1
|
Otabe H, Nibuya M, Shimazaki K, Toda H, Suzuki G, Nomura S, Shimizu K. Electroconvulsive seizures enhance autophagy signaling in rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 2014; 50:37-43. [PMID: 24316174 DOI: 10.1016/j.pnpbp.2013.11.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 11/20/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
Abstract
The putative antidepressive mechanisms of a series of electroconvulsive seizures (ECS) are the following: 1) downregulation of monoaminergic receptor expression in several brain regions, 2) upregulation of the expression of brain-derived neurotrophic factor (BDNF), and 3) increased neurogenesis in the hippocampus. In this study, we used Western blot techniques to present another mechanism in which ECS enhances the autophagy signaling that is involved in the machinery related to synaptic and neural plasticity. Antibodies for conjugated Atg5-Atg12 (58kD) and cleaved light chain protein 3-II (LC3-II; 14 kD) were used to detect autophagy signals. An antibody for cleaved caspase-3 (17 kD) was used to detect alterations in apoptotic signals. Mature BDNF (14kD) expression in the hippocampus was evaluated in order to qualify the effectiveness of the ECS or stress-loading treatment. While significantly increased autophagy signals and no increases in apoptotic signals were detected in the ECS-treated rat hippocampus, the reverse (increased apoptotic signals and no altered autophagy signals) was observed in stressed rat hippocampus. No neuronal cell loss but new mossy fiber sprouting has been reported to accompany multiple ECS treatments, and recent studies have revealed that autophagy processes regulate the number of specific neurotransmitter receptors and the plasticity of synaptic components. The present study illustrated the neuroplastic and neurotrophic profiles of ECS and the neurotoxic impact of severe stress loading on hippocampal regions. This is the first report to demonstrate increased autophagy signals in ECS-treated rat hippocampus and no alterations in autophagy signals in stress-loaded rat hippocampus.
Collapse
Affiliation(s)
- Hiroyuki Otabe
- Department of Psychiatry, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Masashi Nibuya
- Department of Psychiatry, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | - Kuniko Shimazaki
- Department of Neurosurgery, Jichi Medical School, Shimotsuke, Tochigi, Japan
| | - Hiroyuki Toda
- Department of Psychiatry, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Go Suzuki
- Division of Behavioral Sciences, National Defense Medical College, Tokorozawa, Saitama, Japan; Military Medicine Research Unit, Test and Evaluation Command, Japan Ground Self Defense Force, Setagaya, Tokyo, Japan
| | - Soichiro Nomura
- Department of Psychiatry, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kunio Shimizu
- Division of Behavioral Sciences, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
2
|
Avanzini G, Forcelli PA, Gale K. Are there really "epileptogenic" mechanisms or only corruptions of "normal" plasticity? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 813:95-107. [PMID: 25012370 DOI: 10.1007/978-94-017-8914-1_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Plasticity in the nervous system, whether for establishing connections and networks during development, repairing networks after injury, or modifying connections based on experience, relies primarily on highly coordinated patterns of neural activity. Rhythmic, synchronized bursting of neuronal ensembles is a fundamental component of the activity-dependent plasticity responsible for the wiring and rewiring of neural circuits in the CNS. It is therefore not surprising that the architecture of the CNS supports the generation of highly synchronized bursts of neuronal activity in non-pathological conditions, even though the activity resembles the ictal and interictal events that are the hallmark symptoms of epilepsy. To prevent such natural epileptiform events from becoming pathological, multiple layers of homeostatic control operate on cellular and network levels. Many data on plastic changes that occur in different brain structures during the processes by which the epileptogenic aggregate is constituted have been accumulated but their role in counteracting or promoting such processes is still controversial. In this chapter we will review experimental and clinical evidence on the role of neural plasticity in the development of epilepsy. We will address questions such as: is epilepsy a progressive disorder? What do we know about mechanism(s) accounting for progression? Have we reliable biomarkers of epilepsy-related plastic processes? Do seizure-associated plastic changes protect against injury and aid in recovery? As a necessary premise we will consider the value of seizure-like activity in the context of normal neural development.
Collapse
Affiliation(s)
- Giuliano Avanzini
- Fondazione I.RC.C.S. Istituto Neurologico Carlo Besta, Via Celoria 11, 20133, Milan, Italy,
| | | | | |
Collapse
|
3
|
Paradiso B, Zucchini S, Simonato M. Implication of fibroblast growth factors in epileptogenesis-associated circuit rearrangements. Front Cell Neurosci 2013; 7:152. [PMID: 24062643 PMCID: PMC3772316 DOI: 10.3389/fncel.2013.00152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 08/26/2013] [Indexed: 12/26/2022] Open
Abstract
The transformation of a normal brain in epileptic (epileptogenesis) is associated with extensive morpho-functional alterations, including cell death, axonal and dendritic plasticity, neurogenesis, and others. Neurotrophic factors (NTFs) appear to be very strongly implicated in these phenomena. In this review, we focus on the involvement of fibroblast growth factor (FGF) family members. Available data demonstrate that the FGFs are highly involved in the generation of the morpho-functional alterations in brain circuitries associated with epileptogenesis. For example, data on FGF2, the most studied member, suggest that it may be implicated both in seizure susceptibility and in seizure-induced plasticity, exerting different, and apparently contrasting effects: favoring acute seizures but reducing seizure-induced cell death. Even if many FGF members are still unexplored and very limited information is available on the FGF receptors, a complex and fascinating picture is emerging: multiple FGFs producing synergic or antagonistic effects one with another (and/or with other NTFs) on biological parameters that, in turn, facilitate or oppose transformation of the normal tissue in epileptic. In principle, identifying key elements in these phenomena may lead to effective therapies, but reaching this goal will require confronting a huge complexity. One first step could be to generate a "neurotrophicome" listing the FGFs (and all other NTFs) that are active during epileptogenesis. This should include identification of the extent to which each NTF is active (concentrations at the site of action); how it is active (local representation of receptor subtypes); when in the natural history of disease this occurs; how the NTF at hand will possibly interact with other NTFs. This is extraordinarily challenging, but holds the promise of a better understanding of epileptogenesis and, at large, of brain function.
Collapse
Affiliation(s)
- Beatrice Paradiso
- 1Department of Medical Sciences, Section of Pharmacology, University of Ferrara Ferrara, Italy ; 2Department of Morphology, Surgery and Experimental Medicine, Section of Pathology Ferrara, Italy ; 3National Institute of Neuroscience, University of Ferrara Ferrara, Italy
| | | | | |
Collapse
|
4
|
Krishnan B, Faith A, Vlachos I, Roth A, Williams K, Noe K, Drazkowski J, Tapsell L, Sirven J, Iasemidis L. Resetting of brain dynamics: epileptic versus psychogenic nonepileptic seizures. Epilepsy Behav 2011; 22 Suppl 1:S74-81. [PMID: 22078523 PMCID: PMC3237405 DOI: 10.1016/j.yebeh.2011.08.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 08/27/2011] [Indexed: 10/15/2022]
Abstract
We investigated the possibility of differential diagnosis of patients with epileptic seizures (ES) and patients with psychogenic nonepileptic seizures (PNES) through an advanced analysis of the dynamics of the patients' scalp EEGs. The underlying principle was the presence of resetting of brain's preictal spatiotemporal entrainment following onset of ES and the absence of resetting following PNES. Long-term (days) scalp EEGs recorded from five patients with ES and six patients with PNES were analyzed. It was found that: (1) Preictal entrainment of brain sites was reset at ES (P<0.05) in four of the five patients with ES, and not reset (P=0.28) in the fifth patient. (2) Resetting did not occur (p>0.1) in any of the six patients with PNES. These preliminary results in patients with ES are in agreement with our previous findings from intracranial EEG recordings on resetting of brain dynamics by ES and are expected to constitute the basis for the development of a reliable and supporting tool in the differential diagnosis between ES and PNES. Finally, we believe that these results shed light on the electrophysiology of PNES by showing that occurrence of PNES does not assist patients in overcoming a pathological entrainment of brain dynamics. This article is part of a Supplemental Special Issue entitled The Future of Automated Seizure Detection and Prediction.
Collapse
Affiliation(s)
- Balu Krishnan
- Department of Electrical Engineering, Ira Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA
| | - Aaron Faith
- Harrington Department of Biomedical Engineering, School of Biological & Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Ioannis Vlachos
- Harrington Department of Biomedical Engineering, School of Biological & Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Austin Roth
- Harrington Department of Biomedical Engineering, School of Biological & Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Korwyn Williams
- Phoenix Children's Hospital, Pediatric Neurology/Epilepsy, Phoenix, AZ, USA
| | - Katie Noe
- Mayo Clinic, Neurology/Epilepsy, Scottsdale, AZ, USA
| | | | - Lisa Tapsell
- Mayo Clinic, Neurology/Epilepsy, Scottsdale, AZ, USA
| | - Joseph Sirven
- Mayo Clinic, Neurology/Epilepsy, Scottsdale, AZ, USA
| | - Leon Iasemidis
- Department of Electrical Engineering, Ira Fulton Schools of Engineering, Arizona State University, Tempe, AZ, USA,Harrington Department of Biomedical Engineering, School of Biological & Health Systems Engineering, Arizona State University, Tempe, AZ, USA,Mayo Clinic, Neurology/Epilepsy, Scottsdale, AZ, USA
| |
Collapse
|
5
|
MEDVEDEV ANDREIV, MURRO ANTHONYM, MEADOR KIMFORDJ. ABNORMAL INTERICTAL GAMMA ACTIVITY MAY MANIFEST A SEIZURE ONSET ZONE IN TEMPORAL LOBE EPILEPSY. Int J Neural Syst 2011; 21:103-14. [DOI: 10.1142/s0129065711002699] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Even though recent studies have suggested that seizures do not occur suddenly and that before a seizure there is a period with an increased probability of seizure occurrence, neurophysiological mechanisms of interictal and pre-seizure states are unknown. The ability of mathematical methods to provide much more sensitive tools for the detection of subtle changes in the electrical activity of the brain gives promise that electrophysiological markers of enhanced seizure susceptibility can be found even during interictal periods when EEG of epilepsy patients often looks 'normal'. Previously, we demonstrated in animals that hippocampal and neocortical gamma-band rhythms (30–100 Hz) intensify long before seizures caused by systemic infusion of kainic acid. Other studies in recent years have also drawn attention to the fast activity (>30 Hz) as a possible marker of epileptogenic tissue. The current study quantified gamma-band activity during interictal periods and seizures in intracranial EEG (iEEG) in 5 patients implanted with subdural grids/intracranial electrodes during their pre-surgical evaluation. In all our patients, we found distinctive (abnormal) bursts of gamma activity with a 3 to 100 fold increase in power at gamma frequencies with respect to selected by clinicians, quiescent, artifact-free, 7–20 min "normal" background (interictal) iEEG epochs 1 to 14 hours prior to seizures. Increases in gamma activity were largest in those channels which later displayed the most intensive electrographic seizure discharges. Moreover, location of gamma-band bursts correlated (with high specificity, 96.4% and sensitivity, 83.8%) with seizure onset zone (SOZ) determined by clinicians. Spatial localization of interictal gamma rhythms within SOZ suggests that the persistent presence of abnormally intensified gamma rhythms in the EEG may be an important tool for focus localization and possibly a determinant of epileptogenesis.
Collapse
Affiliation(s)
- ANDREI V. MEDVEDEV
- Center for Functional and Molecular Imaging, Department of Neurology Georgetown University, 3900 Reservoir Road, NW, Washington, DC 20057-1488, USA
| | - ANTHONY M. MURRO
- Department of Neurology, Medical College of Georgia, Augusta, GA 30912, USA
| | - KIMFORD J. MEADOR
- Department of Neurology, Emory University, 101 Woodruff Circle, Suite 6000, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Abstract
Epilepsy is characterized by intermittent, paroxysmal, hypersynchronous electrical activity that may remain localized and/or spread and severely disrupt the brain's normal multitask and multiprocessing function. Epileptic seizures are the hallmarks of such activity. The ability to issue warnings in real time of impending seizures may lead to novel diagnostic tools and treatments for epilepsy. Applications may range from a warning to the patient to avert seizure-associated injuries, to automatic timely administration of an appropriate stimulus. Seizure prediction could become an integral part of the treatment of epilepsy through neuromodulation, especially in the new generation of closed-loop seizure control systems.
Collapse
Affiliation(s)
- Leon D Iasemidis
- The Harrington Department of Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287-9709, USA.
| |
Collapse
|
7
|
Anastasía A, Wojnacki J, de Erausquin GA, Mascó DH. Glial cell-line derived neurotrophic factor is essential for electroconvulsive shock-induced neuroprotection in an animal model of Parkinson's disease. Neuroscience 2011; 195:100-11. [PMID: 21871541 DOI: 10.1016/j.neuroscience.2011.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 07/18/2011] [Accepted: 08/09/2011] [Indexed: 01/25/2023]
Abstract
Sustained motor improvement in human patients with idiopathic Parkinson's disease has been described following electroconvulsive shock (ECS) treatment. In rats, ECS stimulates the expression of various trophic factors (TFs), some of which have been proposed to exert neuroprotective actions. We previously reported that ECS protects the integrity of the rat nigrostriatal dopaminergic system against 6-hydroxydopamine (6-OHDA)-induced toxicity; in order to shed light into its neuroprotective mechanism, we studied glial cell-line derived neurotrophic factor (GDNF) levels (the most efficient TF for dopaminergic neurons) in the substantia nigra (SN) and striatum of 6-OHDA-injected animals with or without ECS treatment. 6-OHDA injection decreased GDNF levels in the SN control animals, but not in those receiving chronic ECS, suggesting that changes in GDNF expression may participate in the ECS neuroprotective mechanism. To evaluate this possibility, we inhibit GDNF by infusion of GDNF function blocking antibodies in the SN of 6-OHDA-injected animals treated with ECS (or sham ECS). Animals were sacrificed 7 days after 6-OHDA infusion, and the integrity of the nigrostriatal system was studied by tyrosine hydroxylase immunohistochemistry and Cresyl Violet staining. Neuroprotection observed in ECS-treated animals was inhibited by GDNF antibodies in the SN. These results robustly demonstrate that GDNF is essential for the ECS neuroprotective effect observed in 6-OHDA-injected animals.
Collapse
Affiliation(s)
- A Anastasía
- Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Biología Celular y Molecular, Universidad Nacional de Córdoba, Av. Vélez Sarsfield 1611, ZC: X5016GCA, Córdoba, Argentina
| | | | | | | |
Collapse
|
8
|
Kim BS, Kim MY, Leem YH. Hippocampal neuronal death induced by kainic acid and restraint stress is suppressed by exercise. Neuroscience 2011; 194:291-301. [PMID: 21722713 DOI: 10.1016/j.neuroscience.2011.06.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 11/26/2022]
Abstract
The present study investigated whether chronic exercise suppressed hippocampal neuronal death due to repeated stress followed by i.c.v. kainic acid (KA) injection, and whether cAMP response element-binding protein (CREB), mitogen-activated protein kinase (MAPKs), and calcium/calmodulin-dependent protein kinase II (CaMKII) activation contributed to the neuroprotective effect in this experimental paradigm. To achieve the objective, mice were subjected to treadmill running for 8 weeks (19 m/min, 1 h/d, 5 d/wk) followed by seven consecutive days of repeated restraint stress (2 h/d), and then i.c.v. injection of KA (0.05 μg/5 μL). Hippocampal neuronal death was assessed using Nissl staining, and protein levels were measured using Western blot and immunohistochemical analysis. Hippocampal neuronal loss in mice subjected to restraint stress and KA injection was exacerbated compared with KA injection alone, which was reversed in the hippocampal CA3 region with prior chronic exercise. To further identify the neuroprotective effects of chronic exercise administration on hippocampal insults by repeated stress, levels of stress-related factors were measured. First, there was no significant difference in serum corticosterone and glucocorticoid (Gc) receptor levels in mice with restraint alone and restraint combined with prior chronic exercise. Second, malondialdehyde (MDA) and nitrite levels were significantly enhanced in restrained mice and were revered in restraint with chronic exercise. However, pCREB levels in the hippocampus in restraint mice with chronic exercise were profoundly increased compared with levels in restraint-alone mice. Among the MAPKs, pERK1/2 levels in restraint mice with chronic exercise were significantly higher than levels in mice with restraint alone. Furthermore, pCaMKII levels in restraint mice with chronic exercise were markedly elevated compared with levels in mice after restraint alone. Prior chronic exercise suppressed KA-induced hippocampal neuronal death in hippocampal CA3 region in restrained mice via declined ROS levels, which was lower MDA and nitrite levels, and activation of CREB, which was mediated by ERK1/2 and CaMKII, suggesting that chronic exercise exerts a protective effect on excitatory neurodegenerative disorders including epileptic seizure.
Collapse
Affiliation(s)
- B-S Kim
- Department of Sports and Leisure, Sungshin Women's University, Dongseon 3-ga, Seoungbuk-gu, Seoul 136-742, Republic of Korea
| | | | | |
Collapse
|
9
|
Crowe SL, Tsukerman S, Gale K, Jorgensen TJ, Kondratyev AD. Phosphorylation of histone H2A.X as an early marker of neuronal endangerment following seizures in the adult rat brain. J Neurosci 2011; 31:7648-56. [PMID: 21613478 PMCID: PMC3118469 DOI: 10.1523/jneurosci.0092-11.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Revised: 03/14/2011] [Accepted: 04/07/2011] [Indexed: 11/21/2022] Open
Abstract
The phosphorylated form of histone H2A.X (γ-H2AX) is a well documented early, sensitive, and selective marker of DNA double-strand breaks (DSBs). Previously, we found that excessive glutamatergic activity increased γ-H2AX in neurons in vitro. Here, we evaluated γ-H2AX formation in the adult rat brain following neuronal excitation evoked by seizure activity in vivo. We found that brief, repeated electroconvulsive shock (ECS)-induced seizures (three individual seizures within 60 min) did not trigger an increase γ-H2AX immunostaining. In contrast, a cluster of 5-7 individual seizures evoked by kainic acid (KA) rapidly (within 30 min) induced γ-H2AX in multiple neuronal populations in hippocampus and entorhinal cortex. This duration of seizure activity is well below threshold for induction of neuronal cell death, indicating that the γ-H2AX increase occurs in response to sublethal insults. Moreover, an increase in γ-H2AX was seen in dentate granule cells, which are resistant to cell death caused by KA-evoked seizures. With as little as a 5 min duration of status epilepticus (SE), γ-H2AX increased in CA1, CA3, and entorhinal cortex to a greater extent than that observed after the clusters of individual seizures, with still greater increases after 120 min of SE. Our findings provide the first direct demonstration that DNA DSB damage occurs in vivo in the brain following seizures. Furthermore, we found that the γ-H2AX increase caused by 120 min of SE was prevented by neuroprotective preconditioning with ECS-evoked seizures. This demonstrates that DNA DSB damage is an especially sensitive indicator of neuronal endangerment and that it is responsive to neuroprotective intervention.
Collapse
Affiliation(s)
- Samantha L Crowe
- Interdisciplinary Program in Neuroscience and Department of Pharmacology, Georgetown University, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
10
|
Kim J, Gale K, Kondratyev A. Effects of repeated minimal electroshock seizures on NGF, BDNF and FGF-2 protein in the rat brain during postnatal development. Int J Dev Neurosci 2010; 28:227-32. [PMID: 20170723 DOI: 10.1016/j.ijdevneu.2010.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 01/28/2010] [Accepted: 02/09/2010] [Indexed: 11/19/2022] Open
Abstract
Repeated brief seizures, such as those induced by electroconvulsive therapy (ECT), markedly elevate neurotrophic factor levels in the adult rat brain, but it is not known whether a similar response to seizures occurs in immature animals. To address this question, we evoked brief seizures with electroconvulsive shock (ECS) in rat pups at different stages of postnatal development and examined basic fibroblast growth factor (FGF-2), nerve growth factor (NGF), and brain-derived neurotrophic factor (BDNF) proteins in selected brain regions in which these trophic factors are known to increase in the adult rat following ECS-induced seizures. ECS treatments were administered daily (3 episodes/day) over 7 days to rat pups of three different ages: postnatal day (P)1-7, P7-13, or P14-20. Protein levels were measured 6h after the last ECS using Western blotting for FGF-2 in rhinal cortex, ELISA for BDNF and NGF in hippocampus, and NGF in frontal cortex. 7 days of repeated ECS-induced seizures during P1-7 did not alter protein levels for BDNF, FGF-2, or NGF. The repeated seizures during P7-13 affected only BDNF protein, causing a significant elevation of 40% in hippocampus over sham-treated controls. In P14-20 pups, the repeated seizures resulted in a significant increase in BDNF in hippocampus (162% over controls) and FGF-2 in rhinal cortex (34% over controls), while NGF protein did not show a significant change in either hippocampus or frontal cortex. The results suggest that during the first postnatal week there is a resistance to seizure-induced increase in neurotrophic factors, but by the third postnatal week, both BDNF and FGF-2 are elevated substantially in response to repeated seizures. This time-dependent profile suggests that synthesis of these proteins is initially activity-independent, becoming subject to activity-dependent regulation by 3 weeks of age. This maturation of seizure-evoked changes in trophic factors may be important for understanding the impact of ECT and seizures in childhood.
Collapse
Affiliation(s)
- Jinsook Kim
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20057, USA
| | | | | |
Collapse
|
11
|
Jansson L, Wennström M, Johanson A, Tingström A. Glial cell activation in response to electroconvulsive seizures. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1119-28. [PMID: 19540297 DOI: 10.1016/j.pnpbp.2009.06.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2008] [Revised: 05/26/2009] [Accepted: 06/11/2009] [Indexed: 10/20/2022]
Abstract
Electroconvulsive therapy (ECT) is a very efficient treatment for severe depression. However, cognitive side effects have raised concern to whether ECT can cause cellular damage in vulnerable brain regions. A few recent animal studies have reported limited hippocampal cell loss, while a number of other studies have failed to find any signs of cellular damage and some even report that electroconvulsive seizures (ECS; the animal counterpart of ECT) has neuroprotective effects. We previously have described gliogenesis in response to ECS. Loss of glial cells is seen in depression and de novo formation of glial cells may thus have an important therapeutic role. Glial cell proliferation and activation is however also seen in response to neuronal damage. The aim of the present study was to further characterize glial cell activation in response to ECS. Two groups of rats were treated with 10 ECS using different sets of stimulus parameters. ECS-induced changes in the morphology and expression of markers typical for reactive microglia, astrocytes and NG2+ glial cells were analyzed immunohistochemically in prefrontal cortex, hippocampus, amygdala, hypothalamus, piriform cortex and entorhinal cortex. We observed changes in glial cell morphology and an enhanced expression of activation markers 2 h following ECS treatment, regardless of the stimulus parameters used. Four weeks later, few activated glial cells persisted. In conclusion, ECS treatment induced transient glial cell activation in several brain areas. Whether similar processes play a role in the therapeutic effect of clinically administered ECT or contribute to its side effects will require further investigations.
Collapse
Affiliation(s)
- Linda Jansson
- Molecular Psychiatry Unit, Wallenberg Neuroscience Center, S-22184 Lund, Sweden
| | | | | | | |
Collapse
|
12
|
Conti G, Gale K, Kondratyev A. Immunohistochemical evaluation of the protein expression of nerve growth factor and its TrkA receptor in rat limbic regions following electroshock seizures. Neurosci Res 2009; 65:201-9. [PMID: 19596387 DOI: 10.1016/j.neures.2009.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2009] [Revised: 06/26/2009] [Accepted: 07/01/2009] [Indexed: 01/01/2023]
Abstract
Repeated (but not acute) exposure to brief, non-injurious seizures evoked by minimal electroconvulsive shock (ECS) decreases neuronal death in limbic system and increases mRNA levels for nerve growth factor (NGF). Thus, the induction of NGF is a potential mechanism for the neuroprotection evoked by repeated ECS. The neuroprotective action of NGF is mediated by the TrkA receptor. This study determined whether repeated ECS exposure increased TrkA and NGF protein levels. To determine the functional significance of changes in these proteins, we compared the effects of ECS given daily either for 7 days (chronic ECS) or for 1 day (acute ECS). After chronic ECS, upregulation of both NGF and TrkA was found in perirhinal cortex, thalamus, and amygdala. In hippocampus, TrkA was upregulated in CA2, CA3 and CA4. NGF increase in hippocampus was found in CA1 and dentate gyrus. In frontal cortex and substantia innominata, an increase in NGF (but not in TrkA) was found. In most brain regions, TrkA and NGF remained unchanged after acute ECS. Our results demonstrate that repeated exposure to ECS causes an upregulation of TrkA and NGF proteins in several limbic areas in which neuroprotective effects are observed suggesting that NGF contributes to ECS-evoked neuroprotection.
Collapse
Affiliation(s)
- Giuseppe Conti
- Department of Pharmacology, Georgetown University, Washington, DC 20057, USA
| | | | | |
Collapse
|
13
|
Kim JS, Kondratyev A, Tomita Y, Gale K. Neurodevelopmental impact of antiepileptic drugs and seizures in the immature brain. Epilepsia 2007; 48 Suppl 5:19-26. [PMID: 17910577 DOI: 10.1111/j.1528-1167.2007.01285.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Seizure incidence during the neonatal period is higher than any other period in the lifespan, yet we know little about this period in terms of the effect of seizures or of the drugs used in their treatment. The fact that several antiepileptic drugs (AEDs) induce pronounced apoptotic neuronal death in specific regions of the immature brain prompts a search for AEDs that may be devoid of this action. Furthermore, there is a clear need to find out if a history of seizures alters the proapoptotic action of the AEDs. Our studies are aimed at both of these issues. Phenytoin, valproate, phenobarbital, and MK801 each induced substantial regionally specific cell death, whereas levetiracetam even in high doses (up to 1,500 mg/kg) did not have this action. In view of our previously findings of neuroprotective actions of repeated seizures in the adult brain, we also examined repeated seizures for a possible antiapoptotic action in the infant rat. Rat pups were preexposed to electroshock seizures (ECS) for 3 days (age 5-7 days) before receiving MK801 on day 7. The effect of ECS, which was consistently a 30% decrease in MK801-induced programmed cell death (PCD), suggests that repeated seizures can exert an antiapoptotic action in the infant brain. In contrast, PCD induced by valproate was not attenuated by ECS preexposure, suggesting that valproate-induced PCD is mechanistically distinct from that induced by MK801 and may not be activity-dependent. Presently, we do not know if this neuroprotective effect of seizures is deleterious or beneficial. If the seizures also enhance the survival of neurons that are destined to undergo naturally occurring PCD, early childhood seizures may have deleterious effects by preventing this necessary component of normal development. While this effect of seizures might be counteracted by AEDs, the fact that several AEDs shift the PCD to the other extreme, and trigger excessive neuronal cell loss, raises concern about whether the drug therapy may be more detrimental than the seizures. In this context, it is encouraging that we have identified at least one AED that is devoid of a proapoptotic action in the infant brain, even in high doses. It is now important to evaluate the long-term consequences of the changes in PCD in infancy by examining behavioral outcomes and seizure susceptibility in the AED- and seizure-exposed neonates when they reach adulthood.
Collapse
Affiliation(s)
- Jin-Sook Kim
- Interdisciplinary Program in Neuroscience & Department of Pharmacology, Georgetown University, Washington, DC, USA
| | | | | | | |
Collapse
|
14
|
Anastasia A, de Erausquin GA, Wojnacki J, Mascó DH. Protection of dopaminergic neurons by electroconvulsive shock in an animal model of Parkinson’s disease. J Neurochem 2007; 103:1542-52. [PMID: 17854351 DOI: 10.1111/j.1471-4159.2007.04856.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Electroconvulsive shock (ECS) improves motor function in Parkinson's disease. In rats, ECS stimulates the expression of various factors some of which have been proposed to exert neuroprotective actions. We have investigated the effects of ECS on 6-hydroxydopamine (6-OHDA)-injected rats. Three weeks after a unilateral administration of 6-OHDA, 85-95% nigral dopaminergic neurons are lost. Chronic ECS prevented this cell loss, protect the nigrostriatal pathway (assessed by FloroGold retrograde labeling) and reduce motor impairment in 6-OHDA-treated animals. Injection of 6-OHDA caused loss of expression of glial cell-line derived neurotrophic factor (GDNF) in the substantia nigra. Chronic ECS completely prevented this loss of GDNF expression in 6-OHDA-treated animals. We also found that protected dopaminergic neurons co-express GDNF receptor proteins. These results strongly suggest that endogenous changes in GDNF expression may participate in the neuroprotective mechanism of ECS against 6-OHDA induced toxicity.
Collapse
Affiliation(s)
- Agustín Anastasia
- Centro de Biología Celular y Molecular. F.C.E.F.y N. Universidad Nacional de Córdoba, Córdoba, Argentina
| | | | | | | |
Collapse
|
15
|
Zarubenko II, Yakovlev AA, Stepanichev MY, Gulyaeva NV. Electroconvulsive Shock Induces Neuron Death in the Mouse Hippocampus: Correlation of Neurodegeneration with Convulsive Activity. ACTA ACUST UNITED AC 2005; 35:715-21. [PMID: 16433067 DOI: 10.1007/s11055-005-0115-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The relationship between convulsive activity evoked by repeated electric shocks and structural changes in the hippocampus of Balb/C mice was studied. Brains were fixed two and seven days after the completion of electric shocks, and sections were stained by the Nissl method and immunohistochemically for apoptotic nuclei (the TUNEL method). In addition, the activity of caspase-3, the key enzyme of apoptosis, was measured in brain areas immediately after completion of electric shocks. The number of neurons decreased significantly in field CA1 and the dentate fascia, but not in hippocampal field CA3. The numbers of cells in CA1 and CA3 were inversely correlated with the intensity of convulsions. Signs of apoptotic neuron death were not seen, while caspase-3 activity was significantly decreased in the hippocampus after electric shocks. These data support the notion that functional changes affect neurons after electric shock and deepen our understanding of this view, providing direct evidence that there are moderate (up to 10%) but significant levels of neuron death in defined areas of the hippocampus. Inverse correlations of the numbers of cells with the extent of convulsive activity suggest that the main cause of neuron death is convulsions evoked by electric shocks.
Collapse
Affiliation(s)
- I I Zarubenko
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, 5a Butlerov Street, 117485 Moscow, Russia
| | | | | | | |
Collapse
|
16
|
Lucassen PJ, Fuchs E, Czéh B. Antidepressant treatment with tianeptine reduces apoptosis in the hippocampal dentate gyrus and temporal cortex. Biol Psychiatry 2004; 55:789-96. [PMID: 15050859 DOI: 10.1016/j.biopsych.2003.12.014] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2003] [Revised: 11/07/2003] [Accepted: 12/16/2003] [Indexed: 01/03/2023]
Abstract
BACKGROUND Recent clinical and preclinical studies suggest that major depression may be related to impairments of structural plasticity. Consequently, antidepressants may act by restoring altered rates of cell birth or death. Here, we investigated whether the antidepressant tianeptine would affect apoptosis in an animal model of depression, the psychosocially stressed tree shrew. METHODS Animals were subjected to a 7-day period of psychosocial stress before the onset of daily administration of tianeptine. Stress continued throughout the 28-day treatment period. In situ end labeling was used to detect apoptosis in hippocampus and adjacent temporal cortex. RESULTS Both stress and tianeptine treatment had a region-specific effect. Stress increased apoptosis in the temporal cortex, while it reduced it in the Ammons Horn. No significant effect was observed in the dentate gyrus. Interestingly, tianeptine treatment significantly reduced apoptosis in the temporal cortex and dentate gyrus, both in control and stressed animals, but had no effect in the Ammons Horn. Parallel Fluoro-Jade staining indicated that this apoptosis most likely represents non-neuronal cells. CONCLUSIONS This is the first report showing an anti-apoptotic effect of tianeptine in hippocampal subfields and temporal cortex. These findings are consistent with current theories that ascribe enhanced general cell survival to antidepressant action.
Collapse
Affiliation(s)
- Paul J Lucassen
- Institute for Neurobiology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Kruislaan 320, 1098 SM Amsterdam, The Netherlands
| | | | | |
Collapse
|
17
|
Velísek L, Moshé SL. Temporal Lobe Epileptogenesis and Epilepsy in the Developing Brain: Bridging the Gap Between the Laboratory and the Clinic. Progression, But in What Direction? Epilepsia 2003; 44 Suppl 12:51-9. [PMID: 14641561 DOI: 10.1111/j.0013-9580.2003.12008.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The origins of human mesial temporal lobe epilepsy and hippocampal sclerosis are still not well understood. Hippocampal sclerosis and temporal lobe epileptogenesis involve a series of pathologies including hippocampal neuronal loss and gliosis, axonal reorganization, and maybe hippocampal neoneurogenesis. However, the causality of these events is unclear as well as their relation to the factors that may precipitate epileptogenesis. Significant differences between temporal lobe epileptogenesis in the adult and immature brain may require differential approaches. Hereditary factors also may participate in some cases of hippocampal sclerosis. The key point is to identify the significance of these age-dependent changes and to design preventive treatments. Novel strategies for the prevention and treatment of mesial temporal lobe epilepsy and hippocampal sclerosis may include rational use of neuroprotective agents, hormonotherapy, immunizations, and immunotherapy.
Collapse
Affiliation(s)
- L Velísek
- Department of Neurology K314, and Montefiore/Einstein Epilepsy Management Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, U.S.A.
| | | |
Collapse
|
18
|
Pérez-Cruz C, Rocha L. Kainic acid modifies mu-receptor binding in young, adult, and elderly rat brain. Cell Mol Neurobiol 2002; 22:741-53. [PMID: 12585692 PMCID: PMC11533739 DOI: 10.1023/a:1021861108885] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Mu-receptor binding changes were evaluated following the kainic acid (KA)-induced status epilepticus (SE) in young, adult, and elderly animals. Male Wistar rats were used as follows: young rats (15 days old) were treated with KA (7 mg/kg) and sacrificed 72 h (YKA3d) or 35 days (YKA35d) after SE; adult (90 days old) (AKA1d and AKA40d) and elderly rats (1-year-old) (EKA1d and EKA40d) were injected with KA (10 mg/kg) and then sacrificed 24 h or 40 days following SE. Their brains were processed for an autoradiography assay for mu-receptors. The YKA3d group showed increased values in dentate gyrus (39%) and a decrease in substantia nigra (26%); YKA35d animals had a reduction in caudate putamen (29%) and in substantia nigra (20%). The AKA1d group exhibited increased mu-receptors in caudate putamen (49%), cingulate (415%), frontal (52%), and temporal (53%) cortices: substantia nigra (56%), dentate gyrus (48%). and CA2 field of hippocampus (53%). The AKA40d group showed increased values in sensorimotor cortex (45%), anterior (39%), medial (65%), basolateral (202%), and central (32%) amygdaloid nuclei; dentate gyrus (80%) as well as CA2 (80%) and CA3 (49%) fields of hippocampus. The EKA1d group presented decreased mu-receptor binding in piriform (16%) and enthorinal (22%) cortices as well as in anterior amygdala nucleus (17%). The EKA40d group showed reduced values in sensorimotor cortex (14%) and substantia nigra (27%). The present results indicate that the mu-binding changes following SE depend on the rate of brain maturation.
Collapse
Affiliation(s)
- Claudia Pérez-Cruz
- División de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente: Av. México-Xochimilco 101, Mexico. D.F. C.P., 14370 Mexico
| | | |
Collapse
|
19
|
Kondratyev A, Ved R, Gale K. The effects of repeated minimal electroconvulsive shock exposure on levels of mRNA encoding fibroblast growth factor-2 and nerve growth factor in limbic regions. Neuroscience 2002; 114:411-6. [PMID: 12204210 DOI: 10.1016/s0306-4522(02)00266-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic, but not acute, exposure to minimal electroconvulsive shock (ECS) has been shown to decrease vulnerability to neuronal cell death, without itself causing neuronal damage. One potential mechanism for the neuroprotective effect of ECS is the increase in fibroblast growth factor-2 (FGF-2) which occurs after chronic, but not acute, ECS exposure. This raises the possibility that repeated seizures over a period of several days may alter the transcriptional regulation of FGF-2. To test this hypothesis, the present study compared the effect of acute (1 day) vs. chronic (7 days) ECS treatment on levels of mRNA for FGF-2 in rhinal and frontal cortices, hippocampus, and olfactory bulbs. In addition, mRNA for another prominent neurotrophic factor, nerve growth factor (NGF), was assayed concurrently. At 8 h after acute ECS, mRNA levels increased by 60% for FGF-2 and 136% for NGF in rhinal cortex, 32% for FGF-2 and 36% for NGF in frontal cortex, and by 13% for NGF in hippocampus. After 7 days of ECS treatment the respective increases were 72% and 80%, 53% and 38%, and 28%. No increases were observed in olfactory bulbs after either treatment regimen. The peak increases in FGF-2 mRNA were consistently greater after chronic treatment, but the differences from those seen acutely reached significance in frontal cortex only. However, the duration over which mRNA for FGF-2 was elevated did not differ between the acute and chronic ECS groups. NGF mRNA induction was neither enhanced nor prolonged as a result of chronic ECS as compared to acute ECS treatment. These results suggest that chronic ECS treatment may lead to an enhanced rate of transcription of message for FGF-2 but not for NGF, in selected brain regions. At the same time, the results indicate that chronic ECS treatment induces FGF-2 and NGF mRNA expression in a tissue-specific manner and that this induction is maintained over the 7-day treatment period. The sustained increases in mRNAs for these trophic factors may contribute to the neuroprotective actions of chronic ECS treatment.
Collapse
Affiliation(s)
- A Kondratyev
- Department of Pharmacology, Georgetown University, The Research Building, Room W217, 3970 Reservoir Road N.W., Washington, DC 20007, USA
| | | | | |
Collapse
|
20
|
Gwinn RP, Kondratyev A, Gale K. Time-dependent increase in basic fibroblast growth factor protein in limbic regions following electroshock seizures. Neuroscience 2002; 114:403-9. [PMID: 12204209 DOI: 10.1016/s0306-4522(02)00265-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Brief experimentally induced seizures have been shown to increase the expression of mRNA encoding basic fibroblast growth factor (FGF-2) in specific brain regions. However, the extent to which this change in mRNA affects the expression of FGF-2 protein in these brain regions has not been examined. In the present study, we exposed rats to brief non-injurious seizures to determine whether this treatment would lead to an increase in FGF-2 protein expression in selected brain regions. Because initial results indicated that the elevation of FGF-2 protein was not significant following acute seizure exposure, we examined both acute and chronic seizure treatment to determine whether FGF-2 protein expression could be increased under conditions of repeated seizures. Brief limbic seizures were induced by minimal electroconvulsive shock (ECS) given as daily treatments for 1 (acute) or 7 (chronic) days. FGF-2 protein was measured in hippocampus, rhinal cortex, frontal cortex, and olfactory bulb at 20, 48, and 72 h following the last seizure. No significant increases in FGF-2 protein were observed in any region following acute ECS. In the chronic ECS-treated groups, significantly elevated FGF-2-like immunoreactivity was found in the frontal and rhinal cortex as compared with the same regions from both control and acute ECS animals. Increases after chronic ECS were maximal at 20 h, and remained significantly elevated as long as 72 h. These increases were predominantly observed for the 24-kDa and 22/22.5-kDa FGF-2 isoforms. Because chronic ECS, which has been shown to be protective against neuronal cell death, induced significantly more FGF-2 immunoreactivity than did acute ECS, we suggest that FGF-2 expression may be an important substrate for the neuroprotective action of non-injurious seizures. A prolonged induction of the high molecular weight isoforms of FGF-2, as occurs after chronic ECS, may selectively reduce the vulnerability of certain brain regions to a variety of neurodegenerative insults.
Collapse
Affiliation(s)
- R P Gwinn
- Department of Neurosurgery, Georgetown University, Washington, DC 20007, USA
| | | | | |
Collapse
|
21
|
Hellsten J, Wennström M, Mohapel P, Ekdahl CT, Bengzon J, Tingström A. Electroconvulsive seizures increase hippocampal neurogenesis after chronic corticosterone treatment. Eur J Neurosci 2002; 16:283-90. [PMID: 12169110 DOI: 10.1046/j.1460-9568.2002.02093.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Major depression is often associated with elevated glucocorticoid levels. High levels of glucocorticoids reduce neurogenesis in the adult rat hippocampus. Electroconvulsive seizures (ECS) can enhance neurogenesis, and we investigated the effects of ECS in rats where glucocorticoid levels were elevated in order to mimic conditions seen in depression. Rats given injections of corticosterone or vehicle for 21 days were at the end of this period treated with either a single or five daily ECSs. Proliferating cells were labelled with bromodeoxyuridine (BrdU). After 3 weeks, BrdU-positive cells in the dentate gyrus were quantified and analyzed for co-labelling with the neuronal marker neuron-specific nuclear protein (NeuN). In corticosterone-treated rats, neurogenesis was decreased by 75%. This was counteracted by a single ECS. Multiple ECS further increased neurogenesis and no significant differences in BrdU/NeuN positive cells were detected between corticosterone- and vehicle-treated rats given five ECS. Approximately 80% of the cells within the granule cell layer and 10% of the hilar cells were double-labelled with BrdU and NeuN. We therefore conclude that electroconvulsive seizures can increase hippocampal neurogenesis even in the presence of elevated levels of glucocorticoids. This further supports the hypothesis that induction of neurogenesis is an important event in the action of antidepressant treatment.
Collapse
Affiliation(s)
- Johan Hellsten
- Molecular Psychiatry Unit, Wallenberg Neuroscience Center, Lund, Sweden
| | | | | | | | | | | |
Collapse
|
22
|
Medvedev AV. Epileptiform spikes desynchronize and diminish fast (gamma) activity of the brain. An "anti-binding" mechanism? Brain Res Bull 2002; 58:115-28. [PMID: 12121821 DOI: 10.1016/s0361-9230(02)00768-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Fast (20-100 Hz) rhythms of electrical activity of the brain have been suggested to be important for perception and cognition providing a mechanism for temporal binding of neural activities underlying mental representations. Also, fast rhythms often precede epileptiform discharges in patients and some experimental models. Generalized slow (2-3 Hz) spike activity after systemic kainic acid (KA) in the rat has been shown to be preceded by intense gamma activity. A relationship between the intensified gamma rhythms and the subsequent spike activity was studied during kainate-induced acute epileptogenesis. Power, multiple coherence and phase were analyzed at frequencies 1-100 Hz in the EEG recorded from the hippocampal-neocortical structures of the rat. Gamma rhythms, extremely intense and highly coherent at the onset of discharges, were followed by a slow rhythm of epileptiform spikes/sharp waves. During this spike activity and immediately afterwards, the gamma power and coherence were significantly decreased. These data show an antagonism between gamma rhythms and spike activity and ability of the latter to desynchronize and suppress the former. They are supportive to the hypothesis that epileptiform spike activity may result from the extreme activation of the "anti-binding" mechanism controlling temporal binding at high frequencies. It is suggested that when fast activity is abnormally intensified, "over-binding" with global synchrony of gamma rhythms can occur in the neural networks. It may lead to inadequate synaptic modifications. To prevent this process, epileptiform discharge develops as a protective mechanism suppressing fast activity. This proposal has implications for our understanding of temporal binding in the brain and how its excessive activation may precipitate the development of pathological states.
Collapse
Affiliation(s)
- Andrei V Medvedev
- Department of Medicine and Centre for Neuroscience, Flinders University of South Australia, Bedford Park, SA, Australia.
| |
Collapse
|
23
|
Kondratyev A, Sahibzada N, Gale K. Electroconvulsive shock exposure prevents neuronal apoptosis after kainic acid-evoked status epilepticus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 91:1-13. [PMID: 11457487 DOI: 10.1016/s0169-328x(01)00099-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the aftermath of prolonged continuous seizure activity (status epilepticus, SE), neuronal cell death occurs in the brain regions through which the seizure propagates. The vulnerability to adrenalectomy-induced apoptotic neuronal death was recently reported to be reduced by prior exposure to repeated daily noninjurious electroconvulsive shock (ECS). The present studies identified apoptosis and apoptosis-associated gene products in the neurodegenerative response to experimentally controlled periods (1 or 2 h) of SE in the rat, and determined whether exposure to ECS can interrupt these apoptotic responses mechanisms. Internucleosomal DNA fragmentation and the presence of apoptotic-like neurons (as assessed by in situ double labeling technique) was detected in hippocampus and rhinal cortex at 24 h after SE. Under these conditions, levels of both mRNA and protein encoded by the 'death promoting' bcl-XS gene were increased in the same brain areas. Pretreatment of animals for 7 days with low intensity (minimal) ECS conferred resistance to SE-evoked neurodegeneration, as assessed histopathologically by silver staining. Associated with this neuroprotective action was a reduction in the incidence of apoptosis-like neuronal morphology and DNA fragmentation, and a prevention of the increase in Bcl-XS protein and mRNA in hippocampus and rhinal cortex. These data suggest that pre-exposure to controlled, brief noninjurious seizures decreases vulnerability to programmed neuronal cell death, that this neuroprotective action occurs upstream from Bcl-XS, and that increases in bcl-XS gene expression may serve as a sensitive indicator of neurodegeneration following SE.
Collapse
Affiliation(s)
- A Kondratyev
- Department of Pharmacology, Georgetown University Medical Center, Washington, DC 20007, USA.
| | | | | |
Collapse
|
24
|
Medvedev AV. Temporal binding at gamma frequencies in the brain: paving the way to epilepsy? AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE 2001; 24:37-48. [PMID: 11458571 DOI: 10.1007/bf03178284] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fast (beta-gamma band 20-100 Hz) rhythms of electrical activity of the brain have been suggested to play an important role in perception, cognition and consciousness providing temporal binding of neural activities and allowing the formation of mental representations. The recent advances in the concept of temporal binding and their relation to the theory of neural networks (connectionism) are reviewed here as well as some experimental results concerning the intensified gamma rhythms and epilepsy. The hippocampal-neocortical gamma rhythms are extremely intense and hypersynchronous at onset of the epileptiform discharges induced by systemic kainic acid in the rat. Those gamma rhythms are followed by a slow rhythm of epileptiform spikes/sharp waves or spike-wave complexes ('spike-wave' activity). During spike-wave activity, gamma synchronisation is significantly decreased. A novel unifying concept is proposed which relates the associative principle of neural networks to the mechanism of temporal binding at high frequencies. It suggests that for each memory stored in an associative network there is a corresponding quasi-stable state of synchronous oscillation at some frequency within the gamma band. It also suggests that excessive temporal binding ("over-binding") occurs at seizure onset when abnormally intensified and globally synchronous fast activity is often observed. "Over-binding" may cause the undesirable formation of false associations due to inadequate synaptic modifications. To prevent this process, spike-wave discharge develops as an extreme activation of the mechanism capable to desynchronise and eventually suppress fast activity and erase the spurious modes of activity associated with hypersynchronous gamma rhythms. Thus, spike-wave activity is suggested to be the "anti-binding" mechanism. This mechanism is also related to the spikes/sharp waves normally occurring in the brain mostly in sleep. It is qualitatively similar to the "unlearning" mechanism of Crick and Mitchison presumably associated with the PGO spikes of the REM sleep.
Collapse
Affiliation(s)
- A V Medvedev
- Department of Medicine and Centre for Neuroscience, Flinders University and Medical Centre, Bedford Park, South Australia
| |
Collapse
|
25
|
André V, Ferrandon A, Marescaux C, Nehlig A. The lesional and epileptogenic consequences of lithium-pilocarpine-induced status epilepticus are affected by previous exposure to isolated seizures: effects of amygdala kindling and maximal electroshocks. Neuroscience 2001; 99:469-81. [PMID: 11029539 DOI: 10.1016/s0306-4522(00)00209-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In temporal lobe epilepsy, the occurrence of seizures seems to correlate with the presence of lesions underlying the establishment of a hyperexcitable circuit. However, in the lithium-pilocarpine model of epilepsy, neuronal damage occurs both in the structures belonging to the circuit of initiation and maintenance of the seizures (forebrain limbic system) as in the propagation areas (cortex and thalamus) and in the circuit of remote control of seizures (substantia nigra pars reticulata). To determine whether or not we could protect the brain from lesions and epileptogenesis induced by status epilepticus and identify cerebral structures involved in the genesis of epilepsy, we studied the effects of the chronic exposure to non-deleterious seizures, either focalized with secondary generalization (amygdala kindling, kindled-pilocarpine rats), or primary generalized (ear-clip electroshocks, electroshock-pilocarpine rats) on neuronal damage and epileptogenesis induced by lithium-pilocarpine status epilepticus. These animals were compared to rats subjected to status epilepticus but not pretreated with seizures (sham-kindled-pilocarpine or sham-electroshock-pilocarpine rats). Compared to sham-pilocarpine rats, neuronal damage was prevented in the limbic system of the kindled-pilocarpine rats, except in the hilus of the dentate gyrus and the entorhinal cortex, while it was enhanced in rats pretreated with electroshocks, mainly in the entorhinal and perirhinal cortices. Most sham-kindled- and sham-electroshock-pilocarpine rats (92-100%) developed recurrent seizures after a silent period of 40-54days. Likewise, all kindled-pilocarpine rats developed spontaneous seizures after the same latency as their sham controls, while only two of 10 electroshock-pilocarpine rats became epileptic after a delay of 106-151days. The present data show that the apparent antiepileptic properties of electroshocks correlate with extensive damage in midbrain cortical regions, which may prevent the propagation of seizures from the hippocampus and inhibit their motor expression. Conversely, the extensive neuroprotection of the limbic system but not the hilus and entorhinal cortex provided by amygdala kindling does not prevent epileptogenesis. Thus, the hilus, the entorhinal and/or perirhinal cortex may be key structure(s) for the establishment of epilepsy.
Collapse
Affiliation(s)
- V André
- INSERM U398, Faculté de Médecine, Université Louis Pasteur, 67085 Cedex, Strasbourg, France
| | | | | | | |
Collapse
|
26
|
André V, Ferrandon A, Marescaux C, Nehlig A. Electroshocks delay seizures and subsequent epileptogenesis but do not prevent neuronal damage in the lithium-pilocarpine model of epilepsy. Epilepsy Res 2000; 42:7-22. [PMID: 10996502 DOI: 10.1016/s0920-1211(00)00153-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Electroconvulsive therapy, which is used to treat refractory major depression in humans increases seizure threshold and decreases seizure duration. Moreover, the expression of brain derived neurotrophic factor induced by electroshocks (ECS) might protect hippocampal cells from death in patients suffering from depression. As temporal lobe epilepsy is linked to neuronal damage in the hippocampus, we tested the effect of repeated ECS on subsequent status epilepticus (SE) induced by lithium-pilocarpine and leading to cell death and temporal epilepsy in the rat. Eleven maximal ECS were applied via ear-clips to adult rats. The last one was applied 2 days before the induction of SE by lithium-pilocarpine. The rats were electroencephalographically recorded to study the SE characteristics. The rats treated with ECS before pilocarpine (ECS-pilo) developed partial limbic (score 2) and propagated seizures (score 5) with a longer latency than the rats that underwent SE alone (sham-pilo). Despite this delay in the initiation and propagation of the seizures, the same number of ECS- and sham-pilo rats developed SE with a similar characteristic pattern. The expression of c-Fos protein was down-regulated by repeated ECS in the amygdala and the cortex. In ECS-pilo rats, c-Fos expression was decreased in the piriform and entorhinal cortex and increased in the hilus of the dentate gyrus. Neuronal damage was identical in the forebrain areas of both groups, while it was worsened by ECS treatment in the substantia nigra pars reticulata, entorhinal and perirhinal cortices compared to sham-pilo rats. Finally, while 11 out of the 12 sham-pilo rats developed spontaneous recurrent seizures after a silent period of 40+/-27 days, only two out of the 10 ECS-pilo rats became epileptic, but after a prolonged latency of 106 and 151 days. One ECS-pilo rat developed electrographic infraclinical seizures and seven did not exhibit any seizures. Thus, the extensive neuronal damage occurring in the entorhinal and perirhinal cortices of the ECS-pilo rats seems to prevent the establishment of the hyperexcitable epileptic circuit.
Collapse
Affiliation(s)
- V André
- INSERM U 398, Faculty of Medicine, Université Louis Pasteur, 11 Rue Humann, 67085, Strasbourg, France.
| | | | | | | |
Collapse
|