1
|
Ralph MR, Shi SQ, Johnson CH, Houdek P, Shrestha TC, Crosby P, O’Neill JS, Sládek M, Stinchcombe AR, Sumová A. Targeted modification of the Per2 clock gene alters circadian function in mPer2luciferase (mPer2Luc) mice. PLoS Comput Biol 2021; 17:e1008987. [PMID: 34048425 PMCID: PMC8191895 DOI: 10.1371/journal.pcbi.1008987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 06/10/2021] [Accepted: 04/20/2021] [Indexed: 11/19/2022] Open
Abstract
Modification of the Per2 clock gene in mPer2Luc reporter mice significantly alters circadian function. Behavioral period in constant dark is lengthened, and dissociates into two distinct components in constant light. Rhythms exhibit increased bimodality, enhanced phase resetting to light pulses, and altered entrainment to scheduled feeding. Mechanistic mathematical modelling predicts that enhanced protein interactions with the modified mPER2 C-terminus, combined with differential clock regulation among SCN subregions, can account for effects on circadian behavior via increased Per2 transcript and protein stability. PER2::LUC produces greater suppression of CLOCK:BMAL1 E-box activity than PER2. mPer2Luc carries a 72 bp deletion in exon 23 of Per2, and retains a neomycin resistance cassette that affects rhythm amplitude but not period. The results show that mPer2Luc acts as a circadian clock mutation illustrating a need for detailed assessment of potential impacts of c-terminal tags in genetically modified animal models.
Collapse
Affiliation(s)
- Martin R. Ralph
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Shu-qun Shi
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Carl H. Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Pavel Houdek
- Laboratory of Biological Rhythms, Institute of Physiology, the Czech Academy of Sciences, Prague, Czech Republic
| | - Tenjin C. Shrestha
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Priya Crosby
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - John S. O’Neill
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Martin Sládek
- Laboratory of Biological Rhythms, Institute of Physiology, the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Alena Sumová
- Laboratory of Biological Rhythms, Institute of Physiology, the Czech Academy of Sciences, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
2
|
Wong CCP, Schumann G. Integration of the circadian and stress systems: influence of neuropeptides and implications for alcohol consumption. J Neural Transm (Vienna) 2012; 119:1111-20. [PMID: 22648536 DOI: 10.1007/s00702-012-0829-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/10/2012] [Indexed: 12/16/2022]
Abstract
Disruptions in circadian rhythm and stress reactivity are associated with risks of developing neuropsychiatric disorders. The circadian system is organised in a hierarchical manner, whereby the master clock is located at the suprachiasmatic nucleus, a highly conserved brain region that coordinates the oscillations of peripheral clocks. Exposure to psychological stress leads to activation of the hypothalamic-pituitary-adrenal axis. There is growing evidence supporting the interactions between the circadian and stress systems. Anatomically, the circadian and stress signals converge at the paraventricular nucleus (PVN) in the hypothalamus. Genes that are involved in the operation of the circadian and stress systems, including Clock, Period and CRH are expressed in the PVN. In addition, several neuropeptides, including arginin-vasopressin, vasoactive intestinal polypeptide, pituitary adenylate cyclase-activating polypeptide and the neurotransmitter gamma-aminobutyric acid, are present in the PVN. In this review, we will discuss the interaction of circadian genes and stress-response genes at the molecular, neurotransmission and behavioural levels. We will place particular emphasis on the role of neuropeptides in mediating this interaction.
Collapse
Affiliation(s)
- Cybele C P Wong
- MRC-SGDP Centre, Institute of Psychiatry, King's College London, 16 De Crespigny Park, London SE5 8AF, UK.
| | | |
Collapse
|
3
|
Tonsfeldt KJ, Chappell PE. Clocks on top: the role of the circadian clock in the hypothalamic and pituitary regulation of endocrine physiology. Mol Cell Endocrinol 2012; 349:3-12. [PMID: 21787834 PMCID: PMC3242828 DOI: 10.1016/j.mce.2011.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Revised: 07/01/2011] [Accepted: 07/01/2011] [Indexed: 01/24/2023]
Abstract
Recent strides in circadian biology over the last several decades have allowed researchers new insight into how molecular circadian clocks influence the broader physiology of mammals. Elucidation of transcriptional feedback loops at the heart of endogenous circadian clocks has allowed for a deeper analysis of how timed cellular programs exert effects on multiple endocrine axes. While the full understanding of endogenous clocks is currently incomplete, recent work has re-evaluated prior findings with a new understanding of the involvement of these cellular oscillators, and how they may play a role in constructing rhythmic hormone synthesis, secretion, reception, and metabolism. This review addresses current research into how multiple circadian clocks in the hypothalamus and pituitary receive photic information from oscillators within the hypothalamic suprachiasmatic nucleus (SCN), and how resultant hypophysiotropic and pituitary hormone release is then temporally gated to produce an optimal result at the cognate target tissue. Special emphasis is placed not only on neural communication among the SCN and other hypothalamic nuclei, but also how endogenous clocks within the endocrine hypothalamus and pituitary may modulate local hormone synthesis and secretion in response to SCN cues. Through evaluation of a larger body of research into the impact of circadian biology on endocrinology, we can develop a greater appreciation into the importance of timing in endocrine systems, and how understanding of these endogenous rhythms can aid in constructing appropriate therapeutic treatments for a variety of endocrinopathies.
Collapse
Affiliation(s)
- Karen J Tonsfeldt
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, United States
| | | |
Collapse
|
4
|
Kiss J, Csáki Á, Csaba Z, Halász B. Synaptic contacts of vesicular glutamate transporter 2 fibres on chemically identified neurons of the hypothalamic suprachiasmatic nucleus of the rat. Eur J Neurosci 2008; 28:1760-74. [DOI: 10.1111/j.1460-9568.2008.06463.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Morin LP, Allen CN. The circadian visual system, 2005. ACTA ACUST UNITED AC 2006; 51:1-60. [PMID: 16337005 DOI: 10.1016/j.brainresrev.2005.08.003] [Citation(s) in RCA: 306] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 07/19/2005] [Accepted: 08/09/2005] [Indexed: 11/17/2022]
Abstract
The primary mammalian circadian clock resides in the suprachiasmatic nucleus (SCN), a recipient of dense retinohypothalamic innervation. In its most basic form, the circadian rhythm system is part of the greater visual system. A secondary component of the circadian visual system is the retinorecipient intergeniculate leaflet (IGL) which has connections to many parts of the brain, including efferents converging on targets of the SCN. The IGL also provides a major input to the SCN, with a third major SCN afferent projection arriving from the median raphe nucleus. The last decade has seen a blossoming of research into the anatomy and function of the visual, geniculohypothalamic and midbrain serotonergic systems modulating circadian rhythmicity in a variety of species. There has also been a substantial and simultaneous elaboration of knowledge about the intrinsic structure of the SCN. Many of the developments have been driven by molecular biological investigation of the circadian clock and the molecular tools are enabling novel understanding of regional function within the SCN. The present discussion is an extension of the material covered by the 1994 review, "The Circadian Visual System."
Collapse
Affiliation(s)
- L P Morin
- Department of Psychiatry and Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
| | | |
Collapse
|
6
|
Reghunandanan V, Reghunandanan R. Neurotransmitters of the suprachiasmatic nuclei. J Circadian Rhythms 2006; 4:2. [PMID: 16480518 PMCID: PMC1402333 DOI: 10.1186/1740-3391-4-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Accepted: 02/16/2006] [Indexed: 12/04/2022] Open
Abstract
There has been extensive research in the recent past looking into the molecular basis and mechanisms of the biological clock, situated in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. Neurotransmitters are a very important component of SCN function. Thorough knowledge of neurotransmitters is not only essential for the understanding of the clock but also for the successful manipulation of the clock with experimental chemicals and therapeutical drugs. This article reviews the current knowledge about neurotransmitters in the SCN, including neurotransmitters that have been identified only recently. An attempt was made to describe the neurotransmitters and hormonal/diffusible signals of the SCN efference, which are necessary for the master clock to exert its overt function. The expression of robust circadian rhythms depends on the integrity of the biological clock and on the integration of thousands of individual cellular clocks found in the clock. Neurotransmitters are required at all levels, at the input, in the clock itself, and in its efferent output for the normal function of the clock. The relationship between neurotransmitter function and gene expression is also discussed because clock gene transcription forms the molecular basis of the clock and its working.
Collapse
Affiliation(s)
- Vallath Reghunandanan
- Department of Basic Medical Science, Faculty of Medicine and Health Sciences, University of Malaysia, 93150 Kuching, Malaysia
| | - Rajalaxmy Reghunandanan
- Department of Basic Medical Science, Faculty of Medicine and Health Sciences, University of Malaysia, 93150 Kuching, Malaysia
| |
Collapse
|
7
|
Morin LP, Shivers KY, Blanchard JH, Muscat L. Complex organization of mouse and rat suprachiasmatic nucleus. Neuroscience 2005; 137:1285-97. [PMID: 16338081 DOI: 10.1016/j.neuroscience.2005.10.030] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2005] [Revised: 09/26/2005] [Accepted: 10/17/2005] [Indexed: 11/19/2022]
Abstract
The suprachiasmatic nucleus, site of the dominant mammalian circadian clock, contains a variety of different neurons that tend to form groups within the nucleus. The present investigation used single and multiple label tract tracing and immunofluorescence methods to evaluate the relative locations of the neuron groups and to compare them with the distributions of the three major afferent projections, the retinohypothalamic tract, geniculohypothalamic tract and the serotonergic pathway from the median raphe nucleus. The suprachiasmatic nucleus has a complex order characterized by peptidergic cell groups (vasopressin, gastrin releasing peptide, vasoactive intestinal polypeptide, calbindin, calretinin, corticotrophin releasing factor and enkephalin) that, in most cases, substantially overlap. The retinohypothalamic tract projects bilaterally to virtually all the suprachiasmatic nucleus in both rat (predominantly contralateral) and mouse (symmetric) and its terminal field overlaps that for the geniculohypothalamic tract, but with distinctions visible according to density criteria; neither provides more than sparse innervation of the dorsomedial suprachiasmatic nucleus. In the mouse, the serotonergic terminal field is densest medially and ventrally, but is also distributed elsewhere with varying density. The serotonergic terminal plexus in the rat is densest centromedially and largely, but not completely, overlaps the complete distribution of retinal terminals with density much reduced in the lateral suprachiasmatic nucleus. The locations of vasopressin neurons, retinohypothalamic tract terminals and serotonergic (mouse, rat) or geniculohypothalamic tract (rat) provide evidence for three clear, but not exclusionary, sectors of the suprachiasmatic nucleus. The data, in conjunction with emerging knowledge concerning rhythmically dynamic changes in the size of regions of neuropeptide gene expression in suprachiasmatic nucleus cells, support the view that suprachiasmatic nucleus organization is more complex than a simple "core" and "shell" arrangement. While generalizations about suprachiasmatic nucleus organization can be made with respect to location of cell phenotypes or terminal fields, oversimplification may hinder, rather than facilitate, understanding of suprachiasmatic nucleus structure-function relationships.
Collapse
Affiliation(s)
- L P Morin
- Department of Psychiatry, Health Science Center, Stony Brook University, Stony Brook, NY 11794-8101, USA.
| | | | | | | |
Collapse
|
8
|
Van der Veen DR, Castillo MR, Van der Zee EA, Jansen K, Gerkema MP, Bult-Ito A. Circadian dynamics of vasopressin in mouse selection lines: translation and release in the SCN. Brain Res 2005; 1060:16-25. [PMID: 16198320 DOI: 10.1016/j.brainres.2005.07.068] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 07/25/2005] [Accepted: 07/27/2005] [Indexed: 11/19/2022]
Abstract
Arg8-vasopressin (AVP), a circadian clock-controlled gene product, is released from the hypothalamic suprachiasmatic nuclei (SCN) in mice in a circadian fashion. Previously reported differences in two mouse lines, initially selected for thermoregulatory nest-building behavior (building small nests (S-mice) or big nests (B-mice)) with different circadian organization of behavior and in number of SCN-AVP immunoreactive neurons, were further investigated. We confirmed and expanded the finding that S-mice exhibited constant high levels of SCN-AVP content with no apparent circadian rhythmicity, whereas B-mice had lower numbers of AVP positive cells which varied with time of day. We found that AVP mRNA expression levels at midnight and midday were similar in both lines, as established by in situ hybridization. When AVP transport and release were blocked by colchicine, SCN-AVP immunoreactivity was similar in both lines. This suggests that differences in SCN-AVP content depend on transport or release. Organotypic SCN cultures of B-mice showed more AVP release per neuron than cultures of S-mice. These results reveal that on a mechanistic level the mouse lines differed in transport and/or release of AVP in the SCN, rather than differential regulation of AVP gene transcription or number of AVP immunoreactive neurons.
Collapse
Affiliation(s)
- D R Van der Veen
- Department of Chronobiology, University of Groningen, PO Box 14, 9750 AA Haren, The Netherlands.
| | | | | | | | | | | |
Collapse
|
9
|
Van der Zee EA, Roman V, Ten Brinke O, Meerlo P. TGFα and AVP in the mouse suprachiasmatic nucleus: Anatomical relationship and daily profiles. Brain Res 2005; 1054:159-66. [PMID: 16051199 DOI: 10.1016/j.brainres.2005.06.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2005] [Revised: 06/17/2005] [Accepted: 06/25/2005] [Indexed: 11/26/2022]
Abstract
Daily rhythms in behavior and physiology are under control of the suprachiasmatic nucleus (SCN), the main mammalian circadian pacemaker located in the hypothalamus. The SCN communicates with the rest of the brain via various output systems. The aim of the present study was to determine the neuroanatomical and temporal relationship between two output systems, arginine-vasopressin (AVP) and transforming growth factor alpha (TGFalpha), in the mouse SCN. TGFalpha-positive cells were found throughout the SCN, but more abundantly in the core than the shell area, while AVP was predominantly found in the shell. Fluorescent double labeling revealed a total lack of co-expression for the two proteins in SCN cells. The circadian profile, studied by way of optical density in immunostaining at 3 h intervals, showed peak values for AVP shortly after the LD transitions. Immunoreactivity for TGFalpha was highly variable, especially at time points before the LD transitions. In addition, strong lateralization in TGFalpha immunostaining in the SCN was found in some individuals. Daily fluctuations in the paraventricular nucleus were absent for TGFalpha, and only weakly present for AVP. The main conclusion derived from this study is that these two output systems of the biological clock are anatomically separated with different daily profiles in expression.
Collapse
Affiliation(s)
- E A Van der Zee
- Department of Molecular Neurobiology, Graduate School of Behavioural and Cognitive Neurosciences, University of Groningen, P.O. Box 14, 9750 AA Haren, The Netherlands.
| | | | | | | |
Collapse
|
10
|
Abstract
It is thought that circadian regulation of physiology and behavior imparts survival advantages to organisms that use clocks. In mammals, a master clock resident in the SCN synchronizes other central and peripheral oscillators to evoke this regulation. This master oscillator consists of interlocking transcriptional-translational feedback loops, and it regulates both core clock genes necessary for oscillator maintenance as well as specific output genes that directly or indirectly mediate physiology under circadian control. It is now clear that both neuroanatomic and molecular outputs of the clock are necessary for proper circadian clock function. Recent technology has improved our understanding of these processes, elucidating the anatomic outputs of the SCN, as well as the molecular outputs of both central and peripheral oscillators that mediate observed physiological changes.
Collapse
|
11
|
Van Someren EJW, Riemersma RF, Swaab DF. Functional plasticity of the circadian timing system in old age: light exposure. PROGRESS IN BRAIN RESEARCH 2002; 138:205-31. [PMID: 12432772 DOI: 10.1016/s0079-6123(02)38080-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Eus J W Van Someren
- Graduate School Neuroscience Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam, The Netherlands.
| | | | | |
Collapse
|
12
|
Cheng MY, Bullock CM, Li C, Lee AG, Bermak JC, Belluzzi J, Weaver DR, Leslie FM, Zhou QY. Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 2002; 417:405-10. [PMID: 12024206 DOI: 10.1038/417405a] [Citation(s) in RCA: 530] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The suprachiasmatic nucleus (SCN) controls the circadian rhythm of physiological and behavioural processes in mammals. Here we show that prokineticin 2 (PK2), a cysteine-rich secreted protein, functions as an output molecule from the SCN circadian clock. PK2 messenger RNA is rhythmically expressed in the SCN, and the phase of PK2 rhythm is responsive to light entrainment. Molecular and genetic studies have revealed that PK2 is a gene that is controlled by a circadian clock (clock-controlled). Receptor for PK2 (PKR2) is abundantly expressed in major target nuclei of the SCN output pathway. Inhibition of nocturnal locomotor activity in rats by intracerebroventricular delivery of recombinant PK2 during subjective night, when the endogenous PK2 mRNA level is low, further supports the hypothesis that PK2 is an output molecule that transmits behavioural circadian rhythm. The high expression of PKR2 mRNA within the SCN and the positive feedback of PK2 on its own transcription through activation of PKR2 suggest that PK2 may also function locally within the SCN to synchronize output.
Collapse
Affiliation(s)
- Michelle Y Cheng
- Department of Pharmacology, University of California, Irvine, California 92697, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
This paper discusses circadian output in terms of the signaling mechanisms used by circadian pacemaker neurons. In mammals, the suprachiasmatic nucleus houses a clock controlling several rhythmic events. This nucleus contains one or more pacemaker circuits, and exhibits diversity in transmitter content and in axonal projections. In Drosophila, a comparable circadian clock is located among period -expressing neurons, a sub-set of which (called LN-vs) express the neuropeptide PDF. Genetic experiments indicate LN-vs are the primary pacemakers neurons controlling daily locomotion and that PDF is the principal circadian transmitter. Further definition of pacemaker properties in several model systems will provide a useful basis with which to describe circadian output mechanisms.
Collapse
Affiliation(s)
- P H Taghert
- Department of Anatomy & Neurobiology, Box 8108, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO 63110, USA.
| |
Collapse
|
14
|
Abstract
In mammals, a master circadian "clock" resides in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. The SCN clock is composed of multiple, single-cell circadian oscillators, which, when synchronized, generate coordinated circadian outputs that regulate overt rhythms. Eight clock genes have been cloned that are involved in interacting transcriptional-/translational-feedback loops that compose the molecular clockwork. The daily light-dark cycle ultimately impinges on the control of two clock genes that reset the core clock mechanism in the SCN. Clock-controlled genes are also generated by the central clock mechanism, but their protein products transduce downstream effects. Peripheral oscillators are controlled by the SCN and provide local control of overt rhythm expression. Greater understanding of the cellular and molecular mechanisms of the SCN clockwork provides opportunities for pharmacological manipulation of circadian timing.
Collapse
Affiliation(s)
- S M Reppert
- Laboratory of Developmental Chronobiology, Mass General Hospital for Children, and Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | |
Collapse
|
15
|
Boer GJ, van Esseveldt KE, Dijkhuizen PA, Hermens WT, te Beek ET, van Heerikhuize JJ, Poldervaart HA, Verhaagen J. Adenoviral Vector-Mediated Expression of Neurotrophin-3 Increases Neuronal Survival in Suprachiasmatic Nucleus Grafts. Exp Neurol 2001; 169:364-75. [PMID: 11358449 DOI: 10.1006/exnr.2001.7683] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
To improve transplantation results of fetal suprachiasmatic nucleus (SCN) in SCN-lesioned (SCNX) rats, grafts were ex vivo transduced with an adenoviral vector encoding for neurotrophin-3 (AdNT-3) before implantation. Mock- and AdLacZ-transduced grafts were used as controls. First, transplants were evaluated microscopically and by image analysis for the presence of vasopressinergic (VPergic) and vasoactive intestinal polypeptidergic (VIPergic) SCN neurons at 10 weeks or later postgrafting. Ex vivo AdNT-3-transduced transplants displayed increased volume areas of VPergic and VIPergic SCN cells in comparison with those in mock- and AdLacZ-transduced transplants, but significantly improved graft-to-host VPergic and VIPergic SCN fiber growth was not reached (though AdNT-3-transduced transplants tended to grow more VPergic fibers into the brain of VP-deficient SCNX Brattleboro rat recipients, which were chosen as recipients to circumvent the presence of non-SCN VP fiber staining). Second, a small group of arrhythmic Wistar rats received AdNT-3- or control-treated SCN grafts while continuously on-line for the monitoring of overt circadian activities in the pre- and postgrafting periods. The results indicated that ex vivo transduced SCN grafts can still restore arrhythmia, but that the NT-3-mediated anatomical improvements of the grafting results were not sufficient to enhance efficacy of reinstatement of circadian rhythm in SCN-lesioned rats. However, in this group VIP staining volume area, not VP staining volume area, correlated significantly with reinstatement of circadian rhythm.
Collapse
Affiliation(s)
- G J Boer
- Graduate School of Neurosciences of Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam ZO, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
16
|
van Esseveldt KE, Lehman MN, Boer GJ. The suprachiasmatic nucleus and the circadian time-keeping system revisited. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 33:34-77. [PMID: 10967353 DOI: 10.1016/s0165-0173(00)00025-4] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Many physiological and behavioral processes show circadian rhythms which are generated by an internal time-keeping system, the biological clock. In rodents, evidence from a variety of studies has shown the suprachiasmatic nucleus (SCN) to be the site of the master pacemaker controlling circadian rhythms. The clock of the SCN oscillates with a near 24-h period but is entrained to solar day/night rhythm by light. Much progress has been made recently in understanding the mechanisms of the circadian system of the SCN, its inputs for entrainment and its outputs for transfer of the rhythm to the rest of the brain. The present review summarizes these new developments concerning the properties of the SCN and the mechanisms of circadian time-keeping. First, we will summarize data concerning the anatomical and physiological organization of the SCN, including the roles of SCN neuropeptide/neurotransmitter systems, and our current knowledge of SCN input and output pathways. Second, we will discuss SCN transplantation studies and how they have contributed to knowledge of the intrinsic properties of the SCN, communication between the SCN and its targets, and age-related changes in the circadian system. Third, recent findings concerning the genes and molecules involved in the intrinsic pacemaker mechanisms of insect and mammalian clocks will be reviewed. Finally, we will discuss exciting new possibilities concerning the use of viral vector-mediated gene transfer as an approach to investigate mechanisms of circadian time-keeping.
Collapse
Affiliation(s)
- K E van Esseveldt
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ ZO, Amsterdam, The Netherlands
| | | | | |
Collapse
|
17
|
Renn SC, Park JH, Rosbash M, Hall JC, Taghert PH. A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 1999; 99:791-802. [PMID: 10619432 DOI: 10.1016/s0092-8674(00)81676-1] [Citation(s) in RCA: 873] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanisms by which circadian pacemaker systems transmit timing information to control behavior are largely unknown. Here, we define two critical features of that mechanism in Drosophila. We first describe animals mutant for the pdf neuropeptide gene, which is expressed by most of the candidate pacemakers (LNv neurons). Next, we describe animals in which pdf neurons were selectively ablated. Both sets of animals produced similar behavioral phenotypes. Both sets entrained to light, but both were largely arrhythmic under constant conditions. A minority of each pdf variant exhibited weak to moderate free-running rhythmicity. These results confirm the assignment of LNv neurons as the principal circadian pacemakers controlling daily locomotion in Drosophila. They also implicate PDF as the principal circadian transmitter.
Collapse
Affiliation(s)
- S C Renn
- Department of Anatomy and Neurobiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|