1
|
He K, Zhou D, Pu Z, Chen S, Shen Y, Zhao S, Qian X, Hu Q, Wu X, Xie Z, Xu X. Cellular Senescence in Acute Liver Injury: What Happens to the Young Liver? Aging Dis 2024; 16:1347-1362. [PMID: 38913043 PMCID: PMC12096906 DOI: 10.14336/ad.2024.0586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024] Open
Abstract
Cellular senescence, characterized by irreversible cell cycle arrest, not only exists in age-related physiological states, but has been found to exist in various diseases. It plays a crucial role in both physiological and pathological processes and has become a trending topic in global research in recent years. Acute liver injury (ALI) has a high incidence worldwide, and recent studies have shown that hepatic senescence can be induced following ALI. Therefore, we reviewed the significance of cellular senescence in ALI. To minimize the potential confounding effects of aging on cellular senescence and ALI outcomes, we selected studies involving young individuals to identify the characteristics of senescent cells, the value of cellular senescence in liver repair, its regulation mechanisms in ALI, its potential as a biomarker for ALI, the prospect of treatment, and future research directions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xiaowei Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Barahman M, Zhang W, Harris HY, Aiyer A, Kabarriti R, Kinkhabwala M, Roy-Chowdhury N, Beck AP, Scanlan TS, Roy-Chowdhury J, Asp P, Guha C. Radiation-primed hepatocyte transplantation in murine monogeneic dyslipidemia normalizes cholesterol and prevents atherosclerosis. J Hepatol 2019; 70:1170-1179. [PMID: 30654068 PMCID: PMC6986679 DOI: 10.1016/j.jhep.2019.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Inherited abnormalities in apolipoprotein E (ApoE) or low-density lipoprotein receptor (LDLR) function result in early onset cardiovascular disease and death. Currently, the only curative therapy available is liver transplantation. Hepatocyte transplantation is a potential alternative; however, physiological levels of hepatocyte engraftment and repopulation require transplanted cells to have a competitive proliferative advantage of over host hepatocytes. Herein, we aimed to test the efficacy and safety of a novel preparative regimen for hepatocyte transplantation. METHODS Herein, we used an ApoE-deficient mouse model to test the efficacy of a new regimen for hepatocyte transplantation. We used image-guided external-beam hepatic irradiation targeting the median and right lobes of the liver to enhance cell transplant engraftment. This was combined with administration of the hepatic mitogen GC-1, a thyroid hormone receptor-β agonist mimetic, which was used to promote repopulation. RESULTS The non-invasive preparative regimen of hepatic irradiation and GC-1 was well-tolerated in ApoE-/- mice. This regimen led to robust liver repopulation by transplanted hepatocytes, which was associated with significant reductions in serum cholesterol levels after transplantation. Additionally, in mice receiving this regimen, ApoE was detected in the circulation 4 weeks after treatment and did not induce an immunological response. Importantly, the normalization of serum cholesterol prevented the formation of atherosclerotic plaques in this model. CONCLUSIONS Significant hepatic repopulation and the cure of dyslipidemia in this model, using a novel and well-tolerated preparative regimen, demonstrate the clinical potential of applying this method to the treatment of inherited metabolic diseases of the liver. LAY SUMMARY Hepatocyte transplantation is a promising alternative to liver transplantation for the treatment of liver diseases. However, it is inefficient, as restricted growth of transplanted cells in the liver limits its therapeutic benefits. Preparative treatments improve the efficiency of this procedure, but no clinically-feasible options are currently available. In this study we develop a novel well-tolerated preparative treatment to improve growth of cells in the liver and then demonstrate that this treatment completely cures an inherited lipid disorder in a mouse model.
Collapse
Affiliation(s)
- Mark Barahman
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Wei Zhang
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Hillary Yaffe Harris
- Department of Surgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Anita Aiyer
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Rafi Kabarriti
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Milan Kinkhabwala
- Department of Surgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Namita Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States,Department of Genetics, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States,The Marion Bessin Liver Research Center, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Amanda P. Beck
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas S. Scanlan
- Departments of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, United States
| | - Jayanta Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States,Department of Genetics, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States,The Marion Bessin Liver Research Center, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Patrik Asp
- Department of Surgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Chandan Guha
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; Department of Surgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; The Marion Bessin Liver Research Center, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; Department of Urology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
3
|
Barahman M, Asp P, Roy-Chowdhury N, Kinkhabwala M, Roy-Chowdhury J, Kabarriti R, Guha C. Hepatocyte Transplantation: Quo Vadis? Int J Radiat Oncol Biol Phys 2018; 103:922-934. [PMID: 30503786 DOI: 10.1016/j.ijrobp.2018.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 10/10/2018] [Accepted: 11/10/2018] [Indexed: 12/21/2022]
Abstract
Orthotopic liver transplantation (OLT) has been effective in managing end-stage liver disease since the advent of cyclosporine immunosuppression therapy in 1980. The major limitations of OLT are organ supply, monetary cost, and the burden of lifelong immunosuppression. Hepatocyte transplantation, as a substitute for OLT, has been an exciting topic of investigation for several decades. HT is potentially minimally invasive and can serve as a vehicle for delivery of personalized medicine through autologous cell transplant after modification ex vivo. However, 3 major hurdles have prevented large-scale clinical application: (1) availability of transplantable cells; (2) safe and efficient ex vivo gene therapy methods; and (3) engraftment and repopulation efficiency. This review will discuss new sources for transplantable liver cells obtained by lineage reprogramming, clinically acceptable methods of genetic manipulation, and the development of hepatic irradiation-based preparative regimens for enhancing engraftment and repopulation of transplanted hepatocytes. We will also review the results of the first 3 patients with genetic liver disorders who underwent preparative hepatic irradiation before hepatocyte transplantation.
Collapse
Affiliation(s)
- Mark Barahman
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Patrik Asp
- Department of Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Namita Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Milan Kinkhabwala
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Jayanta Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Genetics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Rafi Kabarriti
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Chandan Guha
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Urology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
4
|
Squires JE, Soltys KA, McKiernan P, Squires RH, Strom SC, Fox IJ, Soto-Gutierrez A. Clinical Hepatocyte Transplantation: What Is Next? CURRENT TRANSPLANTATION REPORTS 2017; 4:280-289. [PMID: 29732274 DOI: 10.1007/s40472-017-0165-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose of review Significant recent scientific developments have occurred in the field of liver repopulation and regeneration. While techniques to facilitate liver repopulation with donor hepatocytes and different cell sources have been studied extensively in the laboratory, in recent years clinical hepatocyte transplantation (HT) and liver repopulation trials have demonstrated new disease indications and also immunological challenges that will require the incorporation of a fresh look and new experimental approaches. Recent findings Growth advantage and regenerative stimulus are necessary to allow donor hepatocytes to proliferate. Current research efforts focus on mechanisms of donor hepatocyte expansion in response to liver injury/preconditioning. Moreover, latest clinical evidence shows that important obstacles to HT include optimizing engraftment and limited duration of effectiveness, with hepatocytes being lost to immunological rejection. We will discuss alternatives for cellular rejection monitoring, as well as new modalities to follow cellular graft function and near-to-clinical cell sources. Summary HT partially corrects genetic disorders for a limited period of time and has been associated with reversal of ALF. The main identified obstacles that remain to make HT a curative approach include improving engraftment rates, and methods for monitoring cellular graft function and rejection. This review aims to discuss current state-of-the-art in clinical HT and provide insights into innovative approaches taken to overcome these obstacles.
Collapse
Affiliation(s)
- James E Squires
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Kyle A Soltys
- Thomas E. Starzl Transplant Institute, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Patrick McKiernan
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Robert H Squires
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, United States
| | - Stephen C Strom
- Karolinska Institutet, Department of Laboratory Medicine, Division of Pathology, Stockholm, Sweden
| | - Ira J Fox
- Department of Surgery, Children's Hospital of Pittsburgh of UPMC, and McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
5
|
Allen KJ, Cheah DMY, Lee XL, Pettigrew-Buck NE, Vadolas J, Mercer JFB, Ioannou PA, Williamson R. The Potential of Bone Marrow Stem Cells to Correct Liver Dysfunction in a Mouse Model of Wilson's Disease. Cell Transplant 2017; 13:765-73. [PMID: 15690978 DOI: 10.3727/000000004783983341] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Metabolic liver diseases are excellent targets for correction using novel stem cell, hepatocyte, and gene therapies. In this study, the use of bone marrow stem cell transplantation to correct liver disease in the toxic milk (tx) mouse, a murine model for Wilson's disease, was evaluated. Preconditioning with sublethal irradiation, dietary copper loading, and the influence of cell transplantation sites were assessed. Recipient tx mice were sublethally irradiated (4 Gy) prior to transplantation with bone marrow stem cells harvested from normal congenic (DL) littermates. Of 46 transplanted tx mice, 11 demonstrated genotypic repopulation in the liver. Sublethal irradiation was found to be essential for donor cell engraftment and liver repopulation. Dietary copper loading did not improve cell engraftment and repopulation results. Both intravenously and intrasplenically transplanted cells produced similar repopulation successes. Direct evidence of functionality and disease correction following liver repopulation was observed in the 11 mice where liver copper levels were significantly reduced when compared with mice with no liver repopulation. The reversal of copper loading with bone marrow cells is similar to the level of correction seen when normal congenic liver cells are used. Transplantation of bone marrow cells partially corrects the metabolic phenotype in a mouse model for Wilson's disease.
Collapse
Affiliation(s)
- Katrina J Allen
- Cell and Gene Therapy Group, Murdoch Childrens Research Institute, Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
Liver disease is a leading cause of morbidity and mortality. Liver transplantation remains the only proven treatment for end-stage liver failure but is limited by the availability of donor organs. Hepatocyte cell therapy, either with bioartificial liver devices or hepatocyte transplantation, may help address this by delaying or preventing liver transplantation. Early clinical studies have shown promising results, however in most cases, the benefit has been short lived and so further research into these therapies is required. Alternative sources of hepatocytes, including stem cell-derived hepatocytes, are being investigated as the isolation of primary human hepatocytes is limited by the same shortage of donor organs. This review summarises the current clinical experience of hepatocyte cell therapy together with an overview of possible alternative sources of hepatocytes. Current and future areas for research that might lead towards the realisation of the full potential of hepatocyte cell therapy are discussed.
Collapse
Affiliation(s)
- David Christopher Bartlett
- a NIHR Centre for Liver Research and Biomedical Research Unit, University of Birmingham, Birmingham, UK.,b Liver Unit, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - Philip N Newsome
- a NIHR Centre for Liver Research and Biomedical Research Unit, University of Birmingham, Birmingham, UK.,b Liver Unit, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
7
|
Cui MH, Jayalakshmi K, Liu L, Guha C, Branch CA. In vivo (1)H MRS and (31)P MRSI of the response to cyclocreatine in transgenic mouse liver expressing creatine kinase. NMR IN BIOMEDICINE 2015; 28:1634-1644. [PMID: 26451872 DOI: 10.1002/nbm.3391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/05/2015] [Accepted: 08/11/2015] [Indexed: 06/05/2023]
Abstract
Hepatocyte transplantation has been explored as a therapeutic alternative to liver transplantation, but a means to monitor the success of the procedure is lacking. Published findings support the use of in vivo (31)P MRSI of creatine kinase (CK)-expressing hepatocytes to monitor proliferation of implanted hepatocytes. Phosphocreatine tissue level depends upon creatine (Cr) input to the CK enzyme reaction, but Cr measurement by (1)H MRS suffers from low signal-to-noise ratio (SNR). We examine the possibility of using the Cr analog cyclocreatine (CCr, a substrate for CK), which is quickly phosphorylated to phosphocyclocreatine (PCCr), as a higher SNR alternative to Cr. (1)H MRS and (31)P MRSI were employed to measure the effect of incremental supplementation of CCr upon PCCr, γ-ATP, pH and Pi /ATP in the liver of transgenic mice expressing the BB isoform of CK (CKBB) in hepatocytes. Water supplementation with 0.1% CCr led to a peak total PCCr level of 17.15 ± 1.07 mmol/kg wet weight by 6 weeks, while adding 1.0% CCr led to a stable PCCr liver level of 18.12 ± 3.91 mmol/kg by the fourth day of feeding. PCCr was positively correlated with CCr, and ATP concentration and pH declined with increasing PCCr. Feeding with 1% CCr in water induced an apparent saturated level of PCCr, suggesting that CCr quantization may not be necessary for quantifying expression of CK in mice. These findings support the possibility of using (31)P MRS to noninvasively monitor hepatocyte transplant success with CK-expressing hepatocytes.
Collapse
Affiliation(s)
- Min-Hui Cui
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kamaiah Jayalakshmi
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Laibin Liu
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Craig A Branch
- Gruss Magnetic Resonance Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Radiology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
8
|
Kurland IJ, Broin PÓ, Golden A, Su G, Meng F, Liu L, Mohney R, Kulkarni S, Guha C. Integrative Metabolic Signatures for Hepatic Radiation Injury. PLoS One 2015; 10:e0124795. [PMID: 26046990 PMCID: PMC4457483 DOI: 10.1371/journal.pone.0124795] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 03/05/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Radiation-induced liver disease (RILD) is a dose-limiting factor in curative radiation therapy (RT) for liver cancers, making early detection of radiation-associated liver injury absolutely essential for medical intervention. A metabolomic approach was used to determine metabolic signatures that could serve as biomarkers for early detection of RILD in mice. METHODS Anesthetized C57BL/6 mice received 0, 10 or 50 Gy Whole Liver Irradiation (WLI) and were contrasted to mice, which received 10 Gy whole body irradiation (WBI). Liver and plasma samples were collected at 24 hours after irradiation. The samples were processed using Gas Chromatography/Mass Spectrometry and Liquid Chromatography/Mass Spectrometry. RESULTS Twenty four hours after WLI, 407 metabolites were detected in liver samples while 347 metabolites were detected in plasma. Plasma metabolites associated with 50 Gy WLI included several amino acids, purine and pyrimidine metabolites, microbial metabolites, and most prominently bradykinin and 3-indoxyl-sulfate. Liver metabolites associated with 50 Gy WLI included pentose phosphate, purine, and pyrimidine metabolites in liver. Plasma biomarkers in common between WLI and WBI were enriched in microbial metabolites such as 3 indoxyl sulfate, indole-3-lactic acid, phenyllactic acid, pipecolic acid, hippuric acid, and markers of DNA damage such as 2-deoxyuridine. Metabolites associated with tryptophan and indoles may reflect radiation-induced gut microbiome effects. Predominant liver biomarkers in common between WBI and WLI were amino acids, sugars, TCA metabolites (fumarate), fatty acids (lineolate, n-hexadecanoic acid) and DNA damage markers (uridine). CONCLUSIONS We identified a set of metabolomic markers that may prove useful as plasma biomarkers of RILD and WBI. Pathway analysis also suggested that the unique metabolic changes observed after liver irradiation was an integrative response of the intestine, liver and kidney.
Collapse
Affiliation(s)
- Irwin Jack Kurland
- Department of Medicine, Diabetes Center, Stable Isotope and Metabolomics Core Facility, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Pilib Ó. Broin
- Division of Computational Genetics, Genetics Department, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Aaron Golden
- Division of Computational Genetics, Genetics Department, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Gang Su
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Fan Meng
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Laibin Liu
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York, Unites States of America
| | - Robert Mohney
- Metabolon, Durham, North Carolina, United States of America
| | - Shilpa Kulkarni
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York, Unites States of America
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York, Unites States of America
| |
Collapse
|
9
|
Gramignoli R, Vosough M, Kannisto K, Srinivasan RC, Strom SC. Clinical hepatocyte transplantation: practical limits and possible solutions. Eur Surg Res 2015; 54:162-177. [PMID: 25633583 DOI: 10.1159/000369552] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 11/04/2014] [Indexed: 01/05/2025]
Abstract
Since the first human hepatocyte transplants (HTx) in 1992, clinical studies have clearly established proof of principle for this therapy as a treatment for patients with acquired or inherited liver disease. Although major accomplishments have been made, there are still some specific limitations to this technology, which, if overcome, could greatly enhance the efficacy and implementation of this therapy. Here, we describe what in our view are the most significant obstacles to the clinical application of HTx and review the solutions currently proposed. The obstacles of significance include the limited number and quality of liver tissues as a cell source, the lack of clinical grade reagents, quality control evaluation of hepatocytes prior to transplantation, hypothermic storage of cells prior to transplantation, preconditioning treatments to enhance engraftment and proliferation of donor cells, tracking or monitoring cells after transplantation, and the optimal immunosuppression protocols for transplant recipients.
Collapse
Affiliation(s)
- Roberto Gramignoli
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | |
Collapse
|
10
|
Vainshtein JM, Kabarriti R, Mehta KJ, Roy-Chowdhury J, Guha C. Bone marrow-derived stromal cell therapy in cirrhosis: clinical evidence, cellular mechanisms, and implications for the treatment of hepatocellular carcinoma. Int J Radiat Oncol Biol Phys 2014; 89:786-803. [PMID: 24969793 DOI: 10.1016/j.ijrobp.2014.02.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/09/2014] [Accepted: 02/12/2014] [Indexed: 01/18/2023]
Abstract
Current treatment options for hepatocellular carcinoma (HCC) are often limited by the presence of underlying liver disease. In patients with liver cirrhosis, surgery, chemotherapy, and radiation therapy all carry a high risk of hepatic complications, ranging from ascites to fulminant liver failure. For patients receiving radiation therapy, cirrhosis dramatically reduces the already limited radiation tolerance of the liver and represents the most important clinical risk factor for the development of radiation-induced liver disease. Although improvements in conformal radiation delivery techniques have improved our ability to safely irradiate confined areas of the liver to increasingly higher doses with excellent local disease control, patients with moderate-to-severe liver cirrhosis continue to face a shortage of treatment options for HCC. In recent years, evidence has emerged supporting the use of bone marrow-derived stromal cells (BMSCs) as a promising treatment for liver cirrhosis, with several clinical studies demonstrating sustained improvement in clinical parameters of liver function after autologous BMSC infusion. Three predominant populations of BMSCs, namely hematopoietic stem cells, mesenchymal stem cells, and endothelial progenitor cells, seem to have therapeutic potential in liver injury and cirrhosis. Preclinical studies of BMSC transplantation have identified a range of mechanisms through which these cells mediate their therapeutic effects, including hepatocyte transdifferentiation and fusion, paracrine stimulation of hepatocyte proliferation, inhibition of activated hepatic stellate cells, enhancement of fibrolytic matrix metalloproteinase activity, and neovascularization of regenerating liver. By bolstering liver function in patients with underlying Child's B or C cirrhosis, autologous BMSC infusion holds great promise as a therapy to improve the safety, efficacy, and utility of surgery, chemotherapy, and hepatic radiation therapy in the treatment of HCC.
Collapse
Affiliation(s)
| | - Rafi Kabarriti
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Keyur J Mehta
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Jayanta Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Genetics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Chandan Guha
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
11
|
Benderitter M, Caviggioli F, Chapel A, Coppes RP, Guha C, Klinger M, Malard O, Stewart F, Tamarat R, van Luijk P, Limoli CL. Stem cell therapies for the treatment of radiation-induced normal tissue side effects. Antioxid Redox Signal 2014; 21:338-55. [PMID: 24147585 PMCID: PMC4060814 DOI: 10.1089/ars.2013.5652] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Targeted irradiation is an effective cancer therapy but damage inflicted to normal tissues surrounding the tumor may cause severe complications. While certain pharmacologic strategies can temper the adverse effects of irradiation, stem cell therapies provide unique opportunities for restoring functionality to the irradiated tissue bed. RECENT ADVANCES Preclinical studies presented in this review provide encouraging proof of concept regarding the therapeutic potential of stem cells for treating the adverse side effects associated with radiotherapy in different organs. Early-stage clinical data for radiation-induced lung, bone, and skin complications are promising and highlight the importance of selecting the appropriate stem cell type to stimulate tissue regeneration. CRITICAL ISSUES While therapeutic efficacy has been demonstrated in a variety of animal models and human trials, a range of additional concerns regarding stem cell transplantation for ameliorating radiation-induced normal tissue sequelae remain. Safety issues regarding teratoma formation, disease progression, and genomic stability along with technical issues impacting disease targeting, immunorejection, and clinical scale-up are factors bearing on the eventual translation of stem cell therapies into routine clinical practice. FUTURE DIRECTIONS Follow-up studies will need to identify the best possible stem cell types for the treatment of early and late radiation-induced normal tissue injury. Additional work should seek to optimize cellular dosing regimes, identify the best routes of administration, elucidate optimal transplantation windows for introducing cells into more receptive host tissues, and improve immune tolerance for longer-term engrafted cell survival into the irradiated microenvironment.
Collapse
Affiliation(s)
- Marc Benderitter
- 1 Laboratory of Radiopathology and Experimental Therapies, IRSN , PRP-HOM, SRBE, Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The liver has an enormous potential to restore the parenchymal tissue loss due to injury. This is accomplished by the proliferation of either the hepatocytes or liver progenitor cells in cases where massive damage prohibits hepatocytes from entering the proliferative response. Under debate is still whether hepatic stem cells are involved in liver tissue maintenance and regeneration or even whether they exist at all. The definition of an adult tissue-resident stem cell comprises basic functional stem cell criteria like the potential of self-renewal, multipotent, i.e. at least bipotent differentiation capacity and serial transplantability featuring the ability of functional tissue repopulation. The relationship between a progenitor and its progeny should exemplify the lineage commitment from the putative stem cell to the differentiated cell. This is mainly assessed by lineage tracing and immunohistochemical identification of markers specific to progenitors and their descendants. Flow cytometry approaches revealed that the liver stem cell population in animals is likely to be heterogeneous giving rise to progeny with different molecular signatures, depending on the stimulus to activate the putative stem cell compartment. The stem cell criteria are met by a variety of cells identified in the fetal and adult liver both under normal and injury conditions. It is the purpose of this review to verify hepatic stem cell candidates in the light of the stem cell definition criteria mentioned. Also from this point of view adult stem cells from non-hepatic tissues such as bone marrow, umbilical cord blood or adipose tissue, have the potential to differentiate into cells featuring functional hepatocyte characteristics. This has great impact because it opens the possibility of generating hepatocyte-like cells from adult stem cells in a sufficient amount and quality for their therapeutical application to treat end-stage liver diseases by stem cell-based hepatocytes in place of whole organ transplantation.
Collapse
Affiliation(s)
- Bruno Christ
- Translational Centre for Regenerative Medicine-TRM, University of Leipzig, Philipp-Rosenthal-Straße 55, D-04103 Leipzig, Germany.
| | | |
Collapse
|
13
|
Zhou H, Dong X, Kabarriti R, Chen Y, Avsar Y, Wang X, Ding J, Liu L, Fox IJ, Roy-Chowdhury J, Roy-Chowdhury N, Guha C. Single liver lobe repopulation with wildtype hepatocytes using regional hepatic irradiation cures jaundice in Gunn rats. PLoS One 2012; 7:e46775. [PMID: 23091601 PMCID: PMC3473037 DOI: 10.1371/journal.pone.0046775] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 09/05/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND AIMS Preparative hepatic irradiation (HIR), together with mitotic stimulation of hepatocytes, permits extensive hepatic repopulation by transplanted hepatocytes in rats and mice. However, whole liver HIR is associated with radiation-induced liver disease (RILD), which limits its potential therapeutic application. In clinical experience, restricting HIR to a fraction of the liver reduces the susceptibility to RILD. Here we test the hypothesis that repopulation of selected liver lobes by regional HIR should be sufficient to correct some inherited metabolic disorders. METHODS Hepatocytes (10(7)) isolated from wildtype F344 rats or Wistar-RHA rats were engrafted into the livers of congeneic dipeptidylpeptidase IV deficient (DPPIV(-)) rats or uridinediphosphoglucuronateglucuronosyltransferase-1A1-deficient jaundiced Gunn rats respectively by intrasplenic injection 24 hr after HIR (50 Gy) targeted to the median lobe, or median plus left liver lobes. An adenovector expressing hepatocyte growth factor (10(11) particles) was injected intravenously 24 hr after transplantation. RESULTS Three months after hepatocyte transplantation in DPPIV(-) rats, 30-60% of the recipient hepatocytes were replaced by donor cells in the irradiated lobe, but not in the nonirradiated lobes. In Gunn rats receiving median lobe HIR, serum bilirubin declined from pretreatment levels of 5.17 ± 0.78 mg/dl to 0.96 ± 0.30 mg/dl in 8 weeks and remained at this level throughout the 16 week observation period. A similar effect was observed in the group, receiving median plus left lobe irradiation. CONCLUSIONS As little as 20% repopulation of 30% of the liver volume was sufficient to correct hyperbilirubinemia in Gunn rats, highlighting the potential of regiospecific HIR in hepatocyte transplantation-based therapy of inherited metabolic liver diseases.
Collapse
Affiliation(s)
- Hongchao Zhou
- Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Xinyuan Dong
- Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Rafi Kabarriti
- Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Yong Chen
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Yesim Avsar
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Xia Wang
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Jianqiang Ding
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Laibin Liu
- Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
| | - Ira J. Fox
- Department of Surgery, University of Pittsburgh School of Medicine, Children's Hospital of Pittsburgh of UPMC and McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jayanta Roy-Chowdhury
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Namita Roy-Chowdhury
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail: ; (CG); (NR-C)
| | - Chandan Guha
- Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, United States of America
- * E-mail: ; (CG); (NR-C)
| |
Collapse
|
14
|
|
15
|
Yamanouchi K, Zhou H, Roy-Chowdhury N, Macaluso F, Liu L, Yamamoto T, Yannam GR, Enke C, Solberg TD, Adelson AB, Platt JL, Fox IJ, Roy-Chowdhury J, Guha C. Hepatic irradiation augments engraftment of donor cells following hepatocyte transplantation. Hepatology 2009; 49:258-67. [PMID: 19003915 PMCID: PMC3416044 DOI: 10.1002/hep.22573] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Engraftment of donor hepatocytes is a critical step that determines the success of hepatocyte transplantation. Rapid and efficient integration of donor cells would enable prompt liver repopulation of these cells in response to selective proliferative stimuli offered by a preparative regimen. We have earlier demonstrated that hepatic irradiation (HIR) in combination with a variety of hepatotrophic growth signals, such as partial hepatectomy and hepatocyte growth factor, can be used as a preparative regimen for liver repopulation of transplanted hepatocytes. In this study, we investigated the effects of HIR on engraftment of transplanted dipeptidyl peptidase IV (DPPIV)-positive hepatocytes in congeneic DPPIV-deficient rats. HIR-induced apoptosis of hepatic sinusoidal endothelial cells (SEC) within 6 hours of HIR resulted in dehiscence of the SEC lining in 24 hours. Although there was no change of the number of Kupffer cells after HIR, colloidal carbon clearance decreased 24 hours post HIR, indicating a suppression of phagocytic function. DPPIV+ donor cells were transplanted 24 hours after HIR (0-50 Gy). There was an HIR dose-dependent increase in the donor hepatocyte mass engrafted in the liver parenchyma. The number of viable transplanted hepatocytes present in hepatic sinusoids or integrated in the parenchyma was greater in the HIR-treated group at 3 and 7 days after transplantation compared with the sham controls. Finally, we validated these rodent studies in cynomolgus monkeys, demonstrating that a single 10-Gy dose of HIR was sufficient to enhance engraftment of donor porcine hepatocytes. These data indicate that transient disruption of the SEC barrier and inhibition of the phagocytic function of Kupffer cells by HIR enhances hepatocyte engraftment and the integrated donor cell mass. Thus, preparative HIR could be potentially useful to augment hepatocyte transplantation.
Collapse
Affiliation(s)
- Kosho Yamanouchi
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Hongchao Zhou
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
| | - Namita Roy-Chowdhury
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York
| | - Frank Macaluso
- Department of Anatomy and Cell Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Liping Liu
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE
| | | | | | - Charles Enke
- Department of Radiation Oncology University of Nebraska Medical Center, Omaha, NE
| | - Timothy D. Solberg
- Department of Radiation Oncology University of Nebraska Medical Center, Omaha, NE
| | - Anthony B. Adelson
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE
| | - Jeffrey L. Platt
- Departments of Surgery, Immunology, and Pediatrics, Mayo Clinic, Rochester, MN
| | - Ira J. Fox
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE
| | - Jayanta Roy-Chowdhury
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York
| | - Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, New York
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
16
|
Broering DC, Walter J, Braun F, Rogiers X. Current status of hepatic transplantation. Anatomical basis for liver transplantation. Curr Probl Surg 2008; 45:587-661. [PMID: 18692622 DOI: 10.1067/j.cpsurg.2008.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Affiliation(s)
- Dieter C Broering
- Head Professor of Transplant Surgery/Surgical Oncology, University Hospital of Schleswig-Holstein Campus, Kiel, Germany
| | | | | | | |
Collapse
|
17
|
Swenson ES, Kuwahara R, Krause DS, Theise ND. Physiological variations of stem cell factor and stromal-derived factor-1 in murine models of liver injury and regeneration. Liver Int 2008; 28:308-18. [PMID: 18290773 PMCID: PMC2846401 DOI: 10.1111/j.1478-3231.2007.01659.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND/AIMS Stem cell factor (SCF) and stromal-derived factor-1 (SDF-1) regulate the regenerative response to liver injury, possibly through activation of liver progenitor 'oval' cells and recruitment of circulating, marrow-derived progenitors. METHODS We performed a detailed analysis of SCF, SDF-1 and oval cell proliferation induced by tyrosinaemia, 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) or liver irradiation in mice by ELISA and immunofluorescence. RESULTS Liver injury in the tyrosinaemia mouse is characterized by a dramatic decline in plasma SCF and absence of oval cell proliferation. In contrast, DDC induces bile duct (BD) and oval cell proliferation, and a modest decline in plasma SCF. Focal liver irradiation increases plasma SCF, but not oval cell density. In normal mouse liver, SCF is localized primarily to Kupffer cells, cholangiocytes and arterial smooth muscle, with little or no expression in hepatocytes. However, SCF appears in hepatocyte nuclei after injury, where its function is unknown. In all three models, SDF-1 is expressed exclusively in BD epithelium, indicating that tissue SDF-1 levels are proportional to the total mass of oval cells and cholangiocytes. However, increased plasma levels of SDF-1 in fumaryl acetoacetate hydroxylase-null mice were not accompanied by oval cell proliferation. CONCLUSION Changes in SCF and SDF-1 varied with the nature of liver injury and were not directly related to oval cell proliferation.
Collapse
Affiliation(s)
- E Scott Swenson
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8019, USA.
| | | | | | | |
Collapse
|
18
|
Correction of copper metabolism is not sustained long term in Wilson's disease mice post bone marrow transplantation. Hepatol Int 2008; 2:72-9. [PMID: 19669281 DOI: 10.1007/s12072-007-9039-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 09/28/2007] [Accepted: 10/14/2007] [Indexed: 10/22/2022]
Abstract
PURPOSE Alternative cell sources have been sought for the treatment of liver diseases, since liver cells are in short supply for cell transplantation. Although bone marrow-derived cells have been investigated as an alternative cell source, few studies have demonstrated long-term disease correction. Here we examined bone marrow stem cell transplantation into the toxic milk (tx) mouse model for Wilson's disease, a mild liver disease characterized by hepatic copper accumulation. The aim of this study was to determine whether bone marrow cells engrafted in the liver could sustain correction of abnormal copper metabolism in the tx mouse. METHODS Bone marrow cells were isolated from congenic normal mice, transduced to express enhanced green fluorescent protein, sorted for stem cell (Sca-1) and lineage cell (Lin) surface markers, and then transplanted into sub-lethally irradiated normal or tx mice. Analysis for donor cell activity and distribution was undertaken 5 and 9 months post-transplant to allow for sufficient time to repopulate the liver and demonstrate disease correction. RESULTS Donor bone marrow cells engrafted in both normal and tx mouse liver within 5 months. Significantly reduced liver copper was found in tx mice with donor cell liver engraftment at 5 months post-transplant compared to controls, demonstrating partial correction of abnormal copper metabolism in the short term. However, disease correction was not maintained 9 months post-transplantation. Lin(-)Sca-1(+) cells were more likely to partially correct disease than Lin(+)Sca-1(-) cells in the short term. CONCLUSION These results demonstrate that bone marrow transplants cannot maintain disease correction in a mouse model of mild hepatic damage, although initial copper metabolism correction was observed.
Collapse
|
19
|
Streetz KL, Doyonnas R, Grimm D, Jenkins DD, Fuess S, Perryman S, Lin J, Trautwein C, Shizuru J, Blau H, Sylvester KG, Kay MA. Hepatic parenchymal replacement in mice by transplanted allogeneic hepatocytes is facilitated by bone marrow transplantation and mediated by CD4 cells. Hepatology 2008; 47:706-18. [PMID: 18220289 DOI: 10.1002/hep.22012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
UNLABELLED The lack of adequate donor organs is a major limitation to the successful widespread use of liver transplantation for numerous human hepatic diseases. A desirable alternative therapeutic option is hepatocyte transplantation (HT), but this approach is similarly restricted by a shortage of donor cells and by immunological barriers. Therefore, in vivo expansion of tolerized transplanted cells is emerging as a novel and clinically relevant potential alternative cellular therapy. Toward this aim, in the present study we established a new mouse model that combines HT with prior bone marrow transplantation (BMT). Donor hepatocytes were derived from human alpha(1)-antitrypsin (hAAT) transgenic mice of the FVB strain. Serial serum enzyme-linked immunosorbent assays for hAAT protein were used to monitor hepatocyte engraftment and expansion. In control recipient mice lacking BMT, we observed long-term yet modest hepatocyte engraftment. In contrast, animals undergoing additional syngeneic BMT prior to HT showed a 3- to 5-fold increase in serum hAAT levels after 24 weeks. Moreover, complete liver repopulation was observed in hepatocyte-transplanted Balb/C mice that had been transplanted with allogeneic FVB-derived bone marrow. These findings were validated by a comparison of hAAT levels between donor and recipient mice and by hAAT-specific immunostaining. Taken together, these findings suggest a synergistic effect of BMT on transplanted hepatocytes for expansion and tolerance induction. Livers of repopulated animals displayed substantial mononuclear infiltrates, consisting predominantly of CD4(+) cells. Blocking the latter prior to HT abrogated proliferation of transplanted hepatocytes, and this implied an essential role played by CD4(+) cells for in vivo hepatocyte selection following allogeneic BMT. CONCLUSION The present mouse model provides a versatile platform for investigation of the mechanisms governing HT with direct relevance to the development of clinical strategies for the treatment of human hepatic failure.
Collapse
Affiliation(s)
- Konrad L Streetz
- Department of Pediatrics and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Nussler A, Konig S, Ott M, Sokal E, Christ B, Thasler W, Brulport M, Gabelein G, Schormann W, Schulze M, Ellis E, Kraemer M, Nocken F, Fleig W, Manns M, Strom SC, Hengstler JG. Present status and perspectives of cell-based therapies for liver diseases. J Hepatol 2006; 45:144-159. [PMID: 16730092 DOI: 10.1016/j.jhep.2006.04.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In recent years the interest in liver cell therapy has been increasing continuously, since the demand for whole liver transplantations in human beings far outweighs the supply. From the clinical point of view, transplantation of hepatocytes or hepatocyte-like cells may represent an alternative to orthotopic liver transplants in acute liver failure, for the correction of genetic disorders resulting in metabolically deficient states, and for late stage liver disease such as cirrhosis. Although the concept of cell therapy for various diseases of the liver is widely accepted, the practical approach in humans often remains difficult. An international expert panel critically discussed the recent published data on clinical and experimental hepatocyte transplantation and the possible role of stem cells in liver tissue repair. This paper aims to summarise the present status of cell based therapies for liver diseases and to identify areas of future preclinical and clinical research.
Collapse
Affiliation(s)
- Andreas Nussler
- Fresenius Biotech Bad Homburg, Division of Cell Therapy, Bad Homburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Christiansen H, Koenig S, Krause P, Hermann RM, Rave-Frank M, Proehl T, Becker H, Hess CF, Schmidberger H. External-beam radiotherapy as preparative regimen for hepatocyte transplantation after partial hepatectomy. Int J Radiat Oncol Biol Phys 2006; 65:509-16. [PMID: 16690433 DOI: 10.1016/j.ijrobp.2006.01.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 01/11/2006] [Accepted: 01/23/2006] [Indexed: 12/25/2022]
Abstract
PURPOSE The transplantation of donor hepatocytes is considered a promising option to correct chronic liver failure through repopulation of the diseased organ. This study describes a novel selective external-beam irradiation technique as a preparative regimen for hepatocyte transplantation. METHODS AND MATERIALS Livers of dipeptidylpeptidase IV (DPPIV)-deficient rats were preconditioned with external-beam single-dose irradiation (25 Gy) delivered to two thirds of the liver. Four days later, a one-third partial hepatectomy (PH) was performed to resect the untreated liver section, and 15 million wild-type (DPPIV+) hepatocytes were transplanted via the spleen into the recipient livers. The degree of donor-cell integration and growth was studied 8 h, 3 days, and 5 and 12 weeks after transplantation. RESULTS Transplanted hepatocytes integrated rapidly into the irradiated liver and proliferated as clusters, finally repopulating the host liver to approximately 20% hepatocyte mass. After 12 weeks, donor cells and their numerous descendents were fully integrated and expressed functional markers to the same extent as host hepatocytes. CONCLUSIONS We demonstrate that external-beam liver irradiation is sufficient to achieve partial repopulation of the host liver after hepatocyte transplantation, under the additional stimulus of one-third PH. The method described has potentially good prospects for its application in a clinically viable form of treatment.
Collapse
Affiliation(s)
- Hans Christiansen
- Department of Radiotherapy, University Hospital Goettingen, Goettingen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Guha C, Mohan S, Roy-Chowdhury N, Roy-Chowdhury J. Cell culture and animal models of viral hepatitis. Part I: hepatitis B. Lab Anim (NY) 2004; 33:37-46. [PMID: 15224117 DOI: 10.1038/laban0704-37] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Accepted: 02/25/2004] [Indexed: 12/19/2022]
Abstract
Despite the existence of a preventative vaccine, HBV represents a substantial threat to public health, suggesting the need for research to develop new treatments to combat the disease. The authors review the available in vitro and in vivo models, including recently developed transgenic and chimeric mouse models.
Collapse
Affiliation(s)
- Chandan Guha
- Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY, USA
| | | | | | | |
Collapse
|
23
|
Takahashi M, Deb NJ, Kawashita Y, Lee SW, Furgueil J, Okuyama T, Roy-Chowdhury N, Vikram B, Roy-Chowdhury J, Guha C. A novel strategy for in vivo expansion of transplanted hepatocytes using preparative hepatic irradiation and FasL-induced hepatocellular apoptosis. Gene Ther 2003; 10:304-13. [PMID: 12595889 DOI: 10.1038/sj.gt.3301909] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A strategy for inducing preferential proliferation of the engrafted hepatocytes over host liver cells should markedly increase the benefit of hepatocyte transplantation for the treatment of liver diseases and ex vivo gene therapy. We hypothesized that preparative hepatic irradiation (HIR) to inhibit host hepatocellular regeneration in combination with the mitotic stimulus of host hepatocellular apoptosis should permit repopulation of the liver by transplanted cells. To test this hypothesis, congeneic normal rat hepatocytes were transplanted into UDP-glucuronosyltransferase (UGT1A1)-deficient jaundiced Gunn rats (a model of Crigler-Najjar syndrome type I), following HIR and adenovirus-mediated FasL gene transfer. Progressive repopulation of the liver by engrafted UGT1A1-proficient hepatocytes over 5 months was demonstrated by the appearance of UGT1A1 protein and enzyme activity in the liver, biliary bilirubin glucuronides secretion, and long-term normalization of serum bilirubin levels. This is the first demonstration of massive hepatic repopulation by transplanted cells by HIR and FasL-induced controlled apoptosis of host liver cells.
Collapse
Affiliation(s)
- M Takahashi
- Department of Medicine, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Guha C, Chowdhury JR. A long-awaited small animal model for hepatitis C. J Hepatol 2002; 36:447-9. [PMID: 11867194 DOI: 10.1016/s0168-8278(02)00027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Chandan Guha
- Department of Radiation Oncology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|
25
|
Crews FT. Summary Report of a Symposium: Genes and Gene Delivery for Diseases of Alcoholism. Alcohol Clin Exp Res 2001. [DOI: 10.1111/j.1530-0277.2001.tb02190.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Abstract
There are three levels of cells in the hepatic lineage that respond to injury or carcinogenesis: the mature hepatocyte, the ductular "bipolar" progenitor cell, and a putative periductular stem cell. Hepatocytes are numerous, and respond rapidly to liver cell loss by one or two cell cycles but can only produce other hepatocytes. The ductular progenitor cells are less numerous, may proliferate for more cycles than hepatocytes, and are generally considered "bipolar," i.e., they can give rise to biliary cells or hepatocytes. Periductular stem cells are rare in the liver, have a very long proliferation potential, and may be multipotent. Extrahepatic (bone marrow) origin of the periductular stem cells is supported by recent data showing that hepatocytes may express genetic markers of donor hematopoietic cells after bone marrow transplantation. These different regenerative cells with variations in potential for proliferation and differentiation may provide different sources of cells for liver transplantation: hepatocytes for treatment of acute liver damage, liver progenitor cell lines for liver-directed gene therapy, and bone marrow-derived cells for chronic long-term liver replacement. A limiting factor in the success of liver cell transplantation is the condition of the hepatic microenvironment in which the cells must proliferate and set up housekeeping.
Collapse
Affiliation(s)
- S Sell
- Department of Pathology and Laboratory Medicine, Albany Medical College, Albany, New York 12208-3479, USA.
| |
Collapse
|