1
|
Zhao Y, Haworth A, Williams S, Goodall S, Hug B, Krawiec M, Sykes J, Croker J, Booth J, Le A, Deshpande S, Walther R, Rowshanfarzad P, Ebert MA. Homogeneous and heterogeneous boosting in prostate radiotherapy: Treatment planning and target dosimetry comparison. Radiother Oncol 2025; 208:110916. [PMID: 40320175 DOI: 10.1016/j.radonc.2025.110916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 04/07/2025] [Accepted: 04/17/2025] [Indexed: 05/11/2025]
Abstract
BACKGROUND Delivering a homogeneous dominant intra-prostatic lesion (DIL) boost enables improved tumour control in prostate radiotherapy. Opportunities for further escalation of tumour control probability (TCP) may be presented by heterogeneously boosting the DIL according to the known spatially-varying characteristics of the disease. PURPOSE To investigate the practical limits and robustness of treatment planning for both homogeneous and heterogeneous DIL boost. MATERIALS AND METHODS The tumour cell distribution maps, representing voxel-wise distributions of estimated prostate tumour cell numbers, of three high-risk patients with various DIL volumes in a cohort of 63 patients were selected. Heterogeneous, structure-based prescriptions, which maximize TCP, were derived for DIL boosts for each patient. Treatment plans were generated for all patients for seven treatment modalities. The resulting homogeneous DIL boost plans and heterogeneous DIL boost plans were evaluated and compared. RESULTS In total, 42 plans were generated, including 21 plans produced for a homogeneous DIL boost and for a heterogeneous DIL boost, respectively, without violating any dose constraints. For more than 50% of heterogeneous DIL boost plans, a TCP increase could be achieved relative to plans produced for a homogeneous DIL boost. Compared to a homogeneous DIL boost, intensity modulated proton therapy (IMPT) has the potential to maximize the likelihood of effective toxicity-free treatment by implementing heterogeneous DIL boost. CONCLUSION Heterogeneous DIL boost implemented by structure-based prescriptions enabled higher TCP improvements for the majority of plans produced for a homogeneous DIL boost.
Collapse
Affiliation(s)
- Yutong Zhao
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, Australia; Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, China.
| | - Annette Haworth
- Institute of Medical Physics, The University of Sydney, Camperdown, NSW, Australia
| | - Scott Williams
- Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia; Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Simon Goodall
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, Australia; GenesisCare, Perth, WA, Australia; Centre for Advanced Technologies in Cancer Research (CATCR), Perth, WA, Australia
| | - Ben Hug
- 5DClinics, Claremont, WA, Australia
| | - Michelle Krawiec
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Jonathan Sykes
- Sydney West Radiation Oncology Network, NSW, Australia; Institute of Medical Physics, The University of Sydney, NSW, Australia
| | - Jeremy Croker
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Jeremy Booth
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
| | - Andrew Le
- Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, NSW, Australia
| | | | | | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, Australia; Centre for Advanced Technologies in Cancer Research (CATCR), Perth, WA, Australia
| | - Martin A Ebert
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA, Australia; Centre for Advanced Technologies in Cancer Research (CATCR), Perth, WA, Australia; Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia; School of Medicine and Population Health, University of Wisconsin, Madison WI, USA
| |
Collapse
|
2
|
Li Y, Ma Y, Wu J, Zhang H, Cai H, Liu X, Li Q. Hypoxia-guided treatment planning for lung cancer with dose painting by numbers. J Appl Clin Med Phys 2025; 26:e14609. [PMID: 39704650 PMCID: PMC11969086 DOI: 10.1002/acm2.14609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024] Open
Abstract
Tumor hypoxia significantly impacts the efficacy of radiotherapy. Recent developments in the technique of dose painting by numbers (DPBN) promise to improve the tumor control probability (TCP) in conventional radiotherapy for hypoxic cancer. The study initially combined the DPBN method with hypoxia-guided dose distribution optimization to overcome hypoxia for lung cancers and evaluated the effectiveness and appropriateness for clinical use of the DPBN plans. 18F-FMISO PET-CT scans from 13 lung cancer patients were retrospectively employed in our study to make hypoxia-guided radiotherapy. In the clinic, TCP and normal tissue complication probability (NTCP) derived from the DPBN plans in comparison to conventional intensity modulated radiation therapy (IMRT) plans were evaluated. Additionally, in order to investigate the improved clinical suitability, the robustness of DPBN plans in response to potential patient positioning errors and radiation resistance variations throughout the treatment course was assessed. The DPBN approach, employing voxelized prescription doses, led to an average increase of 24.47% in TCP, alongside a reduction of 1.83% in NTCP, compared to the conventional radiotherapy treatment plans. Regarding the robustness of the DPBN plans, it was observed that positional uncertainties were limited to 2 mm and radiosensitivity deviations were within 4%. The lung NTCP showed a 0.05% increase when the isocenter was moved by 3 mm in any direction, suggesting that the DPBN plan meets clinical acceptability criteria. Our study has shown that the DPBN technique has significant potential as an innovative approach to enhance the efficacy of radiotherapy for lung cancer with hypoxic regions.
Collapse
Affiliation(s)
- Yazhou Li
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineLanzhouGansu ProvinceChina
- University of Chinese Academy of SciencesBeijingChina
- Gansu Provincial HospitalLanzhouChina
| | - Yuanyuan Ma
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineLanzhouGansu ProvinceChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jieyan Wu
- Gansu Provincial HospitalLanzhouChina
| | - Hui Zhang
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineLanzhouGansu ProvinceChina
- University of Chinese Academy of SciencesBeijingChina
| | | | - Xinguo Liu
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineLanzhouGansu ProvinceChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qiang Li
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of SciencesLanzhouChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineLanzhouGansu ProvinceChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
3
|
Garrido-Hernandez G, Ytre-Hauge KS, Winter RM, Danielsen S, Alsaker MKD, Redalen KR, Henjum H. In Silico Interim Adaptation of Proton Therapy in Head and Neck Cancer by Simultaneous Dose and Linear Energy Transfer Escalation. Int J Radiat Oncol Biol Phys 2025:S0360-3016(25)00154-3. [PMID: 39993539 DOI: 10.1016/j.ijrobp.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/28/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
PURPOSE The outcome of proton therapy for head and neck cancer (HNC) varies considerably. We investigated the feasibility of adapting proton therapy plans based on 18F-fluorodeoxyglucose-positron emission tomography-defined biologic tumor volumes (BTVs) reflecting remaining aggressive tumor subvolumes 2 weeks into treatment (interim). Recognizing the potential to improve proton therapy response with increasing linear energy transfer (LET), we simulated a combined dose-LET escalation to the BTVs and compared it to pure dose escalation. In addition, the impact of relative biological effectiveness (RBE) was evaluated by comparing the constant RBE of 1.1 (RBE1.1) with a variable-RBE model. METHODS AND MATERIALS A semiautomated method was used to segment the BTV from 18F-fluorodeoxyglucose-positron emission tomography-defined for 9 patients with HNC, assuming high standardized uptake value at interim to reflect tumor radioresistance. An in-house Monte Carlo-based recalculation and reoptimization tool simulated proton therapy plans with both constant RBE1.1 and variable-RBE, aimed to deliver 68 Gy (RBE) to high-risk target volumes, 10% dose escalation to the BTV, and a LET boost to the BTV. Dose distributions were prioritized over LET optimization goals. Results were quantified by dose and LET distributions to target volumes and organs at risk, as well as normal tissue complication probabilities (NTCPs) for xerostomia and dysphagia. RESULTS Dose-LET adapted proton therapy plans achieved 10% dose escalation and mean dose-averaged LET (LETd) increases to the BTV above 1.0 keV/μm, with no significant LET increases to organs at risk. NTCP for xerostomia and dysphagia from dose-LET and dose-only escalation were similar. However, NTCPs increased 6% to 10% when variable-RBE was used instead of the constant RBE1.1. CONCLUSIONS Our in silico study showed that dose-LET escalation in proton therapy integrating a variable-RBE model may improve proton therapy for patients with HNC. Clinical evaluation of such a biological image-based dose-LET escalation in proton therapy of HNC remains to be investigated.
Collapse
Affiliation(s)
| | | | - René M Winter
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Signe Danielsen
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Department of Oncology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Mirjam K D Alsaker
- Department of Oncology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Kathrine Røe Redalen
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Helge Henjum
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Ishikawa Y, Ito K, Teramura S, Yamada T. Efficiency and Clinical Utility of AI-Assisted Radiotherapy Planning Using RatoGuide for Oropharyngeal Cancer: A Case Report. Cureus 2025; 17:e78388. [PMID: 39906643 PMCID: PMC11793990 DOI: 10.7759/cureus.78388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2025] [Indexed: 02/06/2025] Open
Abstract
This study evaluates the efficiency and dosimetric performance of RatoGuide, an artificial intelligence (AI)-assisted radiotherapy planning tool, by comparing AI-generated and manually created treatment plans for a 50-year-old male with right-sided oropharyngeal cancer (cT2N2bM0, cStage IVA) who underwent concurrent chemoradiotherapy. Treatment plans were created using volumetric-modulated arc therapy (VMAT) following the approach used by the Japanese Clinical Oncology Group (JCOG) protocol. RatoGuide generated two plans: one prioritizing the planning target volume (PTV) and the other focusing on organs at risk (OAR), while an experienced radiation oncologist manually developed a plan using a treatment planning system (TPS). Dosimetric comparisons focused on target coverage, OAR sparing, and dose homogeneity. Results showed that both AI-generated and TPS plans achieved comparable PTV coverage, with nearly identical values for Dmin, Dmean, and Dmax. The TPS plan exhibited slightly better dose homogeneity, whereas the AI-generated plan provided superior OAR sparing, particularly for the spinal cord and parotid glands, reducing the spinal cord's intermediate-dose volume (V30) by approximately 40%. However, the AI plan yielded slightly higher mean doses to both submandibular glands, though still within clinically acceptable thresholds. Additionally, the AI planning workflow was completed in just 30 minutes, significantly reducing the time required for manual planning. RatoGuide demonstrated efficiency in generating high-quality treatment plans, achieving comparable PTV coverage, and improving OAR sparing in certain areas. However, minor refinements are needed to optimize dose homogeneity and further minimize submandibular gland exposure. These findings suggest that AI-assisted planning has the potential to enhance radiotherapy efficiency and consistency.
Collapse
Affiliation(s)
- Yojiro Ishikawa
- Radiology, Tohoku Medical and Pharmaceutical University, Sendai, JPN
| | - Kengo Ito
- Radiology, Tohoku Medical and Pharmaceutical University, Sendai, JPN
| | - Satoshi Teramura
- Radiology, Tohoku Medical and Pharmaceutical University, Sendai, JPN
| | - Takayuki Yamada
- Radiology, Tohoku Medical and Pharmaceutical University, Sendai, JPN
| |
Collapse
|
5
|
Sarma G, Medhi PP, Kashyap H, Sharma SB, Kalita R, Lahkar D. Understanding Biologically Guided Radiotherapy: Essential Insights for Surgical Oncologists. Indian J Surg Oncol 2024; 15:599-605. [PMID: 39995527 PMCID: PMC11846787 DOI: 10.1007/s13193-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/14/2024] [Indexed: 02/26/2025] Open
Abstract
The technology in the radiotherapy field is approaching a new evolution day by day. The image-guided radiotherapy (IGRT) approach has changed the radiotherapy treatment workflow scenario. The image acquired before radiotherapy treatment helps minimize uncertainty in target positioning for accurate radiation delivery. Biologically guided radiotherapy (BgRT) is a new approach in radiotherapy through the IGRT modality to track the target with the help of radiopharmaceuticals. It acquires the image through PET-CT and attaches it to a linear accelerator before treatment to verify the target volume. BgRT, a pioneering technology, stands out with its unique ability to adapt dose delivery based on biological features, which sets it apart from conventional IGRT. By utilizing PET detection, BgRT can rapidly adjust the position of the linear accelerator to accommodate target motion, enabling precise dose delivery while sparing surrounding normal tissues. This represents a significant advancement, allowing for real-time tracking and adjusting radiation doses according to biological changes within the tumor. Additionally, a single tracer injection and a single treatment plan can effectively target multiple metastatic lesions, streamlining the treatment process. However, due to radioactive tracer uptake, BgRT is more suitable for hypo-fractionated or stereotactic treatments than conventional fractionation. This article provides an overview of the technological advancements of BgRT and their clinical implications in modern radiation oncology.
Collapse
Affiliation(s)
- Gautam Sarma
- Department of Radiation Oncology, All India Institute of Medical Sciences Guwahati, Changsari, Assam-781101 India
| | - Partha Pratim Medhi
- Department of Radiation Oncology, All India Institute of Medical Sciences Guwahati, Changsari, Assam-781101 India
| | - Hrishikesh Kashyap
- Department of Radiation Oncology, All India Institute of Medical Sciences Guwahati, Changsari, Assam-781101 India
| | - Shashi Bhushan Sharma
- Department of Radiation Oncology, All India Institute of Medical Sciences Guwahati, Changsari, Assam-781101 India
| | - Rupam Kalita
- Department of Radiation Oncology, All India Institute of Medical Sciences Guwahati, Changsari, Assam-781101 India
| | - Dhanjit Lahkar
- Department of Radiation Oncology, All India Institute of Medical Sciences Guwahati, Changsari, Assam-781101 India
| |
Collapse
|
6
|
Abstract
Radiotherapy aims to achieve a high tumor control probability while minimizing damage to normal tissues. Personalizing radiotherapy treatments for individual patients, therefore, depends on integrating physical treatment planning with predictive models of tumor control and normal tissue complications. Predictive models could be improved using a wide range of rich data sources, including tumor and normal tissue genomics, radiomics, and dosiomics. Deep learning will drive improvements in classifying normal tissue tolerance, predicting intra-treatment tumor changes, tracking accumulated dose distributions, and quantifying the tumor response to radiotherapy based on imaging. Mechanistic patient-specific computer simulations ('digital twins') could also be used to guide adaptive radiotherapy. Overall, we are entering an era where improved modeling methods will allow the use of newly available data sources to better guide radiotherapy treatments.
Collapse
Affiliation(s)
- Joseph O Deasy
- Department of Medical Physics, Attending Physicist, Chief, Service for Predictive Informatics, Chair, Memorial Sloan Kettering Cancer Center, New York, NY..
| |
Collapse
|
7
|
Wong OL, Yuan J, Poon DMC, Chiu ST, Yang B, Chiu G, Yu SK, Cheung KY. Prostate diffusion-weighted imaging (DWI) in MR-guided radiotherapy: Reproducibility assessment on 1.5 T MR-Linac and 1.5 T MR-simulator. Magn Reson Imaging 2024; 111:47-56. [PMID: 38513789 DOI: 10.1016/j.mri.2024.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE Diffusion-weighted imaging (DWI) holds promise for image-guided radiotherapy (MRgRT) in prostate cancer. However, challenges persist due to image distortion, artifacts, and apparent diffusion coefficient (ADC) reproducibility issues. This study aimed to assess DWI image quality and ADC reproducibility on both a 1.5 T MR-simulator and a 1.5 T MR-Linac, employing measurements from both an ACR MRI phantom and prostate cancer patients undergoing MRgRT. METHODS DW-MRI scans were conducted on 19 patients (mean age = 69 ± 8 years, with 23 MR-visible intra-prostatic lesions) and an ACR MRI phantom using a 1.5 T MR-simulator (b-values = 0, 800, 1400s/mm2) and a 1.5 T MR-Linac (b-values = 50, 500, 800 s/mm2). ADC homogeneity in the phantom was evaluated via 1D profile flatness (FL) in three directions. Image quality was assessed through qualitative 5-point Likert scale ratings and quantitative ADC and signal-to-noise ratio (SNR) measurements. Intra-observer reproducibility of image quality scores was evaluated using ICC(1, 2). Geometric distortion was measured by comparing landmark sizes on the ACR phantom against the ground truth. Mean ADC and reproducibility were assessed using Bland-Altman plots. RESULTS Both MR-simulator and MR-Linac demonstrated high ADC homogeneity (FL > 87.5% - MR-simulator: 97.23 ± 0.62%, MR-Linac: 94.75 ± 0.62%, p < 0.05) in the phantom. Image quality scores revealed acceptable ratings (≥3) for capsule demarcation, image artifacts, and geometric distortion in patients. However, intra-prostatic lesions were barely discernible in b800 images for both MR-simulator (average score = 2.37 ± 1.33) and MR-Linac (average score = 2.16 ± 1.28). While MR-Linac DWI scans exhibited significantly more severe geometric distortion than MR-simulator scans (p < 0.01), most phantom measurements fell within the image in-plane resolution of 3 mm. Significant differences were noted in MR-simulator ADC (CTV: 1.20 ± 0.14 × 10-3 mm2/s (MR-simulator) vs 1.06 ± 0.10 × 10-3 mm2/s (MR-Linac); GTV: 1.05 ± 0.21 × 10-3 mm2/s vs 0.91 ± 0.16 × 10 mm2/s, all p < 0.05), with a small non-zero bias observed in the Bland-Altman analysis (CTV: 12.3%; GTV: 14.5%). CONCLUSION The significantly larger MR-simulator ADC and the small non-zero bias hint at potential systematic differences in ADC values acquired from an MR-simulator and an MR-Linac, both at 1.5 T. Although acceptable ADC homogeneity was noted, caution is warranted in interpreting MR-Linac DWI images due to occasional severe artifacts. Further studies are essential to validate DWI and ADC as reliable imaging markers in prostate cancer MRgRT.
Collapse
Affiliation(s)
- Oi Lei Wong
- Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong SAR, China.
| | - Jing Yuan
- Research Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong SAR, China
| | - Darren M C Poon
- Comprehensive Oncology Center, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong SAR, China
| | - Sin Ting Chiu
- Department of Radiotherapy, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong SAR, China
| | - Bin Yang
- Medical Physics Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong SAR, China
| | - George Chiu
- Department of Radiotherapy, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong SAR, China
| | - Siu Ki Yu
- Medical Physics Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong SAR, China
| | - Kin Yin Cheung
- Medical Physics Department, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong SAR, China
| |
Collapse
|
8
|
Tham BZ, Aleman DM, Nordström H, Nygren N, Coolens C. Treatment Planning Methods for Dose Painting by Numbers Treatment in Gamma Knife Radiosurgery. Adv Radiat Oncol 2024; 9:101534. [PMID: 39104874 PMCID: PMC11298584 DOI: 10.1016/j.adro.2024.101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/16/2024] [Indexed: 08/07/2024] Open
Abstract
Purpose Dose painting radiation therapy delivers a nonuniform dose to tumors to account for heterogeneous radiosensitivity. With recent and ongoing development of Gamma Knife machines making large-volume brain tumor treatments more practical, it is increasingly feasible to deliver dose painting treatments. The increased prescription complexity means automated treatment planning is greatly beneficial, and the impact of dose painting on stereotactic radiosurgery (SRS) plan quality has not yet been studied. This research investigates the plan quality achievable for Gamma Knife SRS dose painting treatments when using optimization techniques and automated isocenter placement in treatment planning. Methods and Materials Dose painting prescription functions with varying parameters were applied to convert voxel image intensities to prescriptions for 10 sample cases. To study achievable plan quality and optimization, clinically placed isocenters were used with each dose painting prescription and optimized using a semi-infinite linear programming formulation. To study automated isocenter placement, a grassfire sphere-packing algorithm and a clinically available Leksell gamma plan isocenter fill algorithm were used. Plan quality for each optimized treatment plan was measured with dose painting SRS metrics. Results Optimization can be used to find high quality dose painting plans, and plan quality is affected by the dose painting prescription method. Polynomial function prescriptions show more achievable plan quality than sigmoid function prescriptions even with high mean dose boost. Automated isocenter placement is shown as a feasible method for dose painting SRS treatment, and increasing the number of isocenters improves plan quality. The computational solve time for optimization is within 5 minutes in most cases, which is suitable for clinical planning. Conclusions The impact of dose painting prescription method on achievable plan quality is quantified in this study. Optimization and automated isocenter placement are shown as possible treatment planning methods to obtain high quality plans.
Collapse
Affiliation(s)
- Benjamin Z. Tham
- Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Dionne M. Aleman
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Catherine Coolens
- Department of Radiation Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Cheng SH, Lee SY, Lee HH. Harnessing the Power of Radiotherapy for Lung Cancer: A Narrative Review of the Evolving Role of Magnetic Resonance Imaging Guidance. Cancers (Basel) 2024; 16:2710. [PMID: 39123438 PMCID: PMC11311467 DOI: 10.3390/cancers16152710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Compared with computed tomography (CT), magnetic resonance imaging (MRI) traditionally plays a very limited role in lung cancer management, although there is plenty of room for improvement in the current CT-based workflow, for example, in structures such as the brachial plexus and chest wall invasion, which are difficult to visualize with CT alone. Furthermore, in the treatment of high-risk tumors such as ultracentral lung cancer, treatment-associated toxicity currently still outweighs its benefits. The advent of MR-Linac, an MRI-guided radiotherapy (RT) that combines MRI with a linear accelerator, could potentially address these limitations. Compared with CT-based technologies, MR-Linac could offer superior soft tissue visualization, daily adaptive capability, real-time target tracking, and an early assessment of treatment response. Clinically, it could be especially advantageous in the treatment of central/ultracentral lung cancer, early-stage lung cancer, and locally advanced lung cancer. Increasing demands for stereotactic body radiotherapy (SBRT) for lung cancer have led to MR-Linac adoption in some cancer centers. In this review, a broad overview of the latest research on imaging-guided radiotherapy (IGRT) with MR-Linac for lung cancer management is provided, and development pertaining to artificial intelligence is also highlighted. New avenues of research are also discussed.
Collapse
Affiliation(s)
- Sarah Hsin Cheng
- Department of Clinical Education and Training, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Shao-Yun Lee
- Department of Medical Education, Taichung Veterans General Hospital, Taichung 407, Taiwan;
| | - Hsin-Hua Lee
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Ph.D. Program in Environmental and Occupational Medicine, Kaohsiung Medical University and National Health Research Institutes, Kaohsiung 807, Taiwan
- Department of Radiation Oncology, Faculty of Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
10
|
Pandey S, Kutuk T, Abdalah MA, Stringfield O, Ravi H, Mills MN, Graham JA, Latifi K, Moreno WA, Ahmed KA, Raghunand N. Prediction of radiologic outcome-optimized dose plans and post-treatment magnetic resonance images: A proof-of-concept study in breast cancer brain metastases treated with stereotactic radiosurgery. Phys Imaging Radiat Oncol 2024; 31:100602. [PMID: 39040435 PMCID: PMC11261135 DOI: 10.1016/j.phro.2024.100602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/24/2024] Open
Abstract
Background and purpose Information in multiparametric Magnetic Resonance (mpMR) images is relatable to voxel-level tumor response to Radiation Treatment (RT). We have investigated a deep learning framework to predict (i) post-treatment mpMR images from pre-treatment mpMR images and the dose map ("forward models"), and, (ii) the RT dose map that will produce prescribed changes within the Gross Tumor Volume (GTV) on post-treatment mpMR images ("inverse model"), in Breast Cancer Metastases to the Brain (BCMB) treated with Stereotactic Radiosurgery (SRS). Materials and methods Local outcomes, planning computed tomography (CT) images, dose maps, and pre-treatment and post-treatment Apparent Diffusion Coefficient of water (ADC) maps, T1-weighted unenhanced (T1w) and contrast-enhanced (T1wCE), T2-weighted (T2w) and Fluid-Attenuated Inversion Recovery (FLAIR) mpMR images were curated from 39 BCMB patients. mpMR images were co-registered to the planning CT and intensity-calibrated. A 2D pix2pix architecture was used to train 5 forward models (ADC, T2w, FLAIR, T1w, T1wCE) and 1 inverse model on 1940 slices from 18 BCMB patients, and tested on 437 slices from another 9 BCMB patients. Results Root Mean Square Percent Error (RMSPE) within the GTV between predicted and ground-truth post-RT images for the 5 forward models, in 136 test slices containing GTV, were (mean ± SD) 0.12 ± 0.044 (ADC), 0.14 ± 0.066 (T2w), 0.08 ± 0.038 (T1w), 0.13 ± 0.058 (T1wCE), and 0.09 ± 0.056 (FLAIR). RMSPE within the GTV on the same 136 test slices, between the predicted and ground-truth dose maps, was 0.37 ± 0.20 for the inverse model. Conclusions A deep learning-based approach for radiologic outcome-optimized dose planning in SRS of BCMB has been demonstrated.
Collapse
Affiliation(s)
- Shraddha Pandey
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33612, USA
| | - Tugce Kutuk
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Mahmoud A. Abdalah
- Quantitative Imaging Shared Service, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Olya Stringfield
- Quantitative Imaging Shared Service, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Harshan Ravi
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Matthew N. Mills
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jasmine A. Graham
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33612, USA
| | - Kujtim Latifi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33612, USA
| | - Wilfrido A. Moreno
- Department of Electrical Engineering, University of South Florida, Tampa, FL 33612, USA
| | - Kamran A. Ahmed
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33612, USA
| | - Natarajan Raghunand
- Department of Cancer Physiology, Moffitt Cancer Center, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
11
|
Vens C, van Luijk P, Vogelius RI, El Naqa I, Humbert-Vidan L, von Neubeck C, Gomez-Roman N, Bahn E, Brualla L, Böhlen TT, Ecker S, Koch R, Handeland A, Pereira S, Possenti L, Rancati T, Todor D, Vanderstraeten B, Van Heerden M, Ullrich W, Jackson M, Alber M, Marignol L. A joint physics and radiobiology DREAM team vision - Towards better response prediction models to advance radiotherapy. Radiother Oncol 2024; 196:110277. [PMID: 38670264 DOI: 10.1016/j.radonc.2024.110277] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/21/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Radiotherapy developed empirically through experience balancing tumour control and normal tissue toxicities. Early simple mathematical models formalized this practical knowledge and enabled effective cancer treatment to date. Remarkable advances in technology, computing, and experimental biology now create opportunities to incorporate this knowledge into enhanced computational models. The ESTRO DREAM (Dose Response, Experiment, Analysis, Modelling) workshop brought together experts across disciplines to pursue the vision of personalized radiotherapy for optimal outcomes through advanced modelling. The ultimate vision is leveraging quantitative models dynamically during therapy to ultimately achieve truly adaptive and biologically guided radiotherapy at the population as well as individual patient-based levels. This requires the generation of models that inform response-based adaptations, individually optimized delivery and enable biological monitoring to provide decision support to clinicians. The goal is expanding to models that can drive the realization of personalized therapy for optimal outcomes. This position paper provides their propositions that describe how innovations in biology, physics, mathematics, and data science including AI could inform models and improve predictions. It consolidates the DREAM team's consensus on scientific priorities and organizational requirements. Scientifically, it stresses the need for rigorous, multifaceted model development, comprehensive validation and clinical applicability and significance. Organizationally, it reinforces the prerequisites of interdisciplinary research and collaboration between physicians, medical physicists, radiobiologists, and computational scientists throughout model development. Solely by a shared understanding of clinical needs, biological mechanisms, and computational methods, more informed models can be created. Future research environment and support must facilitate this integrative method of operation across multiple disciplines.
Collapse
Affiliation(s)
- C Vens
- School of Cancer Science, University of Glasgow, Glasgow, UK; Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands.
| | - P van Luijk
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - R I Vogelius
- Department of Oncology, Rigshospitalet, Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - I El Naqa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48103, United States.
| | - L Humbert-Vidan
- University of Texas MD Anderson Cancer Centre, Houston, TX, United States; Department of MedicalPhysics, Guy's and St Thomas' NHS Foundation Trust, London, UK; School of Cancer and Pharmaceutical Sciences, Comprehensive Cancer Centre, King's College London, London, UK
| | - C von Neubeck
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - N Gomez-Roman
- Strathclyde Institute of Phrmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - E Bahn
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany; National Center for Tumor Diseases (NCT), Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - L Brualla
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; Faculty of Medicine, University of Duisburg-Essen, Germany
| | - T T Böhlen
- Institute of Radiation Physics, Lausanne University Hospital and Lausanne University, Lausanne, Switzerland
| | - S Ecker
- Department of Radiation Oncology, Medical University of Wien, Austria
| | - R Koch
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen 45147, Germany
| | - A Handeland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway; Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - S Pereira
- Neolys Diagnostics, 7 Allée de l'Europe, 67960 Entzheim, France
| | - L Possenti
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - T Rancati
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - D Todor
- Department of Radiation Oncology, Virginia Commonwealth University, United States
| | - B Vanderstraeten
- Department of Radiotherapy-Oncology, Ghent University Hospital, Gent, Belgium; Department of Human Structure and Repair, Ghent University, Gent, Belgium
| | - M Van Heerden
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland
| | | | - M Jackson
- School of Cancer Science, University of Glasgow, Glasgow, UK
| | - M Alber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany; Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany
| | - L Marignol
- Applied Radiation Therapy Trinity (ARTT), Discipline of Radiation Therapy, School of Medicine, Trinity St. James's Cancer Institute, Trinity College Dublin, University of Dublin, Dublin, Ireland
| |
Collapse
|
12
|
Garrido-Hernandez G, Henjum H, Winter RM, Alsaker MD, Danielsen S, Boer CG, Ytre-Hauge KS, Redalen KR. Interim 18F-FDG-PET based response-adaptive dose escalation of proton therapy for head and neck cancer: a treatment planning feasibility study. Phys Med 2024; 123:103404. [PMID: 38852365 DOI: 10.1016/j.ejmp.2024.103404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 05/06/2024] [Accepted: 06/05/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Image-driven dose escalation to tumor subvolumes has been proposed to improve treatment outcome in head and neck cancer (HNC). We used 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) acquired at baseline and into treatment (interim) to identify biologic target volumes (BTVs). We assessed the feasibility of interim dose escalation to the BTV with proton therapy by simulating the effects to organs at risk (OARs). METHODS We used the semiautomated just-enough-interaction (JEI) method to identify BTVs in 18F-FDG-PET images from nine HNC patients. Between baseline and interim FDG-PET, patients received photon radiotherapy. BTV was identified assuming that high standardized uptake value (SUV) at interim reflected tumor radioresistance. Using Eclipse (Varian Medical Systems), we simulated a 10% (6.8 Gy(RBE1.1)) and 20% (13.6 Gy(RBE1.1)) dose escalation to the BTV with protons and compared results with proton plans without dose escalation. RESULTS At interim 18F-FDG-PET, radiotherapy resulted in reduced SUV compared to baseline. However, spatial overlap between high-SUV regions at baseline and interim allowed for BTV identification. Proton therapy planning demonstrated that dose escalation to the BTV was feasible, and except for some 20% dose escalation plans, OAR doses did not significantly increase. CONCLUSION Our in silico analysis demonstrated the potential for interim 18F-FDG-PET response-adaptive dose escalation to the BTV with proton therapy. This approach may give more efficient treatment to HNC with radioresistant tumor subvolumes without increasing normal tissue toxicity. Studies in larger cohorts are required to determine the full potential for interim 18F-FDG-PET-guided dose escalation of proton therapy in HNC.
Collapse
Affiliation(s)
| | - Helge Henjum
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - René Mario Winter
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mirjam Delange Alsaker
- Department of Radiotherapy, Cancer Clinic, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Signe Danielsen
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway; Department of Oncology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | | | | | - Kathrine Røe Redalen
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
13
|
Carvalho HDA, Mauro GP, Castilho MS. From "dose erythema" to FLASH radiotherapy: impacts on clinical practice. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e2024S130. [PMID: 38865549 PMCID: PMC11164280 DOI: 10.1590/1806-9282.2024s130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 06/14/2024]
Affiliation(s)
- Heloisa de Andrade Carvalho
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Department of Radiology and Oncology, Radiotherapy Division (INRAD and ICESP) – São Paulo (SP), Brazil
| | - Geovanne Pedro Mauro
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas HCFMUSP, Department of Radiology and Oncology, Radiotherapy Division (INRAD and ICESP) – São Paulo (SP), Brazil
| | | |
Collapse
|
14
|
Qiao J, Kang H, Ran Q, Tong H, Ma Q, Wang S, Zhang W, Wu H. Metabolic habitat imaging with hemodynamic heterogeneity predicts individual progression-free survival in high-grade glioma. Clin Radiol 2024; 79:e842-e853. [PMID: 38582632 DOI: 10.1016/j.crad.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 12/07/2023] [Accepted: 02/10/2024] [Indexed: 04/08/2024]
Abstract
AIM We design a feasibility study to obtain a set of metabolic-hemodynamic habitats for tackling tumor spatial metabolic patterns with hemodynamic information. MATERIALS AND METHODS Preoperative data from 69 high-grade gliomas (HGG) patients with subsequent histologic confirmation of HGG were prospectively collected (January 2016 to March 2020) after concurrent chemoradiotherapy (CCRT). Four vascular habitats were automatically segmented by multiparametric magnetic resonance imaging (MRI). The metabolic information, either at enhancing or edema tumor regions, was obtained by two neuroradiologists. The relative habitat volumes were used for weight estimation procedures for computing the coefficients of a linear regression model using weighted least squares (WLS) for metabolite semiquantifications (i.e. the Cho/NAA ratio and the Cho/Cr ratio) at vascular habitats. Multivariate Cox proportional hazard regression analyses are used to obtain the odds ratio (OR) and develop a nomogram using weighted estimators corresponding to each covariate derived from Cox regression coefficients. RESULTS There was a strongly correlation between perfusion indexes and the Cho/Cr ratio (rCBV, r=0.71) or Cho/NAA ratio (rCBV, r=0.66) at high-angiogenic enhancing tumor habitats (HAT) habitat. Compared isocitrate dehydrogenase (IDH) mutation to their wild type, the IDH wild type had significantly decreased Cho/Cr ratio (IDH mutation: Cho/Cr ratio = 2.44 ± 0.33, IDH wildtype: Cho/Cr ratio = 2.66 ± 0.36, p=0.02) and Cho/NAA ratio (IDH mutation: Cho/Cr ratio = 4.59 ± 0.61, IDH wildtype: Cho/Cr ratio = 4.99 ± 0.66, p=0.022) at the HAT. The C-index for the median progression-free survival (PFS) prediction was 0.769 for the Cho/NAA nomogram and 0.747 for the Cho/Cr nomogram through 1000 bootstrapping validation. CONCLUSIONS Our findings suggest that spatial metabolism combined with hemodynamic heterogeneity is associated with individual PFS to HGG patients post-CCRT.
Collapse
Affiliation(s)
- J Qiao
- Department of Radiology, Daping Hospital, Army Medical University, 10# Changjiangzhilu, Chongqing, 400024, China; Chongqing Clinical Research Centre of Imaging and Nuclear Medicine, Chongqing, 400042, China
| | - H Kang
- Department of Radiology, Daping Hospital, Army Medical University, 10# Changjiangzhilu, Chongqing, 400024, China; Chongqing Clinical Research Centre of Imaging and Nuclear Medicine, Chongqing, 400042, China
| | - Q Ran
- Department of Radiology, Daping Hospital, Army Medical University, 10# Changjiangzhilu, Chongqing, 400024, China; Chongqing Clinical Research Centre of Imaging and Nuclear Medicine, Chongqing, 400042, China
| | - H Tong
- Department of Radiology, Daping Hospital, Army Medical University, 10# Changjiangzhilu, Chongqing, 400024, China; Chongqing Clinical Research Centre of Imaging and Nuclear Medicine, Chongqing, 400042, China
| | - Q Ma
- Department of Pathology, Army Medical Center, PLA, Chongqing, 400042, China
| | - S Wang
- Department of Radiology, Daping Hospital, Army Medical University, 10# Changjiangzhilu, Chongqing, 400024, China; Chongqing Clinical Research Centre of Imaging and Nuclear Medicine, Chongqing, 400042, China.
| | - W Zhang
- Department of Radiology, Daping Hospital, Army Medical University, 10# Changjiangzhilu, Chongqing, 400024, China; Chongqing Clinical Research Centre of Imaging and Nuclear Medicine, Chongqing, 400042, China.
| | - H Wu
- Department of Radiology, Daping Hospital, Army Medical University, 10# Changjiangzhilu, Chongqing, 400024, China; Chongqing Clinical Research Centre of Imaging and Nuclear Medicine, Chongqing, 400042, China.
| |
Collapse
|
15
|
Peng H, Deng J, Jiang S, Timmerman R. Rethinking the potential role of dose painting in personalized ultra-fractionated stereotactic adaptive radiotherapy. Front Oncol 2024; 14:1357790. [PMID: 38571510 PMCID: PMC10987838 DOI: 10.3389/fonc.2024.1357790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/21/2024] [Indexed: 04/05/2024] Open
Abstract
Fractionated radiotherapy was established in the 1920s based upon two principles: (1) delivering daily treatments of equal quantity, unless the clinical situation requires adjustment, and (2) defining a specific treatment period to deliver a total dosage. Modern fractionated radiotherapy continues to adhere to these century-old principles, despite significant advancements in our understanding of radiobiology. At UT Southwestern, we are exploring a novel treatment approach called PULSAR (Personalized Ultra-Fractionated Stereotactic Adaptive Radiotherapy). This method involves administering tumoricidal doses in a pulse mode with extended intervals, typically spanning weeks or even a month. Extended intervals permit substantial recovery of normal tissues and afford the tumor and tumor microenvironment ample time to undergo significant changes, enabling more meaningful adaptation in response to the evolving characteristics of the tumor. The notion of dose painting in the realm of radiation therapy has long been a subject of contention. The debate primarily revolves around its clinical effectiveness and optimal methods of implementation. In this perspective, we discuss two facets concerning the potential integration of dose painting with PULSAR, along with several practical considerations. If successful, the combination of the two may not only provide another level of personal adaptation ("adaptive dose painting"), but also contribute to the establishment of a timely feedback loop throughout the treatment process. To substantiate our perspective, we conducted a fundamental modeling study focusing on PET-guided dose painting, incorporating tumor heterogeneity and tumor control probability (TCP).
Collapse
Affiliation(s)
- Hao Peng
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jie Deng
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Steve Jiang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Robert Timmerman
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
16
|
García-Figueiras R, Baleato-González S, Luna A, Padhani AR, Vilanova JC, Carballo-Castro AM, Oleaga-Zufiria L, Vallejo-Casas JA, Marhuenda A, Gómez-Caamaño A. How Imaging Advances Are Defining the Future of Precision Radiation Therapy. Radiographics 2024; 44:e230152. [PMID: 38206833 DOI: 10.1148/rg.230152] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Radiation therapy is fundamental in the treatment of cancer. Imaging has always played a central role in radiation oncology. Integrating imaging technology into irradiation devices has increased the precision and accuracy of dose delivery and decreased the toxic effects of the treatment. Although CT has become the standard imaging modality in radiation therapy, the development of recently introduced next-generation imaging techniques has improved diagnostic and therapeutic decision making in radiation oncology. Functional and molecular imaging techniques, as well as other advanced imaging modalities such as SPECT, yield information about the anatomic and biologic characteristics of tumors for the radiation therapy workflow. In clinical practice, they can be useful for characterizing tumor phenotypes, delineating volumes, planning treatment, determining patients' prognoses, predicting toxic effects, assessing responses to therapy, and detecting tumor relapse. Next-generation imaging can enable personalization of radiation therapy based on a greater understanding of tumor biologic factors. It can be used to map tumor characteristics, such as metabolic pathways, vascularity, cellular proliferation, and hypoxia, that are known to define tumor phenotype. It can also be used to consider tumor heterogeneity by highlighting areas at risk for radiation resistance for focused biologic dose escalation, which can impact the radiation planning process and patient outcomes. The authors review the possible contributions of next-generation imaging to the treatment of patients undergoing radiation therapy. In addition, the possible roles of radio(geno)mics in radiation therapy, the limitations of these techniques, and hurdles in introducing them into clinical practice are discussed. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Roberto García-Figueiras
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Sandra Baleato-González
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Antonio Luna
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Anwar R Padhani
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Joan C Vilanova
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Ana M Carballo-Castro
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Laura Oleaga-Zufiria
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Juan Antonio Vallejo-Casas
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Ana Marhuenda
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| | - Antonio Gómez-Caamaño
- From the Department of Radiology, Division of Oncologic Imaging (R.G.F., S.B.G.), and Department of Radiation Oncology (A.M.C.C., A.G.C.), Hospital Clínico Universitario de Santiago de Compostela, Choupana s/n, 15706 Santiago de Compostela, Spain; Department of Advanced Medical Imaging, Grupo Health Time, Sercosa (Servicio Radiologia Computerizada, Clínica Las Nieves, Jaén, Spain (A.L.); Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Northwood, Middlesex, England (A.R.P.); Department of Radiology, Clínica Girona and Hospital Santa Caterina, Girona, Spain (J.C.V.); Department of Radiology, Hospital Clínic Barcelona, Barcelona, Spain (L.O.Z.); Unidad de Gestión Clínica de Medicina Nuclear, Instituto Maimónides de Investigación Biomédica de Córdoba, Hospital Universitario Reina Sofía, Córdoba, Spain (J.A.V.C.); and Department of Radiology, Instituto Valenciano de Oncología, Valencia, Spain (A.M.)
| |
Collapse
|
17
|
Yip PL, You R, Chen MY, Chua MLK. Embracing Personalized Strategies in Radiotherapy for Nasopharyngeal Carcinoma: Beyond the Conventional Bounds of Fields and Borders. Cancers (Basel) 2024; 16:383. [PMID: 38254872 PMCID: PMC10814653 DOI: 10.3390/cancers16020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Radiotherapy is the primary treatment modality for non-metastatic nasopharyngeal carcinoma (NPC) across all TN-stages. Locoregional control rates have been impressive even from the 2D radiotherapy (RT) era, except when the ability to deliver optimal dose coverage to the tumor is compromised. However, short- and long-term complications following head and neck RT are potentially debilitating, and thus, there has been much research investigating technological advances in RT delivery over the past decades, with the primary goal of limiting normal tissue damage. On this note, with a plateau in gains of therapeutic ratio by modern RT techniques, future advances have to be focused on individualization of RT, both in terms of dose prescription and the delineation of target volumes. In this review, we analyzed the guidelines and evidence related to contouring methods, and dose prescription for early and locoregionally advanced (LA-) NPC. Next, with the preference for induction chemotherapy (IC) in patients with LA-NPC, we assessed the evidence concerning radiotherapy adaptations guided by IC response, as well as functional imaging and contour changes during treatment. Finally, we discussed on RT individualization that is guided by EBV DNA assessment, and its importance in the era of combinatorial immune checkpoint blockade therapy with RT.
Collapse
Affiliation(s)
- Pui Lam Yip
- Department of Radiation Oncology, National University Cancer Institute, National University Hospital, Singapore 119074, Singapore;
| | - Rui You
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (R.Y.); (M.-Y.C.)
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
| | - Ming-Yuan Chen
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou 510060, China; (R.Y.); (M.-Y.C.)
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
- Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou 510060, China
- Cooperative Surgical Ward of Nasopharyngeal Carcinoma, Faifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, China
| | - Melvin L. K. Chua
- Division of Medical Sciences, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore
- Division of Radiation Oncology, National Cancer Centre Singapore, 30 Hospital Blvd, Singapore 168583, Singapore
- Oncology Academic Clinical Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
18
|
Laprie A, Noel G, Chaltiel L, Truc G, Sunyach MP, Charissoux M, Magne N, Auberdiac P, Biau J, Ken S, Tensaouti F, Khalifa J, Sidibe I, Roux FE, Vieillevigne L, Catalaa I, Boetto S, Uro-Coste E, Supiot S, Bernier V, Filleron T, Mounier M, Poublanc M, Olivier P, Delord JP, Cohen-Jonathan-Moyal E. Randomized phase III trial of metabolic imaging-guided dose escalation of radio-chemotherapy in patients with newly diagnosed glioblastoma (SPECTRO GLIO trial). Neuro Oncol 2024; 26:153-163. [PMID: 37417948 PMCID: PMC10768994 DOI: 10.1093/neuonc/noad119] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) systematically recurs after a standard 60 Gy radio-chemotherapy regimen. Since magnetic resonance spectroscopic imaging (MRSI) has been shown to predict the site of relapse, we analyzed the effect of MRSI-guided dose escalation on overall survival (OS) of patients with newly diagnosed GBM. METHODS In this multicentric prospective phase III trial, patients who had undergone biopsy or surgery for a GBM were randomly assigned to a standard dose (SD) of 60 Gy or a high dose (HD) of 60 Gy with an additional simultaneous integrated boost totaling 72 Gy to MRSI metabolic abnormalities, the tumor bed and residual contrast enhancements. Temozolomide was administered concomitantly and maintained for 6 months thereafter. RESULTS One hundred and eighty patients were included in the study between March 2011 and March 2018. After a median follow-up of 43.9 months (95% CI [42.5; 45.5]), median OS was 22.6 months (95% CI [18.9; 25.4]) versus 22.2 months (95% CI [18.3; 27.8]) for HD, and median progression-free survival was 8.6 (95% CI [6.8; 10.8]) versus 7.8 months (95% CI [6.3; 8.6]), in SD versus HD, respectively. No increase in toxicity rate was observed in the study arm. The pseudoprogression rate was similar across the SD (14.4%) and HD (16.7%) groups. For O(6)-methylguanine-DNA methyltransferase (MGMT) methylated patients, the median OS was 38 months (95% CI [23.2; NR]) for HD patients versus 28.5 months (95% CI [21.1; 35.7]) for SD patients. CONCLUSION The additional MRSI-guided irradiation dose totaling 72 Gy was well tolerated but did not improve OS in newly diagnosed GBM. TRIAL REGISTRATION NCT01507506; registration date: December 20, 2011. https://clinicaltrials.gov/ct2/show/NCT01507506?cond=NCT01507506&rank=1.
Collapse
Affiliation(s)
- Anne Laprie
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | | | - Leonor Chaltiel
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Gilles Truc
- Centre Georges-François Leclerc, Dijon, France
| | | | | | - Nicolas Magne
- Institut de Cancérologie de la Loire, Saint-Priest en Jarez, France
| | | | - Julian Biau
- Centre Jean-Perrin, Clermont-Ferrand, France
| | - Soléakhéna Ken
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, RadOpt-CRCT-INSERM, Toulouse, France
| | - Fatima Tensaouti
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole & ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Jonathan Khalifa
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | | | - Franck-Emmanuel Roux
- Centre Hospitalier Universitaire de Toulouse, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, Toulouse, France
| | - Laure Vieillevigne
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | | | - Sergio Boetto
- Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Emmanuelle Uro-Coste
- Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse-Oncopole, RadOpt-CRCT-INSERM, Toulouse, France
| | - Stéphane Supiot
- Institut de Cancerologie de l’Ouest, Nantes st Herblain, France
| | - Valérie Bernier
- Institut de Cancérologie de Lorraine Centre Alexis Vautrin, Nancy, France
| | - Thomas Filleron
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Muriel Mounier
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Muriel Poublanc
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Pascale Olivier
- Service de Pharmacologie Médicale et Clinique, Centre Régional de Pharmacovigilance, de Pharmacoépidémiologie et d’Information sur le Médicament CHU de Toulouse, Toulouse, France
| | - Jean-Pierre Delord
- Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | | |
Collapse
|
19
|
Liu J, Cong C, Zhang J, Qiao J, Guo H, Wu H, Sang Z, Kang H, Fang J, Zhang W. Multimodel habitats constructed by perfusion and/or diffusion MRI predict isocitrate dehydrogenase mutation status and prognosis in high-grade gliomas. Clin Radiol 2024; 79:e127-e136. [PMID: 37923627 DOI: 10.1016/j.crad.2023.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/15/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023]
Abstract
AIM To determine whether tumour vascular and cellular heterogeneity of high-grade glioma (HGG) is predictive of isocitrate dehydrogenase (IDH) mutation status and overall survival (OS) by using tumour habitat-based analysis constructed by perfusion and/or diffusion magnetic resonance imaging (MRI). MATERIALS AND METHODS Seventy-eight HGG patients that met the 2021 World Health Organization WHO Classification of Tumors of the Central Nervous System, 5th edition (WHO CNS5), were enrolled to predict IDH mutation status, of which 32 grade 4 patients with unmethylated O6-methylguanine-DNA methyltransferase (MGMT) promoter were enrolled for prognostic analysis. The deep-learning-based model nnU-Net and K-means clustering algorithm were applied to construct the Traditional Habitat, Vascular Habitat (VH), Cellular Density Habitat (DH), and their Combined Habitat (CH). Quantitative parameters were extracted and compared between IDH-mutant and IDH-wild-type patients, respectively, and the prediction potential was evaluated by receiver operating characteristic (ROC) curve analysis. OS was analysed using Kaplan-Meier survival analysis and the log-rank test. RESULTS Compared with IDH-mutants, median relative cerebral blood volume (rCBVmedian) values in the whole enhancing tumour (WET), VH1, VH3, CH1-4 habitats were significantly increased in IDH-wild-type HGGs (all p<0.05). Additionally, the accuracy of rCBVmedian values in CH1 outperformed other habitats in identifying IDH mutation status (p<0.001) at a cut-off value of 4.83 with AUC of 0.815. Kaplan-Meier survival analysis highlighted significant differences in OS between the populations dichotomised by the median of rCBVmedian in WET, VH1, CH1-3 habitats (all p<0.05). CONCLUSIONS The habitat imaging technique may improve the accuracy of predicting IDH mutation status and prognosis, and even provide a new direction for subsequent personalised precision treatment.
Collapse
Affiliation(s)
- J Liu
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China; Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, 400042, China
| | - C Cong
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China; School of Electrical and Electronic Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - J Zhang
- Department of Radiology, General Hospital of Western Theater Command of PLA, Chengdu, 600083, China
| | - J Qiao
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China; Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, 400042, China
| | - H Guo
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China; Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, 400042, China
| | - H Wu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
| | - Z Sang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China; Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, 400042, China
| | - H Kang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China; Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, 400042, China
| | - J Fang
- Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, 400042, China; Department of Ultrasound, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - W Zhang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, 400042, China; Chongqing Clinical Research Center for Imaging and Nuclear Medicine, Chongqing, 400042, China.
| |
Collapse
|
20
|
Guckenberger M, Andratschke N, Chung C, Fuller D, Tanadini-Lang S, Jaffray DA. The Future of MR-Guided Radiation Therapy. Semin Radiat Oncol 2024; 34:135-144. [PMID: 38105088 DOI: 10.1016/j.semradonc.2023.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Magnetic resonance image guided radiation therapy (MRIgRT) is a relatively new technology that has already shown outcomes benefits but that has not yet reached its clinical potential. The improved soft-tissue contrast provided with MR, coupled with the immediacy of image acquisition with respect to the treatment, enables expansion of on-table adaptive protocols, currently at a cost of increased treatment complexity, use of human resources, and longer treatment slot times, which translate to decreased throughput. Many approaches are being investigated to meet these challenges, including the development of artificial intelligence (AI) algorithms to accelerate and automate much of the workflow and improved technology that parallelizes workflow tasks, as well as improvements in image acquisition speed and quality. This article summarizes limitations of current available integrated MRIgRT systems and gives an outlook about scientific developments to further expand the use of MRIgRT.
Collapse
Affiliation(s)
- Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland..
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Caroline Chung
- Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dave Fuller
- Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - David A Jaffray
- Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
21
|
Ryan J, Hardcastle N, Francis R, Ferjančič P, Ng SP, Koh ES, Geso M, Kelly J, Ebert MA. The impact of fluorine-18-fluoroethyltyrosine positron emission tomography scan timing on radiotherapy planning in newly diagnosed patients with glioblastoma. Phys Imaging Radiat Oncol 2024; 29:100536. [PMID: 38303922 PMCID: PMC10831153 DOI: 10.1016/j.phro.2024.100536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/01/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
Background and purpose Glioblastoma is one of the most common and aggressive primary brain tumours in adults. Though radiation therapy (RT) techniques have progressed significantly in recent decades, patient survival has seen little improvement. However, an area of promise is the use of fluorine-18-fluoroethyltyrosine positron-emission-tomography (18F-FET PET) imaging to assist in RT target delineation. This retrospective study aims to assess the impact of 18F-FET PET scan timing on the resultant RT target volumes and subsequent RT plans in post-operative glioblastoma patients. Materials and Methods The imaging and RT treatment data of eight patients diagnosed with glioblastoma and treated at a single institution were analysed. Before starting RT, each patient had two 18F-FET-PET scans acquired within seven days of each other. The information from these 18F-FET-PET scans aided in the creation of two novel target volume sets. The new volumes and plans were compared with each other and the originals. Results The median clinical target volume (CTV) 1 was statistically smaller than CTV 2. The median Dice score for the CTV1/CTV2 was 0.98 and, of the voxels that differ (median 6.5 cc), 99.7% were covered with a 5 mm expansion. Overall organs at risk (OAR) and target dosimetry were similar in the PTV1 and PTV2 plans. Conclusion Provided the 18F-FET PET scan is acquired within two weeks of the RT planning and a comprehensive approach is taken to CTV delineation, the timing of scan acquisition has minimal impact on the resulting RT plan.
Collapse
Affiliation(s)
- John Ryan
- Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, Melbourne 3800, Victoria, Australia
- Medical Radiations Department, RMIT University, Bundoora, Melbourne 3083, Melbourne, Australia
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Grattan St, Melbourne 3000, Victoria, Australia
| | - Roslyn Francis
- Medical School, The University of Western Australia, 35 Stirling Highway, Perth 6009, Western Australia, Australia
- Department of Nuclear Medicine, Sir Charles Gairdner Hospital, Nedlands, Perth 6009, Western Australia, Australia
| | - Peter Ferjančič
- Department of Medical Physics, Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison 53705, Wisconsin, United States
| | - Sweet Ping Ng
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Heidelberg, Melbourne 3084, Victoria, Australia
| | - Eng-Siew Koh
- Liverpool Cancer Therapy Centre, Liverpool Hospital, Liverpool, Sydney 2170, New South Wales, Australia
- South West Clinical School, UNSW Medicine, University of New South Wales, Liverpool, Sydney 2170, New South Wales, Australia
| | - Moshi Geso
- Medical Radiations Department, RMIT University, Bundoora, Melbourne 3083, Melbourne, Australia
| | - Jennifer Kelly
- Medical Radiations Department, RMIT University, Bundoora, Melbourne 3083, Melbourne, Australia
| | - Martin A Ebert
- Department of Medical Physics, Sir Charles Gairdner Hospital, Nedlands, Perth, 6009, Western Australia, Australia
- School of Physics, Mathematics and Computing, and Australian Centre for Quantitative Imaging, University of Western Australia, Crawley, Perth 6009, Western Australia, Australia
- School of Medicine and Population Health, University of Wisconsin, Madison, Wisconsin 53705, Wisconsin, USA
| |
Collapse
|
22
|
van Houdt PJ, Li S, Yang Y, van der Heide UA. Quantitative MRI on MR-Linacs: Towards Biological Image-Guided Adaptive Radiotherapy. Semin Radiat Oncol 2024; 34:107-119. [PMID: 38105085 DOI: 10.1016/j.semradonc.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Recognizing the potential of quantitative imaging biomarkers (QIBs) in radiotherapy, many studies have investigated the prognostic value of quantitative MRI (qMRI). With the introduction of MRI-guided radiotherapy systems, the practical challenges of repeated imaging have been substantially reduced. Since patients are treated inside an MRI scanner, acquisition of qMRI can be done during each fraction with limited or no prolongation of the fraction duration. In this review paper, we identify the steps that need been taken to move from MR as an imaging technique to a useful biomarker for MRI-guided radiotherapy (MRgRT).
Collapse
Affiliation(s)
- Petra J van Houdt
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Shaolei Li
- SJTU-Ruijing, UIH Institute for Medical Imaging Technology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.; Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yingli Yang
- SJTU-Ruijing, UIH Institute for Medical Imaging Technology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.; Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Uulke A van der Heide
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands..
| |
Collapse
|
23
|
Zhong J, Kobus M, Maitre P, Datta A, Eccles C, Dubec M, McHugh D, Buckley D, Scarsbrook A, Hoskin P, Henry A, Choudhury A. MRI-guided Pelvic Radiation Therapy: A Primer for Radiologists. Radiographics 2023; 43:e230052. [PMID: 37796729 DOI: 10.1148/rg.230052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Radiation therapy (RT) is a core pillar of oncologic treatment, and half of all patients with cancer receive this therapy as a curative or palliative treatment. The recent integration of MRI into the RT workflow has led to the advent of MRI-guided RT (MRIgRT). Using MRI rather than CT has clear advantages for guiding RT to pelvic tumors, including superior soft-tissue contrast, improved organ motion visualization, and the potential to image tumor phenotypic characteristics to identify the most aggressive or treatment-resistant areas, which can be targeted with a more focal higher radiation dose. Radiologists should be familiar with the potential uses of MRI in planning pelvic RT; the various RT techniques used, such as brachytherapy and external beam RT; and the impact of MRIgRT on treatment paradigms. Current clinical experience with and the evidence base for MRIgRT in the settings of prostate, cervical, and bladder cancer are discussed, and examples of treated cases are illustrated. In addition, the benefits of MRIgRT, such as real-time online adaptation of RT (during treatment) and interfraction and/or intrafraction adaptation to organ motion, as well as how MRIgRT can decrease toxic effects and improve oncologic outcomes, are highlighted. MRIgRT is particularly beneficial for treating mobile pelvic structures, and real-time adaptive RT for tumors can be achieved by using advanced MRI-guided linear accelerator systems to spare organs at risk. Future opportunities for development of biologically driven adapted RT with use of functional MRI sequences and radiogenomic approaches also are outlined. ©RSNA, 2023 Quiz questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Jim Zhong
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Marta Kobus
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Priyamvada Maitre
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Anubhav Datta
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Cynthia Eccles
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Michael Dubec
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Damien McHugh
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - David Buckley
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Andrew Scarsbrook
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Peter Hoskin
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Ann Henry
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| | - Ananya Choudhury
- From the Leeds Institute of Medical Research (J.Z., A.S., A.H.) and Department of Biomedical Imaging (D.B.), University of Leeds, 6 Clarendon Way, Woodhouse, Leeds LS2 9LH, England; Leeds Cancer Centre, St James's University Hospital, Leeds, England (J.Z., A.S., A.H.); Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany (M.K.); Radiation Therapy Research Group (M.K., P.M., A.D., C.E., M.D., P.H., A.C.) and Division of Cancer Sciences (D.M.), University of Manchester, Manchester, England; and The Christie NHS Foundation Trust, Manchester, England (P.M., C.E., M.D., D.M., P.H., A.C.)
| |
Collapse
|
24
|
Kim H, Hua Y, Epel B, Sundramoorthy S, Halpern H, Chen CT, Kao CM. A Preclinical Positron Emission Tomography (PET) and Electron-Paramagnetic-Resonance-Imaging (EPRI) Hybrid System: PET Detector Module. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2023; 7:794-801. [PMID: 37981977 PMCID: PMC10655702 DOI: 10.1109/trpms.2023.3301788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
We report the design and experimental validation of a compact positron emission tomography (PET) detector module (DM) intended for building a preclinical PET and electron-paramagnetic-resonance-imaging hybrid system that supports sub-millimeter image resolution and high-sensitivity, whole-body animal imaging. The DM is eight detector units (DU) in a row. Each DU contains 12×12 lutetium-yttrium oxyorthosilicate (LYSO) crystals having a 1.05 mm pitch read by 4×4 silicon photomultipliers (SiPM) having a 3.2 mm pitch. A small-footprint, highly-multiplexing readout employing only passive electronics is devised to produce six outputs for the DM, including two outputs derived from SiPM cathodes for determining event time and active DU and four outputs derived from SiPM anodes for determining energy and active crystal. Presently, we have developed two DMs that are 1.28×10.24 cm2 in extent and approximately 1.8 cm in thickness, with their outputs sampled at 0.7 GS/s and analyzed offline. For both DMs, our results show successfully discriminated DUs and crystals. With no correction for SiPM nonlinearity, the average energy resolution for crystals in a DU ranges from 14% to 16%. While not needed for preclinical imaging, the DM may support 300-400 ps time-of-flight resolution.
Collapse
Affiliation(s)
- Heejong Kim
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Yuexuan Hua
- Raycan Technology Co., Ltd., Suzhou, Jiangsu, China
| | - Boris Epel
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA
| | | | - Howard Halpern
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, Illinois, USA
| | - Chin-Tu Chen
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| | - Chien-Min Kao
- Department of Radiology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
25
|
Almhagen E, Dasu A, Johansson S, Traneus E, Ahnesjö A. Plan robustness and RBE influence for proton dose painting by numbers for head and neck cancers. Phys Med 2023; 115:103157. [PMID: 37939480 DOI: 10.1016/j.ejmp.2023.103157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/25/2023] [Accepted: 09/26/2023] [Indexed: 11/10/2023] Open
Abstract
PURPOSE To investigate the feasibility of dose painting by numbers (DPBN) with respect to robustness for proton therapy for head and neck cancers (HNC), and to study the influence of variable RBE on the TCP and OAR dose burden. METHODS AND MATERIALS Data for 19 patients who have been scanned pretreatment with PET-FDG and subsequently treated with photon therapy were used in the study. A dose response model developed for photon therapy was implemented in a TPS, allowing DPBN plans to be created. Conventional homogeneous dose and DPBN plans were created for each patient, optimized with either fixed RBE = 1.1 or a variable RBE model. Robust optimization was used to create clinically acceptable plans. To estimate the maximum potential loss in TCP due to actual SUV variations from the pre-treatment imaging, we applied a test case with randomized SUV distribution. RESULTS Regardless of the use of variable RBE for optimization or evaluation, a statistically significant increase (p < 0.001) in TCP was found for DPBN plans as compared to homogeneous dose plans. Randomizing the SUV distribution decreased the TCP for all plans. A correlation between TCP increase and variance of the SUV distribution and target volume was also found. CONCLUSION DPBN for protons and HNC is feasible and could lead to a TCP gain. Risks associated with the temporal variation of SUV distributions could be mitigated by imposing minimum doses to targets. The correlation found between TCP increase and SUV variance and target volume may be used for patient selection.
Collapse
Affiliation(s)
- Erik Almhagen
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Akademiska Sjukhuset, Uppsala, Sweden; The Skandion Clinic, Uppsala, Sweden.
| | - Alexandru Dasu
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Akademiska Sjukhuset, Uppsala, Sweden; The Skandion Clinic, Uppsala, Sweden
| | - Silvia Johansson
- Divison of Oncology, Department of Immunology, Genetics and Pathology, Uppsala University Hospital, Uppsala, Sweden
| | | | - Anders Ahnesjö
- Medical Radiation Sciences, Department of Immunology, Genetics and Pathology, Uppsala University, Akademiska Sjukhuset, Uppsala, Sweden
| |
Collapse
|
26
|
Zhao Y, Haworth A, Rowshanfarzad P, Ebert MA. Focal Boost in Prostate Cancer Radiotherapy: A Review of Planning Studies and Clinical Trials. Cancers (Basel) 2023; 15:4888. [PMID: 37835581 PMCID: PMC10572027 DOI: 10.3390/cancers15194888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Focal boost radiotherapy was developed to deliver elevated doses to functional sub-volumes within a target. Such a technique was hypothesized to improve treatment outcomes without increasing toxicity in prostate cancer treatment. PURPOSE To summarize and evaluate the efficacy and variability of focal boost radiotherapy by reviewing focal boost planning studies and clinical trials that have been published in the last ten years. METHODS Published reports of focal boost radiotherapy, that specifically incorporate dose escalation to intra-prostatic lesions (IPLs), were reviewed and summarized. Correlations between acute/late ≥G2 genitourinary (GU) or gastrointestinal (GI) toxicity and clinical factors were determined by a meta-analysis. RESULTS By reviewing and summarizing 34 planning studies and 35 trials, a significant dose escalation to the GTV and thus higher tumor control of focal boost radiotherapy were reported consistently by all reviewed studies. Reviewed trials reported a not significant difference in toxicity between focal boost and conventional radiotherapy. Acute ≥G2 GU and late ≥G2 GI toxicities were reported the most and least prevalent, respectively, and a negative correlation was found between the rate of toxicity and proportion of low-risk or intermediate-risk patients in the cohort. CONCLUSION Focal boost prostate cancer radiotherapy has the potential to be a new standard of care.
Collapse
Affiliation(s)
- Yutong Zhao
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA 6009, Australia; (P.R.); (M.A.E.)
| | - Annette Haworth
- Institute of Medical Physics, School of Physics, The University of Sydney, Camperdown, NSW 2050, Australia;
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA 6009, Australia; (P.R.); (M.A.E.)
- Centre for Advanced Technologies in Cancer Research (CATCR), Perth, WA 6000, Australia
| | - Martin A. Ebert
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA 6009, Australia; (P.R.); (M.A.E.)
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- 5D Clinics, Claremont, WA 6010, Australia
- School of Medicine and Population Health, University of Wisconsin, Madison WI 53706, USA
| |
Collapse
|
27
|
Park JC, Song B, Liang X, Lu B, Tan J, Parisi A, Denbeigh J, Yaddanpudi S, Choi B, Kim JS, Furutani KM, Beltran CJ. A high-resolution cone beam computed tomography (HRCBCT) reconstruction framework for CBCT-guided online adaptive therapy. Med Phys 2023; 50:6490-6501. [PMID: 37690458 DOI: 10.1002/mp.16734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Kilo-voltage cone-beam computed tomography (CBCT) is a prevalent modality used for adaptive radiotherapy (ART) due to its compatibility with linear accelerators and ability to provide online imaging. However, the widely-used Feldkamp-Davis-Kress (FDK) reconstruction algorithm has several limitations, including potential streak aliasing artifacts and elevated noise levels. Iterative reconstruction (IR) techniques, such as total variation (TV) minimization, dictionary-based methods, and prior information-based methods, have emerged as viable solutions to address these limitations and improve the quality and applicability of CBCT in ART. PURPOSE One of the primary challenges in IR-based techniques is finding the right balance between minimizing image noise and preserving image resolution. To overcome this challenge, we have developed a new reconstruction technique called high-resolution CBCT (HRCBCT) that specifically focuses on improving image resolution while reducing noise levels. METHODS The HRCBCT reconstruction technique builds upon the conventional IR approach, incorporating three components: the data fidelity term, the resolution preservation term, and the regularization term. The data fidelity term ensures alignment between reconstructed values and measured projection data, while the resolution preservation term exploits the high resolution of the initial Feldkamp-Davis-Kress (FDK) algorithm. The regularization term mitigates noise during the IR process. To enhance convergence and resolution at each iterative stage, we applied Iterative Filtered Backprojection (IFBP) to the data fidelity minimization process. RESULTS We evaluated the performance of the proposed HRCBCT algorithm using data from two physical phantoms and one head and neck patient. The HRCBCT algorithm outperformed all four different algorithms; FDK, Iterative Filtered Back Projection (IFBP), Compressed Sensing based Iterative Reconstruction (CSIR), and Prior Image Constrained Compressed Sensing (PICCS) methods in terms of resolution and noise reduction for all data sets. Line profiles across three line pairs of resolution revealed that the HRCBCT algorithm delivered the highest distinguishable line pairs compared to the other algorithms. Similarly, the Modulation Transfer Function (MTF) measurements, obtained from the tungsten wire insert on the CatPhan 600 physical phantom, showed a significant improvement with HRCBCT over traditional algorithms. CONCLUSION The proposed HRCBCT algorithm offers a promising solution for enhancing CBCT image quality in adaptive radiotherapy settings. By addressing the challenges inherent in traditional IR methods, the algorithm delivers high-definition CBCT images with improved resolution and reduced noise throughout each iterative step. Implementing the HR CBCT algorithm could significantly impact the accuracy of treatment planning during online adaptive therapy.
Collapse
Affiliation(s)
- Justin C Park
- Department of Radiation Oncology, Mayo Clinic, Florida, USA
| | - Bongyong Song
- Department of Radiation Oncology, University of California San Diego, San Diego, California, USA
| | - Xiaoying Liang
- Department of Radiation Oncology, Mayo Clinic, Florida, USA
| | - Bo Lu
- Department of Radiation Oncology, Mayo Clinic, Florida, USA
| | - Jun Tan
- Department of Radiation Oncology, Mayo Clinic, Florida, USA
| | - Alessio Parisi
- Department of Radiation Oncology, Mayo Clinic, Florida, USA
| | - Janet Denbeigh
- Department of Radiation Oncology, Mayo Clinic, Florida, USA
| | | | - Byongsu Choi
- Department of Radiation Oncology, Mayo Clinic, Florida, USA
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, South Korea
| | | | | |
Collapse
|
28
|
Zhang W, Ray S. From coarse to fine: a deep 3D probability volume contours framework for tumour segmentation and dose painting in PET images. FRONTIERS IN RADIOLOGY 2023; 3:1225215. [PMID: 37745205 PMCID: PMC10512384 DOI: 10.3389/fradi.2023.1225215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023]
Abstract
With the increasing integration of functional imaging techniques like Positron Emission Tomography (PET) into radiotherapy (RT) practices, a paradigm shift in cancer treatment methodologies is underway. A fundamental step in RT planning is the accurate segmentation of tumours based on clinical diagnosis. Furthermore, novel tumour control methods, such as intensity modulated radiation therapy (IMRT) dose painting, demand the precise delineation of multiple intensity value contours to ensure optimal tumour dose distribution. Recently, convolutional neural networks (CNNs) have made significant strides in 3D image segmentation tasks, most of which present the output map at a voxel-wise level. However, because of information loss in subsequent downsampling layers, they frequently fail to precisely identify precise object boundaries. Moreover, in the context of dose painting strategies, there is an imperative need for reliable and precise image segmentation techniques to delineate high recurrence-risk contours. To address these challenges, we introduce a 3D coarse-to-fine framework, integrating a CNN with a kernel smoothing-based probability volume contour approach (KsPC). This integrated approach generates contour-based segmentation volumes, mimicking expert-level precision and providing accurate probability contours crucial for optimizing dose painting/IMRT strategies. Our final model, named KsPC-Net, leverages a CNN backbone to automatically learn parameters in the kernel smoothing process, thereby obviating the need for user-supplied tuning parameters. The 3D KsPC-Net exploits the strength of KsPC to simultaneously identify object boundaries and generate corresponding probability volume contours, which can be trained within an end-to-end framework. The proposed model has demonstrated promising performance, surpassing state-of-the-art models when tested against the MICCAI 2021 challenge dataset (HECKTOR).
Collapse
Affiliation(s)
- Wenhui Zhang
- School of Mathematics and Statistics, University of Glasgow, Glasgow, United Kingdom
| | | |
Collapse
|
29
|
Koch CJ, Kim MM, Wiersma RD. Radiation-Chemical Oxygen Depletion Depends on Chemical Environment and Dose Rate: Implications for the FLASH Effect. Int J Radiat Oncol Biol Phys 2023; 117:214-222. [PMID: 37059234 DOI: 10.1016/j.ijrobp.2023.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/27/2023] [Accepted: 04/01/2023] [Indexed: 04/16/2023]
Abstract
PURPOSE FLASH (dose rates >40 Gy/s) radiation therapy protects normal tissues from radiation damage, compared with conventional radiation therapy (∼Gy/m). Radiation-chemical oxygen depletion (ROD) occurs when oxygen reacts with radiation-induced free radicals, so a possible mechanism for FLASH involves radioprotection by the decreased oxygen as ROD occurs. High ROD rates would favor this mechanism, but prior studies have reported low ROD values (∼0.35 µM/Gy) in chemical environments such as water and protein/nutrient solutions. We proposed that intracellular ROD might be much larger, possibly promoted by its strongly reducing chemical environment. METHODS AND MATERIALS ROD was measured, using precision polarographic sensors, from ∼100 µM to zero in solutions containing intracellular reducing agents ± glycerol (1M), to simulate intracellular reducing and hydroxyl-radical-scavenging capacity. Cs irradiators and a research proton beamline allowed dose rates from 0.0085 to 100 Gy/s. RESULTS Reducing agents significantly altered ROD values. Most greatly increased ROD but some (eg, ascorbate) actually decreased ROD and additionally imposed an oxygen dependence of ROD at low oxygen concentrations. The highest values of ROD were found at low dose rates, but these montonically decreased with increasing dose rate. CONCLUSIONS ROD was greatly augmented by some intracellular reducing agents but others (eg, ascorbate) effectively reversed this effect. Ascorbate had its greatest effect at low oxygen concentrations. ROD decreased with increasing dose rate in most cases.
Collapse
Affiliation(s)
- Cameron J Koch
- Radiation Oncology Department, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Michele M Kim
- Radiation Oncology Department, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Rodney D Wiersma
- Radiation Oncology Department, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
30
|
Qiao J, Wu H, Liu J, Kang H, Wang S, Fang J, Zhang J, Zhang W. Spectral Analysis Based on Hemodynamic Habitat Imaging Predicts Isocitrate Dehydrogenase Status and Prognosis in High-Grade Glioma. World Neurosurg 2023; 175:e520-e530. [PMID: 37028478 DOI: 10.1016/j.wneu.2023.03.136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
BACKGROUND The intratumoral heterogeneity of high-grade gliomas (HGGs) is associated with isocitrate dehydrogenase (IDH) status and prognosis, which can be established by quantitative radioanalysis of spatial tumor habitats. Therefore, we designed a framework for tackling tumors based on spatial metabolism using the hemodynamic tissue signature (HTS), focusing on metabolic changes in tumor habitat to predict IDH status and assess prognosis in patients with HGG. METHODS Preoperative data for 121 patients with HGG with subsequent histologic confirmation of HGG were prospectively collected (January 2016 to December 2020). The HTS was mapped from the image data, chemical shift imaging voxels were selected from the HTS habitat as the region of interest, and the metabolic ratio of the HTS was calculated using weighted least square method fitting. The metabolic rate of the tumor enhancement area was used as a control to analyze the efficacy of each HTS metabolic rate in predicting the IDH status and prognosis of HGG. RESULTS Total choline (Cho)/total creatine and Cho/N-acetyl-aspartate showed significant differences between IDH-wildtype and IDH-mutant in high- and low-angiogenic enhanced tumor sites (P < 0.05); Cho/total creatine was an independent risk factor for prognosis of HGG patients in high-angiogenic enhanced tumor habitats, with significant differences in survival time between groups (P < 0.05). The metabolic ratio in the tumor enhanced area could not predict IDH status or evaluate prognosis. CONCLUSIONS Spectral analysis based on hemodynamic habitat imaging can clearly distinguish IDH mutations and the prognosis assessment is more accurate, rendering it superior to traditional spectral analysis in tumor enhancement areas.
Collapse
Affiliation(s)
- Jinguo Qiao
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China; Chongqing Clinical Research Centre of Imaging and Nuclear Medicine, Chongqing, China
| | - Hao Wu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiachen Liu
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China; Chongqing Clinical Research Centre of Imaging and Nuclear Medicine, Chongqing, China
| | - Houyi Kang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China; Chongqing Clinical Research Centre of Imaging and Nuclear Medicine, Chongqing, China
| | - Shunan Wang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China; Chongqing Clinical Research Centre of Imaging and Nuclear Medicine, Chongqing, China
| | - Jingqin Fang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China; Chongqing Clinical Research Centre of Imaging and Nuclear Medicine, Chongqing, China
| | - Junfeng Zhang
- Department of Radiology, General Hospital of Western Theater Command of PLA, Chengdu, Sichuan Province, China
| | - Weiguo Zhang
- Department of Radiology, Daping Hospital, Army Medical University, Chongqing, China; Chongqing Clinical Research Centre of Imaging and Nuclear Medicine, Chongqing, China.
| |
Collapse
|
31
|
Kaanders JHAM, Bussink J, Aarntzen EHJG, Braam P, Rütten H, van der Maazen RWM, Verheij M, van den Bosch S. [18F]FDG-PET-Based Personalized Radiotherapy Dose Prescription. Semin Radiat Oncol 2023; 33:287-297. [PMID: 37331783 DOI: 10.1016/j.semradonc.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
PET imaging with 2'-deoxy-2'-[18F]fluoro-D-glucose ([18F]FDG) has become one of the pillars in the management of malignant diseases. It has proven value in diagnostic workup, treatment policy, follow-up, and as prognosticator for outcome. [18F]FDG is widely available and standards have been developed for PET acquisition protocols and quantitative analyses. More recently, [18F]FDG-PET is also starting to be appreciated as a decision aid for treatment personalization. This review focuses on the potential of [18F]FDG-PET for individualized radiotherapy dose prescription. This includes dose painting, gradient dose prescription, and [18F]FDG-PET guided response-adapted dose prescription. The current status, progress, and future expectations of these developments for various tumor types are discussed.
Collapse
Affiliation(s)
- Johannes H A M Kaanders
- Department of Radiation Oncology, Radboud university medical center, Nijmegen, The Netherlands..
| | - Johan Bussink
- Department of Radiation Oncology, Radboud university medical center, Nijmegen, The Netherlands
| | - Erik H J G Aarntzen
- Department of Medical Imaging, Radboud university medical center, Nijmegen, The Netherlands
| | - Pètra Braam
- Department of Radiation Oncology, Radboud university medical center, Nijmegen, The Netherlands
| | - Heidi Rütten
- Department of Radiation Oncology, Radboud university medical center, Nijmegen, The Netherlands
| | | | - Marcel Verheij
- Department of Radiation Oncology, Radboud university medical center, Nijmegen, The Netherlands
| | - Sven van den Bosch
- Department of Radiation Oncology, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
32
|
Pang Y, Kosmin M, Li Z, Deng X, Li Z, Li X, Zhang Y, Royle G, Manolopoulos S. Isotoxic dose escalated radiotherapy for glioblastoma based on diffusion-weighted MRI and tumor control probability-an in-silico study. Br J Radiol 2023; 96:20220384. [PMID: 37102792 PMCID: PMC10230387 DOI: 10.1259/bjr.20220384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 04/28/2023] Open
Abstract
OBJECTIVES Glioblastoma (GBM) is the most common malignant primary brain tumor with local recurrence after radiotherapy (RT), the most common mode of failure. Standard RT practice applies the prescription dose uniformly across tumor volume disregarding radiological tumor heterogeneity. We present a novel strategy using diffusion-weighted (DW-) MRI to calculate the cellular density within the gross tumor volume (GTV) in order to facilitate dose escalation to a biological target volume (BTV) to improve tumor control probability (TCP). METHODS The pre-treatment apparent diffusion coefficient (ADC) maps derived from DW-MRI of ten GBM patients treated with radical chemoradiotherapy were used to calculate the local cellular density based on published data. Then, a TCP model was used to calculate TCP maps from the derived cell density values. The dose was escalated using a simultaneous integrated boost (SIB) to the BTV, defined as the voxels for which the expected pre-boost TCP was in the lowest quartile of the TCP range for each patient. The SIB dose was chosen so that the TCP in the BTV increased to match the average TCP of the whole tumor. RESULTS By applying a SIB of between 3.60 Gy and 16.80 Gy isotoxically to the BTV, the cohort's calculated TCP increased by a mean of 8.44% (ranging from 7.19 to 16.84%). The radiation dose to organ at risk is still under their tolerance. CONCLUSIONS Our findings indicate that TCPs of GBM patients could be increased by escalating radiation doses to intratumoral locations guided by the patient's biology (i.e., cellularity), moreover offering the possibility for personalized RT GBM treatments. ADVANCES IN KNOWLEDGE A personalized and voxel level SIB radiotherapy method for GBM is proposed using DW-MRI, which can increase the tumor control probability and maintain organ at risk dose constraints.
Collapse
Affiliation(s)
- Yaru Pang
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, United Kingdom
| | | | - Zhuangling Li
- Department of Radiation Oncology, Shenzhen People's Hospital, Shenzhen, China
| | - Xiaonian Deng
- Department of Radiation Oncology, Shenzhen People's Hospital, Shenzhen, China
| | - Zihuang Li
- Department of Radiation Oncology, Shenzhen People's Hospital, Shenzhen, China
| | - Xianming Li
- Department of Radiation Oncology, Shenzhen People's Hospital, Shenzhen, China
| | - Ying Zhang
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, United Kingdom
| | - Gary Royle
- Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, United Kingdom
| | | |
Collapse
|
33
|
Yan W, Quan C, Mourad WF, Yuan J, Shi Z, Yang J, Lu Q, Zhang J. Application of radiomics in lung immuno-oncology. PRECISION RADIATION ONCOLOGY 2023; 7:128-136. [PMID: 40337267 PMCID: PMC11935008 DOI: 10.1002/pro6.1191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 04/08/2023] Open
Abstract
Radiomics is a rapidly evolving field of research that extracts and analyzes quantitative features within medical images. Those features are termed as radiomic features that can characterize a tumor in a comprehensive and quantitative manner with regard to its internal structure and heterogeneity. Radiomic features can be used, alone or in combination with demographic, histological, genomic, or proteomic data, for predicting prognosis or treatment response. Immunotherapy, or immune-oncology, is the study of cancer treatment by taking advantage of the body's immune system to prevent, control, and eliminate cancer. In this review, we first provide a brief introduction to both radiomics and immune-oncology in lung cancer. Then, we discuss the need for developing immune-oncology biomarkers, and the advantages of radiomics in identifying biomarkers related to immunotherapy. We also discuss potential areas in and out of tumors, such as the intra-tumoral hypoxic region and tumor microenvironment, where radiomic markers might be extracted, as well as a potential application of radiomic biomarkers in clinical lung cancer management. Finally, we present radiation and immune modulation in non-small cell lung cancer, clinical trials and their design to incorporate radiomic biomarkers, and radiomics-guided precision radiation therapy.
Collapse
Affiliation(s)
- Weisi Yan
- Baptist Health SystemLexingtonKentuckyUSA
| | - Chen Quan
- City of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Waleed F. Mourad
- Department of Radiation MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Jianda Yuan
- Translational Oncology at Merck & CoKenilworthNew JerseyUSA
| | | | - Jun Yang
- Foshan Chancheng HospitalFoshanGuangdongChina
| | - Qiuxia Lu
- Foshan Chancheng HospitalFoshanGuangdongChina
| | - Jie Zhang
- Department of RadiologyUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
34
|
Secerov Ermenc A, Segedin B. The Role of MRI and PET/CT in Radiotherapy Target Volume Determination in Gastrointestinal Cancers-Review of the Literature. Cancers (Basel) 2023; 15:cancers15112967. [PMID: 37296929 DOI: 10.3390/cancers15112967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Positron emission tomography with computed tomography (PET/CT) and magnetic resonance imaging (MRI) could improve accuracy in target volume determination for gastrointestinal cancers. A systematic search of the PubMed database was performed, focusing on studies published within the last 20 years. Articles were considered eligible for the review if they included patients with anal canal, esophageal, rectal or pancreatic cancer, as well as PET/CT or MRI for radiotherapy treatment planning, and if they reported interobserver variability or changes in treatment planning volume due to different imaging modalities or correlation between the imaging modality and histopathologic specimen. The search of the literature retrieved 1396 articles. We retrieved six articles from an additional search of the reference lists of related articles. Forty-one studies were included in the final review. PET/CT seems indispensable for target volume determination of pathological lymph nodes in esophageal and anal canal cancer. MRI seems appropriate for the delineation of primary tumors in the pelvis as rectal and anal canal cancer. Delineation of the target volumes for radiotherapy of pancreatic cancer remains challenging, and additional studies are needed.
Collapse
Affiliation(s)
- Ajra Secerov Ermenc
- Department of Radiation Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Barbara Segedin
- Department of Radiation Oncology, Institute of Oncology Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
35
|
Nigam R, Field M, Harris G, Barton M, Carolan M, Metcalfe P, Holloway L. Automated detection, delineation and quantification of whole-body bone metastasis using FDG-PET/CT images. Phys Eng Sci Med 2023; 46:851-863. [PMID: 37126152 DOI: 10.1007/s13246-023-01258-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 04/11/2023] [Indexed: 05/02/2023]
Abstract
Non-small cell lung cancer (NSCLC) patients with the metastatic spread of disease to the bone have high morbidity and mortality. Stereotactic ablative body radiotherapy increases the progression free survival and overall survival of these patients with oligometastases. FDG-PET/CT, a functional imaging technique combining positron emission tomography (PET) with 18 F-fluorodeoxyglucose (FDG) and computer tomography (CT) provides improved staging and identification of treatment response. It is also associated with reduction in size of the radiotherapy tumour volume delineation compared with CT based contouring in radiotherapy, thus allowing for dose escalation to the target volume with lower doses to the surrounding organs at risk. FDG-PET/CT is increasingly being used for the clinical management of NSCLC patients undergoing radiotherapy and has shown high sensitivity and specificity for the detection of bone metastases in these patients. Here, we present a software tool for detection, delineation and quantification of bone metastases using FDG-PET/CT images. The tool extracts standardised uptake values (SUV) from FDG-PET images for auto-segmentation of bone lesions and calculates volume of each lesion and associated mean and maximum SUV. The tool also allows automatic statistical validation of the auto-segmented bone lesions against the manual contours of a radiation oncologist. A retrospective review of FDG-PET/CT scans of more than 30 candidate NSCLC patients was performed and nine patients with one or more metastatic bone lesions were selected for the present study. The SUV threshold prediction model was designed by splitting the cohort of patients into a subset of 'development' and 'validation' cohorts. The development cohort yielded an optimum SUV threshold of 3.0 for automatic detection of bone metastases using FDG-PET/CT images. The validity of the derived optimum SUV threshold on the validation cohort demonstrated that auto-segmented and manually contoured bone lesions showed strong concordance for volume of bone lesion (r = 0.993) and number of detected lesions (r = 0.996). The tool has various applications in radiotherapy, including but not limited to studies determining optimum SUV threshold for accurate and standardised delineation of bone lesions and in scientific studies utilising large patient populations for instance for investigation of the number of metastatic lesions that can be treated safety with an ablative dose of radiotherapy without exceeding the normal tissue toxicity.
Collapse
Affiliation(s)
- R Nigam
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia.
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia.
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW, 2500, Australia.
| | - M Field
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
- Liverpool and Macarthur Cancer Therapy Centre, Liverpool, NSW, 2170, Australia
- South Western Sydney Clinical Campus, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - G Harris
- Chris O'Brien Lifehouse, Camperdown, NSW, 2050, Australia
| | - M Barton
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
- Liverpool and Macarthur Cancer Therapy Centre, Liverpool, NSW, 2170, Australia
- South Western Sydney Clinical Campus, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - M Carolan
- Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW, 2500, Australia
| | - P Metcalfe
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
| | - L Holloway
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
- Liverpool and Macarthur Cancer Therapy Centre, Liverpool, NSW, 2170, Australia
- South Western Sydney Clinical Campus, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
- Institute of Medical Physics, University of Sydney, Camperdown, NSW, 2505, Australia
| |
Collapse
|
36
|
Carulli F, He M, Cova F, Erroi A, Li L, Brovelli S. Silica-Encapsulated Perovskite Nanocrystals for X-ray-Activated Singlet Oxygen Production and Radiotherapy Application. ACS ENERGY LETTERS 2023; 8:1795-1802. [PMID: 37090166 PMCID: PMC10111416 DOI: 10.1021/acsenergylett.3c00234] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Multicomponent systems consisting of lead halide perovskite nanocrystals (CsPbX3-NCs, X = Br, I) grown inside mesoporous silica nanospheres (NSs) with selectively sealed pores combine intense scintillation and strong interaction with ionizing radiation of CsPbX3 NCs with the chemical robustness in aqueous environment of silica particles, offering potentially promising candidates for enhanced radiotherapy and radio-imaging strategies. We demonstrate that CsPbX3 NCs boost the generation of singlet oxygen species (1O2) in water under X-ray irradiation and that the encapsulation into sealed SiO2 NSs guarantees perfect preservation of the inner NCs after prolonged storage in harsh conditions. We find that the 1O2 production is triggered by the electromagnetic shower released by the CsPbX3 NCs with a striking correlation with the halide composition (I3 > I3-x Br x > Br3). This opens the possibility of designing multifunctional radio-sensitizers able to reduce the local delivered dose and the undesired collateral effects in the surrounding healthy tissues by improving a localized cytotoxic effect of therapeutic treatments and concomitantly enabling optical diagnostics by radio imaging.
Collapse
Affiliation(s)
- Francesco Carulli
- Università
degli Studi di Milano-Bicocca, Dipartimento di Scienza dei Materiali, Via Cozzi 55, 20125 Milan, Italy
| | - Mengda He
- School
of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Francesca Cova
- Università
degli Studi di Milano-Bicocca, Dipartimento di Scienza dei Materiali, Via Cozzi 55, 20125 Milan, Italy
| | - Andrea Erroi
- Università
degli Studi di Milano-Bicocca, Dipartimento di Scienza dei Materiali, Via Cozzi 55, 20125 Milan, Italy
| | - Liang Li
- Macao
Institute of Materials Science and Engineering (MIMSE), Macau University of Science and Technology, Taipa 999078, Macao, China
| | - Sergio Brovelli
- Università
degli Studi di Milano-Bicocca, Dipartimento di Scienza dei Materiali, Via Cozzi 55, 20125 Milan, Italy
| |
Collapse
|
37
|
Xu T, Feng Y, Hong H, Xu Y, Chen J, Qiu X, Ding J, Huang C, Li L, Chen C, Fei Z. Biological target volume based on fluorine-18-fluorode-oxyglucose positron emission tomography/computed tomography imaging: a spurious proposition? Radiat Oncol 2023; 18:32. [PMID: 36810119 PMCID: PMC9942280 DOI: 10.1186/s13014-023-02225-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/12/2023] [Indexed: 02/23/2023] Open
Abstract
PURPOSE To assess whether the high metabolic region of fluorine-18-fluorode-oxyglucose (18F-FDG) in the primary lesion is the crux for recurrence in patients with nasopharyngeal carcinoma (NPC), to assess the feasibility and rationale for use of biological target volume (BTV) based on 18F-FDG positron emission tomography/computed tomography (18F-FDG-PET/CT). METHODS The retrospective study included 33 patients with NPC who underwent 18F-FDG-PET/CT at the time of initial diagnosis as well as the time of diagnosis of local recurrence. Paired 18F-FDG-PET/CT images for primary and recurrent lesion were matched by deformation coregistration method to determine the cross-failure rate between two lesions. RESULTS The median volume of the Vpri (primary tumor volume using the SUV thresholds of 2.5), the Vhigh (the volume of high FDG uptake using the SUV50%max isocontour), and the Vrecur (the recurrent tumor volume using the SUV thresholds of 2.5) were 22.85, 5.57, and 9.98 cm3, respectively. The cross-failure rate of Vrecur∩high showed that 82.82% (27/33) of local recurrent lesions had < 50% overlap volume with the region of high FDG uptake. The cross-failure rate of Vrecur∩pri showed that 96.97% (32/33) of local recurrent lesions had > 20% overlap volume with the primary tumor lesions and the median cross rate was up to 71.74%. CONCLUSION 18F-FDG-PET/CT may be a powerful tool for automatic target volume delineation, but it may not be the optimal imaging modality for dose escalation radiotherapy based on applicable isocontour. The combination of other functional imaging could delineate the BTV more accurately.
Collapse
Affiliation(s)
- Ting Xu
- grid.415110.00000 0004 0605 1140Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Ye Feng
- grid.415110.00000 0004 0605 1140Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Huiling Hong
- grid.415110.00000 0004 0605 1140Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Yiying Xu
- grid.415110.00000 0004 0605 1140Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Jiawei Chen
- grid.415110.00000 0004 0605 1140Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Xiufang Qiu
- grid.415110.00000 0004 0605 1140Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Jianming Ding
- grid.415110.00000 0004 0605 1140Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Chaoxiong Huang
- grid.415110.00000 0004 0605 1140Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Li Li
- grid.415110.00000 0004 0605 1140Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road, Fuzhou, 350014 Fujian People’s Republic of China
| | - Chuanben Chen
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road, Fuzhou, 350014, Fujian, People's Republic of China.
| | - Zhaodong Fei
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuma Road, Fuzhou, 350014, Fujian, People's Republic of China.
| |
Collapse
|
38
|
Mallum A, Mkhize T, Akudugu JM, Ngwa W, Vorster M. The Role of Positron Emission Tomography and Computed Tomographic (PET/CT) Imaging for Radiation Therapy Planning: A Literature Review. Diagnostics (Basel) 2022; 13:diagnostics13010053. [PMID: 36611345 PMCID: PMC9818506 DOI: 10.3390/diagnostics13010053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
PET/CT is revolutionising radiotherapy treatment planning in many cancer sites. While its utility has been confirmed in some cancer sites, and is used in routine clinical practice, it is still at an experimental stage in many other cancer sites. This review discusses the utility of PET/CT in cancer sites where the role of PET/CT has been established in cases such as head and neck, cervix, brain, and lung cancers, as well as cancer sites where the role of PET/CT is still under investigation such as uterine, ovarian, and prostate cancers. Finally, the review touches on PET/CT utilisation in Africa.
Collapse
Affiliation(s)
- Abba Mallum
- Department of Radiotherapy and Oncology, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- Department of Radiotherapy and Oncology, Inkosi Albert Luthuli Central Hospital, Durban 4091, South Africa
- University of Maiduguri Teaching Hospital, Maiduguri 600104, Nigeria
- Correspondence: or
| | - Thokozani Mkhize
- Department of Nuclear Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- Department of Nuclear Medicine, Inkosi Albert Central Hospital, Durban 4091, South Africa
| | - John M. Akudugu
- Division of Radiobiology, Department of Medical Imaging and Clinical Oncology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Wilfred Ngwa
- School of Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
- Brigham and Women’s Hospital, Dana-Farmer Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Mariza Vorster
- Department of Nuclear Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- Department of Nuclear Medicine, Inkosi Albert Central Hospital, Durban 4091, South Africa
| |
Collapse
|
39
|
Hou C, Yin H, Gong G, Wang L, Su Y, Lu J, Yin Y. A novel approach for dose painting radiotherapy of brain metastases guided by mr perfusion images. Front Oncol 2022; 12:828312. [DOI: 10.3389/fonc.2022.828312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
PurposeTo investigate the feasibility and dosimetric index features of dose painting guided by perfusion heterogeneity for brain metastasis (BMs) patients.MethodsA total of 50 patients with single BMs were selected for this study. CT and MR simulation images were obtained, including contrast-enhanced T1-weighted images (T1WI+C) and cerebral blood flow (CBF) maps from 3D-arterial spin labeling (ASL). The gross tumor volume (GTV) was determined by fusion of CT and T1WI+C images. Hypoperfused subvolumes (GTVH) with less than 25% of the maximum CBF value were defined as the dose escalation region. The planning target volume (PTV) and PTVH were calculated from GTV and GTVH respectively. The PTVN was obtained by subtracting PTVH from PTV, and conventional dose was given. Three kinds of radiotherapy plans were designed based on the CBF values. Plan 1 was defined as the conventional plan with an arbitrary prescription dose of 60 Gy for PTV. For dose painting, Plan 2 and Plan 3 escalated the prescription dose for PTVH to 72 Gy based on Plan 1, but Plan 3 removed the maximum dose constraint. Dosimetric indices were compared among the three plans.ResultsThe mean GTV volume was 34.5 (8.4-118.0) cm3, and mean GTVH volume was 17.0 (4.5-58.3) cm3, accounting for 49.3% of GTV. Both conventional plan and dose painting plans achieved 98% target coverage. The conformity index of PTVH were 0.44 (Plan1), 0.64 and 0.72 (Plan 2 and Plan 3, P<0.05). Compared to Plan 1, the D2%, D98% and Dmean values of the PTVH escalated by 20.50%, 19.32%, and 19.60% in Plan 2 and by 24.88%, 17.22% and 19.22% in Plan 3 respectively (P<0.05). In the three plans, the index of achievement value for PTVH was between 1.01 and 1.03 (P<0.05). The dose increment rates of Plan 2 and Plan 3 for each organs at risk (OARs) was controlled at 2.19% - 5.61% compared with Plan 1. The doses received by OARs did not significantly differ among the three plans (P >0.05).ConclusionsBMs are associated with significant heterogeneity, and effective escalation of the dose delivered to target subvolumes can be achieved with dose painting guided by 3D-ASL without extra doses to OARs.
Collapse
|
40
|
Lagendijk JJW, Raaymakers BW, Intven MPW, van der Voort van Zyp JRN. ESTRO Breur lecture 2022: Real-time MRI-guided radiotherapy: The next generation standard? Radiother Oncol 2022; 176:244-248. [PMID: 36446518 DOI: 10.1016/j.radonc.2022.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/15/2022] [Accepted: 08/21/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Jan J W Lagendijk
- Department of Radiotherapy, Division Imaging and Oncology, University Medical Centre Utrecht, The Netherlands
| | - Bas W Raaymakers
- Department of Radiotherapy, Division Imaging and Oncology, University Medical Centre Utrecht, The Netherlands
| | - Martijn P W Intven
- Department of Radiotherapy, Division Imaging and Oncology, University Medical Centre Utrecht, The Netherlands.
| | | |
Collapse
|
41
|
van der Heide U, Thwaites DI. Integrated MRI-linac systems: The new paradigm for precision adaptive radiotherapy and biological image-guidance? Radiother Oncol 2022; 176:249-250. [PMID: 36446519 DOI: 10.1016/j.radonc.2022.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Uulke van der Heide
- Department of Radiation Oncology, the Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - David I Thwaites
- Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW, Australia; Radiotherapy Research Group, Leeds Institute of Medical Research, St James's Hospital and University of Leeds, Leeds, UK.
| |
Collapse
|
42
|
Laprie A, Tensaouti F, Cohen-Jonathan Moyal E. [Radiation dose intensification for glioblastoma]. Cancer Radiother 2022; 26:894-898. [PMID: 36085279 DOI: 10.1016/j.canrad.2022.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/07/2022] [Accepted: 07/07/2022] [Indexed: 10/14/2022]
Abstract
Glioblastoma is the most common brain tumor in adults; its treatment includes surgical excision or biopsy followed by radio-chemotherapy. Even if radiotherapy increases the survival of all patients regardless of their age or their general condition, there are always sources of radioresistance, where relapses occur and therefore treatment fails. Indeed, these foci result in a local relapse, which is observed in 95% of cases in the irradiation fields. We will describe here the current approaches to overcome this radioresistance by dose escalation, without or with guidance by metabolic and functional imaging (dose-painting). We will detail several prospective trials including the French phase III trial, SPECTRO-GLIO, randomizing the use of an integrated boost guided by spectrometric magnetic resonance imaging and similar trials developed across the Atlantic. We will also discuss approaches using different PET markers as well as diffusion or perfusion magnetic resonance imaging.
Collapse
Affiliation(s)
- A Laprie
- Département d'oncologie radiothérapie, institut universitaire du cancer de Toulouse-Oncopole, 1, avenue Irène-Joliot-Curie, 31059 Toulouse cedex, France; Inserm Toulouse neuroimaging center (Tonic), place Baylac, 31000 Toulouse, France.
| | - F Tensaouti
- Département d'oncologie radiothérapie, institut universitaire du cancer de Toulouse-Oncopole, 1, avenue Irène-Joliot-Curie, 31059 Toulouse cedex, France; Inserm Toulouse neuroimaging center (Tonic), place Baylac, 31000 Toulouse, France
| | - E Cohen-Jonathan Moyal
- Département d'oncologie radiothérapie, institut universitaire du cancer de Toulouse-Oncopole, 1, avenue Irène-Joliot-Curie, 31059 Toulouse cedex, France; Inserm Radopt, CRCT, Centre de recherche en cancérologie de Toulouse, 2, avenue Hubert-Curien, 31100 Toulouse, France
| |
Collapse
|
43
|
Malicki J, Piotrowski T, Guedea F, Krengli M. Treatment-integrated imaging, radiomics, and personalised radiotherapy: the future is at hand. Rep Pract Oncol Radiother 2022; 27:734-743. [PMID: 36196410 PMCID: PMC9521689 DOI: 10.5603/rpor.a2022.0071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022] Open
Abstract
Since the introduction of computed tomography for planning purposes in the 1970s, we have been observing a continuous development of different imaging methods in radiotherapy. The current achievements of imaging technologies in radiotherapy enable more than just improvement of accuracy on the planning stage. Through integrating imaging with treatment machines, they allow advanced control methods of dose delivery during the treatment. This article reviews how the integration of existing and novel forms of imaging changes radiotherapy and how these advances can allow a more individualised approach to cancer therapy. We believe that the significant challenge for the next decade is the continued integration of a range of different imaging devices into linear accelerators. These imaging modalities should show intra-fraction changes in body morphology and inter-fraction metabolic changes. As the use of these more advanced, integrated machines grows, radiotherapy delivery will become more accurate, thus resulting in better clinical outcomes: higher cure rates with fewer side effects.
Collapse
Affiliation(s)
- Julian Malicki
- Department of Electroradiology, University of Medical Sciences, Poznan, Poland
- Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | - Tomasz Piotrowski
- Department of Electroradiology, University of Medical Sciences, Poznan, Poland
- Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | - Ferran Guedea
- Department of Radiation Oncology, Catalan Institute of Oncology, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Marco Krengli
- Radiation Oncology Unit, University Hospital “Maggiore della Carità”, Novara, Italy
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
44
|
Pirrone G, Matrone F, Chiovati P, Manente S, Drigo A, Donofrio A, Cappelletto C, Borsatti E, Dassie A, Bortolus R, Avanzo M. Predicting Local Failure after Partial Prostate Re-Irradiation Using a Dosiomic-Based Machine Learning Model. J Pers Med 2022; 12:1491. [PMID: 36143276 PMCID: PMC9505150 DOI: 10.3390/jpm12091491] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 12/22/2022] Open
Abstract
The aim of this study is to predict local failure after partial prostate re-irradiation for the treatment of isolated locally recurrent prostate cancer by using a machine learning classifier based on radiomic features from pre-treatment computed tomography (CT), positron-emission tomography (PET) and biological effective dose distribution (BED) of the radiotherapy plan. The analysis was conducted on a monocentric dataset of 43 patients with evidence of isolated intraprostatic recurrence of prostate cancer after primary external beam radiotherapy. All patients received partial prostate re-irradiation delivered by volumetric modulated arc therapy. The gross tumor volume (GTV) of each patient was manually contoured from planning CT, choline-PET and dose maps. An ensemble machine learning pipeline including unbalanced data correction and feature selection was trained using the radiomic and dosiomic features as input for predicting occurrence of local failure. The model performance was assessed using sensitivity, specificity, accuracy and area under receiver operating characteristic curves of the score function in 10-fold cross validation repeated 100 times. Local failure was observed in 13 patients (30%), with a median time to recurrence of 36.7 months (range = 6.1-102.4 months). A four variables ensemble machine learning model resulted in accuracy of 0.62 and AUC 0.65. According to our results, a dosiomic machine learning classifier can predict local failure after partial prostate re-irradiation.
Collapse
Affiliation(s)
- Giovanni Pirrone
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Fabio Matrone
- Radiation Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Paola Chiovati
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Stefania Manente
- Nuclear Medicine Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Annalisa Drigo
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Alessandra Donofrio
- Radiation Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Cristina Cappelletto
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Eugenio Borsatti
- Nuclear Medicine Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Andrea Dassie
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Roberto Bortolus
- Radiation Oncology Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Michele Avanzo
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| |
Collapse
|
45
|
Kuznetsov M, Clairambault J, Volpert V. Perspectives in cancer treatment: Reply to comments on "Improving cancer treatments via dynamical biophysical models". Phys Life Rev 2022; 42:15-18. [PMID: 35636229 DOI: 10.1016/j.plrev.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/17/2022]
Affiliation(s)
- M Kuznetsov
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Prospekt, Moscow, 119991, Russian Federation; Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation.
| | - J Clairambault
- Laboratoire Jacques-Louis Lions, UMR 7598, Sorbonne University, 75005 Paris, France; INRIA Team Mamba, INRIA Paris, 75012 Paris, France.
| | - V Volpert
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation; Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne, France.
| |
Collapse
|
46
|
Sasai K. My 42-year Experience in Radiation Oncology. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2022; 68:332-338. [PMID: 39021424 PMCID: PMC11250016 DOI: 10.14789/jmj.jmj22-0025-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 06/16/2022] [Indexed: 07/20/2024]
Abstract
In the present review, I provide an overview of the development of radiation therapy and short history of the Department of Radiation Oncology, Juntendo University. I also emphasize the importance of radiation therapy as a major treatment modality for cancers. Radiation therapy is a standard treatment for malignant tumors. It aims to deliver a sufficient radiation dose to a target volume to eradicate tumor cells or relieve symptoms of disease. Therapy can achieve good results in many types of cancers. Although radiation therapy sometimes causes undesirable adverse events, it is generally less invasive than other treatment modalities and does not alter the shape and function of healthy organs. When the author joined this field in 1981, radiation therapy techniques were highly primitive; however, during the past 42 years, treatment has advanced rapidly with the development of computer science, mechanical techniques and instrumentation. Currently, patients can be treated with precise radiation techniques, including intensity-modulated radiation therapy, image-guided radiation therapy, stereotactic irradiation, and brachytherapy. We also introduced a new treatment planning system that uses not only anatomical but also metabolic imaging, which permits correct delineation of the target volume. Therefore, it is crucial to stay up to date with advances and developments in rapidly emerging technologies to maintain high-quality treatment. The Department of Radiation Oncology at Juntendo University (Tokyo, Japan) is still small; however, it is gradually expanding and conducting research in both clinical and basic fields. It is the author's hope that many young investigators will join this field in the future.
Collapse
|
47
|
Risør LM, Clausen MM, Ujmajuridze Z, Farhadi M, Andersen KF, Loft A, Friborg J, Kjaer A. Prognostic Value of Urokinase-Type Plasminogen Activator Receptor PET/CT in Head and Neck Squamous Cell Carcinomas and Comparison with 18F-FDG PET/CT: A Single-Center Prospective Study. J Nucl Med 2022; 63:1169-1176. [PMID: 34857658 PMCID: PMC9364350 DOI: 10.2967/jnumed.121.262866] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023] Open
Abstract
The aim of this phase II clinical trial (NCT02965001) was to evaluate the prognostic value of urokinase-type plasminogen activator receptor (uPAR) PET/CT with the novel ligand 68Ga-NOTA-AE105 in head and neck cancer and compare it with 18F-FDG. Methods: Patients with head and neck squamous cell carcinoma referred for curatively intended radiotherapy were eligible and prospectively included in this study. 68Ga-uPAR and 18F-FDG PET/CT were performed before initiation of curatively intended radiotherapy, and the SUVmax of the primary tumor was measured on both PET/CT studies by 2 independent readers. Relapse-free survival (RFS) and overall survival (OS) were calculated, and optimal cutoffs were established for 68Ga-uPAR and 18F-FDG PET independently and compared using log rank and Kaplan-Meier statistics, as well as univariate and multivariate analysis in a Cox proportional-hazards model. Results: In total, 57 patients were included and followed for a median of 33.8 mo (range, 2.30-47.2, mo). The median SUVmax of the primary tumors was 2.98 (range, 1.94-5.24) for 68Ga-uPAR and 15.7 (range, 4.24-45.5) for 18F-FDG. The optimal cutoffs for 68Ga-NOTA-AE105 SUVmax in the primary tumor were 2.63 for RFS and 2.66 for OS. A high uptake of 68Ga-NOTA-AE105 (SUVmax above cutoff) was significantly associated with poor RFS and OS (log-rank P = 0.012 and P = 0.022). 68Ga-NOTA-AE105 uptake in the primary tumor was significantly associated with poor RFS in univariate analysis (hazard ratio [HR], 8.53 [95% CI, 1.12-64.7]; P = 0.038), and borderline-associated with OS (HR, 7.44 [95% CI, 0.98-56.4]; P = 0.052). For 18F-FDG PET, the optimal cutoffs were 22.7 for RFS and 22.9 for OS. An 18F-FDG SUVmax above the cutoff was significantly associated with reduced RFS (log-rank P = 0.012) and OS (log-rank P = 0.000). 18F-FDG uptake was significantly associated with reduced RFS (HR, 3.27 [95% CI, 1.237-8.66]; P = 0.017) and OS (HR, 7.10 [95% CI, 2.60-19.4]; P < 0.001) in univariate analysis. In a multivariate analysis including 68Ga-uPAR SUVmax, 18F-FDG SUVmax, TNM stage, and p16 status, only 68Ga-uPAR SUVmax remained significant (HR, 8.51 [95% CI, 1.08-66.9]; P = 0.042) for RFS. For OS, only TNM stage and 18F-FDG remained significant. Conclusion: The current trial showed promising results for the use of 68Ga-uPAR PET SUVmax in the primary tumor to predict RFS in head and neck squamous cell carcinoma patients referred for curatively intended radiotherapy when compared with 18F-FDG PET, TNM stage, and p16 status. 68Ga-uPAR PET could potentially become valuable for identification of patients suited for deescalation of treatment and risk-stratified follow-up schemes.
Collapse
Affiliation(s)
- Louise M. Risør
- Department of Clinical Physiology, Nuclear Medicine, and PET and Cluster for Molecular Imaging, Copenhagen University Hospital–Rigshospitalet, and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Malene M. Clausen
- Department of Clinical Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; and
| | | | | | - Kim F. Andersen
- Department of Clinical Physiology, Nuclear Medicine, and PET and Cluster for Molecular Imaging, Copenhagen University Hospital–Rigshospitalet, and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Annika Loft
- Department of Clinical Physiology, Nuclear Medicine, and PET and Cluster for Molecular Imaging, Copenhagen University Hospital–Rigshospitalet, and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jeppe Friborg
- Department of Clinical Oncology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark; and
| | - Andreas Kjaer
- Department of Clinical Physiology, Nuclear Medicine, and PET and Cluster for Molecular Imaging, Copenhagen University Hospital–Rigshospitalet, and Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
Chen S, Qin A, Yan D. Dynamic Characteristics and Predictive Capability of Tumor Voxel Dose-Response Assessed Using 18F-FDG PET/CT Imaging Feedback. Front Oncol 2022; 12:876861. [PMID: 35875108 PMCID: PMC9299377 DOI: 10.3389/fonc.2022.876861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose Tumor voxel dose–response matrix (DRM) can be quantified using feedback from serial FDG-PET/CT imaging acquired during radiotherapy. This study investigated the dynamic characteristics and the predictive capability of DRM. Methods FDG-PET/CT images were acquired before and weekly during standard chemoradiotherapy with the treatment dose 2 Gy × 35 from 31 head and neck cancer patients. For each patient, deformable image registration was performed between the pretreatment/baseline PET/CT image and each weekly PET/CT image. Tumor voxel DRM was derived using linear regression on the logarithm of the weekly standard uptake value (SUV) ratios for each tumor voxel, such as SUV measured at a dose level normalized to the baseline SUV0. The dynamic characteristics were evaluated by comparing the DRMi estimated using a single feedback image acquired at the ith treatment week (i = 1, 2, 3, or 4) to the DRM estimated using the last feedback image for each patient. The predictive capability of the DRM estimated using 1 or 2 feedback images was evaluated using the receiver operating characteristic test with respect to the treatment outcome of tumor local–regional control or failure. Results The mean ± SD of tumor voxel SUV measured at the pretreatment and the 1st, 2nd, 3rd, 4th, and last treatment weeks was 6.76 ± 3.69, 5.72 ± 3.43, 3.85 ± 2.22, 3.27 ± 2.25, 2.5 ± 1.79, and 2.23 ± 1.27, respectively. The deviations between the DRMi estimated using the single feedback image obtained at the ith week and the last feedback image were 0.86 ± 4.87, −0.06 ± 0.3, −0.09 ± 0.17, and −0.09 ± 0.12 for DRM1, DRM2, DRM3, and DRM4, respectively. The predictive capability of DRM3 and DRM4 was significant (p < 0.001). The area under the curve (AUC) was increased with the increase in treatment dose level. The DRMs constructed using the single feedback image achieved an AUC of 0.86~1. The AUC was slightly improved to 0.94~1 for the DRMs estimated using 2 feedback images. Conclusion Tumor voxel metabolic activity measured using FDG-PET/CT fluctuated noticeably during the first 2 treatment weeks and obtained a stabilized reduction rate thereafter. Tumor voxel DRM constructed using a single FDG-PET/CT feedback image after the 2nd treatment week (>20 Gy) has a good predictive capability. The predictive capability improved continuously using a later feedback image and marginally improved when two feedback images were applied.
Collapse
Affiliation(s)
- Shupeng Chen
- Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - An Qin
- Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States
| | - Di Yan
- Radiation Oncology, William Beaumont Hospital, Royal Oak, MI, United States.,Radiation Oncology, Huaxi Hospital/School of Medicine, Chengdu, China
| |
Collapse
|
49
|
Beavis AW. Radioligand-Guided Radiation Therapy Planning. Int J Radiat Oncol Biol Phys 2022; 113:866-867. [PMID: 35772443 DOI: 10.1016/j.ijrobp.2022.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 10/17/2022]
Affiliation(s)
- Andrew W Beavis
- Department of Medical Physics, Hull University Teaching Hospitals NHS Trust, Cottingham, United Kingdom; Department of Biomedical Science, Faculty of Health Sciences, University of Hull, Hull, United Kingdom; Department of Radiotherapy and Oncology, Faculty of Health and Wellbeing, Sheffield-Hallam University, Sheffield, United Kingdom.
| |
Collapse
|
50
|
Brighi C, Verburg N, Koh ES, Walker A, Chen C, Pillay S, de Witt Hamer PC, Aly F, Holloway LC, Keall PJ, Waddington DE. Repeatability of radiotherapy dose-painting prescriptions derived from a multiparametric magnetic resonance imaging model of glioblastoma infiltration. Phys Imaging Radiat Oncol 2022; 23:8-15. [PMID: 35734265 PMCID: PMC9207284 DOI: 10.1016/j.phro.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/03/2022] Open
Abstract
Magnetic resonance imaging was used to derive dose-painting prescriptions in glioma. Dose prescriptions derived from magnetic resonance imaging are highly repeatable. Dose-painting plans are more repeatable than their dose prescriptions.
Background and purpose Glioblastoma (GBM) patients have a dismal prognosis. Tumours typically recur within months of surgical resection and post-operative chemoradiation. Multiparametric magnetic resonance imaging (mpMRI) biomarkers promise to improve GBM outcomes by identifying likely regions of infiltrative tumour in tumour probability (TP) maps. These regions could be treated with escalated dose via dose-painting radiotherapy to achieve higher rates of tumour control. Crucial to the technical validation of dose-painting using imaging biomarkers is the repeatability of the derived dose prescriptions. Here, we quantify repeatability of dose-painting prescriptions derived from mpMRI. Materials and methods TP maps were calculated with a clinically validated model that linearly combined apparent diffusion coefficient (ADC) and relative cerebral blood volume (rBV) or ADC and relative cerebral blood flow (rBF) data. Maps were developed for 11 GBM patients who received two mpMRI scans separated by a short interval prior to chemoradiation treatment. A linear dose mapping function was applied to obtain dose-painting prescription (DP) maps for each session. Voxel-wise and group-wise repeatability metrics were calculated for parametric, TP and DP maps within radiotherapy margins. Results DP maps derived from mpMRI were repeatable between imaging sessions (ICC > 0.85). ADC maps showed higher repeatability than rBV and rBF maps (Wilcoxon test, p = 0.001). TP maps obtained from the combination of ADC and rBF were the most stable (median ICC: 0.89). Conclusions Dose-painting prescriptions derived from a mpMRI model of tumour infiltration have a good level of repeatability and can be used to generate reliable dose-painting plans for GBM patients.
Collapse
|