dorsal, centromedian, medial and inferior pulvinar, and midline nuclei. These results suggest a role for NA in modulating thalamic involvement in consciousness, limbic, cognitive, and executive functions.
Collapse
Affiliation(s)
- Isabel Pérez-Santos
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Calle Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany.,C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425 Jülich, Germany.,C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225 Düsseldorf, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, 52425 Jülich, Germany
| | - Carmen Cavada
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Calle Arzobispo Morcillo 4, 28029 Madrid, Spain
| |
Collapse
|
6
|
Mitchell AS. The mediodorsal thalamus as a higher order thalamic relay nucleus important for learning and decision-making. Neurosci Biobehav Rev 2015; 54:76-88. [PMID: 25757689 DOI: 10.1016/j.neubiorev.2015.03.001] [Citation(s) in RCA: 194] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 02/21/2015] [Accepted: 03/01/2015] [Indexed: 02/08/2023]
Abstract
Recent evidence from monkey models of cognition shows that the magnocellular subdivision of the mediodorsal thalamus (MDmc) is more critical for learning new information than for retention of previously acquired information. Further, consistent evidence in animal models shows the mediodorsal thalamus (MD) contributes to adaptive decision-making. It is assumed that prefrontal cortex (PFC) and medial temporal lobes govern these cognitive processes so this evidence suggests that MD contributes a role in these cognitive processes too. Anatomically, the MD has extensive excitatory cortico-thalamo-cortical connections, especially with the PFC. MD also receives modulatory inputs from forebrain, midbrain and brainstem regions. It is suggested that the MD is a higher order thalamic relay of the PFC due to the dual cortico-thalamic inputs from layer V ('driver' inputs capable of transmitting a message) and layer VI ('modulator' inputs) of the PFC. Thus, the MD thalamic relay may support the transfer of information across the PFC via this indirect thalamic route. This review summarizes the current knowledge about the anatomy of MD as a higher order thalamic relay. It also reviews behavioral and electrophysiological studies in animals to consider how MD might support the transfer of information across the cortex during learning and decision-making. Current evidence suggests the MD is particularly important during rapid trial-by-trial associative learning and decision-making paradigms that involve multiple cognitive processes. Further studies need to consider the influence of the MD higher order relay to advance our knowledge about how the cortex processes higher order cognition.
Collapse
Affiliation(s)
- Anna S Mitchell
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford OX1 3UD, United Kingdom.
| |
Collapse
|
7
|
Sánchez-Pérez AM, Arnal-Vicente I, Santos FN, Pereira CW, ElMlili N, Sanjuan J, Ma S, Gundlach AL, Olucha-Bordonau FE. Septal projections to nucleus incertus in the rat: bidirectional pathways for modulation of hippocampal function. J Comp Neurol 2014; 523:565-88. [PMID: 25269409 DOI: 10.1002/cne.23687] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 11/10/2022]
Abstract
Projections from the nucleus incertus (NI) to the septum have been implicated in the modulation of hippocampal theta rhythm. In this study we describe a previously uncharacterized projection from the septum to the NI, which may provide feedback modulation of the ascending circuitry. Fluorogold injections into the NI resulted in retrograde labeling in the septum that was concentrated in the horizontal diagonal band and areas of the posterior septum including the septofimbrial and triangular septal nuclei. Double-immunofluorescent staining indicated that the majority of NI-projecting septal neurons were calretinin-positive and some were parvalbumin-, calbindin-, or glutamic acid decarboxylase (GAD)-67-positive. Choline acetyltransferase-positive neurons were Fluorogold-negative. Injection of anterograde tracers into medial septum, or triangular septal and septofimbrial nuclei, revealed fibers descending to the supramammillary nucleus, median raphe, and the NI. These anterogradely labeled varicosities displayed synaptophysin immunoreactivity, indicating septal inputs form synapses on NI neurons. Anterograde tracer also colocalized with GAD-67-positive puncta in labeled fibers, which in some cases made close synaptic contact with GAD-67-labeled NI neurons. These data provide evidence for the existence of an inhibitory descending projection from medial and posterior septum to the NI that provides a "feedback loop" to modulate the comparatively more dense ascending NI projections to medial septum and hippocampus. Neural processes and associated behaviors activated or modulated by changes in hippocampal theta rhythm may depend on reciprocal connections between ascending and descending pathways rather than on unidirectional regulation via the medial septum.
Collapse
|
8
|
Hulme OJ, Whiteley L, Shipp S. Spatially distributed encoding of covert attentional shifts in human thalamus. J Neurophysiol 2010; 104:3644-56. [PMID: 20844113 PMCID: PMC3007633 DOI: 10.1152/jn.00303.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Spatial attention modulates signal processing within visual nuclei of the thalamus—but do other nuclei govern the locus of attention in top-down mode? We examined functional MRI (fMRI) data from three subjects performing a task requiring covert attention to 1 of 16 positions in a circular array. Target position was cued after stimulus offset, requiring subjects to perform target detection from iconic visual memory. We found positionally specific responses at multiple thalamic sites, with individual voxels activating at more than one direction of attentional shift. Voxel clusters at anatomically equivalent sites across subjects revealed a broad range of directional tuning at each site, with little sign of contralateral bias. By reference to a thalamic atlas, we identified the nuclear correspondence of the four most reliably activated sites across subjects: mediodorsal/central-intralaminar (oculomotor thalamus), caudal intralaminar/parafascicular, suprageniculate/limitans, and medial pulvinar/lateral posterior. Hence, the cortical network generating a top-down control signal for relocating attention acts in concert with a spatially selective thalamic apparatus—the set of active nuclei mirroring the thalamic territory of cortical “eye-field” areas, thus supporting theories which propose the visuomotor origins of covert attentional selection.
Collapse
Affiliation(s)
- Oliver J Hulme
- Department of Vision Science, UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | | | |
Collapse
|
9
|
García-Cabezas MA, Rico B, Sánchez-González MA, Cavada C. Distribution of the dopamine innervation in the macaque and human thalamus. Neuroimage 2007; 34:965-84. [PMID: 17140815 DOI: 10.1016/j.neuroimage.2006.07.032] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 06/08/2006] [Accepted: 07/11/2006] [Indexed: 11/29/2022] Open
Abstract
We recently defined the thalamic dopaminergic system in primates; it arises from numerous dopaminergic cell groups and selectively targets numerous thalamic nuclei. Given the central position of the thalamus in subcortical and cortical interplay, and the functional relevance of dopamine neuromodulation in the brain, detailing dopamine distribution in the thalamus should supply important information. To this end we performed immunohistochemistry for dopamine and the dopamine transporter in the thalamus of macaque monkeys and humans to generate maps, in the stereotaxic coronal plane, of the distribution of dopaminergic axons. The dopamine innervation of the thalamus follows the same pattern in both species and is most dense in midline limbic nuclei, the mediodorsal and lateral posterior association nuclei, and in the ventral lateral and ventral anterior motor nuclei. This distribution suggests that thalamic dopamine has a prominent role in emotion, attention, cognition and complex somatosensory and visual processing, as well as in motor control. Most thalamic dopaminergic axons are thin and varicose and target both the neuropil and small blood vessels, suggesting that, besides neuronal modulation, thalamic dopamine may have a direct influence on microcirculation. The maps provided here should be a useful reference in future experimental and neuroimaging studies aiming at clarifying the role of the thalamic dopaminergic system in health and in conditions involving brain dopamine, including Parkinson's disease, drug addiction and schizophrenia.
Collapse
Affiliation(s)
- Miguel Angel García-Cabezas
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, C/Arzobispo Morcillo s/n, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
10
|
Huang H, Ghosh P, van den Pol AN. Prefrontal cortex-projecting glutamatergic thalamic paraventricular nucleus-excited by hypocretin: a feedforward circuit that may enhance cognitive arousal. J Neurophysiol 2006; 95:1656-68. [PMID: 16492946 DOI: 10.1152/jn.00927.2005] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The paraventricular thalamic nucleus (PVT) receives one of the most dense innervations by hypothalamic hypocretin/orexin (Hcrt) neurons, which play important roles in sleep-wakefulness, attention, and autonomic function. The PVT projects to several loci, including the medial prefrontal cortex (mPFC), a cortical region involved in associative function and attention. To study the effect of Hcrt on excitatory PVT neurons that project to the mPFC, we used a new line of transgenic mice expressing green fluorescent protein (GFP) under the control of the vesicular glutamate-transporter-2 promoter. These neurons were retrogradely labeled with cholera toxin subunit B that had been microinjected into the mPFC. Membrane characteristics and responses to hypocretin-1 and -2 (Hcrt-1 and -2) were studied using whole cell recording (n > 300). PVT neurons showed distinct membrane properties including inward rectification, H-type potassium currents, low threshold spikes, and spike frequency adaptation. Cortically projecting neurons were depolarized and excited by Hcrt-2. Hcrt-2 actions were stronger than those of Hcrt-1, and the action persisted in TTX and in low calcium/high magnesium artificial cerebrospinal fluid, consistent with direct actions mediated by Hcrt receptor-2. Two mechanisms of Hcrt excitation were found: an increase in input resistance caused by closure of potassium channels and activation of nonselective cation channels. The robust excitation evoked by Hcrt-2 on cortically projecting glutamate PVT neurons could generate substantial excitation in multiple layers of the mPFC, adding to the more selective direct excitatory actions of Hcrt in the mPFC and potentially increasing cortical arousal and attention to limbic or visceral states.
Collapse
Affiliation(s)
- Hao Huang
- Dept. of Neurosurgery, Yale Univ., School of Medicine, 333 Cedar St., New Haven, CT 06520, USA
| | | | | |
Collapse
|
11
|
Sánchez-González MA, García-Cabezas MA, Rico B, Cavada C. The primate thalamus is a key target for brain dopamine. J Neurosci 2006; 25:6076-83. [PMID: 15987937 PMCID: PMC6725054 DOI: 10.1523/jneurosci.0968-05.2005] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The thalamus relays information to the cerebral cortex from subcortical centers or other cortices; in addition, it projects to the striatum and amygdala. The thalamic relay function is subject to modulation, so the flow of information to the target regions may change depending on behavioral demands. Modulation of thalamic relay by dopamine is not currently acknowledged, perhaps because dopamine innervation is reportedly scant in the rodent thalamus. We show that dopaminergic axons profusely target the human and macaque monkey thalamus using immunolabeling with three markers of the dopaminergic phenotype (tyrosine hydroxylase, dopamine, and the dopamine transporter). The dopamine innervation is especially prominent in specific association, limbic, and motor thalamic nuclei, where the densities of dopaminergic axons are as high as or higher than in the cortical area with the densest dopamine innervation. We also identified the dopaminergic neurons projecting to the macaque thalamus using retrograde tract-tracing combined with immunohistochemistry. The origin of thalamic dopamine is multiple, and thus more complex, than in any other dopaminergic system defined to date: dopaminergic neurons of the hypothalamus, periaqueductal gray matter, ventral mesencephalon, and the lateral parabrachial nucleus project bilaterally to the monkey thalamus. We propose a novel dopaminergic system that targets the primate thalamus and is independent from the previously defined nigrostriatal, mesocortical, and mesolimbic dopaminergic systems. Investigating this "thalamic dopaminergic system" should further our understanding of higher brain functions and conditions such as Parkinson's disease, schizophrenia, and drug addiction.
Collapse
Affiliation(s)
- Miguel Angel Sánchez-González
- Departamento de Anatomía, Histología y Neurociencia, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
12
|
Rieck RW, Ansari MS, Whetsell WO, Deutch AY, Kessler RM. Distribution of dopamine D2-like receptors in the human thalamus: autoradiographic and PET studies. Neuropsychopharmacology 2004; 29:362-72. [PMID: 14627996 DOI: 10.1038/sj.npp.1300336] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The distribution of dopamine (DA) D(2)-like receptors in the human thalamus was studied using in vitro autoradiographic techniques and in vivo positron emission tomography in normal control subjects. [(125)I]Epidepride, which binds with high affinity to DA D(2) and D(3) receptors, was used in autoradiographic studies to determine the distribution and density of D(2)-like receptors, and the epidepride analogue [(18)F]fallypride positron was used for positron emission tomography studies to delineate D(2)-like receptors in vivo. Both approaches revealed a heterogeneous distribution of thalamic D(2/3) receptors, with relatively high densities in the intralaminar and midline thalamic nuclei, including the paraventricular, parataenial, paracentral, centrolateral, and centromedian/parafascicular nuclei. Moderate densities of D(2/3) sites were seen in the mediodorsal and anterior nuclei, while other thalamic nuclei expressed lower levels of D(2)-like receptors. Most thalamic nuclei that express high densities of D(2)-like receptors project to forebrain DA terminal fields, suggesting that both the thalamic neurons expressing D(2)-like receptors and the projection targets of these neurons are regulated by DA. Because the midline/intralaminar nuclei receive prominent projections from both the ascending reticular activating core and the hypothalamus, these thalamic nuclei may integrate activity conveying both interoceptive and exteroceptive information to telencephalic DA systems involved in reward and cognition.
Collapse
Affiliation(s)
- Richard W Rieck
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | | | | |
Collapse
|
13
|
Van der Werf YD, Witter MP, Groenewegen HJ. The intralaminar and midline nuclei of the thalamus. Anatomical and functional evidence for participation in processes of arousal and awareness. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2002; 39:107-40. [PMID: 12423763 DOI: 10.1016/s0165-0173(02)00181-9] [Citation(s) in RCA: 722] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The thalamic midline and intralaminar nuclei, long thought to be a non-specific arousing system in the brain, have been shown to be involved in separate and specific brain functions, such as specific cognitive, sensory and motor functions. Fundamental to the participation of the midline and intralaminar nuclei in such diverse functions seems to be a role in awareness. It is unknown whether the midline and intralaminar nuclei, together often referred to as the 'non-specific' nuclei of the thalamus, act together or whether each nucleus is involved idiosyncratically in separate circuits underlying cortical processes. Detailed knowledge of the connectivity of each of these nuclei is needed to judge the nature of their contribution to cortical functioning. The present account provides an overview of the results of neuroanatomical tracing studies on the connections of the individual intralaminar and midline thalamic nuclei in the rat, that have been performed over the past decade in our laboratory. The results are discussed together with those reported by other laboratories, and with those obtained in other species. On the basis of the patterns of the afferent and efferent projections, we conclude that the midline and intralaminar thalamic nuclei can be clustered into four groups. Each of the groups can be shown to have its own set of target and input structures, both cortically and subcortically. These anatomical relationships, in combination with functional studies in animals and in humans, lead us to propose that the midline and intralaminar nuclei as a whole play a role in awareness, with each of the groups subserving a role in a different aspect of awareness. The following groups can be discerned: (1) a dorsal group, consisting of the paraventricular, parataenial and intermediodorsal nuclei, involved in viscero-limbic functions; (2) a lateral group, comprising the central lateral and paracentral nuclei and the anterior part of the central medial nucleus, involved in cognitive functions; (3) a ventral group, made up of the reuniens and rhomboid nucleus and the posterior part of the central medial nucleus, involved in multimodal sensory processing; (4) a posterior group, consisting of the centre médian and parafascicular nuclei, involved in limbic motor functions.
Collapse
Affiliation(s)
- Ysbrand D Van der Werf
- Department of Anatomy, Institute for Clinical and Experimental Neurosciences Vrije Universiteit, Graduate School for Neurosciences Amsterdam, The Netherlands.
| | | | | |
Collapse
|
14
|
Abstract
This paper reviews the current status of the adrenochrome theory of schizophrenia. An account is first given of all the experiments in which adrenochrome was reported to induce psychotomimetic effects in normal volunteers. Then the evidence is presented that adrenochrome may actually occur in the brain as a metabolite of adrenaline in the C2 group of adrenergic neurons in the medulla, together with an account of current ideas of the function of these neurons in higher limbic functions. Lastly the recent evidence is reviewed that the gene for the enzyme glutathione S-transferase is defective in schizophrenia. This enzyme detoxifies adrenochrome.
Collapse
Affiliation(s)
- John Smythies
- Department of Psychology, Center for Brain and Cognition, University of California at San Diego, La Jolla, CA 92093-0109, USA; and Department of Neuropsychiatry, Institute of Neurology, Queen Square, London, UK.
| |
Collapse
|
15
|
Abstract
In the first part of this article we summarize a theoretical framework and a set of hypotheses aimed at accounting for consciousness in neurobiological terms. The basic form of consciousness, core consciousness is placed in the context of life regulation; it is seen as yet another level of biological processing aimed at ensuring the homeostatic balance of a living organism; and the representation of the current organism state within somato-sensing structures is seen as critical to its development. Core consciousness is conceived as the imaged relationship of the interaction between an object and the changed organism state it causes. In the second part of the article we discuss the functional neuroanatomy of nuclei in the brainstem reticular formation because they constitute the basic set of somato-sensing structures necessary for core consciousness and its core self to emerge. The close relationship between the mechanisms underlying cortical activation and the bioregulatory mechanisms outlined here is entirely compatible with the classical idea that the reticular formation modulates the electrophysiological activity of the cerebral cortex. However, in the perspective presented here, that modulation is placed in the setting of the organism's homeostatic regulation.
Collapse
Affiliation(s)
- J Parvizi
- Department of Neurology, Division of Behavioral Neurology and Cognitive Neuroscience, University of Iowa College of Medicine, 200 Hawkins Drive, Iowa city, Iowa 52242, USA
| | | |
Collapse
|
16
|
Bickford ME, Ramcharan E, Godwin DW, Erişir A, Gnadt J, Sherman SM. Neurotransmitters contained in the subcortical extraretinal inputs to the monkey lateral geniculate nucleus. J Comp Neurol 2000; 424:701-17. [PMID: 10931491 DOI: 10.1002/1096-9861(20000904)424:4<701::aid-cne11>3.0.co;2-b] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The lateral geniculate nucleus (LGN) is the thalamic relay of retinal information to cortex. An extensive complement of nonretinal inputs to the LGN combine to modulate the responsiveness of relay cells to their retinal inputs, and thus control the transfer of visual information to cortex. These inputs have been studied in the most detail in the cat. The goal of the present study was to determine whether the neurotransmitters used by nonretinal afferents to the monkey LGN are similar to those identified in the cat. By combining the retrograde transport of tracers injected into the monkey LGN with immunocytochemical labeling for choline acetyl transferase, brain nitric oxide synthase, glutamic acid decarboxylase, tyrosine hydroxylase, or the histochemical nicotinamide adenine dinucleotide phosphate (NADPH)-diaphorase reaction, we determined that the organization of neurotransmitter inputs to the monkey LGN is strikingly similar to the patterns occurring in the cat. In particular, we found that the monkey LGN receives a significant cholinergic/nitrergic projection from the pedunculopontine tegmentum, gamma-aminobutyric acid (GABA)ergic projections from the thalamic reticular nucleus and pretectum, and a cholinergic projection from the parabigeminal nucleus. The major difference between the innervation of the LGN in the cat and the monkey is the absence of a noradrenergic projection to the monkey LGN. The segregation of the noradrenergic cells and cholinergic cells in the monkey brainstem also differs from the intermingled arrangement found in the cat brainstem. Our findings suggest that studies of basic mechanisms underlying the control of visual information flow through the LGN of the cat may relate directly to similar issues in primates, and ultimately, humans.
Collapse
Affiliation(s)
- M E Bickford
- Department of Anatomical Sciences and Neurobiology, University of Louisville, School of Medicine, Louisville, Kentucky 40292, USA
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
This review covers certain novel aspects of catecholamine signaling in neurons that involve redox systems and synaptic plasticity. The redox hypothesis suggests that one important factor in neurocomputation is the formation of new synapses and the removal of old ones (synaptic plasticity), which is modulated in part by the redox balance at the synapse between reactive oxygen species (ROS) (such as hydrogen peroxide and the nitric oxide radical) and neuroprotective antioxidants (such as ascorbate, glutathione, and catecholamines). Catecholamines, in particular dopamine, which signals positive reinforcement, may play a key role in this activity. Dopamine has powerful antioxidant properties by several separate mechanisms-direct ROS scavenging, activation of the synthesis of antioxidant proteins, and possibly via dismuting complexes with iron inside endosomes or in catecholaminergic synaptic vesicles. This may contribute to synaptic growth and reinforcement-directed learning. On the other hand, catecholamines are easily oxidized to toxic quinones on the neuromelanin pathway. This might contribute under certain circumstances to synaptic deletion. Evidence is presented that abnormalities in this system may contribute to the pathogenesis of Parkinson's disease and schizophrenia.
Collapse
Affiliation(s)
- J Smythies
- Center for Brain and Cognition, Department of Psychology, University of California-San Diego, La Jolla 92093-0109, USA.
| |
Collapse
|