1
|
Hayward R, Moore S, Artun D, Madhavan A, Harte E, Torres-Pérez JV, Nagy I. Transcriptional reprogramming post-peripheral nerve injury: A systematic review. Neurobiol Dis 2024; 200:106624. [PMID: 39097036 DOI: 10.1016/j.nbd.2024.106624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/27/2024] [Accepted: 07/30/2024] [Indexed: 08/05/2024] Open
Abstract
Neuropathic pain is characterised by periodic or continuous hyperalgesia, numbness, or allodynia, and results from insults to the somatosensory nervous system. Peripheral nerve injury induces transcriptional reprogramming in peripheral sensory neurons, contributing to increased spinal nociceptive input and the development of neuropathic pain. Effective treatment for neuropathic pain remains an unmet medical need as current therapeutics offer limited effectiveness and have undesirable effects. Understanding transcriptional changes in peripheral nerve injury-induced neuropathy might offer a path for novel analgesics. Our literature search identified 65 papers exploring transcriptomic changes post-peripheral nerve injury, many of which were conducted in animal models. We scrutinize their transcriptional changes data and conduct gene ontology enrichment analysis to reveal their common functional profile. Focusing on genes involved in 'sensory perception of pain' (GO:0019233), we identified transcriptional changes for different ion channels, receptors, and neurotransmitters, shedding light on its role in nociception. Examining peripheral sensory neurons subtype-specific transcriptional reprograming and regeneration-associated genes, we delved into downstream regulation of hypersensitivity. Identifying the temporal program of transcription regulatory mechanisms might help develop better therapeutics to target them effectively and selectively, thus preventing the development of neuropathic pain without affecting other physiological functions.
Collapse
Affiliation(s)
- R Hayward
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - S Moore
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - D Artun
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - A Madhavan
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - E Harte
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK
| | - J V Torres-Pérez
- Departament de Biologia Cel·lular, Biologia Funcional i Antropologia Física, Facultat de Ciències Biològiques, Universitat de València, C/Dr. Moliner 50, 46100 Burjassot, Spain.
| | - I Nagy
- Nociception Group, Department of Surgery and Cancer, Division of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital Campus, Imperial College London, 369 Fulham Road, London SW10 9FJ, UK.
| |
Collapse
|
2
|
Young A, Kalladka M, Viswanath A, Zusman T, Khan J. Consomic rats parental strains differ in sensory perception, pain developed following nerve injury and in IL-1 beta and IL-6 levels. ACTA ACUST UNITED AC 2018; 25:137-141. [PMID: 29580677 DOI: 10.1016/j.pathophys.2018.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/12/2018] [Accepted: 03/18/2018] [Indexed: 11/26/2022]
Affiliation(s)
- Andrew Young
- Orofacial Disorders Clinic, Department of Diagnostic Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, 155 Fifth Street, San Francisco, CA, 94103, USA.
| | - Mythili Kalladka
- Orofacial Pain and TMJ Disorders, Eastman Institute for Oral Health, 625 Elmwood Ave, Rochester, NY, 14620, USA.
| | - Archana Viswanath
- Department of Oral and Maxillofacial Surgery, Tufts University School of Dental Medicine, USA.
| | - Tal Zusman
- Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ, USA.
| | - Junad Khan
- Orofacial Pain and TMJ Disorders, Eastman Institute for Oral Health, 625 Elmwood Ave, Rochester, NY, 14620, USA.
| |
Collapse
|
3
|
Nociceptive DRG neurons express muscle lim protein upon axonal injury. Sci Rep 2017; 7:643. [PMID: 28377582 PMCID: PMC5428558 DOI: 10.1038/s41598-017-00590-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/03/2017] [Indexed: 01/21/2023] Open
Abstract
Muscle lim protein (MLP) has long been regarded as a cytosolic and nuclear muscular protein. Here, we show that MLP is also expressed in a subpopulation of adult rat dorsal root ganglia (DRG) neurons in response to axonal injury, while the protein was not detectable in naïve cells. Detailed immunohistochemical analysis of L4/L5 DRG revealed ~3% of MLP-positive neurons 2 days after complete sciatic nerve crush and maximum ~10% after 4–14 days. Similarly, in mixed cultures from cervical, thoracic, lumbar and sacral DRG ~6% of neurons were MLP-positive after 2 days and maximal 17% after 3 days. In both, histological sections and cell cultures, the protein was detected in the cytosol and axons of small diameter cells, while the nucleus remained devoid. Moreover, the vast majority could not be assigned to any of the well characterized canonical DRG subpopulations at 7 days after nerve injury. However, further analysis in cell culture revealed that the largest population of MLP expressing cells originated from non-peptidergic IB4-positive nociceptive neurons, which lose their ability to bind the lectin upon axotomy. Thus, MLP is mostly expressed in a subset of axotomized nociceptive neurons and can be used as a novel marker for this population of cells.
Collapse
|
4
|
Athippozhy A, Lehrberg J, Monaghan JR, Gardiner DM, Voss SR. Characterization of in vitro transcriptional responses of dorsal root ganglia cultured in the presence and absence of blastema cells from regenerating salamander limbs. ACTA ACUST UNITED AC 2014; 1:1-10. [PMID: 25750744 PMCID: PMC4349419 DOI: 10.1002/reg2.14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During salamander limb regeneration, nerves provide signals that induce the formation of a mass of proliferative cells called the blastema. To better understand these signals, we developed a blastema−dorsal root ganglia (DRG) co‐culture model system to test the hypothesis that nerves differentially express genes in response to cues provided by the blastema. DRG with proximal and distal nerve trunks were isolated from axolotls (Ambystoma mexicanum), cultured for 5 days, and subjected to microarray analysis. Relative to freshly isolated DRG, 1541 Affymetrix probe sets were identified as differentially expressed and many of the predicted genes are known to function in injury and neurodevelopmental responses observed for mammalian DRG. We then cultured 5‐day DRG explants for an additional 5 days with or without co‐cultured blastema cells. On day 10, we identified 27 genes whose expression in cultured DRG was significantly affected by the presence or absence of blastema cells. Overall, our study established a DRG−blastema in vitro culture system and identified candidate genes for future investigations of axon regrowth, nerve−blastema signaling, and neural regulation of limb regeneration.
Collapse
Affiliation(s)
- Antony Athippozhy
- Department of Biology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40506
| | - Jeffrey Lehrberg
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - James R Monaghan
- Department of Biology, Northeastern University, Boston, MA 02115
| | - David M Gardiner
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA 92697, USA
| | - S Randal Voss
- Department of Biology and Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, KY 40506
| |
Collapse
|
5
|
Gene expression profiling in zebrafish embryos exposed to diclofenac, an environmental toxicant. Mol Biol Rep 2011; 39:2119-28. [DOI: 10.1007/s11033-011-0959-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
|
6
|
Ortuño-Sahagún D, Rivera-Cervantes MC, Gudiño-Cabrera G, Junyent F, Verdaguer E, Auladell C, Pallàs M, Camins A, Beas-Zárate C. Microarray analysis of rat hippocampus exposed to excitotoxicity: reversal Na(+)/Ca(2+) exchanger NCX3 is overexpressed in glial cells. Hippocampus 2010; 22:128-40. [PMID: 20928830 DOI: 10.1002/hipo.20869] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2010] [Indexed: 02/06/2023]
Abstract
Multiple factors are involved in the glutamate-induced excitotoxicity phenomenon, such as overload of ionotropic and metabotropic receptors, excess Ca(2+) influx, nitric oxide synthase activation, oxidative damage due to increase in free radicals, and release of endogenous polyamine, among others. In order to attempt a more integrated approach to address this issue, we established, by microarray analysis, the hippocampus gene expression profiles under glutamate-induced excitotoxicity conditions. Increased gene expression is mainly related to excitotoxicity (CaMKII, glypican 2, GFAP, NCX3, IL-2, and Gmeb2) or with cell damage response (dynactin and Ecel1). Several genes that augmented their expression are related to glutamatergic system modulation, in particular with NMDA receptor modulation and calcium homeostasis (IL-2, CaMKII, acrosin, Gmeb2, hAChE, Slc83a, and SP1 factor). Conversely, among genes that diminished their expression, we found the Syngap 1, which is downregulated by CaMKII, and the MHC II, which is downregulated by glutamate. Changes observed in gene expression induced by monosodium glutamate (MSG) neonatal treatment in the hippocampus are consistent with the activation of the mechanisms that modulate NMDA receptor function as well as with the implementation of plastic response to cell damage and intracellular calcium homeostasis. Regarding this aspect, we report here that NCX3/Slc8a3, a Na(+)/Ca(2+) membrane exchanger, is highly expressed in astrocytes, both in vitro and in vivo, in response to glutamate-induced excitotoxicity. Hence, the results of this analysis present a broad view of the expression profile elicited by MSG neonatal treatment, and lead us to suggest the possible molecular pathways of action and reaction involved under this experimental model of excitotoxicity.
Collapse
Affiliation(s)
- Daniel Ortuño-Sahagún
- Laboratorio de Desarrollo y Regeneración Neural, Instituto de Neurobiología, C.U.C.B.A, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wu Q, Henry JL. Changes in Abeta non-nociceptive primary sensory neurons in a rat model of osteoarthritis pain. Mol Pain 2010; 6:37. [PMID: 20594346 PMCID: PMC2908067 DOI: 10.1186/1744-8069-6-37] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 07/01/2010] [Indexed: 11/18/2022] Open
Abstract
Background Pain is a major debilitating factor in osteoarthritis (OA), yet few mechanism-based therapies are available. To address the need to understand underlying mechanisms the aim of the present study was to determine changes in sensory neurons in an animal model of OA pain. Results The model displayed typical osteoarthritis pathology characterized by cartilage degeneration in the knee joint and also manifested knee pathophysiology (edema and increased vasculature permeability of the joint) and altered nociception of the affected limb (hind paw tenderness and knee articulation-evoked reduction in the tail flick latency). Neurons included in this report innervated regions throughout the entire hind limb. Aβ-fiber low threshold mechanoreceptors exhibited a slowing of the dynamics of action potential (AP) genesis, including wider AP duration and slower maximum rising rate, and muscle spindle neurons were the most affected subgroup. Only minor AP configuration changes were observed in either C- or Aδ-fiber nociceptors. Conclusion Thus, at one month after induction of the OA model Aβ-fiber low threshold mechanoreceptors but not C- or Aδ-fiber nociceptors had undergone changes in electrophysiological properties. If these changes reflect a change in functional role of these neurons in primary afferent sensory processing, then Aβ-fiber non-nociceptive primary sensory neurons may be involved in the pathogenesis of OA pain. Further, it is important to point out that the patterns of the changes we observed are consistent with observations in models of peripheral neuropathy but not models of peripheral inflammation.
Collapse
Affiliation(s)
- Qi Wu
- Psychiatry and Behavioral Neurosciences, McMaster University, HSC 4N35, Hamilton, Ontario, Canada
| | | |
Collapse
|
8
|
Aldrich BT, Frakes EP, Kasuya J, Hammond DL, Kitamoto T. Changes in expression of sensory organ-specific microRNAs in rat dorsal root ganglia in association with mechanical hypersensitivity induced by spinal nerve ligation. Neuroscience 2009; 164:711-23. [PMID: 19699278 DOI: 10.1016/j.neuroscience.2009.08.033] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/31/2009] [Accepted: 08/12/2009] [Indexed: 12/14/2022]
Abstract
Chronic neuropathic pain caused by peripheral nerve injury is associated with global changes in gene expression in damaged neurons. To understand the molecular mechanisms underlying neuropathic pain, it is essential to elucidate how nerve injury alters gene expression and how the change contributes to the development and maintenance of chronic pain. MicroRNAs are non-protein-coding RNA molecules that regulate gene expression in a wide variety of biological processes mainly at the level of translation. This study investigated the possible involvement of microRNAs in gene regulation relevant to neuropathic pain. The analyses focused on a sensory organ-specific cluster of microRNAs that includes miR-96, -182, and -183. Quantitative real-time polymerase chain reaction (qPCR) analyses confirmed that these microRNAs were highly enriched in the dorsal root ganglion (DRG) of adult rats. Using the L5 spinal nerve ligation (SNL) model of chronic neuropathic pain, we observed a significant reduction in expression of these microRNAs in injured DRG neurons compared to controls. In situ hybridization and immunohistochemical analyses revealed that these microRNAs are expressed in both myelinated (N52 positive) and unmyelinated (IB4 positive) primary afferent neurons. They also revealed that the intracellular distributions of the microRNAs in DRG neurons were dramatically altered in animals with mechanical hypersensitivity. Whereas microRNAs were uniformly distributed within the DRG soma of non-allodynic animals, they were preferentially localized to the periphery of neurons in allodynic animals. The redistribution of microRNAs was associated with changes in the distribution of the stress granule (SG) protein, T-cell intracellular antigen 1 (TIA-1). These data demonstrate that SNL induces changes in expression levels and patterns of miR-96, -182, and -183, implying their possible contribution to chronic neuropathic pain through translational regulation of pain-relevant genes. Moreover, SGs were suggested to be assembled and associated with microRNAs after SNL, which may play a role in modification of microRNA-mediated gene regulation in DRG neurons.
Collapse
Affiliation(s)
- B T Aldrich
- Department of Anesthesia, University of Iowa, 51 Newton Road, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
9
|
Gibbs GM, Roelants K, O'Bryan MK. The CAP superfamily: cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins--roles in reproduction, cancer, and immune defense. Endocr Rev 2008; 29:865-97. [PMID: 18824526 DOI: 10.1210/er.2008-0032] [Citation(s) in RCA: 380] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins (CAP) superfamily members are found in a remarkable range of organisms spanning each of the animal kingdoms. Within humans and mice, there are 31 and 33 individual family members, respectively, and although many are poorly characterized, the majority show a notable expression bias to the reproductive tract and immune tissues or are deregulated in cancers. CAP superfamily proteins are most often secreted and have an extracellular endocrine or paracrine function and are involved in processes including the regulation of extracellular matrix and branching morphogenesis, potentially as either proteases or protease inhibitors; in ion channel regulation in fertility; as tumor suppressor or prooncogenic genes in tissues including the prostate; and in cell-cell adhesion during fertilization. This review describes mammalian CAP superfamily gene expression profiles, phylogenetic relationships, protein structural properties, and biological functions, and it draws into focus their potential role in health and disease. The nine subfamilies of the mammalian CAP superfamily include: the human glioma pathogenesis-related 1 (GLIPR1), Golgi associated pathogenesis related-1 (GAPR1) proteins, peptidase inhibitor 15 (PI15), peptidase inhibitor 16 (PI16), cysteine-rich secretory proteins (CRISPs), CRISP LCCL domain containing 1 (CRISPLD1), CRISP LCCL domain containing 2 (CRISPLD2), mannose receptor like and the R3H domain containing like proteins. We conclude that overall protein structural conservation within the CAP superfamily results in fundamentally similar functions for the CAP domain in all members, yet the diversity outside of this core region dramatically alters target specificity and, therefore, the biological consequences.
Collapse
Affiliation(s)
- Gerard M Gibbs
- Monash Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton 3168, Australia.
| | | | | |
Collapse
|
10
|
Chambers D, Mason I. A high throughput messenger RNA differential display screen identifies discrete domains of gene expression and novel patterning processes along the developing neural tube. BMC DEVELOPMENTAL BIOLOGY 2006; 6:9. [PMID: 16504111 PMCID: PMC1397802 DOI: 10.1186/1471-213x-6-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Accepted: 02/24/2006] [Indexed: 11/15/2022]
Abstract
BACKGROUND During early development the vertebrate neural tube is broadly organized into the forebrain, midbrain, hindbrain and spinal cord regions. Each of these embryonic zones is patterned by a combination of genetic pathways and the influences of local signaling centres. However, it is clear that much remains to be learned about the complete set of molecular cues that are employed to establish the identity and intrinsic neuronal diversity of these territories. In order to address this, we performed a high-resolution messenger RNA differential display screen to identify molecules whose expression is regionally restricted along the anteroposterior (AP) neuraxis during early chick development, with particular focus on the midbrain and hindbrain vesicles. RESULTS This approach identified 44 different genes, with both known and unknown functions, whose transcription is differentially regulated along the AP axis. The identity and ontological classification of these genes is presented. The wide variety of functional classes of transcripts isolated in this screen reflects the diverse spectrum of known influences operating across these embryonic regions. Of these 44 genes, several have been selected for detailed in situ hybridization analysis to validate the screen and accurately define the expression domains. Many of the identified cDNAs showed no identity to the current databases of known or predicted genes or ESTs. Others represent genes whose embryonic expression has not been previously reported. Expression studies confirmed the predictions of the primary differential display data. Moreover, the nature of identified genes, not previously associated with regionalisation of the brain, identifies novel potential mechanisms in that process. CONCLUSION This study provides an insight into some of the varied and novel molecular networks that operate during the regionalization of embryonic neural tissue and expands our knowledge of molecular repertoire used during development.
Collapse
Affiliation(s)
- David Chambers
- MRC Centre for Developmental Neurobiology, 4Floor New Hunt's House, King's College London, Guy's Campus, London, SE1 1UL, UK
- Wellcome Trust Functional Genomics Development Initiative, MRC Centre for Developmental Neurobiology, 4Floor New Hunt's House, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Ivor Mason
- MRC Centre for Developmental Neurobiology, 4Floor New Hunt's House, King's College London, Guy's Campus, London, SE1 1UL, UK
| |
Collapse
|
11
|
Verpoorten N, Verhoeven K, Weckx S, Jacobs A, Serneels S, Del Favero J, Ceuterick C, Van Bockstaele DR, Berneman ZN, Van den Bosch L, Robberecht W, Nobbio L, Schenone A, Dessaud E, deLapeyrière O, Huylebroeck D, Zwijsen A, De Jonghe P, Timmerman V. Synaptopodin and 4 novel genes identified in primary sensory neurons. Mol Cell Neurosci 2005; 30:316-25. [PMID: 16139508 DOI: 10.1016/j.mcn.2005.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 06/14/2005] [Accepted: 07/08/2005] [Indexed: 11/20/2022] Open
Abstract
We performed differential gene expression profiling in the peripheral nervous system by comparing the transcriptome of sensory neurons with the transcriptome of lower motor neurons. Using suppression subtractive cDNA hybridization, we identified 5 anonymous transcripts with a predominant expression in sensory neurons. We determined the gene structures and predicted the functional protein domains. The 4930579P15Rik gene encodes for a novel inhibitor of protein phosphatase-1 and 9030217H17Rik was found to be the mouse gene synaptopodin. We performed in situ hybridization for all genes in mouse embryos, and found expression predominantly in the primary class of sensory neurons. Expression of 4930579P15Rik and synaptopodin was restricted to craniospinal sensory ganglia. Neither synaptopodin, nor any known family member of 4930579P15Rik, has ever been described in sensory neurons. The identification of protein domains and expression patterns allows further functional analysis of these novel genes in relation to the development and biology of sensory neurons.
Collapse
Affiliation(s)
- Nathalie Verpoorten
- Peripheral Neuropathy Group, Department of Molecular Genetics, Flanders Interuniversity Institute for Biotechnology (VIB), Institute Born-Bunge, University of Antwerp, Universiteitsplein 1, B-2610 Antwerpen, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Hirota R, Itoh K, Yaoi T, Bamba H, Uno T, Hisa Y, Fushiki S. Molecular Changes in Neurons of Rat Nucleus Ambiguus after Axotomy, As Revealed by a Novel Method of In Vivo Fluorescence Neuronal Labeling Combined with Single-cell RT-PCR. Acta Histochem Cytochem 2005. [DOI: 10.1267/ahc.38.229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Ryuichi Hirota
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Kyoko Itoh
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Takeshi Yaoi
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Hitoshi Bamba
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Toshiyuki Uno
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Yasuo Hisa
- Department of Otolaryngology-Head and Neck Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Shinji Fushiki
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| |
Collapse
|
13
|
Bruno L, Hoffmann R, McBlane F, Brown J, Gupta R, Joshi C, Pearson S, Seidl T, Heyworth C, Enver T. Molecular signatures of self-renewal, differentiation, and lineage choice in multipotential hemopoietic progenitor cells in vitro. Mol Cell Biol 2004; 24:741-56. [PMID: 14701746 PMCID: PMC343787 DOI: 10.1128/mcb.24.2.741-756.2004] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The molecular mechanisms governing self-renewal, differentiation, and lineage specification remain unknown. Transcriptional profiling is likely to provide insight into these processes but, as yet, has been confined to "static" molecular profiles of stem and progenitors cells. We now provide a comprehensive, statistically robust, and "dynamic" analysis of multipotent hemopoietic progenitor cells undergoing self-renewal in response to interleukin-3 (IL-3) and multilineage differentiation in response to lineage-affiliated cytokines. Cells undergoing IL-3-dependent proliferative self-renewal displayed striking complexity, including expression of genes associated with different lineage programs, suggesting a highly responsive compartment poised to rapidly execute intrinsically or extrinsically initiated cell fate decisions. A remarkable general feature of early differentiation was a resolution of complexity through the downregulation of gene expression. Although effector genes characteristic of mature cells were upregulated late, coincident with morphological changes, lineage-specific changes in gene expression were observed prior to this, identifying genes which may provide early harbingers of unilineage commitment. Of particular interest were genes that displayed differential behavior irrespective of the lineage elaborated, many of which were rapidly downregulated within 4 to 8 h after exposure to a differentiation cue. These are likely to include genes important in self-renewal, the maintenance of multipotentiality, or the negative regulation of differentiation per se.
Collapse
Affiliation(s)
- Ludovica Bruno
- Section of Gene Function and Regulation, The Institute of Cancer Research, London SW3 6JB, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Wang H, Sun H, Della Penna K, Benz RJ, Xu J, Gerhold DL, Holder DJ, Koblan KS. Chronic neuropathic pain is accompanied by global changes in gene expression and shares pathobiology with neurodegenerative diseases. Neuroscience 2002; 114:529-46. [PMID: 12220557 DOI: 10.1016/s0306-4522(02)00341-x] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Neuropathic pain is induced by injury or disease of the nervous system. Studies aimed at understanding the molecular pathophysiology of neuropathic pain have so far focused on a few known molecules and signaling pathways in neurons. However, the pathophysiology of neuropathic pain appears to be very complex and remains poorly understood. A global understanding of the molecular mechanisms involved in neuropathic pain is needed for a better understanding of the pathophysiology and treatment of neuropathic pain. Towards this end, we examined global gene expression changes as well as the pathobiology at the cellular level in a spinal nerve ligation neuropathic pain model using DNA microarray, quantitative real-time PCR and immunohistochemistry. We found that the behavioral hypersensitivity that is manifested in the persistent pain state is accompanied by previously undescribed changes in gene expression. In the DRG, we found regulation of: (1) immediate early genes; (2) genes such as ion channels and signaling molecules that contribute to the excitability of neurons; and (3) genes that are indicative of secondary events such as neuroinflammation. In addition, we studied gene regulation in both injured and uninjured DRG by quantitative PCR, and observed differential gene regulation in these two populations of DRGs. Furthermore, we demonstrated unexpected co-regulation of many genes, especially the activation of neuroinflammation markers in both the PNS and CNS. The results of our study provide a new picture of the molecular mechanisms that underlie the complexity of neuropathic pain and suggest that chronic pain shares common pathobiology with progressive neurodegenerative disease.
Collapse
Affiliation(s)
- H Wang
- Department of Molecular Pharmacology, Merck Research Laboratories, WP26A-2000, West Point, PA 19486, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Costigan M, Befort K, Karchewski L, Griffin RS, D'Urso D, Allchorne A, Sitarski J, Mannion JW, Pratt RE, Woolf CJ. Replicate high-density rat genome oligonucleotide microarrays reveal hundreds of regulated genes in the dorsal root ganglion after peripheral nerve injury. BMC Neurosci 2002; 3:16. [PMID: 12401135 PMCID: PMC139981 DOI: 10.1186/1471-2202-3-16] [Citation(s) in RCA: 426] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2002] [Accepted: 10/25/2002] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Rat oligonucleotide microarrays were used to detect changes in gene expression in the dorsal root ganglion (DRG) 3 days following sciatic nerve transection (axotomy). Two comparisons were made using two sets of triplicate microarrays, naïve versus naïve and naïve versus axotomy. RESULTS Microarray variability was assessed using the naïve versus naïve comparison. These results support use of a P < 0.05 significance threshold for detecting regulated genes, despite the large number of hypothesis tests required. For the naïve versus axotomy comparison, a 2-fold cut off alone led to an estimated error rate of 16%; combining a >1.5-fold expression change and P < 0.05 significance reduced the estimated error to 5%. The 2-fold cut off identified 178 genes while the combined >1.5-fold and P < 0.05 criteria generated 240 putatively regulated genes, which we have listed. Many of these have not been described as regulated in the DRG by axotomy. Northern blot, quantitative slot blots and in situ hybridization verified the expression of 24 transcripts. These data showed an 83% concordance rate with the arrays; most mismatches represent genes with low expression levels reflecting limits of array sensitivity. A significant correlation was found between actual mRNA differences and relative changes between microarrays (r2 = 0.8567). Temporal patterns of individual genes regulation varied. CONCLUSIONS We identify parameters for microarray analysis which reduce error while identifying many putatively regulated genes. Functional classification of these genes suggest reorganization of cell structural components, activation of genes expressed by immune and inflammatory cells and down-regulation of genes involved in neurotransmission.
Collapse
Affiliation(s)
- Michael Costigan
- Neural Plasticity Research Group, Department of Anesthesia and Critical Care, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Medhurst AD, Zeng BY, Charles KJ, Gray J, Reavill C, Hunter AJ, Shale JA, Jenner P. Up-regulation of secretoneurin immunoreactivity and secretogranin II mRNA in rat striatum following 6-hydroxydopamine lesioning and chronic L-DOPA treatment. Neuroscience 2002; 105:353-64. [PMID: 11672603 DOI: 10.1016/s0306-4522(01)00190-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Destruction of the nigro-striatal pathway in Parkinson's disease and treatment with L-DOPA lead to persistent alterations in basal ganglia output pathways that are poorly characterised. Differential display mRNA analysis was used to study the effects of 6-hydroxydopamine-induced lesions of the medial forebrain bundle on gene expression in the rat striatum. One up-regulated cDNA identified in two independent groups of 6-hydroxydopamine-lesioned animals was cloned and sequence analysis showed 97% homology to secretogranin II. Differential up-regulation of secretogranin II following 6-hydroxydopamine lesioning was confirmed in a further group of 6-hydroxydopamine-lesioned rats using TaqMan real time quantitative reverse transcription-polymerase chain reaction. Following chronic L-DOPA treatment of 6-hydroxydopamine-lesioned rats, secretogranin II mRNA was further up-regulated to a similar degree to that observed for preproenkephalin A mRNA expression. Immunohistochemical analysis confirmed the increase in secretogranin II peptide levels in striatal neurones in 6-hydroxydopamine-lesioned rats following chronic L-DOPA treatment. The increase in secretogranin II mRNA occurring following destruction of the nigro-striatal pathway and chronic L-DOPA treatment may result in an increase in secretoneurin levels, which could be important for the regulation of striatal output pathways.
Collapse
Affiliation(s)
- A D Medhurst
- Neuroscience Research, GlaxoSmithKline, Harlow, Essex, UK.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Newton RA, Bingham S, Case PC, Sanger GJ, Lawson SN. Dorsal root ganglion neurons show increased expression of the calcium channel alpha2delta-1 subunit following partial sciatic nerve injury. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 95:1-8. [PMID: 11687271 DOI: 10.1016/s0169-328x(01)00188-7] [Citation(s) in RCA: 170] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neuropathic pain is associated with changes in the electrophysiological and neurochemical properties of injured primary afferent neurons. A mRNA differential display study in rat L(4/5) dorsal root ganglia (DRGs) revealed upregulation of the calcium channel alpha2delta-1 subunit 2 weeks after partial sciatic nerve ligation (Seltzer model of neuropathic pain). The upregulated transcript appeared to represent previously unidentified sequence from the 3'-untranslated region of rat alpha2delta-1 mRNA. In situ hybridization using L(5) DRGs from sham operated rats showed that 73, 40 and 19% of small (<700 microm(2)), medium (700-1100 microm(2)) and large (>1100 microm(2)) neuronal profiles, respectively, expressed alpha2delta-1 mRNA. Two weeks following nerve injury there was a significant ipsilateral increase, both in the percentage of DRG neurons expressing alpha2delta-1 mRNA and in the intensity of the hybridization signal. Comparison of this ipsilateral expression with that in sham animals, revealed that for small, medium and large neurons, respectively, the proportion of neurons labelled increased by 1.2-, 1.8- and 2.7-fold, while the hybridization signal in alpha2delta-1-labelled neurons increased by 2.8-, 2.5- and 3.7-fold. The most intensely labelled neuronal profiles in ipsilateral, sham and contralateral DRGs, were generally those with small cross-sectional areas. The alpha2delta-1 auxiliary subunit is known to modulate calcium channel function in heterologous expression systems via its association with the pore-forming alpha1 calcium channel subunit. Therefore the increased levels of this subunit in the populations of primary afferents described may, via modulation of calcium-dependent processes such as neurotransmitter release and neuronal excitability, influence the processing of sensory information.
Collapse
Affiliation(s)
- R A Newton
- Department of Physiology, The School of Medical Sciences, University of Bristol, University Walk, BS8 1TD, Bristol, UK.
| | | | | | | | | |
Collapse
|
18
|
Kim DS, Lee SJ, Park SY, Yoo HJ, Kim SH, Kim KJ, Cho HJ. Differentially expressed genes in rat dorsal root ganglia following peripheral nerve injury. Neuroreport 2001; 12:3401-5. [PMID: 11711894 DOI: 10.1097/00001756-200110290-00050] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ordered differential display PCR was used to identify differentially expressed genes in rat dorsal root ganglia at 7 days following chronic constriction injury (CCI) of the sciatic nerve. Fourteen differentially displayed cDNA bands were isolated, cloned and verified by RT-PCR. The four mRNAs were increased, which included mRNAs encoding heat shock protein 27, fatty acid binding protein, apolipoprotein D and one novel gene. Six down-regulated clones were microtubule-associated protein 1B, protein tyrosine phosphatase alpha, Kv1.2 channel, myelin protein SR13, medium-sized neurofilament protein, and one novel gene. Our results show that many differentially regulated genes after CCI may play a role in nerve degeneration and/or regeneration and provide a molecular framework for understanding the peripheral mechanism underlying neuropathic pain.
Collapse
Affiliation(s)
- D S Kim
- Department of Anatomy, School of Medicine, Kyungpook National University, 2-101, Dongin Dong, Taegu, 700-422, Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Rausch O, Newton RA, Bingham S, Macdonald R, Case CP, Sanger GJ, Lawson SN, Reith AD. Nerve injury-associated kinase: a sterile 20-like protein kinase up-regulated in dorsal root ganglia in a rat model of neuropathic pain. Neuroscience 2001; 101:767-77. [PMID: 11113325 DOI: 10.1016/s0306-4522(00)00392-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Partial injury of the rat sciatic nerve elicits a variety of characteristic chemical, electrophysical and anatomical changes in primary sensory neurons and constitutes a physiologically relevant model of neuropathic pain. To elucidate molecular mechanisms that underlie the physiology of neuropathic pain, we have used messenger RNA differential display to identify genes that exhibit increased ipsilateral expression in L4/5 dorsal root ganglia, following unilateral partial ligation of the rat sciatic nerve. One set of partial complementary DNA clones identified in this screen was found to encode a protein kinase, nerve injury-associated kinase. Cloning of the full-length human nerve injury-associated kinase complementary DNA, together with recombinant expression analysis, reveal nerve injury-associated kinase to be a functional member of a subgroup of sterile 20-like protein kinases characterised by the presence of a putative carboxy terminal autoregulatory domain. Induction of nerve injury-associated kinase expression in dorsal root ganglia in the rat neuropathic pain model was confirmed by quantitative reverse transcription-polymerase chain reaction, and RNA in situ hybridization analysis revealed enhanced levels of nerve injury-associated kinase within neurons.Together, our data implicate nerve injury-associated kinase as a novel upstream component of an intracellular signalling cascade that is up-regulated in dorsal root ganglia neurons in response to sciatic nerve injury.
Collapse
Affiliation(s)
- O Rausch
- Department of Neurology, GlaxoSmithKline Pharmaceuticals, New Frontiers Science Park North, Essex, CM19 5AW, Harlow, UK
| | | | | | | | | | | | | | | |
Collapse
|