1
|
Kessi M, Chen B, Pan L, Yang L, Yang L, Peng J, He F, Yin F. Disruption of mitochondrial and lysosomal functions by human CACNA1C variants expressed in HEK 293 and CHO cells. Front Mol Neurosci 2023; 16:1209760. [PMID: 37448958 PMCID: PMC10336228 DOI: 10.3389/fnmol.2023.1209760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/30/2023] [Indexed: 07/18/2023] Open
Abstract
Objective To investigate the pathogenesis of three novel de novo CACNA1C variants (p.E411D, p.V622G, and p.A272V) in causing neurodevelopmental disorders and arrhythmia. Methods Several molecular experiments were carried out on transfected human embryonic kidney 293 (HEK 293) and Chinese hamster ovary (CHO) cells to explore the effects of p.E411D, p.V622G, and p.A272V variants on electrophysiology, mitochondrial and lysosomal functions. Electrophysiological studies, RT-qPCR, western blot, apoptosis assay, mito-tracker fluorescence intensity, lyso-tracker fluorescence intensity, mitochondrial calcium concentration test, and cell viability assay were performed. Besides, reactive oxygen species (ROS) levels, ATP levels, mitochondrial copy numbers, mitochondrial complex I, II, and cytochrome c functions were measured. Results The p.E411D variant was found in a patient with attention deficit-hyperactive disorder (ADHD), and moderate intellectual disability (ID). This mutant demonstrated reduced calcium current density, mRNA, and protein expression, and it was localized in the nucleus, cytoplasm, lysosome, and mitochondria. It exhibited an accelerated apoptosis rate, impaired autophagy, and mitophagy. It also demonstrated compromised mitochondrial cytochrome c oxidase, complex I, and II enzymes, abnormal mitochondrial copy numbers, low ATP levels, abnormal mitochondria fluorescence intensity, impaired mitochondrial fusion and fission, and elevated mitochondrial calcium ions. The p.V622G variant was identified in a patient who presented with West syndrome and moderate global developmental delay. The p.A272V variant was found in a patient who presented with epilepsy and mild ID. Both mutants (p.V622G and p.A272V) exhibited reduced calcium current densities, decreased mRNA and protein expressions, and they were localized in the nucleus, cytoplasm, lysosome, and mitochondria. They exhibited accelerated apoptosis and proliferation rates, impaired autophagy, and mitophagy. They also exhibited abnormal mitochondrial cytochrome c oxidase, complex I and II enzymes, abnormal mitochondrial copy numbers, low ATP, high ROS levels, abnormal mitochondria fluorescence intensity, impaired mitochondrial fusion and fission, as well as elevated mitochondrial calcium ions. Conclusion The p.E411D, p.V622G and p.A272V mutations of human CACNA1C reduce the expression level of CACNA1C proteins, and impair mitochondrial and lysosomal functions. These effects induced by CACNA1C variants may contribute to the pathogenesis of CACNA1C-related disorders.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Langui Pan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Li Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Clinical Research Center for Children Neurodevelopmental Disabilities of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
2
|
Schneider T, Neumaier F, Hescheler J, Alpdogan S. Cav2.3 R-type calcium channels: from its discovery to pathogenic de novo CACNA1E variants: a historical perspective. Pflugers Arch 2020; 472:811-816. [PMID: 32529299 PMCID: PMC7351833 DOI: 10.1007/s00424-020-02395-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/31/2022]
Abstract
So-called pharmacoresistant (R-type) voltage-gated Ca2+ channels are structurally only partially characterized. Most of them are encoded by the CACNA1E gene and are expressed as different Cav2.3 splice variants (variant Cav2.3a to Cav2.3e or f) as the ion conducting subunit. So far, no inherited disease is known for the CACNA1E gene but recently spontaneous mutations leading to early death were identified, which will be brought into focus. In addition, a short historical overview may highlight the development to understand that upregulation during aging, easier activation by spontaneous mutations or lack of bioavailable inorganic cations (Zn2+ and Cu2+) may lead to similar pathologies caused by cellular overexcitation.
Collapse
Affiliation(s)
| | - F Neumaier
- Universitat zu Koln, 50931, Köln, Germany
| | | | - S Alpdogan
- Universitat zu Koln, 50931, Köln, Germany
| |
Collapse
|
3
|
De Mario A, Peggion C, Massimino ML, Viviani F, Castellani A, Giacomello M, Lim D, Bertoli A, Sorgato MC. The prion protein regulates glutamate-mediated Ca 2+ entry and mitochondrial Ca 2+ accumulation in neurons. J Cell Sci 2017; 130:2736-2746. [PMID: 28701513 DOI: 10.1242/jcs.196972] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 07/05/2017] [Indexed: 01/01/2023] Open
Abstract
The cellular prion protein (PrPC) whose conformational misfolding leads to the production of deadly prions, has a still-unclarified cellular function despite decades of intensive research. Following our recent finding that PrPC limits Ca2+ entry via store-operated Ca2+ channels in neurons, we investigated whether the protein could also control the activity of ionotropic glutamate receptors (iGluRs). To this end, we compared local Ca2+ movements in primary cerebellar granule neurons and cortical neurons transduced with genetically encoded Ca2+ probes and expressing, or not expressing, PrPC Our investigation demonstrated that PrPC downregulates Ca2+ entry through each specific agonist-stimulated iGluR and after stimulation by glutamate. We found that, although PrP-knockout (KO) mitochondria were displaced from the plasma membrane, glutamate addition resulted in a higher mitochondrial Ca2+ uptake in PrP-KO neurons than in their PrPC-expressing counterpart. This was because the increased Ca2+ entry through iGluRs in PrP-KO neurons led to a parallel increase in Ca2+-induced Ca2+ release via ryanodine receptor channels. These data thus suggest that PrPC takes part in the cell apparatus controlling Ca2+ homeostasis, and that PrPC is involved in protecting neurons from toxic Ca2+ overloads.
Collapse
Affiliation(s)
- Agnese De Mario
- Department of Biomedical Science, University of Padova, 35131 Padova, Italy
| | - Caterina Peggion
- Department of Biomedical Science, University of Padova, 35131 Padova, Italy
| | - Maria Lina Massimino
- CNR Neuroscience Institute, Department of Biomedical Science, University of Padova, 35131 Padova, Italy
| | - Francesca Viviani
- Department of Biomedical Science, University of Padova, 35131 Padova, Italy
| | - Angela Castellani
- Department of Biomedical Science, University of Padova, 35131 Padova, Italy
| | - Marta Giacomello
- Department of Biology, University of Padova, 35131 Padova, Italy
| | - Dmitry Lim
- Department of Pharmaceutical Science, University of Piemonte Orientale, 28100 Novara, Italy
| | - Alessandro Bertoli
- Department of Biomedical Science, University of Padova, 35131 Padova, Italy
| | - Maria Catia Sorgato
- Department of Biomedical Science, University of Padova, 35131 Padova, Italy .,CNR Neuroscience Institute, Department of Biomedical Science, University of Padova, 35131 Padova, Italy
| |
Collapse
|
4
|
Ambrosini A, D'Onofrio M, Buzzi MG, Arisi I, Grieco GS, Pierelli F, Santorelli FM, Schoenen J. Possible Involvement of the CACNA1E Gene in Migraine: A Search for Single Nucleotide Polymorphism in Different Clinical Phenotypes. Headache 2017; 57:1136-1144. [PMID: 28573794 DOI: 10.1111/head.13107] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To search for differences in prevalence of a CACNA1E variant between migraine without aura, various phenotypes of migraine with aura, and healthy controls. BACKGROUND Familial hemiplegic migraine type 1 (FHM1) is associated with mutations in the CACNA1A gene coding for the alpha 1A (Cav 2.1) pore-forming subunit of P/Q voltage-dependent Ca2+ channels. These mutations are not found in the common forms of migraine with or without aura. The alpha 1E subunit (Cav 2.3) is the counterpart of Cav 2.1 in R-type Ca2+ channels, has different functional properties, and is encoded by the CACNA1E gene. METHODS First, we performed a total exon sequencing of the CACNA1E gene in three probands selected because they had no abnormalities in the three FHM genes. In a patient suffering from basilar-type migraine, we identified a single nucleotide polymorphism (SNP) in exon 20 of the CACNA1E gene (Asp859Glu - rs35737760; Minor Allele Frequency 0.2241) hitherto not studied in migraine. In a second step, we determined its occurrence in four groups by direct sequencing on blood genomic DNA: migraine patients without aura (N = 24), with typical aura (N = 55), complex neurological auras (N = 19; hemiplegic aura: N = 15; brain stem aura: N = 4), and healthy controls (N = 102). RESULTS The Asp859Glu - rs35737760 SNP of the CACNA1E gene was present in 12.7% of control subjects and in 20.4% of the total migraine group. In the migraine group it was significantly over-represented in patients with complex neurological auras (42.1%), OR 4.98 (95% CI: 1.69-14.67, uncorrected P = .005, Bonferroni P = .030, 2-tailed Fisher's exact test). There was no significant difference between migraine with typical aura (10.9%) and controls. CONCLUSIONS We identified a polymorphism in exon 20 of the CACNA1E gene (Asp859Glu - rs35737760) that is more prevalent in hemiplegic and brain stem aura migraine. This missense variant causes a change from aspartate to glutamate at position 859 of the Cav 2.3 protein and might modulate the function of R-type Ca2+ channels. It could thus be relevant for migraine with complex neurological aura, although this remains to be proven.
Collapse
Affiliation(s)
| | - Mara D'Onofrio
- European Brain Research Institute "Rita Levi Montalcini,", Rome, Italy.,CNR, Rome, Italy
| | | | - Ivan Arisi
- European Brain Research Institute "Rita Levi Montalcini,", Rome, Italy
| | - Gaetano S Grieco
- C. Mondino National Institute of Neurology Foundation, Pavia, Italy
| | | | | | - Jean Schoenen
- Headache Research Unit, Citadelle Hospital, University of Liège, Liège, Belgium
| |
Collapse
|
5
|
Zamponi GW, Striessnig J, Koschak A, Dolphin AC. The Physiology, Pathology, and Pharmacology of Voltage-Gated Calcium Channels and Their Future Therapeutic Potential. Pharmacol Rev 2015; 67:821-70. [PMID: 26362469 PMCID: PMC4630564 DOI: 10.1124/pr.114.009654] [Citation(s) in RCA: 773] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated calcium channels are required for many key functions in the body. In this review, the different subtypes of voltage-gated calcium channels are described and their physiologic roles and pharmacology are outlined. We describe the current uses of drugs interacting with the different calcium channel subtypes and subunits, as well as specific areas in which there is strong potential for future drug development. Current therapeutic agents include drugs targeting L-type Ca(V)1.2 calcium channels, particularly 1,4-dihydropyridines, which are widely used in the treatment of hypertension. T-type (Ca(V)3) channels are a target of ethosuximide, widely used in absence epilepsy. The auxiliary subunit α2δ-1 is the therapeutic target of the gabapentinoid drugs, which are of value in certain epilepsies and chronic neuropathic pain. The limited use of intrathecal ziconotide, a peptide blocker of N-type (Ca(V)2.2) calcium channels, as a treatment of intractable pain, gives an indication that these channels represent excellent drug targets for various pain conditions. We describe how selectivity for different subtypes of calcium channels (e.g., Ca(V)1.2 and Ca(V)1.3 L-type channels) may be achieved in the future by exploiting differences between channel isoforms in terms of sequence and biophysical properties, variation in splicing in different target tissues, and differences in the properties of the target tissues themselves in terms of membrane potential or firing frequency. Thus, use-dependent blockers of the different isoforms could selectively block calcium channels in particular pathologies, such as nociceptive neurons in pain states or in epileptic brain circuits. Of important future potential are selective Ca(V)1.3 blockers for neuropsychiatric diseases, neuroprotection in Parkinson's disease, and resistant hypertension. In addition, selective or nonselective T-type channel blockers are considered potential therapeutic targets in epilepsy, pain, obesity, sleep, and anxiety. Use-dependent N-type calcium channel blockers are likely to be of therapeutic use in chronic pain conditions. Thus, more selective calcium channel blockers hold promise for therapeutic intervention.
Collapse
Affiliation(s)
- Gerald W Zamponi
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Joerg Striessnig
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Alexandra Koschak
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| | - Annette C Dolphin
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada (G.W.Z.); Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria (J.S., A.K.); and Department of Neuroscience, Physiology, and Pharmacology, Division of Biosciences, University College London, London, United Kingdom (A.C.D.)
| |
Collapse
|
6
|
Schneider T, Dibué M, Hescheler J. How "Pharmacoresistant" is Cav2.3, the Major Component of Voltage-Gated R-type Ca2+ Channels? Pharmaceuticals (Basel) 2013; 6:759-76. [PMID: 24276260 PMCID: PMC3816731 DOI: 10.3390/ph6060759] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/26/2013] [Accepted: 05/06/2013] [Indexed: 12/04/2022] Open
Abstract
Membrane-bound voltage-gated Ca2+ channels (VGCCs) are targets for specific signaling complexes, which regulate important processes like gene expression, neurotransmitter release and neuronal excitability. It is becoming increasingly evident that the so called “resistant” (R-type) VGCC Cav2.3 is critical in several physiologic and pathophysiologic processes in the central nervous system, vascular system and in endocrine systems. However its eponymous attribute of pharmacologic inertness initially made in depth investigation of the channel difficult. Although the identification of SNX-482 as a fairly specific inhibitor of Cav2.3 in the nanomolar range has enabled insights into the channels properties, availability of other pharmacologic modulators of Cav2.3 with different chemical, physical and biological properties are of great importance for future investigations. Therefore the literature was screened systematically for molecules that modulate Cav2.3 VGCCs.
Collapse
Affiliation(s)
- Toni Schneider
- Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, Cologne D-50931, Germany; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (T.S.); (M.D.); Tel.: +49-221-478-69446 (T.S.); Fax: +49-221-478-6965 (T.S.)
| | - Maxine Dibué
- Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, Cologne D-50931, Germany; E-Mail:
- Department for Neurosurgery, Medical Faculty, Heinrich Heine University, Moorenstraße 5, Duesseldorf D-40225, Germany & Center of Molecular Medicine, Cologne D-50931, Germany
- Authors to whom correspondence should be addressed; E-Mails: (T.S.); (M.D.); Tel.: +49-221-478-69446 (T.S.); Fax: +49-221-478-6965 (T.S.)
| | - Jürgen Hescheler
- Institute of Neurophysiology, University of Cologne, Robert-Koch-Str. 39, Cologne D-50931, Germany; E-Mail:
| |
Collapse
|
7
|
Modulation/physiology of calcium channel sub-types in neurosecretory terminals. Cell Calcium 2012; 51:284-92. [PMID: 22341671 DOI: 10.1016/j.ceca.2012.01.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 01/11/2012] [Accepted: 01/22/2012] [Indexed: 11/21/2022]
Abstract
The hypothalamic-neurohypophysial system (HNS) controls diuresis and parturition through the release of arginine-vasopressin (AVP) and oxytocin (OT). These neuropeptides are chiefly synthesized in hypothalamic magnocellular somata in the supraoptic and paraventricular nuclei and are released into the blood stream from terminals in the neurohypophysis. These HNS neurons develop specific electrical activity (bursts) in response to various physiological stimuli. The release of AVP and OT at the level of neurohypophysis is directly linked not only to their different burst patterns, but is also regulated by the activity of a number of voltage-dependent channels present in the HNS nerve terminals and by feedback modulators. We found that there is a different complement of voltage-gated Ca(2+) channels (VGCC) in the two types of HNS terminals: L, N, and Q in vasopressinergic terminals vs. L, N, and R in oxytocinergic terminals. These channels, however, do not have sufficiently distinct properties to explain the differences in release efficacy of the specific burst patterns. However, feedback by both opioids and ATP specifically modulate different types of VGCC and hence the amount of AVP and/or OT being released. Opioid receptors have been identified in both AVP and OT terminals. In OT terminals, μ-receptor agonists inhibit all VGCC (particularly R-type), whereas, they induce a limited block of L-, and P/Q-type channels, coupled to an unusual potentiation of the N-type Ca(2+) current in the AVP terminals. In contrast, the N-type Ca(2+) current can be inhibited by adenosine via A(1) receptors leading to the decreased release of both AVP and OT. Furthermore, ATP evokes an inactivating Ca(2+)/Na(+)-current in HNS terminals able to potentiate AVP release through the activation of P2X2, P2X3, P2X4 and P2X7 receptors. In OT terminals, however, only the latter receptor type is probably present. We conclude by proposing a model that can explain how purinergic and/or opioid feedback modulation during bursts can mediate differences in the control of neurohypophysial AVP vs. OT release.
Collapse
|
8
|
Fang Z, Hwang JH, Kim JS, Jung SJ, Oh SB. R-type Calcium Channel Isoform in Rat Dorsal Root Ganglion Neurons. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2010; 14:45-9. [PMID: 20221279 DOI: 10.4196/kjpp.2010.14.1.45] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 01/16/2010] [Accepted: 01/25/2010] [Indexed: 01/07/2023]
Abstract
R-type Ca(v)2.3 high voltage-activated Ca(2+) channels in peripheral sensory neurons contribute to pain transmission. Recently we have demonstrated that, among the six Ca(v)2.3 isoforms (Ca(v)2.3a~Ca(v)2.3e), the Ca(v)2.3e isoform is primarily expressed in trigeminal ganglion (TG) nociceptive neurons. In the present study, we further investigated expression patterns of Ca(v)2.3 isoforms in the dorsal root ganglion (DRG) neurons. As in TG neurons, whole tissue RT-PCR analyses revealed the presence of two isoforms, Ca(v)2.3a and Ca(v)2.3e, in DRG neurons. Single-cell RT-PCR detected the expression of Ca(v)2.3e mRNA in 20% (n=14/70) of DRG neurons, relative to Ca(v)2.3a expression in 2.8% (n=2/70) of DRG neurons. Ca(v)2.3e mRNA was mainly detected in small-sized neurons (n=12/14), but in only a few medium-sized neurons (n=2/14) and not in large-sized neurons, indicating the prominence of Ca(v)2.3e in nociceptive DRG neurons. Moreover, Ca(v)2.3e was preferentially expressed in tyrosine-kinase A (trkA)-positive, isolectin B4 (IB4)-negative and transient receptor potential vanilloid 1 (TRPV1)-positive neurons. These results suggest that Ca(v)2.3e may be the main R-type Ca(2+) channel isoform in nociceptive DRG neurons and thereby a potential target for pain treatment, not only in the trigeminal system but also in the spinal system.
Collapse
Affiliation(s)
- Zhi Fang
- National Research Laboratory for Pain, Dental Research Institute and Department of Physiology School of Dentistry, Seoul National University, Seoul 110-749, Korea
| | | | | | | | | |
Collapse
|
9
|
Koschak A, Obermair GJ, Pivotto F, Sinnegger-Brauns MJ, Striessnig J, Pietrobon D. Molecular nature of anomalous L-type calcium channels in mouse cerebellar granule cells. J Neurosci 2007; 27:3855-63. [PMID: 17409250 PMCID: PMC6672415 DOI: 10.1523/jneurosci.4028-06.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Single-channel analysis revealed the existence of neuronal L-type Ca2+ channels (LTCCs) with fundamentally different gating properties; in addition to LTCCs resembling cardiac channels, LTCCs with anomalous gating were identified in a variety of neurons, including cerebellar granule cells. Anomalous LTCC gating is mainly characterized by long reopenings after repolarization following strong depolarizations or trains of action potentials. To elucidate the unknown molecular nature of anomalous LTCCs, we performed single-channel patch-clamp recordings from cerebellar granule cells of wild-type, Ca(v)1.3-/- and Ca(v)1.2DHP-/- [containing a mutation in the Ca(v)1.2 alpha1 subunit that eliminates dihydropyridine (DHP) sensitivity] mice. Quantitative reverse transcription-PCR revealed that Ca(v)1.2 accounts for 89% and Ca(v)1.3 for 11% of the LTCC transcripts in wild-type cerebellar granule cells, whereas Ca(v)1.1 and Ca(v)1.4 are expressed at insignificant levels. Anomalous LTCCs were observed in neurons of Ca(v)1.3-/- mice with a frequency not different from wild type. In the presence of the DHP agonist (+)-(S)-202-791, the typical prepulse-induced reopenings of anomalous LTCCs after repolarization were shorter in Ca(v)1.2DHP-/- neurons than in Ca(v)1.3-/- neurons. Reopenings in Ca(v)1.2DHP-/- neurons in the presence of the DHP agonist were similar to those in wild-type neurons in the absence of the agonist. These data show that Ca(v)1.2alpha1 subunits are the pore-forming subunits of anomalous LTCCs in mouse cerebellar granule cells. Given the evidence that Ca(v)1.2 channels are specifically involved in sustained Ras-MAPK (mitogen-activated protein kinase)-dependent cAMP response element-binding protein phosphorylation and LTCC-dependent hippocampal long-term potentiation (LTP) (Moosmang et al., 2005), we discuss the hypothesis that anomalous rather than cardiac-type Ca(v)1.2 channels are specifically involved in LTCC-dependent and gene transcription-dependent LTP.
Collapse
Affiliation(s)
- Alexandra Koschak
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Institute of Neuroscience, University of Padova, 35121 Padova, Italy
- Institute of Pharmacy, Pharmacology, and Toxicology, and
| | - Gerald J. Obermair
- Department of Physiology and Medical Physics, Division of Physiology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Francesca Pivotto
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Institute of Neuroscience, University of Padova, 35121 Padova, Italy
| | | | | | - Daniela Pietrobon
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Institute of Neuroscience, University of Padova, 35121 Padova, Italy
| |
Collapse
|
10
|
Fang Z, Park CK, Li HY, Kim HY, Park SH, Jung SJ, Kim JS, Monteil A, Oh SB, Miller RJ. Molecular basis of Ca(v)2.3 calcium channels in rat nociceptive neurons. J Biol Chem 2006; 282:4757-4764. [PMID: 17145762 PMCID: PMC2760738 DOI: 10.1074/jbc.m605248200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ca(v)2.3 calcium channels play an important role in pain transmission in peripheral sensory neurons. Six Ca(v)2.3 isoforms resulting from different combinations of three inserts (inserts I and II in the II-III loop and insert III in the carboxyl-terminal region) have been identified in different mammalian tissues. To date, however, Ca(v)2.3 isoforms unique to primary sensory neurons have not been identified. In this study, we determined Ca(v)2.3 isoforms expressed in the rat trigeminal ganglion neurons. Whole tissue reverse transcription (RT)-PCR analyses revealed that only two isoforms, Ca(v)2.3a and Ca(v)2.3e, are present in TG neurons. Using single cell RT-PCR, we found that Ca(v)2.3e is the major isoform, whereas Ca(v)2.3e expression is highly restricted to small (<16 mum) isolectin B4-negative and tyrosine kinase A-positive neurons. Ca(v)2.3e was also preferentially detected in neurons expressing the nociceptive marker, transient receptor potential vanilloid 1. Single cell RT-PCR following calcium imaging and whole-cell patch clamp recordings provided evidence of an association between an R-type calcium channel component and Ca(v)2.3e expression. Our results suggest that Ca(v)2.3e in sensory neurons may be a potential target for the treatment of pain.
Collapse
Affiliation(s)
- Zhi Fang
- Department of Physiology and Program in Molecular and Cellular Neuroscience, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749, Korea
| | - Chul-Kyu Park
- Department of Physiology and Program in Molecular and Cellular Neuroscience, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749, Korea
| | - Hai Ying Li
- Department of Physiology and Program in Molecular and Cellular Neuroscience, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749, Korea
| | - Hyun Yeong Kim
- Department of Physiology and Program in Molecular and Cellular Neuroscience, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749, Korea
| | - Seong-Hae Park
- Department of Physiology and Program in Molecular and Cellular Neuroscience, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749, Korea
| | - Sung Jun Jung
- Department of Physiology, College of Medicine, Kangwon National University, Chunchon 200-710, Korea
| | - Joong Soo Kim
- Department of Physiology and Program in Molecular and Cellular Neuroscience, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749, Korea
| | - Arnaud Monteil
- Département de Physiologie, Institut de Génomique Fonctionnelle, CNRS-UMR 5203 141, Rue de la Cardonille 34396 Montpellier Cedex 5, France, and the
| | - Seog Bae Oh
- Department of Physiology and Program in Molecular and Cellular Neuroscience, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749, Korea.
| | - Richard J Miller
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
11
|
Won YJ, Whang K, Kong ID, Park KS, Lee JW, Jeong SW. Expression profiles of high voltage-activated calcium channels in sympathetic and parasympathetic pelvic ganglion neurons innervating the urogenital system. J Pharmacol Exp Ther 2006; 317:1064-71. [PMID: 16467454 DOI: 10.1124/jpet.105.098210] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Among the autonomic ganglia, major pelvic ganglia (MPG) innervating the urogenital system are unique because both sympathetic and parasympathetic neurons are colocalized within one ganglion capsule. Sympathetic MPG neurons are discriminated from parasympathetic ones by expression of low voltage-activated Ca2+ channels that primarily arise from T-type alpha1H isoform and contribute to the generation of low-threshold spikes. Until now, however, expression profiles of high voltage-activated (HVA) Ca2+ channels in these two populations of MPG neurons remain unknown. Thus, in the present study, we dissected out HVA Ca2+ channels using pharmacological and molecular biological tools. Reverse transcription-polymerase chain reaction analysis showed that MPG neurons contained transcripts encoding all of the known HVA Ca2+ channel isoforms (alpha1B, alpha1C, alpha1D and alpha1E), with the exception of alpha1A. Western blot analysis and pharmacology with omega-agatoxin IVA (1 microM) confirmed that MPG neurons lack the alpha1A Ca2+ channels. Unexpectedly, the expression profile of HVA Ca2+ channel isoforms was identical in the sympathetic and parasympathetic neurons of the MPG. Of the total Ca2+ currents, omega-conotoxin GVIA-sensitive N-type (alpha1B) currents constituted 57 +/- 5% (n = 9) and 60 +/- 3% (n = 6), respectively; nimodipine-sensitive L-type (alpha1C and alpha1D) currents made up 17 +/- 4% and 14 +/- 2%, respectively; and nimodipine-resistant and omega-conotoxin GVIA-resistant R-type currents were 25 +/- 3% and 22 +/- 2%, respectively. The R-type Ca2+ currents were sensitive to NiCl2 (IC50 = 22 +/- 0.1 microM) but not to SNX-482, which was able to potently (IC50 = 76 +/- 0.4 nM) block the recombinant alpha1E/beta2a/alpha2delta Ca2+ currents expressed in human embryonic kidney 293 cells. Taken together, our data suggest that sympathetic and parasympathetic MPG neurons share a similar but unique profile of HVA Ca2+ channel isoforms.
Collapse
Affiliation(s)
- Yu-Jin Won
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, Kangwon-Do 220-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
12
|
Layton MG, Robertson D, Everett AW, Mulders WHAM, Yates GK. Cellular localization of voltage-gated calcium channels and synaptic vesicle-associated proteins in the guinea pig cochlea. J Mol Neurosci 2005; 27:225-44. [PMID: 16186634 DOI: 10.1385/jmn:27:2:225] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Accepted: 03/07/2005] [Indexed: 11/11/2022]
Abstract
The cellular localization of voltage-gated calcium channels (VGCCs) and synaptic vesicle-associated proteins, SV2, synapsin I, and vesicle-associated membrane protein (VAMP) (synaptobrevin), was investigated in the guinea pig cochlea using immunocytochemistry and confocal laser scanning microscopy. Reactivity, in guinea pig, of antibodies to the alpha1 subunits of L-type, alpha1C [Cav1.2] and alpha 1D [Cav1.3]; P/Q-type, alpha1A [Cav2.1]; and R-type, a1E [Cav2.3] high voltage-activated calcium channels, was determined by Western blotting and immunolabeling of cerebellum. In the cochlea the sensory inner hair cells of the organ of Corti displayed strong intracellular staining, predominantly localized to their basolateral poles, with an antibody directed against the alpha1C subunit. Some alpha1C labeling was also observed in the inner pillar cells, in cell bodies of afferent neurons in the spiral ganglion, and in the inferior region of the spiral ligament. The supporting pillar cells were strongly immunoreactive throughout for alpha1D, but no alpha1D labeling of the inner hair cells was seen. The alpha1A subunit showed a cytoplasmic distribution in all three rows of outer hair cells. alpha1E labeling localized to the outer hair cells, predominantly in the subcuticular plate region, and also to nerve fiber bundles beneath these hair cells. Strong immunoreactivity was consistently seen with antibodies directed against SV2 and synapsin I in neuronal structures surrounding the basolateral surfaces of both the inner and outer hair cells but was absent from the sensory cells themselves. VAMP labeling was found throughout the cytoplasm of the inner hair cells and in neuronal structures beneath the hair cells. These results reveal a differential distribution of VGCC-types in the sensory and nonsensory elements of the guinea pig cochlea, with the inner hair cells expressing alpha1C L-type channels and VAMP but not synapsin I or SV2.
Collapse
Affiliation(s)
- Maria G Layton
- The Auditory Laboratory, School of Biomedical, Biomolecular and Chemical Sciences, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | | | | | | | | |
Collapse
|
13
|
Kamp MA, Krieger A, Henry M, Hescheler J, Weiergräber M, Schneider T. Presynaptic ‘Cav2.3-containing’ E-type Ca2+channels share dual roles during neurotransmitter release. Eur J Neurosci 2005; 21:1617-25. [PMID: 15845089 DOI: 10.1111/j.1460-9568.2005.03984.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ca2+ influx into excitable cells is a prerequisite for neurotransmitter release and regulated exocytosis. Within the group of ten cloned voltage-gated Ca2+ channels, the Ca(v)2.3-containing E-type Ca2+ channels are involved in various physiological processes, such as neurotransmitter release and exocytosis together with other voltage-gated Ca2+ channels of the Ca(v)1, Ca(v)2 and Ca(v)3 subfamily. However, E-type Ca2+ channels also exhibit several subunit-specific features, most of which still remain poorly understood. Ca(v)2.3-containing R-type channels (here called 'E-type channels') are also located in presynaptic terminals and interact with some synaptic vesicle proteins, the so-called SNARE proteins, although lacking the classical synprint interaction site. E-type channels trigger exocytosis and are also involved in long-term potentiation. Recently, it was shown that the interaction of Ca(v)2.3 with the EF-hand motif containing protein EFHC1 is involved in the aetiology and pathogenesis of juvenile myoclonic epilepsy.
Collapse
Affiliation(s)
- M A Kamp
- Institute of Neurophysiology, Robert-Koch-Str. 39, D-50931 Köln, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Gutiérrez-Martín Y, Martín-Romero FJ, Henao F, Gutiérrez-Merino C. Alteration of cytosolic free calcium homeostasis by SIN-1: high sensitivity of L-type Ca2+ channels to extracellular oxidative/nitrosative stress in cerebellar granule cells. J Neurochem 2005; 92:973-89. [PMID: 15686499 DOI: 10.1111/j.1471-4159.2004.02964.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exposure of cerebellar granule neurones in 25 mm KCl HEPES-containing Locke's buffer (pH 7.4) to 50-100 microm SIN-1 during 2 h decreased the steady-state free cytosolic Ca2+ concentration ([Ca2+]i) from 168 +/- 33 nm to 60 +/- 10 nm, whereas exposure to > or = 0.3 mm SIN-1 produced biphasic kinetics: (i) decrease of [Ca2+]i during the first 30 min, reaching a limiting value of 75 +/- 10 nm (due to inactivation of L-type Ca2+ channels) and (ii) a delayed increase of [Ca2+]i at longer exposures, which correlated with SIN-1-induced necrotic cell death. Both effects of SIN-1 on [Ca2+]i are blocked by superoxide dismutase plus catalase and by Mn(III)tetrakis(4-benzoic acid)porphyrin chloride. Supplementation of Locke's buffer with catalase before addition of 0.5-1 mm SIN-1 had no effect on the decrease of [Ca2+]i but further delayed and attenuated the increase of [Ca2+]i observed after 60-120 min exposure to SIN-1 and also protected against SIN-1-induced necrotic cell death. alpha-Tocopherol, the potent NMDA receptor antagonist (+)-MK-801 and the N- and P-type Ca2+ channels blocker omega-conotoxin MVIIC had no effect on the alterations of [Ca2+]i upon exposure to SIN-1. However, inhibition of the plasma membrane Ca2+ ATPase can account for the increase of [Ca2+]i observed after 60-120 min exposure to 0.5-1 mm SIN-1. It is concluded that L-type Ca2+ channels are a primary target of SIN-1-induced extracellular nitrosative/oxidative stress, being inactivated by chronic exposure to fluxes of peroxynitrite of 0.5-1 microm/min, while higher concentrations of peroxynitrite and hydrogen peroxide are required for the inhibition of the plasma membrane Ca2+ ATPase and induction of necrotic cell death, respectively.
Collapse
Affiliation(s)
- Yolanda Gutiérrez-Martín
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias and Escuela de Ingenierías Agrarias, Universidad de Extremadura, Badajoz, Spain
| | | | | | | |
Collapse
|
15
|
Thaler C, Gray AC, Lipscombe D. Cumulative inactivation of N-type CaV2.2 calcium channels modified by alternative splicing. Proc Natl Acad Sci U S A 2004; 101:5675-9. [PMID: 15060274 PMCID: PMC397472 DOI: 10.1073/pnas.0303402101] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Ca(V)2 family of voltage-gated calcium channels, present in presynaptic nerve terminals, regulates exocytosis and synaptic transmission. Cumulative inactivation of these channels occurs during trains of action potentials, and this may control short-term dynamics at the synapse. Inactivation during brief, repetitive stimulation is primarily attributed to closed-state inactivation, and several factors modulate the susceptibility of voltage-gated calcium channels to this form of inactivation. We show that alternative splicing of an exon in a cytoplasmic region of the Ca(V)2.2 channel modulates its sensitivity to inactivation during trains of action potential waveforms. The presence of this exon, exon 18a, protects the Ca(V)2.2 channel from entry into closed-state inactivation specifically during short (10 ms to 3 s) and small depolarizations of the membrane potential (-60 mV to -50 mV). The reduced sensitivity to closed-state inactivation within this dynamic range likely underlies the differential responsiveness of Ca(V)2.2 splice isoforms to trains of action potential waveforms. Regulated alternative splicing of Ca(V)2.2 represents a possible mechanism for modulating short-term dynamics of synaptic efficacy in different regions of the nervous system.
Collapse
Affiliation(s)
- Christopher Thaler
- Laboratory of Molecular Physiology, Section on Cellular Biophotonics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20852, USA
| | | | | |
Collapse
|
16
|
McNaughton NCL, Davies CH, Randall A. Inhibition of α1E Ca2+ Channels by Carbonic Anhydrase Inhibitors. J Pharmacol Sci 2004; 95:240-7. [PMID: 15215649 DOI: 10.1254/jphs.fp0040032] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
We examined if a range of carbonic anhydrase inhibitors (CAIs) interacted with the high-voltage activated voltage-sensitive calcium channels (VSCCs) encoded by the human alpha(1E) subunit. Whole-cell recordings were made from HEK293 cells stably expressing human alpha(1E)beta(3)-mediated calcium channels. SNX-482 (an alpha(1E) inhibitor) blocked alpha(1E)-mediated VSCCs with an IC(50) close to 10 nM. The anticonvulsant CAI ethoxyzolamide also inhibited these currents, with an IC(50) close to 1 microM, and produced an accompanying 20-mV hyperpolarizing shift in the steady-state inactivation profile. Other structurally diverse CAIs (e.g., acetazolamide and benzolamide) produced approximately 30 - 40% inhibition of alpha(1E)beta(3)-mediated Ca(2+) currents at 10 microM. Topiramate (10 microM), an anticonvulsant with CAI activity, inhibited these currents by 68 +/- 7%. This off-target activity of CAIs at VSCCs may contribute to some of the effects they produce both in vitro and in vivo.
Collapse
|
17
|
Grabsch H, Takeno S, Parsons WJ, Pomjanski N, Boecking A, Gabbert HE, Mueller W. Overexpression of the mitotic checkpoint genes BUB1, BUBR1, and BUB3 in gastric cancer--association with tumour cell proliferation. J Pathol 2003; 200:16-22. [PMID: 12692836 DOI: 10.1002/path.1324] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The mitotic spindle assembly checkpoint modulates the timing of anaphase initiation in response to improper alignment of chromosomes at the metaphase plate. The BUB gene family encodes proteins which are part of a large multi-protein kinetochore complex and which are believed to be key components of the checkpoint regulatory pathway. Failure of this surveillance system can lead to genomic instability and could be responsible for the increased incidence of aneuploidy in gastric cancer. Since mutations of BUB genes have not been identified in gastric cancer to date, altered BUB expression levels may significantly impair mitotic checkpoint function. To explore this possibility, the expression levels of BUB1, BUBR1, and BUB3 were determined in 43 gastric carcinomas and corresponding normal gastric mucosa by reverse transcription-polymerase chain reaction (RT-PCR). Gene expression levels were compared with histopathological parameters and DNA ploidy, as well as with proliferative activity, measured by Ki-67 mRNA expression. To the authors' knowledge, this is the first study to investigate the expression levels of mitotic checkpoint genes together with DNA ploidy in gastric cancer. BUB1 was overexpressed in 84%, BUBR1 in 68%, and BUB3 in 79% of gastric cancers. This study also revealed that all three genes were simultaneously overexpressed in 61% of the tumours and that there was a statistically significant positive correlation between overexpression of BUB1, BUBR1 or BUB3 and Ki-67 expression (p < 0.001). Eighty-one per cent of the tumours were classified as aneuploid. However, no correlation was found between ploidy and BUB transcript expression levels. These results suggest that inactivation of the mitotic checkpoint genes BUB1, BUBR1, and BUB3 by epigenetic silencing does not seem to play a role in gastric carcinogenesis. The strong correlation of BUB expression level and tumour cell proliferation suggests that BUB overexpression is a proliferation-dependent phenomenon in gastric cancer. However, overexpression due to lack of normal BUB protein function or due to a yet unknown additional BUB function has to be considered.
Collapse
Affiliation(s)
- Heike Grabsch
- Department of Histopathology, The Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Cluster I neurons of the suprachiasmatic nucleus (SCN), which are thought to be pacemakers supporting circadian activity, fire spontaneous action potentials that are followed by a monophasic afterhyperpolarization (AHP). Using a brain slice preparation, we have found that the AHP has a shorter duration in cells firing at higher frequency, consistent with circadian modulation of the AHP. The AHP is supported by at least three subtypes of K(Ca) channels, including apamin-sensitive channels, iberiotoxin-sensitive channels, and channels that are insensitive to both of these antagonists. The latter K(Ca) channel subtype is involved in rate-dependent regulation of the AHP. Voltage-clamped, whole-cell Ca(2+) channel currents recorded from SCN neurons were dissected pharmacologically, revealing all of the major high-voltage activated subtypes: L-, N-, P/Q-, and R-type Ca(2+) channel currents. Application of Ca(2+) channel antagonists to spontaneously firing neurons indicated that predominantly L- and R-type currents trigger the AHP. Our findings suggest that apamin- and iberiotoxin-insensitive K(Ca) channels are subject to diurnal modulation by the circadian clock and that this modulation either directly or indirectly leads to the expression of a circadian rhythm in spiking frequency.
Collapse
|
19
|
Mitchell JW, Larsen JK, Best PM. Identification of the calcium channel alpha 1E (Ca(v)2.3) isoform expressed in atrial myocytes. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1577:17-26. [PMID: 12151091 DOI: 10.1016/s0167-4781(02)00371-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antisense oligonucleotides targeting the calcium channel alpha 1E (Ca(v)2.3) subunit significantly inhibit the insulin-like growth factor-1 (IGF-1)-stimulated increase in low voltage-activated (LVA) (T-type) calcium current in cultured rat atrial myocytes [Proc. Natl. Acad. Sci. U.S.A. 94(1997) 14936]. As part of a continuing effort to understand the regulation of LVA current expression in the heart, we have identified the specific alpha 1E isoform that is expressed in atrial tissue. Through reverse transcription-polymerase chain reaction (RT-PCR), nine overlapping partial clones spanning the entire coding region of the cardiac alpha 1E mRNA were obtained. The predominate isoform in atrial tissue was identified and found to be highly homologous to the alpha 1E isoform previously isolated from kidney and the islets of Langerhans [Eur. J. Biochem. 257(1998) 274]. The expression of alpha 1E in the heart occurs specifically in cardiac myocytes and not in smooth muscle or fibroblasts as demonstrated by RT-PCR performed on isolated atrial myocytes and by in situ hybridization.
Collapse
Affiliation(s)
- Jennifer W Mitchell
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 524 Burrill Hall, MC-114, 407 S. Goodwin Ave., Urbana, IL 61801, USA.
| | | | | |
Collapse
|
20
|
Lipscombe D, Pan JQ, Gray AC. Functional diversity in neuronal voltage-gated calcium channels by alternative splicing of Ca(v)alpha1. Mol Neurobiol 2002; 26:21-44. [PMID: 12392054 DOI: 10.1385/mn:26:1:021] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alternative splicing is a critical mechanism used extensively in the mammalian nervous system to increase the level of diversity that can be achieved by a set of genes. This review focuses on recent studies of voltage-gated calcium (Ca) channel Ca(v)alpha1 subunit splice isoforms in neurons. Voltage-gated Ca channels couple changes in neuronal activity to rapid changes in intracellular Ca levels that in turn regulate an astounding range of cellular processes. Only ten genes have been identified that encode Ca(v)alpha1 subunits, an insufficient number to account for the level of functional diversity among voltage-gated Ca channels. The consequences of regulated alternative splicing among the genes that comprise voltage-gated Ca channels permits specialization of channel function, optimizing Ca signaling in different regions of the brain and in different cellular compartments. Although the full extent of alternative splicing is not yet known for any of the major subtypes of voltage-gated Ca channels, it is already clear that it adds a rich layer of structural and functional diversity".
Collapse
Affiliation(s)
- Diane Lipscombe
- Department of Neuroscience, Brown University, Providence, RI 02912, USA.
| | | | | |
Collapse
|
21
|
Sochivko D, Pereverzev A, Smyth N, Gissel C, Schneider T, Beck H. The Ca(V)2.3 Ca(2+) channel subunit contributes to R-type Ca(2+) currents in murine hippocampal and neocortical neurones. J Physiol 2002; 542:699-710. [PMID: 12154172 PMCID: PMC2290463 DOI: 10.1113/jphysiol.2002.020677] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Different subtypes of voltage-dependent Ca(2+) currents in native neurones are essential in coupling action potential firing to Ca(2+) influx. For most of these currents, the underlying Ca(2+) channel subunits have been identified on the basis of pharmacological and biophysical similarities. In contrast, the molecular basis of R-type Ca(2+) currents remains controversial. We have therefore examined the contribution of the Ca(V)2.3 (alpha(1E)) subunits to R-type currents in different types of central neurones using wild-type mice and mice in which the Ca(V)2.3 subunit gene was deleted. In hippocampal CA1 pyramidal cells and dentate granule neurones, as well as neocortical neurones of wild-type mice, Ca(2+) current components resistant to the combined application of omega-conotoxin GVIA and MVIIC, omega-agatoxin IVa and nifedipine (I(Ca,R)) were detected that were composed of a large R-type and a smaller T-type component. In Ca(V)2.3-deficient mice, I(Ca,R) was considerably reduced in CA1 neurones (79 %) and cortical neurones (87 %), with less reduction occurring in dentate granule neurones (47 %). Analysis of tail currents revealed that the reduction of I(Ca,R) is due to a selective reduction of the rapidly deactivating R-type current component in CA1 and cortical neurones. In all cell types, I(Ca,R) was highly sensitive to Ni(2+) (100 microM: 71-86 % block). A selective antagonist of cloned Ca(V)2.3 channels, the spider toxin SNX-482, partially inhibited I(Ca,R) at concentrations up to 300 nM in dentate granule cells and cortical neurones (50 and 57 % block, EC(50) 30 and 47 nM, respectively). I(Ca,R) in CA1 neurones was significantly less sensitive to SNX-482 (27 % block, 300 nM SNX-482). Taken together, our results show clearly that Ca(V)2.3 subunits underlie a significant fraction of I(Ca,R) in different types of central neurones. They also indicate that Ca(V)2.3 subunits may give rise to Ca(2+) currents with differing pharmacological properties in native neurones.
Collapse
Affiliation(s)
- Dmitry Sochivko
- Department of Epileptology, University of Bonn Medical Center, Sigmund-Freud Str. 25, 53105 Bonn, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Presynaptic R-type calcium channels contribute to fast excitatory synaptic transmission in the rat hippocampus. J Neurosci 2001. [PMID: 11698583 DOI: 10.1523/jneurosci.21-22-08715.2001] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The possibility that R-type calcium channels contribute to fast glutamatergic transmission in the hippocampus has been assessed using low concentrations of NiCl(2) and the peptide toxin SNX 482, a selective antagonist of the pore-forming alpha(1E) subunit of R-type calcium channel. EPSPs or EPSCs were recorded in the whole-cell configuration of the patch-clamp technique mainly from CA3 hippocampal neurons. Effects of both NiCl(2) and SNX 482 were tested on large (composite) EPSCs evoked by mossy and associative-commissural fiber stimulation. NiCl(2) effects were also tested on minimal EPSPs-EPSCs. Both substances reduced the amplitude of EPSPs-EPSCs. This effect was associated with an increase in the number of response failures of minimal EPSPs-EPSCs, an enhancement of the paired-pulse facilitation ratios of both minimal and composite EPSCs, and a reduction of the inverse squared coefficient of variation (CV(-2)). The reduction of CV(-2) was positively correlated with the decrease in EPSC amplitude. The inhibitory effect of NiCl(2) was occluded by SNX 482 but not by omega-conotoxin-MVIIC, a broad-spectrum antagonist thought to interact with N- and P/Q-type calcium channels, supporting a specific action of low concentrations of NiCl(2) on R-type calcium channels. Together, these observations indicate that both NiCl(2) and SNX 482 act at presynaptic sites and block R-type calcium channels with pharmacological properties similar to those encoded by the alpha(1E) gene. These channels are involved in fast glutamatergic transmission at hippocampal synapses.
Collapse
|
23
|
Fisher TE, Bourque CW. The function of Ca(2+) channel subtypes in exocytotic secretion: new perspectives from synaptic and non-synaptic release. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 77:269-303. [PMID: 11796142 DOI: 10.1016/s0079-6107(01)00017-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
By mediating the Ca(2+) influx that triggers exocytotic fusion, Ca(2+) channels play a central role in a wide range of secretory processes. Ca(2+) channels consist of a complex of protein subunits, including an alpha(1) subunit that constitutes the voltage-dependent Ca(2+)-selective membrane pore, and a group of auxiliary subunits, including beta, gamma, and alpha(2)-delta subunits, which modulate channel properties such as inactivation and channel targeting. Subtypes of Ca(2+) channels are constituted by different combinations of alpha(1) subunits (of which 10 have been identified) and auxiliary subunits, particularly beta (of which 4 have been identified). Activity-secretion coupling is determined not only by the biophysical properties of the channels involved, but also by the relationship between channels and the exocytotic apparatus, which may differ between fast and slow types of secretion. Colocalization of Ca(2+) channels at sites of fast release may depend on biochemical interactions between channels and exocytotic proteins. The aim of this article is to review recent work on Ca(2+) channel structure and function in exocytotic secretion. We discuss Ca(2+) channel involvement in selected types of secretion, including central neurotransmission, endocrine and neuroendocrine secretion, and transmission at graded potential synapses. Several different Ca(2+) channel subtypes are involved in these types of secretion, and their function is likely to involve a variety of relationships with the exocytotic apparatus. Elucidating the relationship between Ca(2+) channel structure and function is central to our understanding of the fundamental process of exocytotic secretion.
Collapse
Affiliation(s)
- T E Fisher
- Department of Physiology, University of Saskatchewan, 107 Wiggins Road, Sask., S7N 5E5, Saskatoon, Canada.
| | | |
Collapse
|
24
|
Joux N, Chevaleyre V, Alonso G, Boissin-Agasse L, Moos FC, Desarménien MG, Hussy N. High voltage-activated Ca2+ currents in rat supraoptic neurones: biophysical properties and expression of the various channel alpha1 subunits. J Neuroendocrinol 2001; 13:638-49. [PMID: 11442778 DOI: 10.1046/j.1365-2826.2001.00679.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The diversity of Ca2+ currents was studied in voltage-clamped acutely dissociated neurones from the rat supraoptic nucleus (SON), and the expression of the various corresponding pore-forming alpha1 subunits determined by immunohistochemistry. We observed the presence of all high voltage-activated L-, N-, P/Q- and R-type currents. We did not observe low-voltage-activated T-type current. The multimodal current/voltage relationships of L- and R-type currents indicated further heterogeneity within these current types, each exhibiting two components that differed by a high (-20 mV) and a lower (-40 mV) threshold potential of activation. L- and R-type currents were fast activating and showed time-dependent inactivation, conversely to N- and P/Q-type currents, which activated more slowly and did not inactivate. The immunocytochemical staining indicated that the soma and proximal dendrites of SON neurones were immunoreactive for Cav1.2, Cav1.3 (forming L-type channels), Cav2.1 (P/Q-type), Cav2.2 (N-type) and Cav2.3 subunits (R-type). Each subunit exhibited further specificity in its distribution throughout the nucleus, and we particularly observed strong immunostaining of Cav1.3 and Cav2.3 subunits within the dendritic zone of the SON. These data show a high heterogeneity of Ca2+ channels in SON. neurones, both in their functional properties and cellular distribution. The lower threshold and rapidly activating L- and R-type currents should underlie major Ca2+ entry during action potentials, while the slower and higher threshold N- and P/Q-type currents should be preferentially recruited during burst activity. It will be of key interest to determine their respective role in the numerous Ca2+-dependent events that control the activity and physiology of SON neurones
Collapse
Affiliation(s)
- N Joux
- Biologie des Neurones Endocrines, CNRS-UMR 5101, CCIPE, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
25
|
Bell DC, Butcher AJ, Berrow NS, Page KM, Brust PF, Nesterova A, Stauderman KA, Seabrook GR, Nürnberg B, Dolphin AC. Biophysical properties, pharmacology, and modulation of human, neuronal L-type (alpha(1D), Ca(V)1.3) voltage-dependent calcium currents. J Neurophysiol 2001; 85:816-27. [PMID: 11160515 DOI: 10.1152/jn.2001.85.2.816] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Voltage-dependent calcium channels (VDCCs) are multimeric complexes composed of a pore-forming alpha(1) subunit together with several accessory subunits, including alpha(2)delta, beta, and, in some cases, gamma subunits. A family of VDCCs known as the L-type channels are formed specifically from alpha(1S) (skeletal muscle), alpha(1C) (in heart and brain), alpha(1D) (mainly in brain, heart, and endocrine tissue), and alpha(1F) (retina). Neuroendocrine L-type currents have a significant role in the control of neurosecretion and can be inhibited by GTP-binding (G-) proteins. However, the subunit composition of the VDCCs underlying these G-protein-regulated neuroendocrine L-type currents is unknown. To investigate the biophysical and pharmacological properties and role of G-protein modulation of alpha(1D) calcium channels, we have examined calcium channel currents formed by the human neuronal L-type alpha(1D) subunit, co-expressed with alpha(2)delta-1 and beta(3a), stably expressed in a human embryonic kidney (HEK) 293 cell line, using whole cell and perforated patch-clamp techniques. The alpha(1D)-expressing cell line exhibited L-type currents with typical characteristics. The currents were high-voltage activated (peak at +20 mV in 20 mM Ba2+) and showed little inactivation in external Ba2+, while displaying rapid inactivation kinetics in external Ca2+. The L-type currents were inhibited by the 1,4 dihydropyridine (DHP) antagonists nifedipine and nicardipine and were enhanced by the DHP agonist BayK S-(-)8644. However, alpha(1D) L-type currents were not modulated by activation of a number of G-protein pathways. Activation of endogenous somatostatin receptor subtype 2 (sst2) by somatostatin-14 or activation of transiently transfected rat D2 dopamine receptors (rD2(long)) by quinpirole had no effect. Direct activation of G-proteins by the nonhydrolyzable GTP analogue, guanosine 5'-0-(3-thiotriphospate) also had no effect on the alpha(1D) currents. In contrast, in the same system, N-type currents, formed from transiently transfected alpha(1B)/alpha(2)delta-1/beta(3), showed strong G-protein-mediated inhibition. Furthermore, the I-II loop from the alpha(1D) clone, expressed as a glutathione-S-transferase (GST) fusion protein, did not bind Gbetagamma, unlike the alpha(1B) I-II loop fusion protein. These data show that the biophysical and pharmacological properties of recombinant human alpha(1D) L-type currents are similar to alpha(1C) currents, and these currents are also resistant to modulation by G(i/o)-linked G-protein-coupled receptors.
Collapse
Affiliation(s)
- D C Bell
- Department of Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Vajna R, Klöckner U, Pereverzev A, Weiergräber M, Chen X, Miljanich G, Klugbauer N, Hescheler J, Perez-Reyes E, Schneider T. Functional coupling between 'R-type' Ca2+ channels and insulin secretion in the insulinoma cell line INS-1. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:1066-75. [PMID: 11179973 DOI: 10.1046/j.1432-1327.2001.01969.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Among voltage-gated Ca2+ channels the non-dihydropyridine-sensitive alpha1E subunit is functionally less well characterized than the structurally related alpha1A (omega-agatoxin-IVA sensitive, P- /Q-type) and alpha1B (omega-conotoxin-GVIA sensitive, N-type) subunits. In the rat insulinoma cell line, INS-1, a tissue-specific splice variant of alpha1E (alpha1Ee) has been characterized at the mRNA and protein levels, suggesting that INS-1 cells are a suitable model for investigating the function of alpha1Ee. In alpha1E-transfected human embryonic kidney (HEK-293) cells the alpha1E-selective peptide antagonist SNX-482 (100 nM) reduces alpha1Ed- and alpha1Ee-induced Ba2+ inward currents in the absence and presence of the auxiliary subunits beta3 and alpha2delta-2 by more than 80%. The inhibition is fast and only partially reversible. No effect of SNX-482 was detected on the recombinant T-type Ca2+ channel subunits alpha1G, alpha1H, and alpha1I showing that the toxin from the venom of Hysterocrates gigas is useful as an alpha1E-selective antagonist. After blocking known components of Ca2+ channel inward current in INS-1 cells by 2 microM (+/-)-isradipine plus 0.5 microM omega-conotoxin-MVIIC, the remaining current is reduced by 100 nM SNX-482 from -12.4 +/- 1.2 pA/pF to -7.6 +/- 0.5 pA/pF (n = 9). Furthermore, in INS-1 cells, glucose- and KCl-induced insulin release are reduced by SNX-482 in a dose-dependent manner leading to the conclusion that alpha1E, in addition to L-type and non-L-type (alpha1A-mediated) Ca2+ currents, is involved in Ca2+ dependent insulin secretion of INS-1 cells.
Collapse
Affiliation(s)
- R Vajna
- Institute of Neurophysiology, University of Cologne, Köln, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
alpha(1E) subunits form the pore of three cerebellar R-type calcium channels with different pharmacological and permeation properties. J Neurosci 2000. [PMID: 10627594 DOI: 10.1523/jneurosci.20-01-00171.2000] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
R-type Ca(2+) channels cooperate with P/Q- and N-type channels to control neurotransmitter release at central synapses. The leading candidate as pore-forming subunit of R-type channels is the alpha(1E) subunit. However, R-type Ca(2+) currents with permeation and/or pharmacological properties different from those of recombinant Ca(2+) channels containing alpha(1E) subunits have been described, and therefore the molecular nature of R-type Ca(2+) channels remains not completely settled. Here, we show that the R-type Ca(2+) current of rat cerebellar granule cells consists of two components inhibited with different affinity by the alpha(1E) selective antagonist SNX482 (IC(50) values of 6 and 81 nM) and a third component resistant to SNX482. The SNX482-sensitive R-type current shows the unique permeation properties of recombinant alpha(1E) channels; it is larger with Ca(2+) than with Ba(2+) as charge carrier, and it is highly sensitive to Ni(2+) block and has a voltage-dependence of activation consistent with that of G2 channels with unitary conductance of 15 pS. On the other hand, the SNX482-resistant R-type current shows permeation properties similar to those of recombinant alpha(1A) and alpha(1B) channels; it is larger with Ba(2+) than with Ca(2+) as charge carrier(,) and it has a low sensitivity to Ni(2+) block and a voltage-dependence of activation consistent with that of G3 channels with unitary conductance of 20 pS. Gene-specific knock-down by antisense oligonucleotides demonstrates that the different cerebellar R-type channels are all encoded by the alpha(1E) gene, suggesting the existence of alpha(1E) isoforms with different pore properties.
Collapse
|
28
|
Hivert B, Luvisetto S, Navangione A, Tottene A, Pietrobon D. Anomalous L-type calcium channels of rat spinal motoneurons. J Gen Physiol 1999; 113:679-94. [PMID: 10228182 PMCID: PMC2222911 DOI: 10.1085/jgp.113.5.679] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/1999] [Accepted: 03/25/1999] [Indexed: 12/02/2022] Open
Abstract
Single channel patch-clamp recordings show that embryonic rat spinal motoneurons express anomalous L-type calcium channels, which reopen upon repolarization to resting potentials, displaying both short and long reopenings. The probability of reopening increases with increasing voltage of the preceding depolarization without any apparent correlation with inactivation during the depolarization. The probability of long with respect to short reopenings increases with increasing length of the depolarization, with little change in the total number of reopenings and in their delay. With less negative repolarization voltages, the delay increases, while the mean duration of both short and long reopenings decreases, remaining longer than that of the openings during the preceding depolarization. Open times decrease with increasing voltage in the range -60 to +40 mV. Closed times tend to increase at V > 20 mV. The open probability is low at all voltages and has an anomalous bell-shaped voltage dependence. We provide evidence that short and long reopenings of anomalous L-type channels correspond to two gating modes, whose relative probability depends on voltage. Positive voltages favor both the transition from a short-opening to a long-opening mode and the occupancy of a closed state outside the activation pathway within each mode from which the channel reopens upon repolarization. The voltage dependence of the probability of reopenings reflects the voltage dependence of the occupancy of these closed states, while the relative probability of long with respect to short reopenings reflects the voltage dependence of the equilibrium between modes. The anomalous gating persists after patch excision, and therefore our data rule out voltage-dependent block by diffusible ions as the basis for the anomalous gating and imply that a diffusible cytosolic factor is not necessary for voltage-dependent potentiation of anomalous L-type channels.
Collapse
Affiliation(s)
- B Hivert
- Department of Biomedical Sciences and Consiglio Nationale delle Rícerche Center of Biomembranes, University of Padova, 35121 Padova, Italy
| | | | | | | | | |
Collapse
|