1
|
Ferraro TN, DeChiara JR, Chen R, Chen Y, Doyle GA, Buono RJ. Modulation of mu-opioid receptor function alters electroshock seizure responses in mice. Neuropharmacology 2025; 272:110427. [PMID: 40122226 DOI: 10.1016/j.neuropharm.2025.110427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/03/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
We studied the effects of mu-opioid receptor (MOR) modulation on seizure responses to electroshock stimulation in C57BL/6J (B6) and DBA/2J (D2) mice of both sexes. Using a genetic approach, we show that B6 and D2 mice with a constitutive deletion of the MOR gene Oprm1 have a significantly reduced maximal electroconvulsive shock (ECS) seizure threshold. Using a pharmacological approach, we show that morphine treatment (25 mg pellet, s.c.) significantly reduces expression of maximal ECS seizures in both wild type strains, and conversely, that naltrexone treatment (1-10 mg/kg, s.c.) increases maximal ECS seizure susceptibility, more so in B6 mice than in D2. Unexpectedly, we observe that higher doses of naltrexone (100-500 mg/kg, i.p.) elicit generalized seizures, with D2 mice displaying significantly greater susceptibility than B6. Together, results suggest that decreasing MOR function increases ECS seizure susceptibility in mice, whereas increasing MOR function decreases ECS seizure susceptibility. The greater sensitivity of D2 mice to the direct proconvulsant effect of high dose naltrexone is consistent with the relative response of this strain to other chemoconvulsants and suggests that endogenous opioids play a role in mediating the previously reported robust difference in seizure susceptibility between D2 and B6 mice. On the other hand, our finding that naltrexone intensifies ECS seizures more in B6 mice than D2 underscores the complex nature of seizure susceptibility and the interaction between opioids and seizures. We conclude that further refinement of approaches to modulate neuronal signaling linked to the effect of the MOR on electroshock seizure responses may provide clues for development of new anti-epilepsy treatments.
Collapse
MESH Headings
- Animals
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/physiology
- Receptors, Opioid, mu/metabolism
- Receptors, Opioid, mu/deficiency
- Seizures/etiology
- Seizures/metabolism
- Seizures/genetics
- Seizures/physiopathology
- Seizures/drug therapy
- Mice
- Electroshock/adverse effects
- Male
- Mice, Inbred C57BL
- Naltrexone/pharmacology
- Female
- Mice, Inbred DBA
- Narcotic Antagonists/pharmacology
- Morphine/pharmacology
- Dose-Response Relationship, Drug
- Mice, Knockout
- Analgesics, Opioid/pharmacology
- Species Specificity
Collapse
Affiliation(s)
- Thomas N Ferraro
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, 08103, USA.
| | - James R DeChiara
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
| | - Ruoyu Chen
- Moorestown High School, Moorestown, NJ, 08057, USA
| | - Yong Chen
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ, 08028, USA
| | - Glenn A Doyle
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Russell J Buono
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, 08103, USA
| |
Collapse
|
2
|
Onisiforou A, Michael A, Apostolakis M, Mammadov E, Mitka A, Kalatta MA, Koumas M, Georgiou A, Chatzittofis A, Panayiotou G, Georgiou P, Zarate CA, Zanos P. Ketamine and Hydroxynorketamine as Novel Pharmacotherapies for the Treatment of Opioid Use Disorders. Biol Psychiatry 2025; 97:563-579. [PMID: 39293647 PMCID: PMC11839383 DOI: 10.1016/j.biopsych.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024]
Abstract
Opioid use disorder (OUD) has reached epidemic proportions, with many countries facing high levels of opioid use and related fatalities. Although currently prescribed medications for OUD are considered lifesaving, they inadequately address negative affect and cognitive impairment, resulting in high relapse rates to nonmedical opioid use even years after drug cessation (protracted abstinence). Evidence supports the notion that ketamine, an anesthetic and rapid-acting antidepressant drug, holds promise as a candidate for OUD treatment, including the management of acute withdrawal somatic symptoms, negative affect during protracted opioid abstinence, and prevention of retaking nonmedical opioids. In this review, we comprehensively discuss preclinical and clinical research that has evaluated ketamine and its metabolites as potential novel therapeutic strategies for treating OUD. Furthermore, we examine evidence that supports the relevance of the molecular targets of ketamine and its metabolites in relation to their potential effects and therapeutic outcomes in OUD. Overall, existing evidence demonstrates that ketamine and its metabolites can effectively modulate pathophysiological processes affected in OUD, suggesting a promising therapeutic role in the treatment of OUD and the prevention of return to opioid use during abstinence.
Collapse
Affiliation(s)
- Anna Onisiforou
- Department of Psychology, University of Cyprus, Nicosia, Cyprus; Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus
| | - Andria Michael
- Department of Psychology, University of Cyprus, Nicosia, Cyprus; Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus
| | - Markos Apostolakis
- Department of Psychology, University of Cyprus, Nicosia, Cyprus; Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus
| | - Elmar Mammadov
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland
| | - Angeliki Mitka
- Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Maria A Kalatta
- Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Morfeas Koumas
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Andrea Georgiou
- Department of Psychology, University of Cyprus, Nicosia, Cyprus; Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus
| | - Andreas Chatzittofis
- Department of Clinical Sciences/Psychiatry, Umeå University, Umeå, Sweden; Medical School, University of Cyprus, Nicosia, Cyprus
| | - Georgia Panayiotou
- Department of Psychology, University of Cyprus, Nicosia, Cyprus; Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus
| | - Polymnia Georgiou
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Carlos A Zarate
- Experimental Therapeutics and Pathophysiology Branch, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Panos Zanos
- Department of Psychology, University of Cyprus, Nicosia, Cyprus; Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus.
| |
Collapse
|
3
|
Levinstein MR, Budinich RC, Bonaventura J, Schatzberg AF, Zarate CA, Michaelides M. Redefining Ketamine Pharmacology for Antidepressant Action: Synergistic NMDA and Opioid Receptor Interactions? Am J Psychiatry 2025; 182:247-258. [PMID: 39810555 PMCID: PMC11872000 DOI: 10.1176/appi.ajp.20240378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Ketamine is a racemic compound and medication comprised of (S)-ketamine and (R)-ketamine enantiomers and its metabolites. It has been used for decades as a dissociative anesthetic, analgesic, and recreational drug. More recently, ketamine, its enantiomers, and its metabolites have been used or are being investigated for the treatment of refractory depression, as well as for comorbid disorders such as anxiety, obsessive-compulsive, and opioid use disorders. Despite its complex pharmacology, ketamine is referred to as an N-methyl-d-aspartate (NMDA) receptor antagonist. In this review, the authors argue that ketamine's pharmacology should be redefined to include opioid receptors and the endogenous opioid system. They also highlight a potential mechanism of action of ketamine for depression that is attributed to bifunctional, synergistic interactions involving NMDA and opioid receptors.
Collapse
Affiliation(s)
- Marjorie R. Levinstein
- Biobehavioral Imaging & Molecular Neuropsychopharmacology Section, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Reece C. Budinich
- Biobehavioral Imaging & Molecular Neuropsychopharmacology Section, National Institute on Drug Abuse, Baltimore, MD, USA
| | - Jordi Bonaventura
- Departament de Patologia i Terapèutica Experimental, Institut de Neurociències, Universitat de Barcelona, L’Hospitalet de Llobregat
- Neuropharmacology and Pain Group, Neuroscience Program, IDIBELL-Institut d’Investigació Biomèdica de Bellvitge, L’Hospitalet de Llobregat
| | - Alan F. Schatzberg
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, California, USA
| | - Carlos A. Zarate
- Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Michael Michaelides
- Biobehavioral Imaging & Molecular Neuropsychopharmacology Section, National Institute on Drug Abuse, Baltimore, MD, USA
- Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Kim HR, Dey S, Sekerkova G, Martina M. μ-Opioid Receptor Modulation of the Glutamatergic/GABAergic Midbrain Inputs to the Mouse Dorsal Hippocampus. J Neurosci 2024; 44:e0653242024. [PMID: 39251354 PMCID: PMC11502231 DOI: 10.1523/jneurosci.0653-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/11/2024] Open
Abstract
We used virus-mediated anterograde and retrograde tracing, optogenetic modulation, immunostaining, in situ hybridization, and patch-clamp recordings in acute brain slices to study the release mechanism and μ-opioid modulation of the dual glutamatergic/GABAergic inputs from the ventral tegmental area and supramammillary nucleus to the granule cells of the dorsal hippocampus of male and female mice. In keeping with previous reports showing that the two transmitters are released by separate active zones within the same terminals, we found that the short-term plasticity and pharmacological modulation of the glutamatergic and GABAergic currents are indistinguishable. We further found that glutamate and GABA release at these synapses are both virtually completely mediated by N- and P/Q-type calcium channels. We then investigated μ-opioid modulation of these synapses and found that activation of μ-opioid receptors (MORs) strongly inhibits the glutamate and GABA release, mostly through inhibition of presynaptic N-type channels. However, the modulation by MORs of these dual synapses is complex, as it likely includes also a disinhibition due to downmodulation of local GABAergic interneurons which make direct axo-axonic contacts with the dual glutamatergic/GABAergic terminals. We discuss how this opioid modulation may enhance LTP at the perforant path inputs, potentially contributing to reinforce memories of drug-associated contexts.
Collapse
Affiliation(s)
- Haram R Kim
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| | - Soumil Dey
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| | - Gabriella Sekerkova
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| | - Marco Martina
- Department of Neuroscience, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611
| |
Collapse
|
5
|
Jiang C, DiLeone RJ, Pittenger C, Duman RS. The endogenous opioid system in the medial prefrontal cortex mediates ketamine's antidepressant-like actions. Transl Psychiatry 2024; 14:90. [PMID: 38346984 PMCID: PMC10861497 DOI: 10.1038/s41398-024-02796-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 02/15/2024] Open
Abstract
Recent studies have implicated the endogenous opioid system in the antidepressant actions of ketamine, but the underlying mechanisms remain unclear. We used a combination of pharmacological, behavioral, and molecular approaches in rats to test the contribution of the prefrontal endogenous opioid system to the antidepressant-like effects of a single dose of ketamine. Both the behavioral actions of ketamine and their molecular correlates in the medial prefrontal cortex (mPFC) are blocked by acute systemic administration of naltrexone, a competitive opioid receptor antagonist. Naltrexone delivered directly into the mPFC similarly disrupts the behavioral effects of ketamine. Ketamine treatment rapidly increases levels of β-endorphin and the expression of the μ-opioid receptor gene (Oprm1) in the mPFC, and the expression of gene that encodes proopiomelanocortin, the precursor of β-endorphin, in the hypothalamus, in vivo. Finally, neutralization of β-endorphin in the mPFC using a specific antibody prior to ketamine treatment abolishes both behavioral and molecular effects. Together, these findings indicate that presence of β-endorphin and activation of opioid receptors in the mPFC are required for the antidepressant-like actions of ketamine.
Collapse
Affiliation(s)
- Cheng Jiang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| | - Ralph J DiLeone
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Christopher Pittenger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Psychology, Yale University School of Arts and Sciences, New Haven, CT, USA.
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA.
- Center for Brain and Mind Health, Yale University School of Medicine, New Haven, CT, USA.
| | - Ronald S Duman
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
6
|
Pittenger C, Jiang C, DiLeone R, Duman R. The endogenous opioid system in the medial prefrontal cortex mediates ketamine's antidepressant-like actions. RESEARCH SQUARE 2023:rs.3.rs-3190391. [PMID: 37886526 PMCID: PMC10602058 DOI: 10.21203/rs.3.rs-3190391/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Recent studies have implicated the endogenous opioid system in the antidepressant actions of ketamine, but the underlying mechanisms remain unclear. We used a combination of pharmacological, behavioral, and molecular approaches in rats to test the contribution of the prefrontal endogenous opioid system to the antidepressant-like effects of a single dose of ketamine. Both the behavioral actions of ketamine and their molecular correlates in the medial prefrontal cortex (mPFC) were blocked by acute systemic administration of naltrexone, a competitive opioid receptor antagonist. Naltrexone delivered directly into the mPFC similarly disrupted the behavioral effects of ketamine. Ketamine treatment rapidly increased levels of β-endorphin and the expression of the μ-opioid receptor gene (Oprm1) in the mPFC, and the expression of the gene that encodes proopiomelanocortin, the precursor of β-endorphin, in the hypothalamus, in vivo. Finally, neutralization of β-endorphin in the mPFC using a specific antibody prior to ketamine treatment abolished both behavioral and molecular effects. Together, these findings indicate that presence of β-endorphin and activation of opioid receptors in the mPFC are required for the antidepressant-like actions of ketamine.
Collapse
Affiliation(s)
| | | | | | - Ronald Duman
- Department of Psychiatry, Yale School of Medicine
| |
Collapse
|
7
|
Anvari S, Foolad F, Javan M, Mirnajafi-Zadeh J, Fathollahi Y. A distinct impact of repeated morphine exposure on synaptic plasticity at Schaffer collateral-CA1, temporoammonic-CA1, and perforant pathway-dentate gyrus synapses along the longitudinal axis of the hippocampus. Hippocampus 2023; 33:47-62. [PMID: 36514833 DOI: 10.1002/hipo.23488] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022]
Abstract
We aimed to study how morphine affects synaptic transmission in the dentate gyrus and CA1 regions along the hippocampal long axis. For this, recording and measuring of field excitatory postsynaptic potentials (fEPSPs) were utilized to test the effects of repeated morphine exposure on paired-pulse evoked responses and long-term potentiation (LTP) at Schaffer collateral-CA1 (Sch-CA1), temporoammonic-CA1 (TA-CA1) and perforant pathway-dentate gyrus (PP-DG) synapses in transverse slices from the dorsal (DH), intermediate (IH), and ventral (VH) hippocampus in adult male rats. After repeated morphine exposure, the expression of opioid receptors and the α1 and α5 GABAA subunits were also examined. We found that repeated morphine exposure blunt the difference between the DH and the VH in their basal levels of synaptic transmission at Sch-CA1 synapses that were seen in the control groups. Significant paired-pulse facilitation of excitatory synaptic transmission was observed at Sch-CA1 synapses in slices taken from all three hippocampal segments as well as at PP-DG synapses in slices taken from the VH segment in the morphine-treated groups as compared to the control groups. Interestingly, significant paired-pulse inhibition of excitatory synaptic transmission was observed at TA-CA1 synapses in the DH slices from the morphine-treated group as compared to the control group. While primed-burst stimulation (a protocol reflecting normal neuronal firing) induced a robust LTP in hippocampal subfields in all control groups, resulting in a decaying LTP at TA-CA1 synapses in the VH slices and at PP-DG synapses in both the IH and VH slices taken from the morphine-treated rats. In the DH of morphine-treated rats, we found increased levels of the mRNAs encoding the α1 and α5 GABAA subunits as compared to the control group. Taken together, these findings suggest the potential mechanisms through which repeated morphine exposure causes differential changes in circuit excitability and synaptic plasticity in the dentate gyrus and CA1 regions along the hippocampal long axis.
Collapse
Affiliation(s)
- Sohrab Anvari
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Forough Foolad
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Javad Mirnajafi-Zadeh
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yaghoub Fathollahi
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
8
|
Behavioral Reaction and c-fos Expression after Opioids Injection into the Pedunculopontine Tegmental Nucleus and Electrical Stimulation of the Ventral Tegmental Area. Int J Mol Sci 2022; 24:ijms24010512. [PMID: 36613953 PMCID: PMC9820701 DOI: 10.3390/ijms24010512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
The pedunculopontine tegmental nucleus (PPN) regulates the activity of dopaminergic cells in the ventral tegmental area (VTA). In this study, the role of opioid receptors (OR) in the PPN on motivated behaviors was investigated by using a model of feeding induced by electrical VTA-stimulation (Es-VTA) in rats (male Wistar; n = 91). We found that the OR excitation by morphine and their blocking by naloxone within the PPN caused a change in the analyzed motivational behavior and neuronal activation. The opioid injections into the PPN resulted in a marked, dose-dependent increase/decrease in latency to feeding response (FR), which corresponded with increased neuronal activity (c-Fos protein), in most of the analyzed brain structures. Morphine dosed at 1.25/1.5 µg into the PPN significantly reduced behavior induced by Es-VTA, whereas morphine dosed at 0.25/0.5 µg into the PPN did not affect this behavior. The opposite effect was observed after the naloxone injection into the PPN, where its lowest doses of 2.5/5.0 μg shortened the FR latency. However, its highest dose of 25.0 μg into the PPN nucleus did not cause FR latency changes. In conclusion, the level of OR arousal in the PPN can modulate the activity of the reward system.
Collapse
|
9
|
Dolgetta A, Johnson M, Fruitman K, Siegel L, Zhou Y, McEwen BS, Kreek MJ, Milner TA. Sex and chronic stress alter the distribution of glutamate receptors within rat hippocampal CA3 pyramidal cells following oxycodone conditioned place preference. Neurobiol Stress 2022; 17:100431. [PMID: 35535260 PMCID: PMC9076964 DOI: 10.1016/j.ynstr.2022.100431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/02/2022] [Accepted: 01/19/2022] [Indexed: 12/01/2022] Open
Abstract
Glutamate receptors have a key role in the neurobiology of opioid addiction. Using electron microscopic immunocytochemical methods, this project elucidates how sex and chronic immobilization stress (CIS) impact the redistribution of GluN1 and GluA1 within rat hippocampal CA3 pyramidal cells following oxycodone (Oxy) conditioned place preference (CPP). Four groups of female and male Sprague-Dawley rats subjected to CPP were used: Saline- (Sal) and Oxy-injected (3 mg/kg, I.P.) naïve rats; and Sal- and Oxy-injected CIS rats. GluN1: In both naive and CIS rats, Sal-females compared to Sal-males had elevated cytoplasmic and total dendritic GluN1. Following Oxy CPP, near plasmalemmal, cytoplasmic, and total GluN1 decreased in CA3 dendrites of unstressed females suggesting reduced pools of GluN1 available for ligand binding. Following CIS, Oxy-males (which did not acquire CPP) had increased GluN1 in all compartments of dendrites and spines of CA3 neurons. GluA1: There were no differences in the distribution GluA1 in any cellular compartments of CA3 dendrites in naïve females and males following either Sal or Oxy CPP. CIS alone increased the percent of GluA1 in CA3 dendritic spines in males compared to females. CIS Oxy-males compared to CIS Sal-males had an increase in cytoplasmic and total dendritic GluA1. Thus, in CIS Oxy-males increased pools of GluN1 and GluA1 are available for ligand binding in CA3 neurons. Together with our prior experiments, these changes in GluN1 and GluA1 following CIS in males may contribute to an increased sensitivity of CA3 neurons to glutamate excitation and a reduced capacity to acquire Oxy CPP.
Collapse
Key Words
- ABC, avidin-biotin complex
- AMPA receptors
- BSA, bovine serum albumin
- CIS, chronic immobilization stress
- CPP, conditioned place preference
- DAB, diaminobenzidine
- DG, dentate gyrus
- DOR, delta opioid receptor
- Drug associative-learning
- Electron microscopy
- GABA, Gamma-amino butyric acid
- GluA1, AMPA glutamate receptor subunit 1
- GluN1, NMDA, glutamate receptor subunit 1
- LTP, long-term potentiation
- MOR, mu opioid receptor
- NMDA receptors
- NMDA, N-methyl-D-aspartate
- NPY, neuropeptide Y
- Oxy, oxycodone
- PARV, parvalbumin
- PB, phosphate buffer
- PFA, paraformaldehyde
- PM, plasma membrane
- Pyramidal cells
- ROI, region of interest
- SLM, stratum lacunosum-moleculare
- SLu, stratum lucidum
- SO, stratum oriens
- SOM, somatostatin
- SR, stratum radiatum
- Sal, saline
- TS, tris-buffered saline
- ir, immunoreactivity
Collapse
Affiliation(s)
- Alexandra Dolgetta
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Megan Johnson
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Kate Fruitman
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Luke Siegel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Bruce S. McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, USA
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
10
|
Nam MH, Won W, Han KS, Lee CJ. Signaling mechanisms of μ-opioid receptor (MOR) in the hippocampus: disinhibition versus astrocytic glutamate regulation. Cell Mol Life Sci 2021; 78:415-426. [PMID: 32671427 PMCID: PMC11073310 DOI: 10.1007/s00018-020-03595-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023]
Abstract
μ-opioid receptor (MOR) is a class of opioid receptors that is critical for analgesia, reward, and euphoria. MOR is distributed in various brain regions, including the hippocampus, where traditionally, it is believed to be localized mainly at the presynaptic terminals of the GABAergic inhibitory interneurons to exert a strong disinhibitory effect on excitatory pyramidal neurons. However, recent intensive research has uncovered the existence of MOR in hippocampal astrocytes, shedding light on how astrocytic MOR participates in opioid signaling via glia-neuron interaction in the hippocampus. Activation of astrocytic MOR has shown to cause glutamate release from hippocampal astrocytes and increase the excitability of presynaptic axon fibers to enhance the release of glutamate at the Schaffer Collateral-CA1 synapses, thereby, intensifying the synaptic strength and plasticity. This novel mechanism involving astrocytic MOR has been shown to participate in hippocampus-dependent conditioned place preference. Furthermore, the signaling of hippocampal MOR, whose action is sexually dimorphic, is engaged in adult neurogenesis, seizure, and stress-induced memory impairment. In this review, we focus on the two profoundly different hippocampal opioid signaling pathways through either GABAergic interneuronal or astrocytic MOR. We further compare and contrast their molecular and cellular mechanisms and their possible roles in opioid-associated conditioned place preference and other hippocampus-dependent behaviors.
Collapse
Affiliation(s)
- Min-Ho Nam
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Woojin Won
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seogbuk-gu, Seoul, 02841, Republic of Korea
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Kyung-Seok Han
- Department of Medical Biotechnology, Dongguk University-Gyeongju, 123 Dongdae-ro, Gyeongju, Gyeongbuk, Republic of Korea
| | - C Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seogbuk-gu, Seoul, 02841, Republic of Korea.
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea.
| |
Collapse
|
11
|
Gentzsch C, Seier K, Drakopoulos A, Jobin M, Lanoiselée Y, Koszegi Z, Maurel D, Sounier R, Hübner H, Gmeiner P, Granier S, Calebiro D, Decker M. Selective and Wash-Resistant Fluorescent Dihydrocodeinone Derivatives Allow Single-Molecule Imaging of μ-Opioid Receptor Dimerization. Angew Chem Int Ed Engl 2020; 59:5958-5964. [PMID: 31808251 PMCID: PMC7125027 DOI: 10.1002/anie.201912683] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Indexed: 12/21/2022]
Abstract
μ-Opioid receptors (μ-ORs) play a critical role in the modulation of pain and mediate the effects of the most powerful analgesic drugs. Despite extensive efforts, it remains insufficiently understood how μ-ORs produce specific effects in living cells. We developed new fluorescent ligands based on the μ-OR antagonist E-p-nitrocinnamoylamino-dihydrocodeinone (CACO), that display high affinity, long residence time and pronounced selectivity. Using these ligands, we achieved single-molecule imaging of μ-ORs on the surface of living cells at physiological expression levels. Our results reveal a high heterogeneity in the diffusion of μ-ORs, with a relevant immobile fraction. Using a pair of fluorescent ligands of different color, we provide evidence that μ-ORs interact with each other to form short-lived homodimers on the plasma membrane. This approach provides a new strategy to investigate μ-OR pharmacology at single-molecule level.
Collapse
Affiliation(s)
- Christian Gentzsch
- Pharmaceutical and Medicinal ChemistryInstitute of Pharmacy and Food ChemistryJulius Maximilian University of WürzburgAm Hubland97074WürzburgGermany
| | - Kerstin Seier
- Institute of Pharmacology and ToxicologyJulius Maximilian University of WürzburgVersbacher Strasse 997078WürzburgGermany
| | - Antonios Drakopoulos
- Pharmaceutical and Medicinal ChemistryInstitute of Pharmacy and Food ChemistryJulius Maximilian University of WürzburgAm Hubland97074WürzburgGermany
| | - Marie‐Lise Jobin
- Institute of Pharmacology and ToxicologyJulius Maximilian University of WürzburgVersbacher Strasse 997078WürzburgGermany
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research & Centre of Membrane Proteins and ReceptorsUniversity of BirminghamIBR Tower, Level 2, EdgbastonBirminghamB152TTUK
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research & Centre of Membrane Proteins and ReceptorsUniversity of BirminghamIBR Tower, Level 2, EdgbastonBirminghamB152TTUK
| | - Damien Maurel
- ARPEGE (Pharmacology Screening Interactome) platform facilityInstitut de Génomique FonctionnelleUniversité de Montpellier, CNRS, INSERM141, rue de la Cardonille34094Montpellier Cedex 05France
| | - Rémy Sounier
- Institut de Génomique FonctionnelleUniversité de Montpellier, CNRS, INSERM141, rue de la Cardonille34094Montpellier Cedex 05France
| | - Harald Hübner
- Medicinal ChemistryDepartment of Chemistry and PharmacyFriedrich-Alexander University of Erlangen-Nuremberg91058ErlangenGermany
| | - Peter Gmeiner
- Medicinal ChemistryDepartment of Chemistry and PharmacyFriedrich-Alexander University of Erlangen-Nuremberg91058ErlangenGermany
| | - Sébastien Granier
- Institut de Génomique FonctionnelleUniversité de Montpellier, CNRS, INSERM141, rue de la Cardonille34094Montpellier Cedex 05France
| | - Davide Calebiro
- Institute of Pharmacology and ToxicologyJulius Maximilian University of WürzburgVersbacher Strasse 997078WürzburgGermany
- Institute of Metabolism and Systems Research & Centre of Membrane Proteins and ReceptorsUniversity of BirminghamIBR Tower, Level 2, EdgbastonBirminghamB152TTUK
| | - Michael Decker
- Pharmaceutical and Medicinal ChemistryInstitute of Pharmacy and Food ChemistryJulius Maximilian University of WürzburgAm Hubland97074WürzburgGermany
| |
Collapse
|
12
|
Gentzsch C, Seier K, Drakopoulos A, Jobin M, Lanoiselée Y, Koszegi Z, Maurel D, Sounier R, Hübner H, Gmeiner P, Granier S, Calebiro D, Decker M. Selective and Wash‐Resistant Fluorescent Dihydrocodeinone Derivatives Allow Single‐Molecule Imaging of μ‐Opioid Receptor Dimerization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201912683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christian Gentzsch
- Pharmaceutical and Medicinal ChemistryInstitute of Pharmacy and Food ChemistryJulius Maximilian University of Würzburg Am Hubland 97074 Würzburg Germany
| | - Kerstin Seier
- Institute of Pharmacology and ToxicologyJulius Maximilian University of Würzburg Versbacher Strasse 9 97078 Würzburg Germany
| | - Antonios Drakopoulos
- Pharmaceutical and Medicinal ChemistryInstitute of Pharmacy and Food ChemistryJulius Maximilian University of Würzburg Am Hubland 97074 Würzburg Germany
| | - Marie‐Lise Jobin
- Institute of Pharmacology and ToxicologyJulius Maximilian University of Würzburg Versbacher Strasse 9 97078 Würzburg Germany
| | - Yann Lanoiselée
- Institute of Metabolism and Systems Research & Centre of Membrane Proteins and ReceptorsUniversity of Birmingham IBR Tower, Level 2, Edgbaston Birmingham B152TT UK
| | - Zsombor Koszegi
- Institute of Metabolism and Systems Research & Centre of Membrane Proteins and ReceptorsUniversity of Birmingham IBR Tower, Level 2, Edgbaston Birmingham B152TT UK
| | - Damien Maurel
- ARPEGE (Pharmacology Screening Interactome) platform facilityInstitut de Génomique FonctionnelleUniversité de Montpellier, CNRS, INSERM 141, rue de la Cardonille 34094 Montpellier Cedex 05 France
| | - Rémy Sounier
- Institut de Génomique FonctionnelleUniversité de Montpellier, CNRS, INSERM 141, rue de la Cardonille 34094 Montpellier Cedex 05 France
| | - Harald Hübner
- Medicinal ChemistryDepartment of Chemistry and PharmacyFriedrich-Alexander University of Erlangen-Nuremberg 91058 Erlangen Germany
| | - Peter Gmeiner
- Medicinal ChemistryDepartment of Chemistry and PharmacyFriedrich-Alexander University of Erlangen-Nuremberg 91058 Erlangen Germany
| | - Sébastien Granier
- Institut de Génomique FonctionnelleUniversité de Montpellier, CNRS, INSERM 141, rue de la Cardonille 34094 Montpellier Cedex 05 France
| | - Davide Calebiro
- Institute of Pharmacology and ToxicologyJulius Maximilian University of Würzburg Versbacher Strasse 9 97078 Würzburg Germany
- Institute of Metabolism and Systems Research & Centre of Membrane Proteins and ReceptorsUniversity of Birmingham IBR Tower, Level 2, Edgbaston Birmingham B152TT UK
| | - Michael Decker
- Pharmaceutical and Medicinal ChemistryInstitute of Pharmacy and Food ChemistryJulius Maximilian University of Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
13
|
Kazemi Roodsari S, Bahramnejad E, Rahimi N, Aghaei I, Dehpour AR. Methadone's effects on pentylenetetrazole-induced seizure threshold in mice: NMDA/opioid receptors and nitric oxide signaling. Ann N Y Acad Sci 2019; 1449:25-35. [PMID: 30957236 DOI: 10.1111/nyas.14043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/22/2019] [Accepted: 02/04/2019] [Indexed: 12/25/2022]
Abstract
Methadone is a synthetic opioid used to treat opiate withdrawal and addiction. Studies have demonstrated the impact of methadone on seizure susceptibility. This study investigated the modulatory impacts of acute and subchronic (three times daily for 5 days) intraperitoneal methadone treatment on pentylenetetrazole-induced clonic seizure threshold (CST) in mice, as well as the involvement of the nitric oxide, N-methyl-d-aspartate (NMDA), and µ-opioid pathways. Acute administration of different doses of methadone (0.1, 0.3, 1, and 3 mg/kg) 45 min before CST significantly decreased the seizure threshold. Additionally, pretreatment with noneffective doses of an opioid receptor antagonist (naltrexone) and NMDA receptor antagonists (ketamine and MK-801) inhibited methadone's proconvulsive activity in the acute phase, while l-NAME (a nonspecific nitric oxide synthase (NOS) inhibitor) did not affect that activity. In the subchronic phase, methadone (3 mg/kg) demonstrated an anticonvulsive effect. Although subchronic pretreatment with noneffective doses of l-NAME and 7-nitroindazole (a specific neuronal NOS inhibitor) reversed methadone's anticonvulsive activity, aminoguanidine (a specific inducible NOS inhibitor), naltrexone, MK-801, and ketamine did not change methadone's anticonvulsive characteristic. Our results suggest that NMDA and µ-opioid receptors may be involved in methadone's proconvulsive activity in the acute phase, while methadone's anticonvulsive activity may be modulated by neuronal NOS in the subchronic phase.
Collapse
Affiliation(s)
- Soheil Kazemi Roodsari
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Erfan Bahramnejad
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Rahimi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Aghaei
- Department of Neuroscience, Neuroscience Research Center, Poursina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Hernandez S, Cruz ML, Seguinot II, Torres-Reveron A, Appleyard CB. Impact of Psychological Stress on Pain Perception in an Animal Model of Endometriosis. Reprod Sci 2017; 24:1371-1381. [PMID: 28093054 PMCID: PMC5933089 DOI: 10.1177/1933719116687655] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Pain in patients with endometriosis is considered a significant source of stress but does not always correlate with severity of the condition. We have demonstrated that stress can worsen endometriosis in an animal model. Here, we tested the impact of a psychological stress protocol on pain thresholds and pain receptors. METHODS Endometriosis was induced in female rats by suturing uterine horn tissue next to the intestinal mesentery. Sham rats had sutures only. Rats were exposed to water avoidance stress for 7 consecutive days or handled for 5 minutes (no stress). Fecal pellets and serum corticosterone (CORT) levels were measured as an index of anxiety. Pain perception was assessed using hot plate and Von Frey tests. Substance P, enkephalin, endomorphin-2, Mu opioid receptor (MOR), and neurokinin-1 receptor expression in the spinal cord were measured by immunohistochemistry. RESULTS Fecal pellets and CORT were significantly higher in the endo-stress (ES) group than endo-no stress (ENS; P < .01) and sham-no stress groups (SNS; P < .01). The ES rats had more colonic damage ( P < .001 vs SNS; P < .05 vs ENS), vesicle mast cell infiltration ( P < .01 vs ENS), and more severe vesicles than ENS. The ES developed significant hyperalgesia ( P < .05) but stress reversed the allodynic effect caused by endo ( P < .001). The MOR expression was significantly reduced in ENS versus SNS ( P < .05) and more enkephalin expression was found in endo groups. CONCLUSION Animals subjected to stress develop more severe symptoms but interestingly stress seems to have beneficial effects on abdominal allodynia, which could be a consequence of the stress-induced analgesia phenomenon.
Collapse
Affiliation(s)
- Siomara Hernandez
- Physiology Division, Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - Myrella L. Cruz
- Physiology Division, Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - Inevy I. Seguinot
- Microbiology Division, Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - Annelyn Torres-Reveron
- Physiology Division, Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
- Neuroscience Division, Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| | - Caroline B. Appleyard
- Physiology Division, Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, PR, USA
| |
Collapse
|
15
|
Torres-Reverón A, Palermo K, Hernández-López A, Hernández S, Cruz ML, Thompson KJ, Flores I, Appleyard CB. Endometriosis Is Associated With a Shift in MU Opioid and NMDA Receptor Expression in the Brain Periaqueductal Gray. Reprod Sci 2016; 23:1158-67. [PMID: 27089914 PMCID: PMC5933161 DOI: 10.1177/1933719116630410] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Studies have examined how endometriosis interacts with the nervous system, but little attention has been paid to opioidergic systems, which are relevant to pain signaling. We used the autotransplantation rat model of endometriosis and allowed to progress for 60 days. The brain was collected and examined for changes in endogenous opioid peptides, mu opioid receptors (MORs), and the N-methyl-d-aspartate subunit receptor (NR1) in the periaqueductal gray (PAG), since both of these receptors can regulate PAG activity. No changes in endogenous opioid peptides in met- and leu-enkephalin or β-endorphin levels were observed within the PAG. However, MOR immunoreactivity was significantly decreased in the ventral PAG in the endometriosis group. Endometriosis reduced by 20% the number of neuronal profiles expressing MOR and reduced by 40% the NR1 profiles. Our results suggest that endometriosis is associated with subtle variations in opioidergic and glutamatergic activity within the PAG, which may have implications for pain processing.
Collapse
Affiliation(s)
- Annelyn Torres-Reverón
- Department of Basic Sciences: Physiology and Pharmacology, Ponce Health Sciences University, Ponce, PR, USA Department of Clinical Psychology, Ponce Health Sciences University/Ponce Research Institute, Ponce, PR, USA
| | - Karylane Palermo
- Department of Basic Sciences: Physiology and Pharmacology, Ponce Health Sciences University, Ponce, PR, USA
| | - Anixa Hernández-López
- Department of Basic Sciences: Physiology and Pharmacology, Ponce Health Sciences University, Ponce, PR, USA
| | - Siomara Hernández
- Department of Basic Sciences: Physiology and Pharmacology, Ponce Health Sciences University, Ponce, PR, USA
| | - Myrella L Cruz
- Department of Basic Sciences: Physiology and Pharmacology, Ponce Health Sciences University, Ponce, PR, USA
| | - Kenira J Thompson
- Department of Basic Sciences: Physiology and Pharmacology, Ponce Health Sciences University, Ponce, PR, USA
| | - Idhaliz Flores
- Department of Microbiology, Ponce Health Sciences University, Ponce, PR, USA
| | - Caroline B Appleyard
- Department of Basic Sciences: Physiology and Pharmacology, Ponce Health Sciences University, Ponce, PR, USA
| |
Collapse
|
16
|
Hernandez S, Cruz ML, Torres-Reveron A, Appleyard CB. Impact of physical activity on pain perception in an animal model of endometriosis. JOURNAL OF ENDOMETRIOSIS AND PELVIC PAIN DISORDERS 2015; 7:89-114. [PMID: 28217664 PMCID: PMC5310711 DOI: 10.5301/je.5000231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Symptoms of endometriosis, such as pain and infertility, are considered significant sources of stress. In many chronic conditions, exercise can act as a stress buffer and influence pain perception. We tested the impact of swimming exercise on pain perception and pain receptors in an animal model of endometriosis. METHODS Endometriosis (Endo) was induced in female rats by suturing uterine horn tissue next to the intestinal mesentery. Sham rats received sutures only. Rats were exposed to swimming exercise for 7 consecutive days, while no-exercise rats were left in the home cage. Fecal pellets were counted after swimming as an index of anxiety, and serum corticosterone levels measured. Pain perception was assessed using the hot plate test for hyperalgesia and Von Frey test for allodynia. Mu-opioid receptor (MOR) and neurokinin-1 receptor expression in the spinal cord was measured by immunofluorescence. RESULTS Fecal pellet counts were higher in those animals that swam (p<0.05), but no significant difference in corticosterone was found. Although Endo-exercise rats had higher colonic damage (p<0.05) with more cellular infiltration, the lesions were smaller than in Endo-no exercise rats (p<0.05). Exercise did not ameliorate the hyperalgesia, whereas it improved allodynia in both groups. MOR expression was significantly higher in Endo-exercise vs. Endo-no exercise rats (p<0.01), similar to Sham-no exercise levels. CONCLUSIONS Our results point toward beneficial effects of swimming exercise during endometriosis progression. Physical interventions might be investigated further for their ability to reduce perceived stress and improve outcomes in endometriosis.
Collapse
Affiliation(s)
- Siomara Hernandez
- Physiology Division, Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico - USA
| | - Myrella L. Cruz
- Physiology Division, Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico - USA
| | - Annelyn Torres-Reveron
- Physiology Division, Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico - USA
- Neuroscience Division, Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico - USA
| | - Caroline B. Appleyard
- Physiology Division, Department of Basic Sciences, Ponce Health Sciences University, Ponce Research Institute, Ponce, Puerto Rico - USA
| |
Collapse
|
17
|
Cachope R, Pereda AE. Opioids potentiate electrical transmission at mixed synapses on the Mauthner cell. J Neurophysiol 2015; 114:689-97. [PMID: 26019311 DOI: 10.1152/jn.00165.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/20/2015] [Indexed: 11/22/2022] Open
Abstract
Opioid receptors were shown to modulate a variety of cellular processes in the vertebrate central nervous system, including synaptic transmission. While the effects of opioid receptors on chemically mediated transmission have been extensively investigated, little is known of their actions on gap junction-mediated electrical synapses. Here we report that pharmacological activation of mu-opioid receptors led to a long-term enhancement of electrical (and glutamatergic) transmission at identifiable mixed synapses on the goldfish Mauthner cells. The effect also required activation of both dopamine D1/5 receptors and postsynaptic cAMP-dependent protein kinase A, suggesting that opioid-evoked actions are mediated indirectly via the release of dopamine from varicosities known to be located in the vicinity of the synaptic contacts. Moreover, inhibitory inputs situated in the immediate vicinity of these excitatory synapses on the lateral dendrite of the Mauthner cell were not affected by activation of mu-opioid receptors, indicating that their actions are restricted to electrical and glutamatergic transmissions co-existing at mixed contacts. Thus, as their chemical counterparts, electrical synapses can be a target for the modulatory actions of the opioid system. Because gap junctions at these mixed synapses are formed by fish homologs of the neuronal connexin 36, which is widespread in mammalian brain, it is likely that this regulatory property applies to electrical synapses elsewhere as well.
Collapse
Affiliation(s)
- Roger Cachope
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York; and
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York; and Marine Biological Laboratory, Woods Hole, Massachusetts
| |
Collapse
|
18
|
Opioid receptor-dependent sex differences in synaptic plasticity in the hippocampal mossy fiber pathway of the adult rat. J Neurosci 2015; 35:1723-38. [PMID: 25632146 DOI: 10.1523/jneurosci.0820-14.2015] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mossy fiber (MF) pathway is critical to hippocampal function and influenced by gonadal hormones. Physiological data are limited, so we asked whether basal transmission and long-term potentiation (LTP) differed in slices of adult male and female rats. The results showed small sex differences in basal transmission but striking sex differences in opioid receptor sensitivity and LTP. When slices were made from females on proestrous morning, when serum levels of 17β-estradiol peak, the nonspecific opioid receptor antagonist naloxone (1 μm) enhanced MF transmission but there was no effect in males, suggesting preferential opioid receptor-dependent inhibition in females when 17β-estradiol levels are elevated. The μ-opioid receptor (MOR) antagonist Cys2,Tyr3,Orn5,Pen7-amide (CTOP; 300 nm) had a similar effect but the δ-opioid receptor (DOR) antagonist naltrindole (NTI; 1 μm) did not, implicating MORs in female MF transmission. The GABAB receptor antagonist saclofen (200 μm) occluded effects of CTOP but the GABAA receptor antagonist bicuculline (10 μm) did not. For LTP, a low-frequency (LF) protocol was used because higher frequencies elicited hyperexcitability in females. Proestrous females exhibited LF-LTP but males did not, suggesting a lower threshold for synaptic plasticity when 17β-estradiol is elevated. NTI blocked LF-LTP in proestrous females, but CTOP did not. Electron microscopy revealed more DOR-labeled spines of pyramidal cells in proestrous females than males. Therefore, we suggest that increased postsynaptic DORs mediate LF-LTP in proestrous females. The results show strong MOR regulation of MF transmission only in females and identify a novel DOR-dependent form of MF LTP specific to proestrus.
Collapse
|
19
|
Ectopic vesicular glutamate release at the optic nerve head and axon loss in mouse experimental glaucoma. J Neurosci 2013; 32:15859-76. [PMID: 23136425 DOI: 10.1523/jneurosci.0038-12.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although clinical and experimental observations indicate that the optic nerve head (ONH) is a major site of axon degeneration in glaucoma, the mechanisms by which local retinal ganglion cell (RGC) axons are injured and damage spreads among axons remain poorly defined. Using a laser-induced ocular hypertension (LIOH) mouse model of glaucoma, we found that within 48 h of intraocular pressure elevation, RGC axon segments within the ONH exhibited ectopic accumulation and colocalization of multiple components of the glutamatergic presynaptic machinery including the vesicular glutamate transporter VGLUT2, several synaptic vesicle marker proteins, glutamate, the soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex and active zone cytomatrix components, as well as ultrastructurally identified, synaptophysin-containing vesicles. Ectopic vesicle exocytosis and glutamate release were detected in acute preparations of the LIOH ONH. Immunolocalization and analysis using the ionotropic receptor channel-permeant cation agmatine indicated that ONH axon segments and glia expressed glutamate receptors, and these receptors were more active after LIOH compared with controls. Pharmacological antagonism of glutamate receptors and neuronal activity resulted in increased RGC axon sparing in vivo. Furthermore, in vivo RGC-specific genetic disruption of the vesicular glutamate transporter VGLUT2 or the obligatory NMDA receptor subunit NR1 promoted axon survival in experimental glaucoma. As the inhibition of ectopic glutamate vesicular release or glutamate receptivity can independently modify the severity of RGC axon loss, synaptic release mechanisms may provide useful therapeutic entry points into glaucomatous axon degeneration.
Collapse
|
20
|
Fichna J, Socała K, Nieoczym D, Gach K, Perlikowska R, Janecka A, Wlaź P. The mu-opioid receptor-selective peptide antagonists, antanal-1 and antanal-2, produce anticonvulsant effects in mice. Prog Neuropsychopharmacol Biol Psychiatry 2013; 40:126-31. [PMID: 22918032 DOI: 10.1016/j.pnpbp.2012.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 10/28/2022]
Abstract
The activation of the mu-opioid receptors (MOR) in the central nervous system has a proconvulsant effect and seizures are a common side effect of high doses of short acting opioids, like morphine or fentanyl. However, the correct assessment of the role of MOR blockade in the initiation and propagation of epilepsy was hampered by the lack of potent and selective MOR antagonists. In this study we aimed at characterizing the effect of MOR blockade on the seizure threshold in mice using recently developed selective antagonists antanal-1 and antanal-2 and a classical MOR antagonist, β-funaltrexamine (β-FNA). The effect of the centrally administered MOR antagonists was characterized in the maximal electroshock seizure threshold (MEST), the 6 Hz psychomotor seizure threshold and the intravenous pentylenetetrazole (PTZ) seizure threshold test in mice. The acute effect of the studied compounds on skeletal muscular strength in mice was quantified in the grip-strength test. Antanal-1 and antanal-2 (30 and 50 nmol/mouse, i.c.v.), but not β-FNA significantly increased the seizure threshold in the MEST test in mice. In the 6-Hz test, all tested MOR antagonists significantly increased the psychomotor seizure threshold and the most potent anticonvulsant effect was observed for antanal-2 (2, 10 and 30 nmol/mouse, i.c.v.). The i.c.v. administration of β-FNA (10 and 30 nmol/mouse, i.c.v.), antanal-1 and antanal-2 (both 30, 50 and 100 nmol/mouse, i.c.v.) did not produce any significant effect on PTZ seizure threshold, the generalized clonus or the forelimbs tonus. All tested compounds did not affect muscle strength, as determined in the grip strength test. Our study demonstrated that the novel MOR-selective antagonists antanal-1 and antanal-2 displayed a potent and dose-dependent anticonvulsant action involving non-GABA-ergic, but some other pathways and mechanisms in animal models of epileptic seizures. We suggest that antanals are promising drug templates for future therapeutics, which may be used in the treatment of epilepsy in humans.
Collapse
Affiliation(s)
- Jakub Fichna
- Department of Biomolecular Chemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | | | | | | | | | | | | |
Collapse
|
21
|
Chen Y, Evola M, Young AM. Memantine and dizocilpine interactions with antinociceptive or discriminative stimulus effects of morphine in rats after acute or chronic treatment with morphine. Psychopharmacology (Berl) 2013; 225:187-99. [PMID: 22864944 PMCID: PMC3777440 DOI: 10.1007/s00213-012-2807-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 07/08/2012] [Indexed: 12/18/2022]
Abstract
RATIONALE Memantine is a N-methyl-D-aspartic acid receptor (NMDAR) channel blocker that binds to dizocilpine sites and appears well tolerated during chronic use. Published studies suggest NMDAR antagonists prevent development of tolerance to effects of morphine by blocking NMDAR hyperactivation. OBJECTIVES We sought to compare effects of memantine to those of the more frequently studied dizocilpine and to evaluate memantine as a potential adjunct to modify tolerance to mu-opioid receptor agonists. METHODS Sprague-Dawley rats were trained to discriminate morphine (3.2 mg/kg) and saline under fixed ratio 15 schedules of food delivery. Potency and maximal stimulus or rate-altering effects of cumulative doses of morphine were examined 30 min after pretreatment with dizocilpine (0.032-0.1 mg/kg) or memantine (5-10 mg/kg) and after chronic treatment with combinations of dizocilpine or memantine and morphine, 10 mg/kg twice daily, for 6 to 14 days. Effects of dizocilpine or memantine on morphine antinociception were examined in a 55 °C water tail-withdrawal assay with drug treatments parallel to those in discrimination studies. RESULTS Acutely, memantine attenuated while dizocilpine potentiated the stimulus and antinociceptive effects of morphine. Neither chronic dizocilpine nor memantine blocked tolerance to the stimulus effects of morphine. In contrast, combined treatment with dizocilpine (0.1 mg/kg) blocked tolerance to antinociceptive effects of lower (0.1~3.2 mg/kg) but not higher doses of morphine, whereas memantine did not block tolerance. CONCLUSIONS Memantine and dizocilpine interacted differently with morphine, possibly due to different NMDAR binding profiles. The lack of memantine-induced changes in morphine tolerance suggests that memantine may not be a useful adjunct in chronic pain management.
Collapse
Affiliation(s)
- Yukun Chen
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Marianne Evola
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Alice M. Young
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Psychology, Texas Tech University, Lubbock, TX 79409-1075, USA
| |
Collapse
|
22
|
Martinez CO, Do VH, Derrick BE. Endogenous opioid peptides contribute to associative LTP in the hippocampal CA3 region. Neurobiol Learn Mem 2011; 96:207-17. [PMID: 21571085 DOI: 10.1016/j.nlm.2011.04.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/29/2011] [Accepted: 04/25/2011] [Indexed: 11/19/2022]
Abstract
The medial and lateral perforant path projections to the hippocampal CA3 region display distinct mechanisms of long-term potentiation (LTP) induction, N-methyl-d-aspartate (NMDA) and opioid receptor dependent, respectively. However, medial and lateral perforant path projections to the CA3 region display associative LTP with coactivation, suggesting that while they differ in receptors involved in LTP induction they may share common downstream mechanisms of LTP induction. Here we address this interaction of LTP induction mechanisms by evaluating the contribution of opioid receptors to the induction of associative LTP among the medial and lateral perforant path projections to the CA3 region in vivo. Local application of the opioid receptor antagonists naloxone or Cys2-Tyr3-Orn5-Pen7-amide (CTOP) normally block induction of lateral perforant path-CA3 LTP. However, these opioid receptor antagonists failed to block associative LTP in lateral perforant path-CA3 synapses when it was induced by strong coactivation of the medial perforant pathway which displays NMDAR-dependent LTP. Thus strong activation of non-opioidergic afferents can substitute for the opioid receptor activation required for lateral perforant path LTP induction. Conversely, medial perforant path-CA3 associative LTP was blocked by opioid receptor antagonists when induced by strong coactivation of the opioidergic lateral perforant path. These data indicate endogenous opioid peptides contribute to associative LTP at coactive synapses when induced by strong coactivation of an opioidergic afferent system. These data further suggest that associative LTP induction is regulated by the receptor mechanisms of the strongly stimulated pathway. Thus, while medial and lateral perforant path synapses differ in their mechanisms of LTP induction, associative LTP at these synapses share common downstream mechanisms of induction.
Collapse
Affiliation(s)
- Carlo O Martinez
- Department of Surgery, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Dr. Mail Code 7737, San Antonio, TX 78229-3900, USA
| | | | | |
Collapse
|
23
|
NMDA receptor activation increases free radical production through nitric oxide and NOX2. J Neurosci 2009; 29:2545-52. [PMID: 19244529 DOI: 10.1523/jneurosci.0133-09.2009] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Reactive oxygen species (ROS) and nitric oxide (NO) participate in NMDA receptor signaling. However, the source(s) of the ROS and their role in the increase in cerebral blood flow (CBF) induced by NMDA receptor activation have not been firmly established. NADPH oxidase generates ROS in neurons, but there is no direct evidence that this enzyme is present in neurons containing NMDA receptors, or that is involved in NMDA receptor-dependent ROS production and CBF increase. We addressed these questions using a combination of in vivo and in vitro approaches. We found that the CBF and ROS increases elicited by topical application of NMDA to the mouse neocortex were both dependent on neuronal NO synthase (nNOS), cGMP, and the cGMP effector kinase protein kinase G (PKG). In mice lacking the NADPH oxidase subunit NOX2, the ROS increase was not observed, but the CBF increase was still present. Electron microscopy of the neocortex revealed NOX2 immunolabeling in postsynaptic somata and dendrites that also expressed the NMDA receptor NR1 subunit and nNOS. In neuronal cultures, the NMDA-induced increase in ROS was mediated by NADPH oxidase through NO, cGMP and PKG. We conclude that NADPH oxidase in postsynaptic neurons generates ROS during NMDA receptor activation. However, NMDA receptor-derived ROS do not contribute to the CBF increase. The findings establish a NOX2-containing NADPH oxidase as a major source of ROS produced by NMDA receptor activation, and identify NO as the critical link between NMDA receptor activity and NOX2-dependent ROS production.
Collapse
|
24
|
Derrick BE. Plastic processes in the dentate gyrus: a computational perspective. PROGRESS IN BRAIN RESEARCH 2007; 163:417-51. [PMID: 17765732 DOI: 10.1016/s0079-6123(07)63024-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The dentate gyrus has the capacity for numerous types of synaptic plasticity that use diverse mechanisms and are thought essential for the storage of information in the hippocampus. Here we review the various forms of synaptic plasticity that involve afferents and efferents of the dentate gyrus, and, from a computational perspective, relate how these plastic processes might contribute to sparse, orthogonal encoding, and the selective recall of information within the hippocampus.
Collapse
Affiliation(s)
- Brian E Derrick
- Department of Biology, The Cajal Neuroscience Research Institute, The University of Texas at San Antonio, TX 78249-0662, USA.
| |
Collapse
|
25
|
Bramham CR. Control of synaptic consolidation in the dentate gyrus: mechanisms, functions, and therapeutic implications. PROGRESS IN BRAIN RESEARCH 2007; 163:453-71. [PMID: 17765733 DOI: 10.1016/s0079-6123(07)63025-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Synaptic consolidation refers to the development and stabilization of protein synthesis-dependent modifications of synaptic strength as observed during long-term potentiation (LTP) and long-term depression (LTD). Activity-dependent changes in synaptic strength are thought to underlie memory storage and other adaptive responses of the nervous systems of importance in mood stability, reward behavior, and pain control. This chapter focuses on the mechanisms and functions of synaptic consolidation in the dentate gyrus, a critical structure not only in hippocampal memory function, but also in regulation of stress responses and cognitive aspects of depression. Recent evidence suggests that synaptic consolidation at excitatory medial perforant path-granule cell synapses requires brain-derived neurotrophic factor (BDNF) signaling and induction of the immediate early gene activity-regulated cytoskeleton-associated protein (Arc). Arc mRNA is strongly induced and transported to dendritic processes following high-frequency stimulation (HFS) that induces LTP in the rat dentate gyrus in vivo. Sustained synthesis of Arc during a surprisingly protracted time-window is required for hyperphosphorylation of actin depolymerizing factor/cofilin and local expansion of the actin cytoskeleton in vivo. Furthermore, this process of Arc-dependent synaptic consolidation is activated in response to brief infusion of BDNF. Microarray expression profiling has revealed a panel of BDNF-regulated genes that may cooperate with Arc during synaptic consolidation. In addition to regulating gene expression, BDNF signaling modulates the fine localization and biochemical activation of the translation machinery. By modulating the spatial and temporal translation of newly induced (Arc) and constitutively-expressed mRNA in dendrites, BDNF may effectively control the window of synaptic consolidation. Dysregulation of BDNF synthesis and Arc function, specifically within the dentate gyrus, is linked to behavioral symptoms and cognitive deficits in animal models of depression and Alzheimer's disease. Therapeutics strategies targeting synaptic consolidation hold promise for the future.
Collapse
Affiliation(s)
- Clive R Bramham
- Department of Biomedicine and Bergen Mental Health Research Center, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.
| |
Collapse
|
26
|
Abstract
Opiate drugs alter cognitive performance and influence hippocampal excitability, including long-term potentiation (LTP) and seizure activity. The dentate gyrus (DG) contains two major opioid peptides, enkephalins and dynorphins, which have opposing effects on excitability. Enkephalins preferentially bind to delta- and mu-opioid receptors (DORs and MORs) while dynorphins preferentially bind to kappa-opioid receptors (KORs). Opioid receptors can also be activated by exogenous opiate drugs such as the MOR agonist morphine. Enkephalins are contained in the mossy fiber pathway, in the lateral perforant path (PP) and in scattered GABAergic interneurons. MORs and DORs are predominantly in distinct subpopulations of GABAergic interneurons known to inhibit granule cells, and are present at low levels within granule cells. MOR and DOR agonists increase excitability and facilitate LTP in the molecular layer. Anatomical and physiological evidence is consistent with somatodendritic and axon terminal targeting of both MORs and DORs. Dynorphins are in the granule cells, most abundantly in mossy fibers but also in dendrites. KORs have been localized to granule cell mossy fibers, supramammillary afferents to granule cells, and PP terminals. KOR agonists, including endogenous dynorphins, diminish the induction of LTP. Recent evidence indicates that opiates and opioids also modulate other processes in the hippocampal formation, including adult neurogenesis, the actions of gonadal hormones, and development of neonatal transmitter systems.
Collapse
Affiliation(s)
- Carrie T Drake
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill-Cornell Medical College, 411 East 69th Street, New York, NY 10021, USA
| | | | | |
Collapse
|
27
|
Drake CT, Milner TA. Mu opioid receptors are extensively co-localized with parvalbumin, but not somatostatin, in the dentate gyrus. Neurosci Lett 2006; 403:176-80. [PMID: 16716508 DOI: 10.1016/j.neulet.2006.04.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 04/24/2006] [Accepted: 04/25/2006] [Indexed: 01/13/2023]
Abstract
In the rat dentate gyrus, mu opioid receptor (MOR) agonists disinhibit principal cells, promoting excitation, but whether MOR protein is differentially distributed to interneuron subtypes is unknown. Here, the distribution of MOR immunoreactivity was semi-quantitatively examined in neurochemically identified interneurons using fluorescence microscopy. We find that MOR- and parvalbumin-immunoreactivities are frequently co-localized, while MOR- and somatostatin-immunoreactivities are less commonly co-localized. This suggests that MORs are most frequently on interneurons specialized to inhibit granule cell output, and are on a limited number of interneurons that inhibit granule cell distal dendrites.
Collapse
Affiliation(s)
- Carrie T Drake
- Department of Neurology and Neuroscience, Division of Neurobiology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | |
Collapse
|
28
|
Milner TA, Ayoola K, Drake CT, Herrick SP, Tabori NE, McEwen BS, Warrier S, Alves SE. Ultrastructural localization of estrogen receptor beta immunoreactivity in the rat hippocampal formation. J Comp Neurol 2006; 491:81-95. [PMID: 16127691 DOI: 10.1002/cne.20724] [Citation(s) in RCA: 302] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Several lines of evidence indicate that estrogen affects hippocampal synaptic plasticity through rapid nongenomic mechanisms, possibly by binding to plasma membrane estrogen receptors (ERs). We have previously shown that ERalpha immunoreactivity (ir) is in select interneuron nuclei and in several extranuclear locations, including dendritic spines and axon terminals, within the rat hippocampal formation (Milner et al., [2001] J Comp Neurol 429:355). The present study sought to determine the cellular and subcellular locations of ERbeta-ir. Coronal hippocampal sections from diestrus rats were immunolabeled with antibodies to ERbeta and examined by light and electron microscopy. By light microscopy, ERbeta-ir was primarily in the perikarya and proximal dendrites of pyramidal and granule cells. ERbeta-ir was also in a few nonprincipal cells and scattered nuclei in the ventral subiculum and CA3 region. Ultrastructural analysis revealed ERbeta-ir at several extranuclear sites in all hippocampal subregions. ERbeta-ir was affiliated with cytoplasmic organelles, especially endomembranes and mitochondria, and with plasma membranes primarily of principal cell perikarya and proximal dendrites. ERbeta-ir was in dendritic spines, many arising from pyramidal and granule cell dendrites. In both dendritic shafts and spines, ERbeta-ir was near the perisynaptic zone adjacent to synapses formed by unlabeled terminals. ERbeta-ir was in preterminal axons and axon terminals, associated with clusters of small, synaptic vesicles. ERbeta-labeled terminals formed both asymmetric and symmetric synapses with dendrites. ERbeta-ir also was detected in glial profiles. The cellular and subcellular localization of ERbeta-ir was generally similar to that of ERalpha, except that ERbeta was more extensively found at extranuclear sites. These results suggest that ERbeta may serve primarily as a nongenomic transducer of estrogen actions in the hippocampal formation.
Collapse
Affiliation(s)
- Teresa A Milner
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York 10021, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Torrealba F, Carrasco MA. A review on electron microscopy and neurotransmitter systems. ACTA ACUST UNITED AC 2005; 47:5-17. [PMID: 15572159 DOI: 10.1016/j.brainresrev.2004.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2004] [Indexed: 10/26/2022]
Abstract
The purpose of this article is to review the contributions of transmission electron microscopy studies to the understanding of brain circuits and neurotransmitter systems. Our views on the microstructure of connections between neurons have gradually changed, and now we recognize that the classical mental image we had on a chemical synapse is no longer applicable to every neuronal connection. We highlight studies that converge to point out that, while the most prevalent fast transmitters in the brain, glutamate and GABA, are stored in small, clear synaptic vesicles (SSV) and released at synapses, neuropeptides are exclusively stored in large dense core vesicles (LDCV) and released extrasynaptically. Amine transmitters are preferentially, but not exclusively, accumulated in LDCV and may be released at synaptic or extrasynaptic sites. We discuss evidence suggesting that axon terminals from pyramidal cortical neurons and dorsal thalamic neurons lack LDCV and therefore could not use neuropeptides as transmitters. This idea fits with the fast, high temporal resolution information processing that characterizes cortical and thalamic function.
Collapse
Affiliation(s)
- Fernando Torrealba
- Departamento de Ciencias Fisiológicas, Fac. Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| | | |
Collapse
|
30
|
Kosub KA, Do VH, Derrick BE. NMDA receptor antagonists block heterosynaptic long-term depression (LTD) but not long-term potentiation (LTP) in the CA3 region following lateral perforant path stimulation. Neurosci Lett 2005; 374:29-34. [PMID: 15631891 DOI: 10.1016/j.neulet.2004.10.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 10/05/2004] [Accepted: 10/06/2004] [Indexed: 11/19/2022]
Abstract
High-frequency stimulation of lateral perforant path is accompanied by a heterosynaptic long-term depression (LTD) of medial perforant path synaptic responses in both the dentate gyrus and the CA3 region of the hippocampus. We reported previously that LTP induction at lateral perforant path-CA3 synapses is unaffected by NMDA antagonists. However, it is not known if heterosynaptic LTD that is observed in the CA3 region following lateral perforant path stimulation also is independent from NMDA receptors. We address this question in anesthetized adult rats using systemic administration of the competitive NMDA receptor antagonist CPP. Induction of lateral perforant path-CA3 LTP produced a sustained heterosynaptic depression of medial perforant path-CA3 responses. Systemic administration of CPP (10 mg/kg) was ineffective in blocking the induction of LTP at lateral perforant path-CA3 responses. However, heterosynaptic LTD of medial perforant path-CA3 responses was blocked completely by CPP. These data indicate that NMDA receptors are not required for the induction of lateral perforant path-CA3 LTP, but are involved in the induction of heterosynaptic LTD that accompanies lateral perforant path activity. The requirement for NMDA receptors for heterosynaptic LTD suggests one functional role of NMDA receptors at termination fields of the lateral perforant path.
Collapse
Affiliation(s)
- Karla A Kosub
- Department of Biology, Cajal Neuroscience Research Institute, University of Texas at San Antonio, 6900 N. Loop 1604 West, San Antonio, TX 78249-0662, USA
| | | | | |
Collapse
|
31
|
Kazama K, Anrather J, Zhou P, Girouard H, Frys K, Milner TA, Iadecola C. Angiotensin II impairs neurovascular coupling in neocortex through NADPH oxidase-derived radicals. Circ Res 2004; 95:1019-26. [PMID: 15499027 DOI: 10.1161/01.res.0000148637.85595.c5] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiotensin II (Ang II) exerts detrimental effects on cerebral circulation, the mechanisms of which have not been elucidated. In particular, Ang II impairs the increase in cerebral blood flow (CBF) produced by neural activity, a critical mechanism that matches substrate delivery with energy demands in brain. We investigated whether Ang II exerts its deleterious actions by activating Ang II type 1 (AT1) receptors on cerebral blood vessels and producing reactive oxygen species (ROS) through NADPH oxidase. Somatosensory cortex CBF was monitored in anesthetized mice by laser-Doppler flowmetry. Ang II (0.25 microg/kg per minute IV) attenuated the CBF increase produced by mechanical stimulation of the vibrissae. The effect was blocked by the AT1 antagonist losartan and by ROS scavenger superoxide dismutase or tiron and was not observed in mice lacking the gp91phox subunit of NADPH oxidase or in wild-type mice treated with the NADPH oxidase peptide inhibitor gp91ds-tat. Ang II increased ROS production in cerebral microvessels, an effect blocked by the ROS scavenger Mn(III)tetrakis (4-benzoic acid) porphyrin and by the NADPH oxidase assembly inhibitor apocynin. Ang II did not increase ROS production in gp91-null mice. Double-label immunoelectron microscopy demonstrated that AT1 and gp91phox immunoreactivities were present in endothelium and adventitia of neocortical arterioles. Collectively, these findings suggest that Ang II impairs functional hyperemia by activating AT1 receptors and inducing ROS production via a gp91phox containing NADPH oxidase. The data provide the mechanistic basis for the cerebrovascular dysregulation induced by Ang II and suggest novel therapeutic strategies to counteract the effects of hypertension on the brain.
Collapse
MESH Headings
- 1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt/pharmacology
- Acetophenones/pharmacology
- Amino Acid Sequence
- Angiotensin II/toxicity
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Arterioles/drug effects
- Arterioles/metabolism
- Cerebrovascular Circulation/drug effects
- Cytochromes b/deficiency
- Cytochromes b/genetics
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Free Radical Scavengers/pharmacology
- Free Radicals
- Glycoproteins/pharmacology
- Hypercapnia/physiopathology
- Hyperemia/physiopathology
- Hypertension/chemically induced
- Laser-Doppler Flowmetry
- Losartan/pharmacology
- Male
- Membrane Glycoproteins/physiology
- Metalloporphyrins/pharmacology
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- NADPH Oxidase 2
- NADPH Oxidases/physiology
- Nitric Oxide Donors/pharmacology
- Polyethylene Glycols/pharmacology
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Receptor, Angiotensin, Type 1/drug effects
- Receptor, Angiotensin, Type 1/physiology
- S-Nitroso-N-Acetylpenicillamine/pharmacology
- Somatosensory Cortex/blood supply
- Somatosensory Cortex/drug effects
- Somatosensory Cortex/enzymology
- Superoxide Dismutase/pharmacology
- Vibrissae/physiology
Collapse
Affiliation(s)
- Ken Kazama
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Kaplan TJ, Skyers PR, Tabori NE, Drake CT, Milner TA. Ultrastructural evidence for mu-opioid modulation of cholinergic pathways in rat dentate gyrus. Brain Res 2004; 1019:28-38. [PMID: 15306235 DOI: 10.1016/j.brainres.2004.05.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2004] [Indexed: 11/30/2022]
Abstract
Within the rat hippocampal formation, cholinergic afferents and mu-opioid receptors (MORs) are involved in many crucial learning processes, including those associated with drug reward. Pharmacological data, and the overlapping distributions of cholinergic and mu-opioid systems, particularly in the dentate gyrus, suggest that MOR activation is a potential mechanism for endogenous opioid modulation of cholinergic activity. To date, anatomical evidence supporting this has not been reported. To delineate the relationship between cholinergic afferents and MOR-containing processes in the dentate gyrus, hippocampal sections were dually immunolabeled for vesicular acetylcholine transporter (VAChT) and MOR-1 and examined by electron microscopy. VAChT immunoreactivity was in unmyelinated axons and axon terminals, and was most often associated with small synaptic vesicles. MOR immunoreactivity was found in axons, axon terminals and, to a lesser extent, perikarya, which resembled GABAergic basket cells. Semi-quantitative ultrastructural analysis revealed that from 5% to 13% (depending on laminar location) of VAChT-immunoreactive (ir) presynaptic profiles contained MOR immunoreactivity. Additionally, 7% of VAChT-ir presynaptic profiles directly apposed MOR-ir axons and terminals, and there were almost no appositions to MOR-ir dendrites. These data suggest that opioids may directly and indirectly modulate acetylcholine release and/or reuptake. In the hilus and molecular layer, 4% of VAChT-ir terminals contacted dendritic shafts that were also contacted by MOR-ir terminals. This suggests that cholinergic afferents and MOR-containing afferents can converge on granule cell dendrites (which are restricted to the molecular layer) and on interneuron dendrites in the hilus. The results of this study provide ultrastructural evidence for direct and indirect modulation of cholinergic systems by mu-opioids in the hippocampal formation.
Collapse
Affiliation(s)
- Theodore J Kaplan
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 411 East 69th Street, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
33
|
A conditional deletion of the NR1 subunit of the NMDA receptor in adult spinal cord dorsal horn reduces NMDA currents and injury-induced pain. J Neurosci 2003. [PMID: 12832526 DOI: 10.1523/jneurosci.23-12-05031.2003] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To determine the importance of the NMDA receptor (NMDAR) in pain hypersensitivity after injury, the NMDAR1 (NR1) subunit was selectively deleted in the lumbar spinal cord of adult mice by the localized injection of an adenoassociated virus expressing Cre recombinase into floxed NR1 mice. NR1 subunit mRNA and dendritic protein are reduced by 80% in the area of the virus injection, and NMDA currents, but not AMPA currents, are reduced 86-88% in lamina II neurons. The spatial NR1 knock-out does not alter heat or cold paw-withdrawal latencies, mechanical threshold, or motor function. However, injury-induced pain produced by intraplantar formalin is reduced by 70%. Our results demonstrate conclusively that the postsynaptic NR1 receptor subunit in the lumbar dorsal horn of the spinal cord is required for central sensitization, the central facilitation of pain transmission produced by peripheral injury.
Collapse
|
34
|
Dalby NO, Mody I. Activation of NMDA receptors in rat dentate gyrus granule cells by spontaneous and evoked transmitter release. J Neurophysiol 2003; 90:786-97. [PMID: 12904493 DOI: 10.1152/jn.00118.2003] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of N-methyl-D-aspartate (NMDA) receptors by synaptically released glutamate in the nervous system is usually studied using evoked events mediated by a complex mixture of AMPA, kainate, and NMDA receptors. Here we have characterized pharmacologically isolated spontaneous NMDA receptor-mediated synaptic events and compared them to stimulus evoked excitatory postsynaptic currents (EPSCs) in the same cell to distinguish between various modes of activation of NMDA receptors. Spontaneous NMDA receptor-mediated EPSCs recorded at 34 degrees C in dentate gyrus granule cells (DGGC) have a frequency of 2.5 +/- 0.3 Hz and an average peak amplitude of 13.2 +/- 0.8 pA, a 10-90% rise time of 5.4 +/- 0.3 ms, and a decay time constant of 42.1 +/- 2.1 ms. The single-channel conductance estimated by nonstationary fluctuation analysis was 60 +/- 5 pS. The amplitudes (46.5 +/- 6.4 pA) and 10-90% rise times (18 +/- 2.3 ms) of EPSCs evoked from the entorhinal cortex/subiculum border are significantly larger than the same parameters for spontaneous events (paired t-test, P < 0.05, n = 17). Perfusion of 50 microM D(-)-2-amino-5-phosphonopentanoic acid blocked all spontaneous activity and caused a significant baseline current shift of 18.8 +/- 3.0 pA, thus identifying a tonic conductance mediated by NMDA receptors. The NR2B antagonist ifenprodil (10 microM) significantly reduced the frequency of spontaneous events but had no effect on their kinetics or on the baseline current or variance. At the same time, the peak current and charge of stimulus-evoked events were significantly diminished by ifenprodil. Thus spontaneous NMDA receptor-mediated events in DGGC are predominantly mediated by NR2A or possibly NR2A/NR2B receptors while the activation of NR2B receptors reduces the excitability of entorhinal afferents either directly or through an effect on the entorhinal cells.
Collapse
Affiliation(s)
- Nils Ole Dalby
- Department of Neurology, The David Geffen School of Medicine at UCLA, 90095-1769, USA
| | | |
Collapse
|
35
|
Abstract
This paper is the twenty-fourth installment of the annual review of research concerning the opiate system. It summarizes papers published during 2001 that studied the behavioral effects of the opiate peptides and antagonists. The particular topics covered this year include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology(Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
36
|
Iwakiri M, Mizukami K, Ishikawa M, Hidaka S, Asada T. Alterations of NMDAR1 and NMDAR2a/B immunoreactivity in the hippocampus after perforant pathway lesion. Neuropathology 2002; 22:154-60. [PMID: 12416554 DOI: 10.1046/j.1440-1789.2002.00434.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immunohistochemical techniques were employed to examine the changes in immunolabeling of the N-methyl-D-aspartate (NMDA) receptor subunits NMDAR1 and NMDAR2A/B within the hippocampus 1, 3, 7, 14 and 30 days after a unilateral perforant pathway lesion was made in a rat brain. At 1 day post-lesion, we observed a decrease in NMDAR1 immunolabeling in the granule cells in the dentate gyrus as well as in the mossy cells in the polymorphic region ipsilateral to the lesion, while an increase in diffuse neuropil labeling was observed. At 3 days post-lesion, we observed a marked increase in NMDAR1 immunolabeling in the outer molecular-layer of the dentate gyrus as well as in the stratum moleculare in the CA fields ipsilateral to the lesion. Although this increase was less marked at 7 and 14 days post-lesion, an increase in NMDAR1 immunolabeling was evident at 30 days post-lesion. In contrast, although a transient increase in NMDAR2A/B immunolabeling was observed in the outer molecular layer at 3 days post-lesion, no other changes were detectable at any of the time points examined. Our study suggests that each subunit of the NMDA receptor displays a different response to deafferentation of the perforant pathway. We have previously observed that changes in the immunoreactivity of the receptor subunits of another class of glutamate receptor, a-amino-3-hydroxy-5-methyl-4-isoaxolepropionate (AMPA), occur at 30 days post-lesion but not after a relatively short survival time. NMDA receptor subunits demonstrate an earlier response to the loss of the perforant pathway fibers than do the AMPA receptor subunits.
Collapse
Affiliation(s)
- Masahiko Iwakiri
- Department of Psychiatry, Institute of Clinical Medicine, University of Tsukuba, Japan
| | | | | | | | | |
Collapse
|
37
|
Do VH, Martinez CO, Martinez JL, Derrick BE. Long-term potentiation in direct perforant path projections to the hippocampal CA3 region in vivo. J Neurophysiol 2002; 87:669-78. [PMID: 11826036 DOI: 10.1152/jn.00938.2000] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The perforant path constitutes the primary projection system relaying information from the neocortex to the hippocampal formation. Long-term synaptic potentiation (LTP) in the perforant path projections to the dentate gyrus is well characterized. However, surprisingly few studies have addressed the mechanisms underlying LTP induction in the direct perforant path projections to the hippocampus. Here we investigate the role of N-methyl-D-aspartate (NMDA) and opioid receptors in the induction of LTP in monosynaptic medial and lateral perforant path projections to the CA3 region in adult pentobarbital sodium-anesthetized rats. Similar to LTP observed at the medial perforant path-dentate gyrus synapse, medial perforant path-CA3 synapses display LTP that is blocked by both local and systemic administration of the competitive NMDA receptor antagonist (+/-)-3-(2-carboxypiperazin-4-yl) propyl-1-phosphonic acid [(+/-)-CPP]. By contrast, LTP induced at the lateral perforant path-CA3 synapses is not blocked by either local or systemic administration of this NMDA receptor antagonist. The induction of LTP at lateral perforant path-CA3 synapses, which is blocked by the opioid receptor antagonist naloxone, is also blocked by the selective mu opioid receptor antagonist Cys(2)-Tyr(3)-Orn(5)-Pen(7)-amide (CTOP), but not the selective delta opioid receptor antagonist naltrindole (NTI). CTOP was without effect on the induction of medial perforant path-CA3 LTP. The selective sensitivity of lateral perforant path-CA3 LTP to mu-opioid receptor antagonists corresponds with the distribution of mu-opioid receptors within the stratum lacunosum-moleculare of area CA3 where perforant path projections to CA3 terminate. These data indicate that both lateral and medial perforant path projections to the CA3 region display LTP, and that LTP induction in medial and lateral perforant path-CA3 synapses are differentially sensitive to NMDA receptor and mu-opioid receptor antagonists. This suggests a role for opioid, but not NMDA receptors in the induction of LTP at lateral perforant path projections to the hippocampal formation.
Collapse
MESH Headings
- Animals
- Dentate Gyrus/cytology
- Dentate Gyrus/physiology
- Excitatory Amino Acid Antagonists/pharmacology
- Excitatory Postsynaptic Potentials/drug effects
- Excitatory Postsynaptic Potentials/physiology
- Long-Term Potentiation/physiology
- Male
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Narcotic Antagonists/pharmacology
- Perforant Pathway/cytology
- Perforant Pathway/physiology
- Piperazines/pharmacology
- Rats
- Rats, Sprague-Dawley
- Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
- Receptors, N-Methyl-D-Aspartate/physiology
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/physiology
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/physiology
- Somatostatin/analogs & derivatives
- Somatostatin/pharmacology
Collapse
Affiliation(s)
- Viet H Do
- Division of Life Sciences, Cajal Neuroscience Research Center, The University of Texas, 1600 N. Loop 1640 West, San Antonio, TX 78249-0662, USA
| | | | | | | |
Collapse
|
38
|
Henderson JT, Georgiou J, Jia Z, Robertson J, Elowe S, Roder JC, Pawson T. The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron 2001; 32:1041-56. [PMID: 11754836 DOI: 10.1016/s0896-6273(01)00553-0] [Citation(s) in RCA: 261] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Members of the Eph family of receptor tyrosine kinases control many aspects of cellular interactions during development, including axon guidance. Here, we demonstrate that EphB2 also regulates postnatal synaptic function in the mammalian CNS. Mice lacking the EphB2 intracellular kinase domain showed wild-type levels of LTP, whereas mice lacking the entire EphB2 receptor had reduced LTP at hippocampal CA1 and dentate gyrus synapses. Synaptic NMDA-mediated current was reduced in dentate granule neurons in EphB2 null mice, as was synaptically localized NR1 as revealed by immunogold localization. Finally, we show that EphB2 is upregulated in hippocampal pyramidal neurons in vitro and in vivo by stimuli known to induce changes in synaptic structure. Together, these data demonstrate that EphB2 plays an important role in regulating synaptic function.
Collapse
Affiliation(s)
- J T Henderson
- Program in Molecular Biology and Cancer, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, M5G 1X5, Toronto, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|