1
|
Nishikawa Y. Aberrant differentiation and proliferation of hepatocytes in chronic liver injury and liver tumors. Pathol Int 2024; 74:361-378. [PMID: 38837539 PMCID: PMC11551836 DOI: 10.1111/pin.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/29/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024]
Abstract
Chronic liver injury induces liver cirrhosis and facilitates hepatocarcinogenesis. However, the effects of this condition on hepatocyte proliferation and differentiation are unclear. We showed that rodent hepatocytes display a ductular phenotype when they are cultured within a collagenous matrix. This process involves transdifferentiation without the emergence of hepatoblastic features and is at least partially reversible. During the ductular reaction in chronic liver diseases with progressive fibrosis, some hepatocytes, especially those adjacent to ectopic ductules, demonstrate ductular transdifferentiation, but the majority of increased ductules originate from the existing bile ductular system that undergoes extensive remodeling. In chronic injury, hepatocyte proliferation is weak but sustained, and most regenerative nodules in liver cirrhosis are composed of clonally proliferating hepatocytes, suggesting that a small fraction of hepatocytes maintain their proliferative capacity in chronic injury. In mouse hepatocarcinogenesis models, hepatocytes activate the expression of various fetal/neonatal genes, indicating that these cells undergo dedifferentiation. Hepatocyte-specific somatic integration of various oncogenes in mice demonstrated that hepatocytes may be the cells of origin for a broad spectrum of liver tumors through transdifferentiation and dedifferentiation. In conclusion, the phenotypic plasticity and heterogeneity of mature hepatocytes are important for understanding the pathogenesis of chronic liver diseases and liver tumors.
Collapse
Affiliation(s)
- Yuji Nishikawa
- President's OfficeAsahikawa Medical UniversityAsahikawaHokkaidoJapan
| |
Collapse
|
2
|
Goel H, Printz RL, Pannala VR, AbdulHameed MDM, Wallqvist A. Probing Liver Injuries Induced by Thioacetamide in Human In Vitro Pooled Hepatocyte Experiments. Int J Mol Sci 2024; 25:3265. [PMID: 38542239 PMCID: PMC10970511 DOI: 10.3390/ijms25063265] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/29/2024] [Accepted: 03/08/2024] [Indexed: 11/03/2024] Open
Abstract
Animal studies are typically utilized to understand the complex mechanisms associated with toxicant-induced hepatotoxicity. Among the alternative approaches to animal studies, in vitro pooled human hepatocytes have the potential to capture population variability. Here, we examined the effect of the hepatotoxicant thioacetamide on pooled human hepatocytes, divided into five lots, obtained from forty diverse donors. For 24 h, pooled human hepatocytes were exposed to vehicle, 1.33 mM (low dose), and 12 mM (high dose) thioacetamide, followed by RNA-seq analysis. We assessed gene expression variability using heat maps, correlation plots, and statistical variance. We used KEGG pathways and co-expression modules to identify underlying physiological processes/pathways. The co-expression module analysis showed that the majority of the lots exhibited activation for the bile duct proliferation module. Despite lot-to-lot variability, we identified a set of common differentially expressed genes across the lots with similarities in their response to amino acid, lipid, and carbohydrate metabolism. We also examined efflux transporters and found larger lot-to-lot variability in their expression patterns, indicating a potential for alteration in toxicant bioavailability within the cells, which could in turn affect the gene expression patterns between the lots. Overall, our analysis highlights the challenges in using pooled hepatocytes to understand mechanisms of toxicity.
Collapse
Affiliation(s)
- Himanshu Goel
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA; (V.R.P.); (M.D.M.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Richard L. Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA;
- Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Venkat R. Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA; (V.R.P.); (M.D.M.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Mohamed Diwan M. AbdulHameed
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA; (V.R.P.); (M.D.M.A.)
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, Frederick, MD 21702, USA; (V.R.P.); (M.D.M.A.)
| |
Collapse
|
3
|
Faccioli LA, Dias ML, Martins-Santos R, Paredes BD, Takiya CM, dos Santos Goldenberg RC. Resident Liver Stem Cells. RESIDENT STEM CELLS AND REGENERATIVE THERAPY 2024:23-51. [DOI: 10.1016/b978-0-443-15289-4.00015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Comerford SA, Hinnant EA, Chen Y, Hammer RE. Hepatic ribosomal protein S6 (Rps6) insufficiency results in failed bile duct development and loss of hepatocyte viability; a ribosomopathy-like phenotype that is partially p53-dependent. PLoS Genet 2023; 19:e1010595. [PMID: 36656901 PMCID: PMC9888725 DOI: 10.1371/journal.pgen.1010595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/31/2023] [Accepted: 12/26/2022] [Indexed: 01/20/2023] Open
Abstract
Defective ribosome biogenesis (RiBi) underlies a group of clinically diverse human diseases collectively known as the ribosomopathies, core manifestations of which include cytopenias and developmental abnormalities that are believed to stem primarily from an inability to synthesize adequate numbers of ribosomes and concomitant activation of p53. The importance of a correctly functioning RiBi machinery for maintaining tissue homeostasis is illustrated by the observation that, despite having a paucity of certain cell types in early life, ribosomopathy patients have an increased risk for developing cancer later in life. This suggests that hypoproliferative states trigger adaptive responses that can, over time, become maladaptive and inadvertently drive unchecked hyperproliferation and predispose to cancer. Here we describe an experimentally induced ribosomopathy in the mouse and show that a normal level of hepatic ribosomal protein S6 (Rps6) is required for proper bile duct development and preservation of hepatocyte viability and that its insufficiency later promotes overgrowth and predisposes to liver cancer which is accelerated in the absence of the tumor-suppressor PTEN. We also show that the overexpression of c-Myc in the liver ameliorates, while expression of a mutant hyperstable form of p53 partially recapitulates specific aspects of the hepatopathies induced by Rps6 deletion. Surprisingly, co-deletion of p53 in the Rps6-deficient background fails to restore biliary development or significantly improve hepatic function. This study not only reveals a previously unappreciated dependence of the developing liver on adequate levels of Rps6 and exquisitely controlled p53 signaling, but suggests that the increased cancer risk in ribosomopathy patients may, in part, stem from an inability to preserve normal tissue homeostasis in the face of chronic injury and regeneration.
Collapse
Affiliation(s)
- Sarah A. Comerford
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Elizabeth A. Hinnant
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yidong Chen
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas. United States of America
| | - Robert E. Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
5
|
Lin Y, Zhang F, Zhang L, Chen L, Zheng S. Characteristics of SOX9-positive progenitor-like cells during cholestatic liver regeneration in biliary atresia. Stem Cell Res Ther 2022; 13:114. [PMID: 35313986 PMCID: PMC8935712 DOI: 10.1186/s13287-022-02795-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/02/2022] [Indexed: 11/16/2022] Open
Abstract
Background The progression of Biliary Atresia (BA) is associated with the number of reactive ductular cells (RDCs) whose heterogeneity in origin and evolution in humans remains unknown. SOX9-positive liver progenitor-like cells (LPLCs) have been shown to participate in RDCs and new hepatocyte formation during cholestatic liver regeneration in an animal model, which implies the possibility that hepatocyte-reprogrammed LPLCs could be a source of RDCs in BA. The present study aimed to elucidate the characteristics of SOX9-positive LPLCs in BA for exploring new possible therapeutic targets by manipulating the bi-differentiation process of LPLCs to prevent disease progression. Methods Twenty-eight patients, including 24 patients with BA and 4 patients with Congenital Choledochal Cyst as the control group, were retrospectively recruited. Liver biopsy samples were classified histologically using a 4-point scale based on fibrosis severity. LPLCs were detected by SOX9 and HNF4A double positive staining. Single immunohistochemistry, double immunohistochemistry, and multiple immunofluorescence staining were used to determine the different cell types and characteristics of LPLCs. Results The prognostic predictors of BA, namely total bile acid (TBA), RDCs, and fibrosis, were correlated to the emergence of LPLCs. SOX9 and HNF4A double-positive LPLCs co-stained rarely with relevant markers of portal hepatic progenitor cells (portal-HPCs), including CK19, CK7, EPCAM, PROM1 (CD133), TROP2, and AFP. Under cholestasis conditions, LPLCs acquired superior proliferation and anti-senescence ability among hepatocytes. Moreover, LPLCs arranged as a pseudo-rosette structure appeared from the periportal parenchyma to the portal region, which implied the differentiation from hepatocyte-reprogrammed LPLCs to RDCs with the progression of cholestasis. Conclusions LPLCs are associated with disease progression and prognostic factors of BA. The bipotent characteristics of LPLCs are different from those of portal-HPCs. As cholestasis progresses, LPLCs appear to gain superior proliferation and anti-senescence ability and continually differentiate to RDCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02795-2.
Collapse
Affiliation(s)
- Yuting Lin
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Fang Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ludi Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Lian Chen
- Department of Pathology, Children's Hospital of Fudan University, National Children's Medical Center, 399 Wan Yuan Road, Shanghai, 201102, China
| | - Shan Zheng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai Key Laboratory of Birth Defect, and Key Laboratory of Neonatal Disease, Ministry of Health, 399 Wan Yuan Road, Shanghai, 201102, China.
| |
Collapse
|
6
|
Park JW, Kim MJ, Kim SE, Kim HJ, Jeon YC, Shin HY, Park SJ, Jang MK, Kim DJ, Park CK, Choi EK. Increased Expression of S100B and RAGE in a Mouse Model of Bile Duct Ligation-induced Liver Fibrosis. J Korean Med Sci 2021; 36:e90. [PMID: 33847081 PMCID: PMC8042478 DOI: 10.3346/jkms.2021.36.e90] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/27/2021] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Liver fibrosis is defined as the accumulation of the extracellular matrix and scar formation. The receptor for advanced glycation end products (RAGE) has been demonstrated to participate in fibrogenesis. S100B is a ligand of RAGE and exerts extracellular functions by inducing a series of signal transduction cascades. However, the involvement of S100B and RAGE in cholestasis-induced liver fibrosis remains unclear. In this study, we investigated S100B and RAGE expression during liver fibrosis in mice that underwent common bile duct ligation (BDL). METHODS BDL was performed in 10-week-old male C57BL/6J mice with sham control (n = 26) and BDL (n = 26) groups. Expression levels of S100B, RAGE and fibrotic markers in the livers from both groups at week 1 and 3 after BDL were examined by western blot and quantitative real-time reverse transcription polymerase chain reaction analysis. Liver fibrotic changes were examined by histological and ultrastructural analysis. RESULTS Histological staining with Sirius Red and the evaluation of the messenger RNA expression of fibrotic markers showed noticeable periportal fibrosis and bile duct proliferation. S100B was mainly present in bile duct epithelial cells, and its expression was upregulated in proportion to the ductular reaction during fibrogenesis by BDL. RAGE expression was also increased, and interestingly, triple immunofluorescence staining and transmission electron microscopy showed that both S100B and RAGE were expressed in proliferating bile duct epithelial cells and activated hepatic stellate cells (HSCs) of the BDL livers. In addition, in rat HSCs (HSC-T6), treatment with recombinant S100B protein significantly increased fibrotic markers in a dose-dependent manner, and RAGE small interfering RNA (siRNA) suppressed S100B-stimulated upregulation of fibrotic markers compared with cells treated with scramble siRNA and S100B. CONCLUSION These findings suggest that the increased expression of S100B and RAGE and the interaction between S100B and RAGE may play an important role in ductular reaction and liver fibrosis induced by BDL.
Collapse
Affiliation(s)
- Ji Won Park
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Korea
- Department of Internal Medicine, Hallym University Medical Center, Anyang, Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Mo Jong Kim
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Korea
- Ilsong Institute of Life Science, Hallym University, Anyang, Korea
| | - Sung Eun Kim
- Department of Internal Medicine, Hallym University Medical Center, Anyang, Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Hee Jun Kim
- Ilsong Institute of Life Science, Hallym University, Anyang, Korea
| | - Yong Chul Jeon
- Ilsong Institute of Life Science, Hallym University, Anyang, Korea
| | - Hae Young Shin
- Ilsong Institute of Life Science, Hallym University, Anyang, Korea
| | - Se Jin Park
- Ilsong Institute of Life Science, Hallym University, Anyang, Korea
| | - Myoung Kuk Jang
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
- Department of Internal Medicine, Kangdong Sacred Heart Hospital of Hallym University Medical Center, Seoul, Korea
| | - Dong Joon Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
- Department of Internal Medicine, Chuncheon Sacred Heart Hospital of Hallym University Medical Center, Chuncheon, Korea
| | - Choong Kee Park
- Department of Internal Medicine, Hallym University Medical Center, Anyang, Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Korea
| | - Eun Kyoung Choi
- Department of Biomedical Gerontology, Graduate School of Hallym University, Chuncheon, Korea
- Ilsong Institute of Life Science, Hallym University, Anyang, Korea.
| |
Collapse
|
7
|
Cholangiogenic potential of human deciduous pulp stem cell-converted hepatocyte-like cells. Stem Cell Res Ther 2021; 12:57. [PMID: 33436050 PMCID: PMC7805240 DOI: 10.1186/s13287-020-02113-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Background Stem cells from human exfoliated deciduous teeth (SHED) have been reported to show the in vivo and in vitro hepatic differentiation, SHED-Heps; however, the cholangiogenic potency of SHED-Heps remains unclear. Here, we hypothesized that SHED-Heps contribute to the regeneration of intrahepatic bile duct system in chronic fibrotic liver. Methods SHED were induced into SHED-Heps under cytokine stimulation. SHED-Heps were intrasplenically transplanted into chronically CCl4-treated liver fibrosis model mice, followed by the analysis of donor integration and hepatobiliary metabolism in vivo. Immunohistochemical assay was examined for the regeneration of intrahepatic bile duct system in the recipient liver. Furthermore, SHED-Heps were induced under the stimulation of tumor necrosis factor alpha (TNFA). Results The intrasplenic transplantation of SHED-Heps into CCl4-treated mice showed that donor SHED-Heps behaved as human hepatocyte paraffin 1- and human albumin-expressing hepatocyte-like cells in situ and ameliorated CCl4-induced liver fibrosis. Of interest, the integrated SHED-Heps not only expressed biliary canaliculi ATP-binding cassette transporters including ABCB1, ABCB11, and ABCC2, but also recruited human keratin 19- (KRT19-) and KRT17-positive cells, which are considered donor-derived cholangiocytes, regenerating the intrahepatic bile duct system in the recipient liver. Furthermore, the stimulation of TNFA induced SHED-Heps into KRT7- and SRY-box 9-positive cells. Conclusions Collectively, our findings demonstrate that infused SHED-Heps showed cholangiogenic ability under the stimulation of TNFA in CCl4-damaged livers, resulting in the regeneration of biliary canaliculi and interlobular bile ducts in chronic fibrotic liver. Thus, the present findings suggest that SHED-Heps may be a novel source for the treatment of cholangiopathy. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-020-02113-8.
Collapse
|
8
|
Tsomaia K, Patarashvili L, Karumidze N, Bebiashvili I, Azmaipharashvili E, Modebadze I, Dzidziguri D, Sareli M, Gusev S, Kordzaia D. Liver structural transformation after partial hepatectomy and repeated partial hepatectomy in rats: A renewed view on liver regeneration. World J Gastroenterol 2020; 26:3899-3916. [PMID: 32774065 PMCID: PMC7385567 DOI: 10.3748/wjg.v26.i27.3899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/12/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The phenomenon of liver regeneration after partial hepatectomy (PH) is still a subject of considerable interest due to the increasing frequency of half liver transplantation on the one hand, and on the other hand, new surgical approaches which allow removal of massive space-occupying hepatic tumors, which earlier was considered as inoperable. Interestingly, the mechanisms of liver regeneration are extensively studied after PH but less attention is paid to the architectonics of the regenerated organ. Because of this, the question "How does the structure of regenerated liver differ from normal, regular liver?" has not been fully answered yet. Furthermore, almost without any attention is left the liver's structural transformation after repeated hepatectomy (of the re-regenereted liver). AIM To compare the architectonics of the lobules and circulatory bed of normal, re-generated and re-regenerated livers. METHODS The livers of 40 adult, male, albino Wistar rats were studied. 14 rats were subjected to PH - the 1st study group (SG1); 10 rats underwent repeated PH - the 2nd study group (SG2); 16 rats were subjected to sham operation - control group (CG); The livers were studied after 9 months from PH, and after 6 months from repeated PH. Cytological (Schiff reaction for the determination of DNA concen-tration), histological (H&E, Masson trichrome, CK8 Immunohistochemical marker, transparent slides after Indian Ink injection, ), morphometrical (hepatocytes areas, perimeters and ploidy) and Electron Microscopical (Scanning Electron Microscopy of corrosion casts) methods were used. RESULTS In the SG1 and SG2, the area of hepatocytes and their perimeter are increased compared to the CG (P < 0.05). However, the areas and perimeters of the hepatocytes of the SG1 and SG2 groups reveal a lesser difference. In regenerated (SG1) and re-regenerated (SG2) livers, the hepatocytes form the remodeled lobules, which size (300-1200 µm) exceeds the sizes of the lobules from CG (300-600 µm). The remodeled lobules (especially the "mega-lobules" with the sizes 1000-1200 µm) contain the transformed meshworks of the sinusoids, the part of which is dilated asymmetrically. This meshwork might have originated from the several portal venules (interlobular and/or inlet). The boundaries between the adjacent lobules (including mega-lobules) are widened and filled by connective tissue fibers, which gives the liver parenchyma a nodular look. In SG2 the unevenness of sinusoid diameters, as well as the boundaries between the lobules (including the mega-lobules) are more vividly expressed in comparison with SG1. The liver tissue of both SG1 and SG2 is featured by the slightly expressed ductular reaction. CONCLUSION Regenerated and re-regenerated livers in comparison with normal liver contain hypertrophied hepatocytes with increased ploidy which together with transformed sinusoidal and biliary meshworks form the remodeled lobulli.
Collapse
Affiliation(s)
- Keti Tsomaia
- Faculty of Medicine, Ivane Javakhishvili Tbilisi State University, Tbilisi 0159, Georgia
| | - Leila Patarashvili
- Faculty of Medicine, Ivane Javakhishvili Tbilisi State University, Tbilisi 0159, Georgia
| | - Nino Karumidze
- Faculty of Medicine, Ivane Javakhishvili Tbilisi State University, Tbilisi 0159, Georgia
| | - Irakli Bebiashvili
- Faculty of Medicine, Ivane Javakhishvili Tbilisi State University, Tbilisi 0159, Georgia
| | - Elza Azmaipharashvili
- Faculty of Medicine, Ivane Javakhishvili Tbilisi State University, Tbilisi 0159, Georgia
| | - Irina Modebadze
- Faculty of Exact and Natural Sciences, Ivane Javakhishvili Tbilisi State University, Tbilisi 0179, Georgia
| | - Diana Dzidziguri
- Faculty of Exact and Natural Sciences, Ivane Javakhishvili Tbilisi State University, Tbilisi 0179, Georgia
| | - Marom Sareli
- Department of Surgical Oncology (Surgery C), Chaim Sheba Medical Center at HaShomer, Tel Aviv 52621, Israel
| | - Sergey Gusev
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Dimitri Kordzaia
- Faculty of Medicine, Ivane Javakhishvili Tbilisi State University, Tbilisi 0159, Georgia
- Clinical Anatomy and Operative Surgery, Ivane Javakhishvili Tbilisi State University, Tbilisi 0159, Georgia
| |
Collapse
|
9
|
Nejak-Bowen K. If It Looks Like a Duct and Acts Like a Duct: On the Role of Reprogrammed Hepatocytes in Cholangiopathies. Gene Expr 2020; 20:19-23. [PMID: 31439080 PMCID: PMC7284107 DOI: 10.3727/105221619x15664105014956] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cholangiopathies are chronic, progressive diseases of the biliary tree, and can be either acquired or genetic. The primary target is the cholangiocyte (CC), the cell type lining the bile duct that is responsible for bile modification and transport. Despite advances in our understanding and diagnosis of these diseases in recent years, there are no proven therapeutic treatments for the majority of the cholangiopathies, and liver transplantation is the only life-extending treatment option for patients with end-stage cholestatic liver disease. One potential therapeutic strategy is to facilitate endogenous repair of the biliary system, which may alleviate intrahepatic cholestasis caused by these diseases. During biliary injury, hepatocytes (HC) are known to alter their phenotype and acquire CC-like features, a process known as cellular reprogramming. This brief review discusses the potential ways in which reprogrammed HC may contribute to biliary repair, thereby restoring bile flow and reducing the severity of cholangiopathies. Some of these include modifying bile to reduce toxicity, serving as a source of de novo CC to repair the biliary epithelium, or creating new channels to facilitate bile flow.
Collapse
Affiliation(s)
- Kari Nejak-Bowen
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Kamimoto K, Nakano Y, Kaneko K, Miyajima A, Itoh T. Multidimensional imaging of liver injury repair in mice reveals fundamental role of the ductular reaction. Commun Biol 2020; 3:289. [PMID: 32503996 PMCID: PMC7275065 DOI: 10.1038/s42003-020-1006-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Upon severe and/or chronic liver injury, ectopic emergence and expansion of atypical biliary epithelial-like cells in the liver parenchyma, known as the ductular reaction, is typically induced and implicated in organ regeneration. Although this phenomenon has long been postulated to represent activation of facultative liver stem/progenitor cells that give rise to new hepatocytes, recent lineage-tracing analyses have challenged this notion, thereby leaving the pro-regenerative role of the ductular reaction enigmatic. Here, we show that the expanded and remodelled intrahepatic biliary epithelia in the ductular reaction constituted functional and complementary bile-excreting conduit systems in injured parenchyma where hepatocyte bile canalicular networks were lost. The canalicular collapse was an incipient defect commonly associated with hepatocyte injury irrespective of cholestatic statuses, and could sufficiently provoke the ductular reaction when artificially induced. We propose a unifying model for the induction of the ductular reaction, where compensatory biliary epithelial tissue remodeling ensures bile-excreting network homeostasis. Kenji Kamimoto et al. use multidimensional imaging technologies to study changes in the mouse biliary system following liver injury. They find an unexpected role of the ductular reaction – the process of ectopic expansion of biliary-like cells following liver injury – in restoring functional biliary structures in injured livers.
Collapse
Affiliation(s)
- Kenji Kamimoto
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.,Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Yasuhiro Nakano
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kota Kaneko
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.,Department of Pathology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Atsushi Miyajima
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Tohru Itoh
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
11
|
Shimoda H, Yagi H, Higashi H, Tajima K, Kuroda K, Abe Y, Kitago M, Shinoda M, Kitagawa Y. Decellularized liver scaffolds promote liver regeneration after partial hepatectomy. Sci Rep 2019; 9:12543. [PMID: 31467359 PMCID: PMC6715632 DOI: 10.1038/s41598-019-48948-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/16/2019] [Indexed: 02/01/2023] Open
Abstract
The resectable liver volume is strictly limited and this reduces the number of patients who may be treated. Recently, “tissue/organ decellularization”, a new approach in bioengineering, has been investigated for its ability to produce a native organ scaffold by removing all the viable cells. Such a scaffold may support the repair of damaged or injured tissue. The purpose of this study was to evaluate the potential contribution of liver scaffolds to hepatic regeneration after hepatectomy. We sutured the partial liver scaffolds onto the surfaces of partially hepatectomized porcine livers and assessed their therapeutic potential by immune histological analysis at various time points. Animals were sacrificed after surgery and the implanted scaffolds were evaluated for the infiltration of various types of cells. Immune histochemical study showed that blood vessel-like structures, covered with CD31 positive endothelial cells and ALB positive cells, were present in all parts of the scaffolds at days 10 and 28. Blood inflow was observed in some of these ductal structures. More interestingly, CK19 and EpCAM positive cells appeared at day 10. These results suggest that the implantation of a decellularized organ scaffold could promote structural reorganization after liver resection.
Collapse
Affiliation(s)
- Hirofumi Shimoda
- Department of Surgery, Keio University, School of Medicine, Tokyo, Japan.
| | - Hiroshi Yagi
- Department of Surgery, Keio University, School of Medicine, Tokyo, Japan
| | - Hisanobu Higashi
- Department of Surgery, Keio University, School of Medicine, Tokyo, Japan
| | - Kazuki Tajima
- Department of Surgery, Keio University, School of Medicine, Tokyo, Japan
| | - Kohei Kuroda
- Department of Surgery, Keio University, School of Medicine, Tokyo, Japan
| | - Yuta Abe
- Department of Surgery, Keio University, School of Medicine, Tokyo, Japan
| | - Minoru Kitago
- Department of Surgery, Keio University, School of Medicine, Tokyo, Japan
| | - Masahiro Shinoda
- Department of Surgery, Keio University, School of Medicine, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University, School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Invasive Ductular Reaction. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1501-1504. [DOI: 10.1016/j.ajpath.2019.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 05/30/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022]
|
13
|
Feng Q, Zhao N, Xia W, Liang C, Dai G, Yang J, Sun J, Liu L, Luo L, Yang J. Integrative proteomics and immunochemistry analysis of the factors in the necrosis and repair in acetaminophen-induced acute liver injury in mice. J Cell Physiol 2018; 234:6561-6581. [PMID: 30417486 DOI: 10.1002/jcp.27397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/17/2018] [Indexed: 12/16/2022]
Abstract
Acetaminophen (APAP) overdose-induced acute liver injury (AILI) is a significant clinical problem worldwide, the hepatotoxicity mechanisms are well elucidated, but the factors involved in the necrosis and repair still remain to be investigated. APAP was injected intraperitoneally in male Institute of Cancer Research (ICR) mice. Quantitative proteome analysis of liver tissues was performed by 2-nitrobenzenesulfenyl tagging, two-dimensional-nano high-performance liquid chromatography separation, and matrix-assisted laser desorption/ionization-time of flight mass spectrometry analysis. Diffrenetial proteins were verified by the immunochemistry method. 36 and 44 differentially expressed proteins were identified, respectively, at 24 hr after APAP (200 or 300 mg·kg -1 ) administration. The decrease in the mitochondrial protective proteins Prdx6, Prdx3, and Aldh2 accounted for the accumulation of excessive reactive oxygen species (ROS) and aldehydes, impairing mitochondria structure and function. The Gzmf combined with Bax and Apaf-1 jointly contributed to the necrosis. The blockage of Stat3 activation led to the overexpression of unphosphorylated Stat3 and the overproduction of Bax. The overexpression of unphosphorylated Stat3 represented necrosis; the alternation from Stat3 to p-Stat3 in necrotic regions represented hepatocytes from death to renewal. The high expressions of P4hα1, Ncam, α-SMA, and Cygb were involved in the liver repair, they were not only the markers of activated HSC but also represented an intermediate stage of hepatocytes from damage or necrosis to renewal. Our data provided a comprehensive report on the profile and dynamic changes of the liver proteins in AILI; the involvement of Gzmf and the role of Stat3 in necrosis were revealed; and the role of hepatocyte in liver self-repair was well clarified.
Collapse
Affiliation(s)
- Qin Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Ningwei Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Shimadzu Biomedical Research Laboratory, Shanghai, China
| | - Wenkai Xia
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - ChengJie Liang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Guoxin Dai
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Jian Yang
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Jingxia Sun
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Lanying Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
14
|
Lin SY, Wang YY, Chen WY, Liao SL, Chou ST, Yang CP, Chen CJ. Hepatoprotective activities of rosmarinic acid against extrahepatic cholestasis in rats. Food Chem Toxicol 2017; 108:214-223. [PMID: 28789951 DOI: 10.1016/j.fct.2017.08.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/30/2017] [Accepted: 08/04/2017] [Indexed: 12/29/2022]
Abstract
Though rosmarinic acid possesses nutritional, pharmaceutical, and toxic properties and shows therapeutic potential on liver diseases, its therapeutic effects against cholestatic liver diseases have not been proven. Using an extrahepatic cholestasis rat model by bile-duct ligation (BDL), daily oral administration of rosmarinic acid showed improvement effects on liver histology, serum biochemicals, ductular reaction, oxidative stress, inflammation, and fibrosis. Rosmarinic acid alleviated BDL-induced transforming growth factor beta-1 (TGF-β1) production and hepatic collagen deposition, and the anti-fibrotic effects were accompanied by reductions in matrix-producing cells and Smad2/3. BDL rats showed increased hepatic NF-κB/AP-1 activities, inflammatory cell infiltration/accumulation, and cytokine production, and these signs of hepatic inflammation were ameliorated by rosmarinic acid. Mechanistic study revealed an inhibitory effect of rosmarinic acid on the axis of the high mobility group box-1 (HMGB1)/toll-like receptor-4 (TLR4) in BDL rats. Results of cultured hepatic stellate cells further showed the impacts of rosmarinic acid which attenuated TGF-β1-induced stellate cell mitogenic and fibrogenic activation. Our findings support the concept that rosmarinic acid could serve as a hepatoprotective agent, and dietary rosmarinic acid supplementation may be beneficial in terms of improving cholestasis-related liver injury via mechanisms involving resolution of oxidative burden and down-regulation of HMGB1/TLR4, NF-κB, AP-1, and TGF-β1/Smad signaling.
Collapse
Affiliation(s)
- Shih-Yi Lin
- Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung City 407, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei City 112, Taiwan
| | - Ya-Yu Wang
- Institute of Clinical Medicine, National Yang-Ming University, Taipei City 112, Taiwan; Division of Family Medicine, Taichung Veterans General Hospital, Taichung City 407, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung City 402, Taiwan
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan
| | - Su-Tze Chou
- Department of Food and Nutrition, Providence University, Taichung City 433, Taiwan
| | - Ching-Ping Yang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung City 407, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan.
| |
Collapse
|
15
|
Fabris L, Spirli C, Cadamuro M, Fiorotto R, Strazzabosco M. Emerging concepts in biliary repair and fibrosis. Am J Physiol Gastrointest Liver Physiol 2017; 313:G102-G116. [PMID: 28526690 PMCID: PMC5582882 DOI: 10.1152/ajpgi.00452.2016] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/20/2017] [Accepted: 05/11/2017] [Indexed: 01/31/2023]
Abstract
Chronic diseases of the biliary tree (cholangiopathies) represent one of the major unmet needs in clinical hepatology and a significant knowledge gap in liver pathophysiology. The common theme in cholangiopathies is that the target of the disease is the biliary tree. After damage to the biliary epithelium, inflammatory changes stimulate a reparative response with proliferation of cholangiocytes and restoration of the biliary architecture, owing to the reactivation of a variety of morphogenetic signals. Chronic damage and inflammation will ultimately result in pathological repair with generation of biliary fibrosis and clinical progression of the disease. The hallmark of pathological biliary repair is the appearance of reactive ductular cells, a population of cholangiocyte-like epithelial cells of unclear and likely mixed origin that are able to orchestrate a complex process that involves a number of different cell types, under joint control of inflammatory and morphogenetic signals. Several questions remain open concerning the histogenesis of reactive ductular cells, their role in liver repair, their mechanism of activation, and the signals exchanged with the other cellular elements cooperating in the reparative process. This review contributes to the current debate by highlighting a number of new concepts derived from the study of the pathophysiology of chronic cholangiopathies, such as congenital hepatic fibrosis, biliary atresia, and Alagille syndrome.
Collapse
Affiliation(s)
- Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy; .,Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut.,International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and
| | - Carlo Spirli
- 2Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut; ,3International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and
| | - Massimiliano Cadamuro
- 3International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and ,4Department of Medicine and Surgery, University of Milan-Bicocca School of Medicine, Milan, Italy
| | - Romina Fiorotto
- 2Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut; ,3International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and
| | - Mario Strazzabosco
- 2Liver Center, Section of Digestive Diseases, Yale University School of Medicine, New Haven, Connecticut; ,3International Center for Digestive Health, University of Milan-Bicocca School of Medicine, Milan, Italy; and ,4Department of Medicine and Surgery, University of Milan-Bicocca School of Medicine, Milan, Italy
| |
Collapse
|
16
|
Wang YY, Lin SY, Chen WY, Liao SL, Wu CC, Pan PH, Chou ST, Chen CJ. Glechoma hederacea extracts attenuate cholestatic liver injury in a bile duct-ligated rat model. JOURNAL OF ETHNOPHARMACOLOGY 2017; 204:58-66. [PMID: 28416441 DOI: 10.1016/j.jep.2017.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/13/2017] [Accepted: 04/13/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In traditional Chinese medicine, Glechoma hederacea is frequently prescribed to patients with cholelithiasis, dropsy, abscess, diabetes, inflammation, and jaundice. Polyphenolic compounds are main bioactive components of Glechoma hederacea. AIM OF THE STUDY This study was aimed to investigate the hepatoprotective potential of hot water extract of Glechoma hederacea against cholestatic liver injury in rats. MATERIALS AND METHODS Cholestatic liver injury was produced by ligating common bile ducts in Sprague-Dawley rats. Saline and hot water extract of Glechoma hederacea were orally administrated using gastric gavages. Liver tissues and bloods were collected and subjected to evaluation using histological, molecular, and biochemical approaches. RESULTS Using a rat model of cholestasis caused by bile duct ligation (BDL), daily oral administration of Glechoma hederacea hot water extracts showed protective effects against cholestatic liver injury, as evidenced by the improvement of serum biochemicals, ductular reaction, oxidative stress, inflammation, and fibrosis. Glechoma hederacea extracts alleviated BDL-induced transforming growth factor beta-1 (TGF-β1), connective tissue growth factor, and collagen expression, and the anti-fibrotic effects were accompanied by reductions in α-smooth muscle actin-positive matrix-producing cells and Smad2/3 activity. Glechoma hederacea extracts attenuated BDL-induced inflammatory cell infiltration/accumulation, NF-κB and AP-1 activation, and inflammatory cytokine production. Further studies demonstrated an inhibitory effect of Glechoma hederacea extracts on the axis of high mobility group box-1 (HMGB1)/toll-like receptor-4 (TLR4) intracellular signaling pathways. CONCLUSIONS The hepatoprotective, anti-oxidative, anti-inflammatory, and anti-fibrotic effects of Glechoma hederacea extracts seem to be multifactorial. The beneficial effects of daily Glechoma hederacea extracts supplementation were associated with anti-oxidative, anti-inflammatory, and anti-fibrotic potential, as well as down-regulation of NF-κB, AP-1, and TGF-β/Smad signaling, probably via interference with the HMGB1/TLR4 axis.
Collapse
Affiliation(s)
- Ya-Yu Wang
- Division of Family Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan.
| | - Shih-Yi Lin
- Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan; Center for Geriatrics and Gerontology, Taichung Veterans General Hospital, Taichung 407, Taiwan.
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan.
| | - Su-Lan Liao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan.
| | - Chih-Cheng Wu
- Department of Anesthesiology, Taichung Veterans General Hospital, Taichung 407, Taiwan.
| | - Pin-Ho Pan
- Department of Pediatrics, Tungs' Taichung MetroHarbor Hospital, Taichung 435, Taiwan.
| | - Su-Tze Chou
- Department of Cosmetic Science, Providence University, Taichung 433, Taiwan.
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan; Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|
17
|
Carotti S, Perrone G, Amato M, Vespasiani Gentilucci U, Righi D, Francesconi M, Pellegrini C, Zalfa F, Zingariello M, Picardi A, Onetti Muda A, Morini S. Reelin expression in human liver of patients with chronic hepatitis C infection. Eur J Histochem 2017; 61:2745. [PMID: 28348420 PMCID: PMC5365015 DOI: 10.4081/ejh.2017.2745] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/31/2017] [Accepted: 02/01/2017] [Indexed: 02/08/2023] Open
Abstract
Reelin is a secreted extracellular glycoprotein that plays a critical role during brain development. Several studies have described Reelin expression in hepatic stellate cells of the human liver. In order to investigate the possible role of Reelin in the process of hepatic fibrogenesis, in this study we investigated Reelin expression in the liver tissue of patients infected with the Hepatitis C Virus (HCV). On this basis, Reelin expression was analysed by immunohistochemistry during liver biopsies of 81 patients with HCV-related chronic hepatitis. A Knodell score was used to stage liver fibrosis. Hepatic stellate cells/myofibroblast immunohistochemical markers (CRBP-1, alpha-SMA) were also evaluated. As further confirmed by co-localization experiments (Reelin +CRBP-1), Reelin protein was expressed by hepatic stellate cells/myofibroblasts, and a significant positive correlation was found between Reelin expression and the stage of liver fibrosis (P=0.002). Moreover, Reelin correlated with CRBP-1 positive cells (P=0.002), but not with alpha-SMA, suggesting that Reelin should not be regarded as a marker of hepatic stellate cells/myofibroblasts differentiation but rather as a functional protein expressed during some phases of liver fibrosis. Furthermore, Disabled-1 (Dab1), a Reelin adaptor protein, was expressed in cells of ductular reaction suggesting a paracrine role for Reelin with regards these elements. In conclusion, Reelin was expressed by human hepatic stellate cells/myofibroblasts and the number of these cells increased significantly in the lobule as the liver fibrosis progressed, suggesting a role for Reelin in the activation of hepatic stellate cells/myofibroblasts during liver injury. Reelin may potentially be incorporated into liver injury evaluations in combination with other histological data.
Collapse
Affiliation(s)
- Simone Carotti
- Campus Bio-Medico University, Laboratory of Microscopic and Ultrastructural Anatomy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Cellular Mechanisms of Liver Regeneration and Cell-Based Therapies of Liver Diseases. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8910821. [PMID: 28210629 PMCID: PMC5292184 DOI: 10.1155/2017/8910821] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/29/2016] [Accepted: 12/27/2016] [Indexed: 12/14/2022]
Abstract
The emerging field of regenerative medicine offers innovative methods of cell therapy and tissue/organ engineering as a novel approach to liver disease treatment. The ultimate scientific foundation of both cell therapy of liver diseases and liver tissue and organ engineering is delivered by the in-depth studies of the cellular and molecular mechanisms of liver regeneration. The cellular mechanisms of the homeostatic and injury-induced liver regeneration are unique. Restoration of the mass of liver parenchyma is achieved by compensatory hypertrophy and hyperplasia of the differentiated parenchymal cells, hepatocytes, while expansion and differentiation of the resident stem/progenitor cells play a minor or negligible role. Participation of blood-borne cells of the bone marrow origin in liver parenchyma regeneration has been proven but does not exceed 1-2% of newly formed hepatocytes. Liver regeneration is activated spontaneously after injury and can be further stimulated by cell therapy with hepatocytes, hematopoietic stem cells, or mesenchymal stem cells. Further studies aimed at improving the outcomes of cell therapy of liver diseases are underway. In case of liver failure, transplantation of engineered liver can become the best option in the foreseeable future. Engineering of a transplantable liver or its major part is an enormous challenge, but rapid progress in induced pluripotency, tissue engineering, and bioprinting research shows that it may be doable.
Collapse
|
19
|
Sun Y, Haapanen K, Li B, Zhang W, Van de Water J, Gershwin ME. Women and primary biliary cirrhosis. Clin Rev Allergy Immunol 2016; 48:285-300. [PMID: 25241227 DOI: 10.1007/s12016-014-8449-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Primary biliary cirrhosis occurs more frequently in women, and previous studies indicated that the average age of primary biliary cirrhosis (PBC) onset makes pregnancy in PBC patients uncommon. However, more recently, improved diagnostic testing has enabled detection of PBC in younger women, including those of childbearing age. This has led investigators to become increasingly interested in the relationship between the ontogeny of PBC and pregnancy. Published cases indicate that the typical age for pregnant women to be diagnosed with PBC is in the early 30s, and that during gestation, pruritus and jaundice are the most common symptoms. During gestation, susceptible women may experience onset of PBC resulting from the drastic changes in female hormones; this would include not only the mitochondrial damage due to accumulation of bile acids but also changes in the immune response during the different stages of pregnancy that might play an important role in the breakdown of self-tolerance. The mechanisms underlying the potential relationship between PBC and pregnancy warrant further investigation. For women first diagnosed with PBC during gestation, or those for whom first appearance of a flare up occurs during and postpartum, investigation of the immune response throughout gestation could provide new avenues for immunologic therapeutic intervention and the discovery of new treatment strategies for PBC.
Collapse
Affiliation(s)
- Ying Sun
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA
| | | | | | | | | | | |
Collapse
|
20
|
Pathogenesis of Type 2 Epithelial to Mesenchymal Transition (EMT) in Renal and Hepatic Fibrosis. J Clin Med 2015; 5:jcm5010004. [PMID: 26729181 PMCID: PMC4730129 DOI: 10.3390/jcm5010004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/22/2015] [Accepted: 12/24/2015] [Indexed: 02/07/2023] Open
Abstract
Epithelial to mesenchymal transition (EMT), particularly, type 2 EMT, is important in progressive renal and hepatic fibrosis. In this process, incompletely regenerated renal epithelia lose their epithelial characteristics and gain migratory mesenchymal qualities as myofibroblasts. In hepatic fibrosis (importantly, cirrhosis), the process also occurs in injured hepatocytes and hepatic progenitor cells (HPCs), as well as ductular reaction-related bile epithelia. Interestingly, the ductular reaction contributes partly to hepatocarcinogenesis of HPCs, and further, regenerating cholangiocytes after injury may be derived from hepatic stellate cells via mesenchymal to epithelia transition, a reverse phenomenon of type 2 EMT. Possible pathogenesis of type 2 EMT and its differences between renal and hepatic fibrosis are reviewed based on our experimental data.
Collapse
|
21
|
Michalopoulos GK, Khan Z. Liver Stem Cells: Experimental Findings and Implications for Human Liver Disease. Gastroenterology 2015; 149:876-882. [PMID: 26278502 PMCID: PMC4584191 DOI: 10.1053/j.gastro.2015.08.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/08/2015] [Accepted: 08/10/2015] [Indexed: 02/07/2023]
Abstract
Evidence from human histopathology and experimental studies with rodents and zebrafish has shown that hepatocytes and cholangiocytes may function as facultative stem cells for each other in conditions of impaired regeneration. The interpretation of the findings derived from these studies has generated considerable discussion and some controversies. This review examines the evidence obtained from the different experimental models and considers implications that these studies may have for human liver disease.
Collapse
Affiliation(s)
| | - Zahida Khan
- Department of Pediatric Gastroenterology University of Pittsburgh School of Medicine
| |
Collapse
|
22
|
Suzuki A. Evidence of cell-fate conversion from hepatocytes to cholangiocytes in the injured liver: in-vivo genetic lineage-tracing approaches. Curr Opin Gastroenterol 2015; 31:247-51. [PMID: 25763788 DOI: 10.1097/mog.0000000000000172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
PURPOSE OF REVIEW Recently, it has been suggested that hepatocytes can potentially convert their fate into that of cholangiocytes when the liver receives an injury. This review concisely summarizes these new findings, especially those obtained in studies using cell-lineage tracing methods. RECENT FINDINGS Recent advances in technologies using mutant mice with a tamoxifen-inducible Cre/loxP system have allowed heritable labeling of a particular type of cell and enabled us to follow the fate of their progeny. This is generally known as 'genetic lineage-tracing', and has been applied in various studies that require tracking of the fate of cells in living mice. Previous studies using these methods have revealed that hepatocytes themselves can give rise to cholangiocytes through Notch-mediated cell-fate conversion from hepatocytes to cholangiocytes in injured liver tissue and at the onset of liver cancer. SUMMARY Intensive studies using in-vivo genetic lineage-tracing approaches have provided new insights into the nature of cellular identity and plasticity in the liver, which will contribute to the development of new therapeutic strategies for liver diseases.
Collapse
Affiliation(s)
- Atsushi Suzuki
- aDivision of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, Fukuoka bCore Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
23
|
Best J, Manka P, Syn WK, Dollé L, van Grunsven LA, Canbay A. Role of liver progenitors in liver regeneration. Hepatobiliary Surg Nutr 2015; 4:48-58. [PMID: 25713804 DOI: 10.3978/j.issn.2304-3881.2015.01.16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/20/2015] [Indexed: 12/16/2022]
Abstract
During massive liver injury and hepatocyte loss, the intrinsic regenerative capacity of the liver by replication of resident hepatocytes is overwhelmed. Treatment of this condition depends on the cause of liver injury, though in many cases liver transplantation (LT) remains the only curative option. LT for end stage chronic and acute liver diseases is hampered by shortage of donor organs and requires immunosuppression. Hepatocyte transplantation is limited by yet unresolved technical difficulties. Since currently no treatment is available to facilitate liver regeneration directly, therapies involving the use of resident liver stem or progenitor cells (LPCs) or non-liver stem cells are coming to fore. LPCs are quiescent in the healthy liver, but may be activated under conditions where the regenerative capacity of mature hepatocytes is severely impaired. Non-liver stem cells include embryonic stem cells (ES cells) and mesenchymal stem cells (MSCs). In the first section, we aim to provide an overview of the role of putative cytokines, growth factors, mitogens and hormones in regulating LPC response and briefly discuss the prognostic value of the LPC response in clinical practice. In the latter section, we will highlight the role of other (non-liver) stem cells in transplantation and discuss advantages and disadvantages of ES cells, induced pluripotent stem cells (iPS), as well as MSCs.
Collapse
Affiliation(s)
- Jan Best
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| | - Paul Manka
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| | - Wing-Kin Syn
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| | - Laurent Dollé
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| | - Leo A van Grunsven
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| | - Ali Canbay
- 1 Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany ; 2 Liver Cell Biology Lab, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), Brussels, Belgium ; 3 Regeneration and Repair, The Institute of Hepatology, Foundation for Liver Research, London, UK ; 4 Liver Unit, Barts Health NHS Trust, London, UK ; 5 Department of Surgery, Loyola University Chicago, USA
| |
Collapse
|
24
|
Suzuki A. MBSJ MCC Young Scientist Award 2012 Liver regeneration: a unique and flexible reaction depending on the type of injury. Genes Cells 2014; 20:77-84. [PMID: 25534695 PMCID: PMC4322471 DOI: 10.1111/gtc.12200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 10/13/2014] [Indexed: 12/12/2022]
Abstract
The liver can be thought of as a mysterious organ, because it has an elegant regenerative capability. This phenomenon has been well known since ancient times and is already applied to medical treatments for severe hepatic disorders by transplanting portions of liver received from living donors. However, it was not until quite recently that the mechanism underlying the principle of liver regeneration was investigated more deeply. Recent advances in the technologies for characterizing cell properties and examining the molecular nature of cells are enabling us to understand what occurs in the regenerating liver. After acute liver damage, hepatocytes actively proliferate in response to external stimulation by humoral factors. However, in the chronically injured liver, hepatocytes cannot proliferate well, but biliary cells appearing after chronic liver damage form primitive ductules around portal veins of the liver. These biliary cells may have a multiple origin, including hepatocytes, and contain progenitor cells giving rise to both hepatocytes and biliary cells, or represent cells that can be directly converted into hepatocytes. Although liver regeneration is more complicated than we had thought, unremitting efforts by researchers will certainly connect the numerous findings obtained in basic research with the development of new therapeutic strategies for liver diseases.
Collapse
Affiliation(s)
- Atsushi Suzuki
- Division of Organogenesis and Regeneration, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| |
Collapse
|
25
|
Zhang J, Zhou S, Zhou Y, Feng F, Wang Q, Zhu X, Ai H, Huang X, Zhang X. Hepatocyte growth factor gene-modified adipose-derived mesenchymal stem cells ameliorate radiation induced liver damage in a rat model. PLoS One 2014; 9:e114670. [PMID: 25501583 PMCID: PMC4264768 DOI: 10.1371/journal.pone.0114670] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/12/2014] [Indexed: 01/26/2023] Open
Abstract
Liver damage caused by radiotherapy is associated with a high mortality rate, but no established treatment exists. Adipose-derived mesenchymal stem cells (ADSCs) are capable of migration to injured tissue sites, where they aid in the repair of the damage. Hepatocyte growth factor (HGF) is critical for damage repair due to its anti-apoptotic, anti-fibrotic and cell regeneration-promoting effects. This study was performed to investigate the therapeutic effects of HGF-overexpressing ADSCs on radiation-induced liver damage (RILD). ADSCs were infected with a lentivirus encoding HGF and HGF-shRNA. Sprague-Dawley (SD) rats received 60Gy of irradiation to induce liver injury and were immediately given either saline, ADSCs, ADSCs + HGF or ADSCs + shHGF. Two days after irradiation, a significant reduction in apoptosis was observed in the HGF-overexpressing ADSC group compared with the RILD group, as assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Scanning electron microscopy showed chromatin condensation after irradiation, which was ameliorated in the group that received ADSCs and was reversed in the group that received HGF-overexpressing ADSCs. HGF-overexpressing ADSCs ameliorated radiation- induced liver fibrosis through down regulation of α-SMA and fibronectin. Hepatocyte regeneration was significantly improved in rats treated with ADSCs compared with rats from the RILD group), as assessed by Ki-67 immunohistochemistry. Rats that received HGF-overexpressing ADSCs showed an even greater level of hepatocyte regeneration. HGF-overexpressing ADSCs completely blocked the radiation-induced increase in the enzymes ALT and AST. The effect of mitigating RILD was compromised in the ADSC + shHGF group compared with the ADSC group. Altogether, these results suggest that HGF-overexpressing ADSCs can significantly improve RILD in a rat model, which may serve as a valuable therapeutic alternative.
Collapse
Affiliation(s)
- Jiamin Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Xicheng District, Beijing, China
| | - Shiyuan Zhou
- Peking University People's Hospital, Peking University Institute of Hematology, Xicheng District, Beijing, China
| | - Yi Zhou
- Peking University People's Hospital, Peking University Institute of Hematology, Xicheng District, Beijing, China
| | - Feier Feng
- Peking University People's Hospital, Peking University Institute of Hematology, Xicheng District, Beijing, China
| | - Qianming Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Xicheng District, Beijing, China
| | - Xiaolu Zhu
- Peking University People's Hospital, Peking University Institute of Hematology, Xicheng District, Beijing, China
| | - Huisheng Ai
- Department of Hematology, Affiliated Hospital to the Academy of Military Medicine Science, FengTai District, Beijing, China
| | - Xiaojun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Xicheng District, Beijing, China
- * E-mail: (X. Zhang); (XH)
| | - Xiaohui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Xicheng District, Beijing, China
- * E-mail: (X. Zhang); (XH)
| |
Collapse
|
26
|
Strazzabosco M, Fabris L. Neural cell adhesion molecule and polysialic acid in ductular reaction: the puzzle is far from completed, but the picture is becoming more clear. Hepatology 2014; 60:1469-72. [PMID: 24995463 PMCID: PMC4520409 DOI: 10.1002/hep.27291] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 06/25/2014] [Accepted: 06/25/2014] [Indexed: 01/07/2023]
Affiliation(s)
- Mario Strazzabosco
- Department of Surgery and Translational Medicine, University of
Milan-Bicocca, Milan, Italy
- Liver Center, Section of Digestive Diseases, Yale University, New
Haven, CT
| | - Luca Fabris
- Liver Center, Section of Digestive Diseases, Yale University, New
Haven, CT
- Department of Molecular Medicine, University of Padova School of
Medicine, Padova, Italy
| |
Collapse
|
27
|
Abstract
Liver regeneration after partial hepatectomy is the only example of a regenerative process in mammals in which the organ/body weight ratio returns to 100% of the original when the process is complete. The adjustment of liver weight to the needs of the body suggests a complicated set of control points, a 'hepatostat'. There has been much progress in elucidation of mechanisms involved in initiation of liver regeneration. More recent studies have focused on termination pathways, because these may be the underlying controls of the hepatostat and their elimination may be relevant to hepatic neoplasia. When the standard regenerative process is thwarted due to failure of either hepatocytes or biliary epithelial cells to proliferate, each of the two epithelial compartments can function as a source of facultative stem cells for the other.
Collapse
Affiliation(s)
- George K Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Bioscience Tower South, Pittsburgh, PA 15261, USA
| |
Collapse
|
28
|
Lin SY, Wang YY, Chen WY, Chuang YH, Pan PH, Chen CJ. Beneficial effect of quercetin on cholestatic liver injury. J Nutr Biochem 2014; 25:1183-1195. [PMID: 25108658 DOI: 10.1016/j.jnutbio.2014.06.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 05/29/2014] [Accepted: 06/04/2014] [Indexed: 12/15/2022]
Abstract
Bile duct obstruction and subsequent cholestasis are associated with hepatocellular injury, cholangiocyte proliferation, stellate cell activation, Kupffer cell activation, oxidative stress, inflammation and fibrosis. Flavonoids have been shown to confer beneficial health effects, including hepatoprotection. However, the molecular mechanism of flavonoid-mediated hepatoprotection is incompletely understood. In this study, we report the protective effect of quercetin on cholestatic liver injury. Cholestasis was produced by bile duct ligation (BDL) in male Sprague-Dawley rats for 3 weeks. Daily oral administration of quercetin was started 1 week before injury and lasted for 4 weeks. In comparison with the control group, the BDL group showed liver injury, as evidenced by histological changes, and elevation in serum biochemicals, ductular reaction, fibrosis, inflammation and oxidative stress. These pathophysiological changes were attenuated by daily quercetin supplementation. Quercetin alleviated BDL-induced transforming growth factor beta-1 (TGF-β1), interleukin-1 beta, connective tissue growth factor and collagen expression. The antifibrotic effect of quercetin was accompanied by reductions in α-smooth muscle actin-positive matrix-producing cells and Smad 2/3 activity critical to the fibrogenic potential of TGF-β1. Quercetin also attenuated BDL-induced oxidative stress, leukocyte accumulation, nuclear factor (NF)-κB activation and proinflammatory cytokine production. Further studies demonstrated an inhibitory effect of quercetin on MyD88 and TGF-β-activated kinase-1 critical for linking toll-like receptor (TLR) and NF-κB. Taken together, the hepatoprotective, anti-inflammatory and antifibrotic effects of quercetin seem to be multifactorial. The beneficial effects of daily quercetin supplementation are associated with antioxidative and anti-inflammatory potential as well as down-regulation of NF-κB and TGF-β/Smad signaling, probably via interference with TLR signaling.
Collapse
Affiliation(s)
- Shih-Yi Lin
- Division of Endocrinology and Metabolism, Taichung Veterans General Hospital, Taichung 407, Taiwan; School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Ya-Yu Wang
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan; Division of Family Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Han Chuang
- Division of Endocrinology and Metabolism, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Pin-Ho Pan
- Department of Pediatrics, Tungs' Taichung MetroHarbor Hospital, Taichung 435, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan; Institute of Biomedical Sciences, National Chung Hsing University, Taichung 402, Taiwan; Center for General Education, Tunghai University, Taichung 407, Taiwan; Department of Nursing, HungKuang University, Taichung 433, Taiwan.
| |
Collapse
|
29
|
Nagahama Y, Sone M, Chen X, Okada Y, Yamamoto M, Xin B, Matsuo Y, Komatsu M, Suzuki A, Enomoto K, Nishikawa Y. Contributions of hepatocytes and bile ductular cells in ductular reactions and remodeling of the biliary system after chronic liver injury. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:3001-12. [PMID: 25193593 DOI: 10.1016/j.ajpath.2014.07.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 07/01/2014] [Accepted: 07/10/2014] [Indexed: 12/18/2022]
Abstract
Mature hepatocytes are suggested to possess a capacity for bile ductular transdifferentiation, but whether and how hepatocytes contribute to ductular reaction in chronic liver diseases has not been elucidated. We examined whether mouse hepatocytes can transdifferentiate into bile ductular cells in vitro, using a three-dimensional collagen gel culture method, and in vivo, using a liver repopulation model in which β-galactosidase-positive hepatocytes from Alb-Cre × ROSA26R mice were transplanted into the liver of wild-type mice. We further examined the relative contribution of intrinsic hepatocytes in ductular reaction in a hepatocyte lineage-tracing model using Mx1-Cre × ROSA26R mice treated with polyinosinic-polycytidylic acid. Within collagen gels, hepatocytes exhibited branching morphogenesis associated with the emergence of bile duct-like phenotype. In the liver repopulation model, many β-galactosidase-positive, hepatocyte-derived bile ductular structures were identified; these markedly increased after liver injury. In Mx1-Cre × ROSA26R mice, relatively minor but significant contributions of hepatocyte-derived bile ductules were observed in both periportal and centrilobular ductular reaction. As the centrilobular ductular reaction progressed, the portal ducts or ductules migrated toward the injured area and joined with hepatocyte-derived ductules, leaving the portal tract without biliary structures. We conclude that hepatocytes and bile ducts or ductules are important sources of ductular reaction and that the intrahepatic biliary system undergoes remarkable remodeling in response to chronic liver injury.
Collapse
Affiliation(s)
- Yasuharu Nagahama
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan; Fujii Memorial Research Institute, Otsuka Pharmaceutical Co., Ltd., Otsu, Japan
| | - Masayuki Sone
- Fujii Memorial Research Institute, Otsuka Pharmaceutical Co., Ltd., Otsu, Japan
| | - Xi Chen
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yoko Okada
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Masahiro Yamamoto
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Bing Xin
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yasuhiro Matsuo
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Mikiko Komatsu
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Akira Suzuki
- Division of Embryonic and Genetic Engineering, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | | | - Yuji Nishikawa
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.
| |
Collapse
|
30
|
Pan PH, Lin SY, Wang YY, Chen WY, Chuang YH, Wu CC, Chen CJ. Protective effects of rutin on liver injury induced by biliary obstruction in rats. Free Radic Biol Med 2014; 73:106-116. [PMID: 24815012 DOI: 10.1016/j.freeradbiomed.2014.05.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 12/14/2022]
Abstract
Rutin has been shown to possess beneficial health effects, including hepatoprotection. However, to date, it has not been demonstrated to have a hepatoprotective effect against cholestatic liver injury. This is the first report to show a protective effect of rutin on cholestatic liver injury. Cholestasis was produced by bile duct ligation (BDL) in male Sprague-Dawley rats for 3 weeks. Daily oral administration of rutin was started 1 week before injury and was maintained for 4 weeks. In comparison with the control group, the BDL group showed liver injury as evidenced by histological changes and elevation in serum biochemicals, ductular reaction, fibrosis, inflammation, and oxidative stress. These pathophysiological changes were attenuated by rutin supplementation. Rutin alleviated BDL-induced transforming growth factor β1 (TGF-β1), interleukin-1β, connective tissue growth factor, and collagen expression. The antifibrotic effect of rutin was accompanied by reductions in α-smooth muscle actin-positive matrix-producing cells and Smad2/3 activity critical to the fibrogenic potential of TGF-β1. Rutin attenuated BDL-induced oxidative stress, leukocyte accumulation, NF-κB activation, and proinflammatory cytokine production. Further studies demonstrated an inhibitory effect of rutin on the redox-sensitive intracellular signaling molecule extracellular signal-regulated kinase (ERK). Rutin also attenuated BDL-induced reduction in NF-E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and AMP-activated protein kinase (AMPK). Taken together, the beneficial effects of rutin were shown to be associated with antioxidative and anti-inflammatory effects as well as the downregulation of NF-κB and TGF-β/Smad signaling, probably via interference of ERK activation and/or enhancement of Nrf2, HO-1, and AMPK activity.
Collapse
Affiliation(s)
- Pin-Ho Pan
- Department of Pediatrics, Tungs' Taichung MetroHarbor Hospital, Taichung 435, Taiwan
| | - Shih-Yi Lin
- Division of Endocrinology and Metabolism, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Ya-Yu Wang
- Division of Family Medicine, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Wen-Ying Chen
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Yu-Han Chuang
- Division of Endocrinology and Metabolism, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Chih-Cheng Wu
- Department of Anesthesiology, and Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Chun-Jung Chen
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 407, Taiwan; Institute of Biomedical Sciences, and National Chung Hsing University, Taichung 402, Taiwan; Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 402, Taiwan; Center for General Education, Tunghai University, Taichung 407, Taiwan; Graduate School of Nursing, Hungkuang University, Taichung 433, Taiwan.
| |
Collapse
|
31
|
Seth A, Ye J, Yu N, Guez F, Bedford DC, Neale GA, Cordi S, Brindle PK, Lemaigre FP, Kaestner KH, Sosa-Pineda B. Prox1 ablation in hepatic progenitors causes defective hepatocyte specification and increases biliary cell commitment. Development 2014; 141:538-47. [PMID: 24449835 DOI: 10.1242/dev.099481] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The liver has multiple functions that preserve homeostasis. Liver diseases are debilitating, costly and often result in death. Elucidating the developmental mechanisms that establish the liver's architecture or generate the cellular diversity of this organ should help advance the prevention, diagnosis and treatment of hepatic diseases. We previously reported that migration of early hepatic precursors away from the gut epithelium requires the activity of the homeobox gene Prox1. Here, we show that Prox1 is a novel regulator of cell differentiation and morphogenesis during hepatogenesis. Prox1 ablation in bipotent hepatoblasts dramatically reduced the expression of multiple hepatocyte genes and led to very defective hepatocyte morphogenesis. As a result, abnormal epithelial structures expressing hepatocyte and cholangiocyte markers or resembling ectopic bile ducts developed in the Prox1-deficient liver parenchyma. By contrast, excessive commitment of hepatoblasts into cholangiocytes, premature intrahepatic bile duct morphogenesis, and biliary hyperplasia occurred in periportal areas of Prox1-deficient livers. Together, these abnormalities indicate that Prox1 activity is necessary to correctly allocate cell fates in liver precursors. These results increase our understanding of differentiation anomalies in pathological conditions and will contribute to improving stem cell protocols in which differentiation is directed towards hepatocytes and cholangiocytes.
Collapse
Affiliation(s)
- Asha Seth
- Department of Genetics, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Liver stem/progenitor cells (LPCs) are defined as cells that supply two types of liver epithelial cells, hepatocytes and cholangiocytes, during development, cellular turnover, and regeneration. Hepatoblasts, which are fetal LPCs derived from endoderm stem cells, robustly proliferate and differentiate into hepatocytes and cholangiocytes during fetal life. Between mid-gestation and the neonatal period, some cholangiocytes function as LPCs. Although LPCs in adult livers can be enriched in cells positive for cholangiocyte markers, their tissue localization and functions in cellular turnover remain obscure. On the other hand, it is well known that liver regeneration under conditions suppressing hepatocyte proliferation is supported by LPCs, though their origin has not been clearly identified. Recently many groups took advantage of new techniques including prospective isolation of LPCs by fluorescence-activated cell sorting and genetic lineage tracing to facilitate our understanding of epithelial supply in normal and injured livers. Those works suggest that, in normal livers, the turnover of hepatocytes mostly depends on duplication of hepatocytes. It is also demonstrated that liver epithelial cells as well as LPCs have great plasticity and flexible differentiation capability to respond to various types of injuries by protecting or repairing liver tissues.
Collapse
Affiliation(s)
- Naoki Tanimizu
- Department of Tissue Development and Regeneration; Research Institute for Frontier Medicine; Sapporo Medical University School of Medicine; Sapporo, Japan
| | - Toshihiro Mitaka
- Department of Tissue Development and Regeneration; Research Institute for Frontier Medicine; Sapporo Medical University School of Medicine; Sapporo, Japan
| |
Collapse
|
33
|
Hao PP, Lee MJ, Yu GR, Kim IH, Cho YG, Kim DG. Isolation of EpCAM(+)/CD133 (-) hepatic progenitor cells. Mol Cells 2013; 36:424-431. [PMID: 24293012 PMCID: PMC3887933 DOI: 10.1007/s10059-013-0190-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 12/19/2022] Open
Abstract
Progenitor cell-derived hepatocytes are critical for hepatocyte replenishment. Therefore, we established a line of human hepatic progenitor (HNK1) cells and determined their biological characteristics for experimental and therapeutic applications. HNK1 cells, isolated from human noncirrhotic liver samples with septal fibrosis, showed high expression of the hepatic progenitor cell (HPC) markers EpCAM, CK7, CK19, alpha-fetoprotein (AFP), CD90 (Thy1), and EFNA1. Expression of CD133 was very low. Ductular reactions at the periphery of cirrhotic nodules were immunohistochemically positive for these HPC markers, including EFNA1. Sodium butyrate, a differentiation inducer, induced hepatocyte-like morphological changes in HNK1 cells. It resulted in down-regulation of the hepatic progenitor cell markers EpCAM, CK7, CK19, AFP, and EFNA1 and up-regulation of mature hepatocyte markers, including albumin, CK8, and CK18. Furthermore, sodium butyrate treatment and a serial passage of HNK1 cells resulted in enhanced albumin secretion, ureagenesis, and CYP enzyme activity, all of which are indicators of differentiation in hepatocytes. However, HNK1 cells at passage 50 did not exhibit anchorage-independent growth capability and caused no tumors in immunodeficient mice, suggesting that they had no spontaneous malignant transformation ability. From this evidence, HNK1 cells were found to be EpCAM(+)/CD133(-) hepatic progenitor cells without spontaneous malignant transformation ability. We therefore conclude that HNK1 cells could be useful for experimental and therapeutic applications.
Collapse
Affiliation(s)
- Pei-Pei Hao
- Division of Gastroenterology and Hepatology, Departments of Internal Medicine
| | - Mi-Jin Lee
- Division of Gastroenterology and Hepatology, Departments of Internal Medicine
| | - Goung-Ran Yu
- Division of Gastroenterology and Hepatology, Departments of Internal Medicine
| | - In-Hee Kim
- Division of Gastroenterology and Hepatology, Departments of Internal Medicine
| | | | - Dae-Ghon Kim
- Division of Gastroenterology and Hepatology, Departments of Internal Medicine
| |
Collapse
|
34
|
Chen WT, Zhu G, Pfaffenbach K, Kanel G, Stiles B, Lee AS. GRP78 as a regulator of liver steatosis and cancer progression mediated by loss of the tumor suppressor PTEN. Oncogene 2013; 33:4997-5005. [PMID: 24141775 PMCID: PMC3994182 DOI: 10.1038/onc.2013.437] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/30/2013] [Accepted: 09/05/2013] [Indexed: 02/06/2023]
Abstract
Glucose-regulated protein 78 (GRP78), a molecular chaperone widely elevated in human cancers, is critical for endoplasmic reticulum (ER) protein folding, stress signaling and PI3K/AKT activation. Genetic knockout models of GRP78 revealed that GRP78 maintains homeostasis of metabolic organs, including liver, pancreas and adipose tissues. Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC) are the most common liver cancers. There is a lack of effective therapeutics for HCC and CC, highlighting the need to further understand liver tumorigenic mechanisms. PTEN, a tumor suppressor that antagonizes the PI3K/AKT pathway, is inactivated in a wide range of tumors, including 40–50% of human liver cancers. To elucidate the role of GRP78 in liver cancer, we created a mouse model with biallelic liver-specific deletion of Pten and Grp78 mediated by Albumin-Cre-recombinase (cPf/f78f/f). Interestingly, in contrast to PTEN, deletion of GRP78 was progressive but incomplete. At 3 months, cPf/f78f/f livers showed hepatomegaly, activation of lipogenic genes, exacerbated steatosis and liver injury, implying that GRP78 protects the liver against PTEN-null mediated pathogenesis. Furthermore, in response to liver injury, we observed increased proliferation and expansion of bile duct and liver progenitor cells in cPf/f78f/f livers. Strikingly, bile duct cells in cPf/f78f/f livers maintained wild-type (WT) GRP78 level while adjacent areas showed GRP78 reduction. Analysis of signaling pathways revealed selective JNK activation, β-catenin downregulation, along with PDGFRα upregulation, which was unique to cPf/f78f/f livers at 6 months. Development of both HCC and CC was accelerated and evident in cPf/f78f/f livers at 8–9 months, coinciding with intense GRP78 expression in the cancer lesions, and GRP78 expression in adjacent normal areas reverted back to the WT level. In contrast, c78f/f livers showed no malignancy even at 14 months. These studies reveal GRP78 is a novel regulator for PTEN-loss mediated liver injury and cancer progression.
Collapse
Affiliation(s)
- W-T Chen
- Department of Biochemistry and Molecular Biology, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - G Zhu
- Department of Biochemistry and Molecular Biology, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - K Pfaffenbach
- Department of Biology, Eastern Oregon University, La Grande, OR, USA
| | - G Kanel
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - B Stiles
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California School of Pharmacy, Los Angeles, CA, USA
| | - A S Lee
- Department of Biochemistry and Molecular Biology, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
35
|
Nishikawa Y, Sone M, Nagahama Y, Kumagai E, Doi Y, Omori Y, Yoshioka T, Tokairin T, Yoshida M, Yamamoto Y, Ito A, Sugiyama T, Enomoto K. Tumor necrosis factor-α promotes bile ductular transdifferentiation of mature rat hepatocytes in vitro. J Cell Biochem 2013; 114:831-43. [PMID: 23097189 DOI: 10.1002/jcb.24424] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 10/08/2012] [Indexed: 12/27/2022]
Abstract
We previously showed that mature hepatocytes could transdifferentiate into bile ductular cells when placed in a collagen-rich microenvironment. To explore the mechanism of transdifferentiation, we examined whether inflammatory cytokines affected the phenotype of hepatocytes in a three-dimensional culture system. Spheroidal aggregates of rat hepatocytes were embedded within a type I collagen gel matrix and cultured in the presence of various cytokines. In the control, hepatocytes gradually lost expression of albumin, tyrosine aminotransferase, and hepatocyte nuclear factor (HNF)-4α, while aberrantly expressed bile ductular markers, including cytokeratin 19 (CK 19) and spermatogenic immunoglobulin superfamily (SgIGSF). Among the cytokines examined, tumor necrosis factor (TNF)-α inhibited expression of albumin and HNF-4α, both at mRNA and protein levels. After culturing for 2 weeks with TNF-α, hepatocytic spheroids were transformed into extensively branching tubular structures composed of CK 19- and SgIGSF-positive small cuboidal cells. These cells responded to secretin with an increase in secretion and expressed functional bile duct markers. TNF-α also induced the phosphorylation of Jun N-terminal kinase (JNK) and c-Jun, and the morphogenesis was inhibited by SP600125, a specific JNK inhibitor. Furthermore, in chronic rat liver injury induced by CCl(4) , ductular reaction in the centrilobular area demonstrated strong nuclear staining of phosphorylated c-Jun. Our results demonstrate that TNF-α promotes the ductular transdifferentiation of hepatocytes and suggest a role of TNF-α in the pathogenesis of ductular reaction.
Collapse
Affiliation(s)
- Yuji Nishikawa
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Higashi 2-1-1-1 Midorigaoka, Asahikawa, Hokkaido 078-8510, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Han JM, Kim HG, Choi MK, Lee JS, Lee JS, Wang JH, Park HJ, Son SW, Hwang SY, Son CG. Artemisia capillaris extract protects against bile duct ligation-induced liver fibrosis in rats. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 2013; 65:837-844. [PMID: 23298556 DOI: 10.1016/j.etp.2012.12.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 11/23/2012] [Accepted: 12/06/2012] [Indexed: 12/25/2022]
Abstract
Artemisia capillaris has been widely used as a traditional herbal medicine in the treatment of liver diseases. However, no previous study has investigated whether A. capillaries alone is effective in treating pathological conditions associated with cholestatic liver injury. In the present study, we evaluated the anti-hepatofibrotic effects of A. capillaris (aqueous extract, WAC) in a bile duct ligation (BDL)-induced cholestatic fibrosis model. After BDL, rats were given WAC (25 or 50 mg/kg) or urosodeoxycholic acid (UDCA, 25 mg/kg) orally for 2 weeks (once per day). The serum cholestatic markers, malondialdehyde, and liver hydroxyproline levels were drastically increased in the BDL group, while administering WAC significantly reduced these alterations. Administering WAC also restored the BDL-induced depletion of glutathione content and glutathione peroxidase activity. Cholestatic liver injury and collagen deposition were markedly attenuated by WAC treatment, and these changes were paralleled by the significantly suppressed expression of fibrogenic factors, including hepatic alpha-smooth muscle actin (α-SMA), platelet-derived growth factor (PDGF), and transforming growth factor beta (TGF-β). The beneficial effects of WAC administration are associated with antifibrotic properties via both upregulation of antioxidant activities and downregulation of ECM protein production in the rat BDL model.
Collapse
Affiliation(s)
- Jong-Min Han
- Liver and Immunology Research Center, Institute of Traditional Medicine and Bioscience of Daejeon University, 22-5 Daeheung-dong, Jung-gu, Daejeon 301-724, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Morell CM, Fabris L, Strazzabosco M. Vascular biology of the biliary epithelium. J Gastroenterol Hepatol 2013; 28 Suppl 1:26-32. [PMID: 23855292 PMCID: PMC3721432 DOI: 10.1111/jgh.12022] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2012] [Indexed: 01/13/2023]
Abstract
Cholangiocytes are involved in a variety of processes essential for liver pathophysiology. To meet their demanding metabolic and functional needs, bile ducts are nourished by their own arterial supply, the peribiliary plexus. This capillary network originates from the hepatic artery and is strictly arranged around the intrahepatic bile ducts. Biliary and vascular structures are linked by a close anatomic and functional association necessary for liver development, normal organ physiology, and liver repair. This strong association is finely regulated by a range of angiogenic signals, enabling the cross talk between cholangiocytes and the different vascular cell types. This review will briefly illustrate the "vascular" properties of cholangiocytes, their underlying molecular mechanisms and the relevant pathophysiological settings.
Collapse
Affiliation(s)
- Carola M. Morell
- Department of Surgery and Interdisciplinary Medicine, University of Milano-Bicocca, Milan, Italy
| | - Luca Fabris
- Department of Surgery and Interdisciplinary Medicine, University of Milano-Bicocca, Milan, Italy,Department of Surgery, Oncology and Gastroenterology, Università di Padova, Padova, Italy
| | - Mario Strazzabosco
- Department of Surgery and Interdisciplinary Medicine, University of Milano-Bicocca, Milan, Italy,Liver Center & Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven CT, USA
| |
Collapse
|
38
|
Kuramitsu K, Sverdlov DY, Liu SB, Csizmadia E, Burkly L, Schuppan D, Hanto DW, Otterbein LE, Popov Y. Failure of fibrotic liver regeneration in mice is linked to a severe fibrogenic response driven by hepatic progenitor cell activation. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:182-94. [PMID: 23680654 DOI: 10.1016/j.ajpath.2013.03.018] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 03/13/2013] [Accepted: 03/27/2013] [Indexed: 01/18/2023]
Abstract
Failure of fibrotic liver to regenerate after resection limits therapeutic options and increases demand for liver transplantation, representing a significant clinical problem. The mechanism underlying regenerative failure in fibrosis is poorly understood. Seventy percent partial hepatectomy (PHx) was performed in C57Bl/6 mice with or without carbon tetrachloride (CCl4)-induced liver fibrosis. Liver function and regeneration was monitored at 1 to 14 days thereafter by assessing liver mass, alanine aminotransferase (ALT), mRNA expression, and histology. Progenitor (oval) cell mitogen tumor necrosis factor-like weak inducer of apoptosis (TWEAK) and TWEAK-neutralizing antibody were used to manipulate progenitor cell proliferation in vivo. In fibrotic liver, hepatocytes failed to replicate efficiently after PHx. Fibrotic livers showed late (day 5) peak of serum ALT (3542 ± 355 IU/L compared to 93 ± 65 IU/L in nonfibrotic livers), which coincided with progenitor cell expansion, increase in profibrogenic gene expression and de novo collagen deposition. In fibrotic mice, inhibition of progenitor activation using TWEAK-neutralizing antibody after PHx resulted in strongly down-regulated profibrogenic mRNA, reduced serum ALT levels and improved regeneration. Failure of hepatocyte-mediated regeneration in fibrotic liver triggers activation of the progenitor (oval) cell compartment and a severe fibrogenic response. Inhibition of progenitor cell proliferation using anti-TWEAK antibody prevents fibrogenic response and augments fibrotic liver regeneration. Targeting the fibrogenic progenitor response represents a promising strategy to improve hepatectomy outcomes in patients with liver fibrosis.
Collapse
Affiliation(s)
- Kaori Kuramitsu
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Recovery of Mature Hepatocytic Phenotype following Bile Ductular Transdifferentiation of Rat Hepatocytes in Vitro. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:2094-104. [DOI: 10.1016/j.ajpath.2012.08.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/15/2012] [Accepted: 08/20/2012] [Indexed: 12/11/2022]
|
40
|
Han JM, Kim HG, Choi MK, Lee JS, Park HJ, Wang JH, Lee JS, Son SW, Hwang SY, Son CG. Aqueous extract of Artemisia iwayomogi Kitamura attenuates cholestatic liver fibrosis in a rat model of bile duct ligation. Food Chem Toxicol 2012; 50:3505-3513. [PMID: 22824087 DOI: 10.1016/j.fct.2012.07.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Revised: 07/11/2012] [Accepted: 07/12/2012] [Indexed: 12/15/2022]
Abstract
Cholestatic liver fibrosis, characterized by excessive accumulation of extracellular matrix (ECM) proteins, is associated with bile acid-induced oxidative stress and lipid peroxidation. We evaluated the therapeutic or protective effect of an aqueous extract of Artemisia iwayomogi Kitamura (WAI) in a rat bile duct ligation (BDL)-induced hepatic fibrogenesis model. After BDL, rats were treated once daily with 25 or 50 mg/kg of WAI for 2weeks. The serum bilirubin, aspartate transaminase, alanine transaminase, malondialdehyde, and liver hydroxyproline levels were drastically increased in the BDL group. WAI administration significantly reduced these markers and restored BDL-induced depletion of glutathione content and glutathione peroxidase activity. Cholestatic liver injury and collagen deposition were markedly attenuated by WAI treatment, and these changes were paralleled by significantly suppressed gene and protein expression of fibrogenic factors, including hepatic alphasmooth muscle actin, platelet-derived growth factor, and transforming growth factor β. Our data suggest that WAI may have antifibrotic properties via both improvement of antioxidant activities and inhibition of ECM protein production in the rat model of BDL.
Collapse
Affiliation(s)
- Jong-Min Han
- Liver and Immunology Research Center, Institute of Traditional Medicine and Bioscience of Daejeon University, 22-5, Daeheung-dong, Jung-gu, Daejeon 301-724, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Azmaiparashvili E, Berishvili E, Kakabadze Z, Pilishvili O, Mikautadze E, Solomonia R, Jangavadze M, Kordzaia D. Ductular reaction at the early terms of common bile duct ligation in the rats. ACTA BIOLOGICA HUNGARICA 2012; 63:321-332. [PMID: 22963913 DOI: 10.1556/abiol.63.2012.3.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ductular reaction (DR) in bile duct ligated rats generally appears from 2nd day after biliary obstruction (BO). However, we show that increased amount of ductular profiles is evident already in 6 hours after BDL. The study aims to explain the origin of such an early DR in response to BO. Male Lewis rats were subjected to common bile duct ligation (CBDL) for 3, 6, 12 and 24 hours and sham operation. Liver samples were studied histologically, immunohistochemically (Ki67, pan-Cytokeratin /AE1 + AE3/ and OV-6) and by immunoblotting analyses. It appeared that number of ductular profiles increase in time-related manner after BO. These ductular profiles are formed by biliary epitheliocyte-like cells; No mitotic activity was revealed. Part of hepatocytes reveals pan-Cytokeratin positivity on 12 and 24 hours after BO. Total cytokeratins content at 24 hours after CBDL was 37% higher in comparison with control data. The significant increase was observed for the cytokeratins with molecular weights: 61, 56 and 40 KDa. Thus, early DR after BDL is mediated by widening of the existed finest biliary ramifications and is not associated with proliferation activities. This DR is accompanied by differentiation of hepatocytes toward bile duct-like cells.
Collapse
Affiliation(s)
- Elza Azmaiparashvili
- Faculty of Medicine, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Bai H, Zhang N, Xu Y, Chen Q, Khan M, Potter JJ, Nayar SK, Cornish T, Alpini G, Bronk S, Pan D, Anders RA. Yes-associated protein regulates the hepatic response after bile duct ligation. Hepatology 2012; 56:1097-107. [PMID: 22886419 PMCID: PMC3431197 DOI: 10.1002/hep.25769] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 03/31/2012] [Indexed: 12/11/2022]
Abstract
UNLABELLED Human chronic cholestatic liver diseases are characterized by cholangiocyte proliferation, hepatocyte injury, and fibrosis. Yes-associated protein (YAP), the effector of the Hippo tumor-suppressor pathway, has been shown to play a critical role in promoting cholangiocyte and hepatocyte proliferation and survival during embryonic liver development and hepatocellular carcinogenesis. Therefore, the aim of this study was to examine whether YAP participates in the regenerative response after cholestatic injury. First, we examined human liver tissue from patients with chronic cholestasis. We found more-active nuclear YAP in the bile ductular reactions of primary sclerosing cholangitis and primary biliary cirrhosis patient liver samples. Next, we used the murine bile duct ligation (BDL) model to induce cholestatic liver injury. We found significant changes in YAP activity after BDL in wild-type mice. The function of YAP in the hepatic response after BDL was further evaluated with liver-specific Yap conditional deletion in mice. Ablating Yap in the mouse liver not only compromised bile duct proliferation, but also enhanced hepatocyte necrosis and suppressed hepatocyte proliferation after BDL. Furthermore, primary hepatocytes and cholangiocytes isolated from Yap-deficient livers showed reduced proliferation in response to epidermal growth factor in vitro. Finally, we demonstrated that YAP likely mediates its biological effects through the modulation of Survivin expression. CONCLUSION Our data suggest that YAP promotes cholangiocyte and hepatocyte proliferation and prevents parenchymal damage after cholestatic injury in mice and thus may mediate the response to cholestasis-induced human liver disease.
Collapse
Affiliation(s)
- Haibo Bai
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD
| | - Nailing Zhang
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimore, MD,Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimore, MD
| | - Yang Xu
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD
| | - Qian Chen
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimore, MD,Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimore, MD
| | - Mehtab Khan
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD
| | - James J Potter
- Department of Medicine, Johns Hopkins University School of MedicineBaltimore, MD
| | - Suresh K Nayar
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD
| | - Toby Cornish
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD
| | - Gianfranco Alpini
- Department of Medicine and Scott & White Digestive Disease Research Center, Texas A&M Health Science Center, College of Medicine, and Scott & White Hospital, and Research Service, Central Texas Veterans Health Care SystemTemple, TX
| | - Steven Bronk
- Division of Gastroenterology and Hepatology, Mayo Clinic School of MedicineRochester, MN
| | - Duojia Pan
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimore, MD,Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimore, MD
| | - Robert A Anders
- Department of Pathology, Johns Hopkins University School of MedicineBaltimore, MD
| |
Collapse
|
43
|
Mak KM, Chu E, Lau KHV, Kwong AJ. Liver fibrosis in elderly cadavers: localization of collagen types I, III, and IV, α-smooth muscle actin, and elastic fibers. Anat Rec (Hoboken) 2012; 295:1159-67. [PMID: 22644959 DOI: 10.1002/ar.22504] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/22/2012] [Accepted: 05/04/2012] [Indexed: 12/14/2022]
Abstract
We have shown a high prevalence of liver fibrosis in elderly cadavers with diverse causes of death by Sirius red stain; however, the various collagen types in these samples have yet to be evaluated. To further characterize the histopathology of the fibrotic lesions in the livers of these elderly cadavers, this study used immunohistochemistry and histochemistry to identify the principal collagens produced in liver fibrosis, fibrogenic cells and elastic fibers. Collagen I and III immunoreactions were found to colocalize in collagen fibers of fibrotic central veins, perisinusoidal fibrotic foci, portal tract stroma, and fibrous septa. α-Smooth muscle actin-expressing perisinusoidal hepatic stellate cells (HSCs), as well as perivenular, portal, and septal myofibroblasts, were closely associated with collagen fibers, reflecting their fibrogenic functions. HSCs and myofibroblasts were also noted to express collagen IV, which may contribute to production of basal lamina-like structures. In fibrotic livers, the sinusoidal lining showed variable immunostaining for collagen IV. Collagen IV immunostaining revealed vascular proliferation and atypical ductular reaction at the portal-septal parenchymal borders, as well as capillary-like vessels in the lobular parenchyma. While elastic fibers were absent in the space of Disse, they were found to codistribute with collagens in portal tracts, fibrous septa and central veins. Our combined assessment of collagen types, HSCs, myofibroblasts, and elastic fibers is significant in understanding the histopathology of fibrosis in the aging liver.
Collapse
Affiliation(s)
- Ki M Mak
- Department of Medical Education, Center for Anatomy and Functional Morphology, Mount Sinai School of Medicine, New York, New York, USA.
| | | | | | | |
Collapse
|
44
|
Chen WY, Lin SY, Pan HC, Liao SL, Chuang YH, Yen YJ, Lin SY, Chen CJ. Beneficial effect of docosahexaenoic acid on cholestatic liver injury in rats. J Nutr Biochem 2012; 23:252-264. [PMID: 21497498 DOI: 10.1016/j.jnutbio.2010.11.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 11/09/2010] [Accepted: 11/23/2010] [Indexed: 01/20/2023]
Abstract
Bile duct obstruction and subsequent cholestasis are associated with hepatocellular injury, cholangiocyte proliferation, stellate cell activation, Kupffer cell activation, oxidative stress, inflammation and fibrosis. Docosahexaenoic acid (DHA) is an essential polyunsaturated fatty acid that has been shown to possess health beneficial effects, including hepatoprotection. However, the molecular mechanism of DHA-mediated hepatoprotection is not fully understood. In the present study, we report the protective effect of DHA on cholestatic liver injury. Cholestasis was produced by bile duct ligation (BDL) in male Sprague-Dawley rats for 3 weeks. Daily administration of DHA was started 2 weeks before injury and lasted for 5 weeks. In comparison with the control group, the BDL group showed hepatic damage as evidenced by histological changes and elevation in serum biochemicals, ductular reaction, fibrosis, inflammation and oxidative stress. These pathophysiological changes were attenuated by chronic DHA supplementation. DHA alleviated BDL-induced transforming growth factor beta-1 (TGF-β1), intereukin-1beta, connective tissue growth factor and collagen expression. The anti-fibrotic effect of DHA was accompanied by reductions in α-smooth muscle actin-positive matrix-producing cells and Smad 2/3 activity critical to the fibrogenic potential of TGF-β1. DHA also attenuated BDL-induced leukocyte accumulation and nuclear factor-κB (NF-κB) activation. Further studies demonstrated an inhibitory effect of DHA on redox-sensitive intracellular signaling molecule extracellular signal-regulated kinase (ERK). Taken together, the hepatoprotective, anti-inflammatory and anti-fibrotic effects of DHA seem to be multifactorial. The beneficial effects of chronic DHA supplementation are associated with anti-oxidative and anti-inflammatory potential as well as down-regulation of NF-κB and transforming growth factor beta/Smad signaling probably via interference with ERK activation.
Collapse
Affiliation(s)
- Wen-Ying Chen
- Department of Education and Research, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Oguz S, Kanter M, Erboga M, Erenoglu C. Protective effects of thymoquinone against cholestatic oxidative stress and hepatic damage after biliary obstruction in rats. J Mol Histol 2012; 43:151-9. [PMID: 22270828 DOI: 10.1007/s10735-011-9390-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 12/30/2011] [Indexed: 12/11/2022]
Abstract
The aim of this study was to examine the preventive and therapeutic effects of thymoquinone (TQ) against cholestatic oxidative stress and liver damage in common bile duct ligated rats. A total of 24 male Sprague-Dawley rats were divided into three groups: control, bile duct ligation (BDL) and BDL + received TQ; each group contain 8 animals. The rats in TQ treated groups were given TQ (50 mg/kg body weight) once a day orally for 2 weeks starting 3 days prior to BDL operation. To date, no more biochemical and histopathological changes on common bile duct ligated rats by TQ treatment have been reported. The application of BDL clearly increased the tissue hydroxyproline (HP) content, malondialdehyde (MDA) levels and decreased the antioxidant enzyme [superoxide dismutase (SOD), glutathione peroxidase (GPx)] activities. TQ treatment significantly decreased the elevated tissue HP content, and MDA levels and raised the reduced of SOD, and GPx enzymes in the tissues. The changes demonstrating the bile duct proliferation and fibrosis in expanded portal tracts include the extension of proliferated bile ducts into lobules, mononuclear cells, and neutrophil infiltration into the widened portal areas were observed in BDL group. Treatment of BDL with TQ attenuated alterations in liver histology. The immunopositivity of alpha smooth muscle actin and proliferating cell nuclear antigen in BDL were observed to be reduced with the TQ treatment. The present study demonstrates that oral administration of TQ in bile duct ligated rats maintained antioxidant defenses and reduces liver oxidative damage and ductular proliferation. This effect of TQ may be useful in the preservation of liver function in cholestasis.
Collapse
Affiliation(s)
- Serhat Oguz
- Department of General Surgery, Faculty of Medicine, Trakya University, 22030, Edirne, Turkey
| | | | | | | |
Collapse
|
46
|
Yoon SK. The biology of cancer stem cells and its clinical implication in hepatocellular carcinoma. Gut Liver 2012; 6:29-40. [PMID: 22375168 PMCID: PMC3286736 DOI: 10.5009/gnl.2012.6.1.29] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 06/18/2011] [Indexed: 12/18/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a highly malignant tumor with limited treatment options in its advanced state. The molecular mechanisms underlying HCC remain unclear because of the complexity of its multi-step development process. Cancer stem cells (CSCs) are defined as a small population of cells within a tumor that possess the capability for self-renewal and the generation of heterogeneous lineages of cancer cells. To date, there have been two theories concerning the mechanism of carcinogenesis, i.e., the stochastic (clonal evolution) model and the hierarchical (cancer stem cell-driven) model. The concept of the CSC has been established over the past decade, and the roles of CSCs in the carcinogenic processes of various cancers, including HCC, have been emphasized. Previous experimental and clinical evidence indicated the existence of liver CSCs; however, the potential mechanistic links between liver CSCs and the development of HCC in humans are not fully understood. Although definitive cell surface markers for liver CSCs have not yet been found, several putative markers have been identified, which allow the prospective isolation of CSCs from HCC. The identification and characterization of CSCs in HCC is essential for a better understanding of tumor initiation or progression in relation to signaling pathways. These markers could be used along with clinical parameters for the prediction of chemoresistance, radioresistance, metastasis and survival and may represent potential targets for the development of new molecular therapies against HCC. This review describes the current evidence for the existence and function of liver CSCs and discuss the clinical implications of CSCs in patients demonstrating resistance to conventional anti-cancer therapies, as well as clinical outcomes. Such data may provide a future perspective for targeted therapy in HCC.
Collapse
Affiliation(s)
- Seung Kew Yoon
- Division of Hepatology-Gastroenterology, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Seoul, Korea
| |
Collapse
|
47
|
Nishikawa Y. Transdifferentiation of mature hepatocytes into bile duct/ductule cells within a collagen gel matrix. Methods Mol Biol 2012; 826:153-60. [PMID: 22167647 DOI: 10.1007/978-1-61779-468-1_13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The phenotype of hepatocytes has been thought to be fixed once they are terminally differentiated. However, we and other investigators have demonstrated that mature hepatocytes can transform into bile duct/ductule cells in various experimental conditions in vitro. Since the normal bile duct system is almost invariably surrounded by dense periportal collagenous matrices, we placed isolated hepatocytes in a collagen-rich environment to address whether mature hepatocytes can transform into ductular cells. Here, we describe in detail our three-dimensional collagen culture method for the induction of transdifferentiation of mature rat hepatocytes into bile ductular cells. Our in vitro system might be useful for the elucidation of the mechanisms of the aberrant differentiation of hepatocytes in the diseased liver.
Collapse
Affiliation(s)
- Yuji Nishikawa
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.
| |
Collapse
|
48
|
Lennerz JKM, Chapman WC, Brunt EM. Keratin 19 epithelial patterns in cirrhotic stroma parallel hepatocarcinogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1015-29. [PMID: 21704007 DOI: 10.1016/j.ajpath.2011.04.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 03/19/2011] [Accepted: 04/14/2011] [Indexed: 12/17/2022]
Abstract
Cirrhotic septa harbor vessels and inflammatory, fibrogenic, and ductular epithelial cells, collectively referred to as the ductular reaction (DR). Lack of the DR in the stromal compartment around hepatocellular carcinoma (HCC) has been documented; however, the relationship of epithelial keratin 19 (K19) structures to progression of intralesional carcinogenesis has not been explored. K19 immunoreactivity in the stromal compartment around 176 nodules in cirrhotic explants was examined. Quantitative differences (P < 0.0001) were manifested in three distinct histologically identifiable patterns: "complex" around cirrhotic nodules (CN), "attenuated" around dysplastic nodules (DN), and "absent" around HCC. Markers of necrosis or apoptosis could not explain the perinodular K19 epithelial loss; however, multicolor immunolabeling for K19, vimentin, E-Cadherin, SNAIL, and fibroblast-specific protein 1 (FSP-1) demonstrated discrepancies in immunophenotype and cytomorphologic features. Variability of cellular features was accompanied by an overall decrease in epithelial markers and significantly increased fractions of SNAIL- and FSP-1-positive cells in the DR around DN when compared with CN (P < 0.0001). Immunolabeling of transforming growth factor-β signaling components (TGFβR1, SMAD3, and pSMAD2/3) demonstrated increased percentages of pSMAD2/3 around DN when compared with CN (P < 0.0001). These findings collectively suggest marked alterations in cellular identity as an underlying mechanism for the reproducible extralesional K19 pattern that parallels progressive stages of intranodular hepatocarcinogenesis. Paracrine signaling is proposed as a link that emphasizes the importance of the epithelial-stromal compartment in malignant progression of HCC in cirrhosis.
Collapse
Affiliation(s)
- Jochen K M Lennerz
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
49
|
Desmet VJ. Ductal plates in hepatic ductular reactions. Hypothesis and implications. III. Implications for liver pathology. Virchows Arch 2011; 458:251-9. [PMID: 21301864 DOI: 10.1007/s00428-011-1048-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 01/18/2011] [Accepted: 01/20/2011] [Indexed: 01/09/2023]
Abstract
This article discusses on the basis of the ductal plate hypothesis the implication of the concept for several liver abnormalities. The occurrence of ductal plates (DP) during liver growth in childhood would explain the paraportal and parenchymal localizations of von Meyenburg complexes in postnatally developed parts of the liver, and their higher incidence in adulthood versus childhood. It partly clarifies the lack of postnatal intrahepatic bile duct development in Alagille syndrome and the reduced number of portal tracts in this disease. Ductular reactions (DRs) in DP configuration are the predominant type of progenitor cell reaction in fulminant necro-inflammatory liver disease, when lack of sufficient parenchymal regeneration results in liver failure. The concept of dissecting DRs explains the micronodular pattern of advanced biliary and alcoholic cirrhosis. The concept explains the DP patterns of bile ducts in several cases of biliary atresia, with implications for diagnosis and prognosis. The hypothesis also has an impact on concepts about stem/progenitor cells and their niche.
Collapse
Affiliation(s)
- Valeer J Desmet
- Department of Pathology, University Hospital K.U.Leuven, Leuven, Belgium,
| |
Collapse
|
50
|
Desmet VJ. Ductal plates in hepatic ductular reactions. Hypothesis and implications. II. Ontogenic liver growth in childhood. Virchows Arch 2011; 458:261-70. [PMID: 21298286 DOI: 10.1007/s00428-011-1049-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2010] [Revised: 01/18/2011] [Accepted: 01/18/2011] [Indexed: 01/09/2023]
Abstract
This article discusses the processes of bile duct growth and new lobule formation in the liver during childhood in the light of the ductal plate (DP) hypothesis. Unlike in other organs in which tubular elongation and branching ends with the creation of the organ-specific terminal differentiation products, in the liver a steadily enlarging parenchymal mass needs to establish continuity of its canalicular network with the existing bile duct system. The hypothesis suggests that this occurs by DP formation, like in the embryonic liver, and further assumes that pathological ductular reactions (DRs) induced by cholestasis or hypoxia are amplified equivalents of similar mechanisms operating at low level during liver growth. The concept is confronted with data on porcine liver growth, since swine and non-swine liver growth is thought to be comparable. Relative bile acid load may be the driving force for establishment of new canaliculo-ductular connections, supported in zones of relative hypoxia by hypoxia-inducible factor 1 alpha secreted by hepatocytes. The latter mechanism is at the base for induction of appropriate vascular changes in selected sinusoids, resulting in the development of portal inlet venules and additional draining central veins. The process gives rise to the formation of new single lobules by formation of new portal tracts or to the transformation of single lobules in compound lobules by development of new vascular septa. The concept of postnatal DP formation is important in the elucidation of several unexplained findings in adult liver diseases.
Collapse
Affiliation(s)
- Valeer J Desmet
- Department of Pathology, University Hospital K.U.Leuven, Rafael, Leuven, Belgium.
| |
Collapse
|