1
|
Issy A, Del Bel E. 7-Nitroindazole blocks the prepulse inhibition disruption and c-Fos increase induced by methylphenidate. Behav Brain Res 2014; 262:74-83. [DOI: 10.1016/j.bbr.2013.12.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/17/2013] [Accepted: 12/21/2013] [Indexed: 01/03/2023]
|
2
|
Sepúlveda J, Ortega A, Roa J, Contreras E. Further studies on the effects of acamprosate on tolerance to the analgesic effects of morphine and NO synthesis in the brain. Health (London) 2013. [DOI: 10.4236/health.2013.511a1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
3
|
Manzanedo C, Aguilar MA, Do Couto BR, Rodríguez-Arias M, Miñarro J. Involvement of nitric oxide synthesis in sensitization to the rewarding effects of morphine. Neurosci Lett 2009; 464:67-70. [DOI: 10.1016/j.neulet.2009.08.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/03/2009] [Accepted: 08/04/2009] [Indexed: 12/31/2022]
|
4
|
Kazi JA, Gee CF. Gabapentin completely attenuated the acute morphine induced c-Fos expression in the rat striatum. J Mol Neurosci 2007; 32:47-52. [PMID: 17873287 DOI: 10.1007/s12031-007-0007-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 11/30/1999] [Accepted: 01/26/2007] [Indexed: 11/30/2022]
Abstract
The neuro-anatomical sites and molecular mechanism of action of gabapentin (GBP)-morphine interaction to prevent and reverse morphine side effects as well as enhancement of the analgesic effect of morphine is not known. Therefore, we examined the combined effects of GBP-Morphine on acute morphine induced c-Fos expression in rat striatum. The combined effect of GBP-Morphine was examined by means of c-Fos immunohistochemistry. A single intraperitoneal injection (i.p.) of morphine (10 mg/kg), saline (control), co-injection of GBP (150 mg/kg) with morphine (10 mg/kg) was administered under anaesthesia. Ninety minutes after drugs administration the deeply anesthetized rats were perfused transcardially with 4% paraformaldehyde. Serial 40 mum thick sections of brain were cut and processed by immunohistochemistry to locate and quantify the sites and number of neurons with c-Fos immunoreactivity. Detection of c-Fos protein was performed using the peroxidase-antiperoxidase (PAP) detection protocol. Our present study demonstrated that, administration of GBP (150 mg/kg, i.p.) in combination with morphine (10 mg/kg, i.p.) significantly (p < 0.01) attenuated the acute morphine (10 mg/kg, i.p.) induced c-Fos expression in the rat striatum. Present results showed that GBP-morphine combination action prevented the acute morphine induced c-Fos expression in rat striatum. Moreover, this study provides first evidence of neuro-anatomical site and that GBP neutralized the morphine induced activation of rat striatum.
Collapse
Affiliation(s)
- Jamil Ahsan Kazi
- Department of Anaesthesia, Yong Loo Lin School of Medicine, National University of Singapore, 5 Lower Kent Ridge Road, Singapore 119074, Singapore.
| | | |
Collapse
|
5
|
Liu X, Sullivan KA, Madl JE, Legare M, Tjalkens RB. Manganese-Induced Neurotoxicity: The Role of Astroglial-Derived Nitric Oxide in Striatal Interneuron Degeneration. Toxicol Sci 2006; 91:521-31. [PMID: 16551646 DOI: 10.1093/toxsci/kfj150] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chronic exposure to excessive manganese (Mn) is the cause of a neurodegenerative movement disorder, termed manganism, resulting from degeneration of neurons within the basal ganglia. Pathogenic mechanisms underlying this disorder are not fully understood but involve inflammatory activation of glial cells within the basal ganglia. It was postulated in the present studies that reactive astrocytes are involved in neuronal injury from exposure to Mn through increased release of nitric oxide. C57Bl/6 mice subchronically exposed to Mn by intragastric gavage had increased levels of Mn in the striatum and displayed diminutions in both locomotor activity and striatal DA content. Mn exposure resulted in neuronal injury in the striatum and globus pallidus, particularly in regions proximal to the microvasculature, indicated by histochemical staining with fluorojade and cresyl fast violet. Neuropathological assessment revealed marked perivascular edema, with hypertrophic endothelial cells and diffusion of serum albumin into the perivascular space. Immunofluorescence studies employing terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (DUTP)-biotin nick-end labeling revealed the presence of apoptotic neurons expressing neuronal nitric oxide synthase (NOS), choline acetyltransferase, and enkephalin in both the striatum and globus pallidus. In contrast, soma and terminals of dopaminergic neurons were morphologically unaltered in either the substantia nigra or striatum, as indicated by immunohistochemical staining for tyrosine hydroxylase. Regions with evident neuronal injury also displayed increased numbers of reactive astrocytes that coexpressed inducible NOS2 and localized with areas of increased neuronal staining for 3-nitrotyrosine protein adducts, a marker of NO formation. These data suggest a role for astrocyte-derived NO in injury to striatal-pallidal interneurons from Mn intoxication.
Collapse
Affiliation(s)
- Xuhong Liu
- Toxicology Program, Department of Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | |
Collapse
|
6
|
Webber DS, Lopez I, Korsak RA, Hirota S, Acuna D, Edmond J. Limiting iron availability confers neuroprotection from chronic mild carbon monoxide exposure in the developing auditory system of the rat. J Neurosci Res 2005; 80:620-33. [PMID: 15880490 DOI: 10.1002/jnr.20495] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Iron deficiency and chronic mild carbon monoxide (CO) exposure are nutritional and environmental problems that can be experienced simultaneously. We examined the effects of chronic mild CO exposure and iron availability on auditory development in the rat. We propose that chronic mild CO exposure creates an oxidative stress condition that impairs the spiral ganglion neurons. The CO-exposed rat pups had decreased neurofilament proteins and increased copper, zinc-superoxide dismutase (SOD1) in the spiral ganglion neurons. We conclude that the increased amount of SOD1 causes an increase in hydrogen peroxide production that allows the Fenton reaction to occur. This reaction uses both iron and hydrogen peroxide to generate hydroxyl radicals and leads to the development of oxidative stress that impairs neuronal integrity. However, rat pups with decreased iron and CO exposure (ARIDCO) exhibited in their cochlea an up-regulation of transferrin, whereas their expression of neurofilament proteins and SOD1 were similar to control. Consequently, reduced iron availability and the normal expression of SOD1 do not promote oxidative stress in the cochlea. By using basal c-Fos expression as a marker for cellular activation we found a significant reduction in c-Fos expression in the central nucleus of the inferior colliculus in iron-adequate rat pups exposed to CO. By contrast, rather than being reduced, c-Fos expression in the ARIDCO group is the same as for controls. We conclude that the cochlea of rat pups with normal iron availability is selectively affected by mild CO exposure, causing a chronic oxidative stress, whereas limiting iron availability ameliorates the effect caused by mild CO exposure by averting conditions that facilitate oxidative stress.
Collapse
Affiliation(s)
- Douglas S Webber
- Mental Retardation Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
7
|
Manzanedo C, Aguilar MA, Rodríguez-Arias M, Navarro M, Miñarro J. 7-Nitroindazole blocks conditioned place preference but not hyperactivity induced by morphine. Behav Brain Res 2004; 150:73-82. [PMID: 15033281 DOI: 10.1016/s0166-4328(03)00225-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Revised: 06/30/2003] [Accepted: 06/30/2003] [Indexed: 10/27/2022]
Abstract
The effects of 7-nitroindazole (7-NI), a neural nitric oxide synthase (nNOS) inhibitor, on spontaneous locomotor activity, morphine-induced hyperactivity, acquisition of place conditioning and morphine-induced conditioned place preference (CPP) were evaluated in male mice. In experiment 1, animals treated with 7-NI (25, 50 and 100mg/kg), morphine (40 mg/kg) or morphine (40 mg/kg) plus 7-NI (25, 50 or 100mg/kg) were placed in an actimeter for 3h. In experiment 2, animals treated with the same drugs and doses were conditioned following an unbiased procedure. 7-NI did not affect the spontaneous locomotor activity or hyperactivity induced by morphine. However, the moderate and high doses of 7-NI produced conditioned place aversion (CPA) and the lowest dose blocked morphine-induced CPP. Our results suggest that nitric oxide is involved in the rewarding properties of morphine but not in its motor effects.
Collapse
Affiliation(s)
- Carmen Manzanedo
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid, 28223 Madrid, Spain
| | | | | | | | | |
Collapse
|
8
|
Harlan RE, Kailas SR, Tagoe CEF, Garcia MM. Morphine actions in the rat forebrain: role of protein kinase C. Brain Res Bull 2004; 62:285-95. [PMID: 14709343 DOI: 10.1016/j.brainresbull.2003.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Acute administration of morphine induces expression of the immediate-early gene (IEG) c-Fos in dorsomedial striatum, portions of cerebral cortex, and in several midline-intralaminar thalamic nuclei, partly via a trans-synaptic mechanism that involves activation of glutamate receptors. Because activation of protein kinase C (PKC) may occur following the activation of glutamate receptors, we determined whether pharmacological inhibition of PKC would attenuate morphine-induced c-Fos expression, and whether acute administration of morphine would induce translocation of PKC. The selective PKC antagonist NPC 15437 given 30 min prior to morphine significantly decreased morphine-induced c-Fos expression in striatum and cingulate cortex, but not in centrolateral thalamus. In another experiment, rats were given an acute dose of morphine, and immunocytochemical analysis was performed for the betaI and betaII isoforms of PKC. Morphine induced a rapid and transient translocation of PKC betaII, but not betaI, from perinuclear spots to plasma membrane in numerous cortical and striatal neurons. Prior administration of naloxone blocked this response. Ultrastructural studies confirmed translocation from Golgi apparatus to plasma membrane 15 min after morphine injection. Double immunocytochemistry at the light microscopic level demonstrated co-localization of translocated PKC betaII and c-Fos in some cortical neurons 90 min after morphine injection. These results support a role for PKC, especially PKC betaII, in the rapid effects of morphine on the brain.
Collapse
Affiliation(s)
- Richard E Harlan
- Department of Structural and Cellular Biology, Tulane University School of Medicine, 1430 Tulane Avenue, SL-49, New Orleans, LA 70112, USA.
| | | | | | | |
Collapse
|
9
|
Webber DS, Korsak RA, Sininger LK, Sampogna SL, Edmond J. Mild carbon monoxide exposure impairs the developing auditory system of the rat. J Neurosci Res 2003; 74:655-65. [PMID: 14635217 DOI: 10.1002/jnr.10809] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The object of this study was to determine if chronic exposure to mild concentrations of CO in air caused changes in the integrity of the inferior colliculus during the most active period of synaptogenesis/auditory development. We examined all subregions of the inferior colliculus (IC) of rats by immunocytochemical approaches after pups were exposed chronically to CO concentrations of, 0, 12.5, 25, and 50 ppm in air starting at Day 8 through 20-22 days of age. Mother-reared pups were compared to the gastrostomy-reared pups with or without CO exposure for basal neural activity, using c-Fos immunoreactivity as a marker. Half the rats were examined at 27 days of age, 5 days after the end of CO exposure, and the other half were examined 50 days later at 75-77 days of age. In the central nucleus of the IC, the number of cells expressing a basal level of c-Fos was decreased significantly in the CO-exposed animals when compared to controls; however, there was little or no difference in the number of cells expressing c-Fos in the other subregions of the IC. We conclude that the central nucleus of the inferior colliculus is affected selectively by mild CO exposure (0.0012% in air) and that this reduction in neuronal activity persists into adulthood.
Collapse
Affiliation(s)
- Douglas S Webber
- Mental Retardation Research Center, The David Geffen School of Medicine, UCLA, Los Angeles, California 90095, USA.
| | | | | | | | | |
Collapse
|
10
|
Bujdosó E, Jászberényi M, Gardi J, Földesi I, Telegdy G. The involvement of dopamine and nitric oxide in the endocrine and behavioural action of endomorphin-1. Neuroscience 2003; 120:261-8. [PMID: 12849758 DOI: 10.1016/s0306-4522(03)00241-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous publications have demonstrated a prominent central and corticotropin releasing hormone-mediated action of the endomorphins (EMs) on both open-field behaviour and the hypothalamo-pituitary-adrenal (HPA) axis. In the present experiments, the direct action of endomorphin-1 (EM1) on pituitary adrenocorticotropic hormone (ACTH) release, adrenal corticosterone secretion and the roles of nitric oxide (NO) and dopamine (DA) in the HPA and behavioural responses elicited by EM1 were investigated in mice. In vitro perifusion studies indicated that the action of EM1 on the HPA system appears to be confined to the hypothalamus, as EM1 did not influence the corticosterone secretion from adrenal slices and moderately attenuated the ACTH release from anterior pituitary slices. In in vivo experiments, NG-nitro-L-arginine (L-NNArg) pretreatment brought about a profound inhibition of both the endocrine and the behavioural responses. On the other hand, haloperidol completely abolished the increases in square crossing and rearing, without affecting corticosterone release. The direct action of EM1 on striatal DA release was therefore also investigated in an in vitro superfusion system. Although EM1 did not influence the basal release of tritiated DA, it significantly enhanced the transmitter release evoked by electric impulses and pretreatment with L-NNArg resulted in a considerable inhibition of the release elicited by EM1. In conclusion, our endocrine studies suggest an important role of NO in the mediation of the EM1-evoked corticosterone secretion. They also indicate that EM1 activates the HPA axis at a hypothalamic level and dopamine is not involved in this process. In contrast, the behavioural experiments reflect that the locomotor activation induced by EM1 is mediated by NO and dopamine, and the superfusion studies demonstrate that NO transmits the dopamine release enhancing effect of EM1.
Collapse
Affiliation(s)
- E Bujdosó
- University of Szeged, Department of Pathophysiology, Albert Szent-Gyorgyi Medical and Pharmaceutical Centre, Neurohumoral Research Group of Hungarian Academy of Sciences, PO Box 427, 6701 Szeged, Hungary
| | | | | | | | | |
Collapse
|
11
|
Garcia MM, Anderson AT, Edwards R, Harlan RE. Morphine induction of c-fos expression in the rat forebrain through glutamatergic mechanisms: role of non-n-methyl-D-aspartate receptors. Neuroscience 2003; 119:787-94. [PMID: 12809699 DOI: 10.1016/s0306-4522(02)00975-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Acute injection of morphine induces expression of the immediate-early genes c-Fos and JunB in several forebrain regions of the rat, in part through an N-methyl-D-aspartate (NMDA) receptor-dependent mechanism. Because membrane depolarization through (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors is believed to be necessary for full activation of NMDA receptors, we determined the role of AMPA receptors in morphine-induced c-Fos expression. Rats were given the AMPA receptor antagonist GYKI-52466 (12.9 mg/kg, i.p.) 15 min before morphine (10 mg/kg, s.c.), or the AMPA receptor enhancer CX516 (30 mg/kg, i.p.) 5 min after morphine. The c-Fos response was attenuated by the antagonist and augmented by the enhancer. Using double immunocytochemistry, we found that morphine induced c-Fos in neurons containing the GluR2/3, but not the GluR1 and rarely the GluR4, subunits of the AMPA receptor. Double immunocytochemistry for mu opioid receptor and c-Fos showed that c-Fos expression was mainly absent in the patch compartment of the striatum, which is enriched in mu opioid receptors. The glutamatergic synapse often contains metabotropic receptors as well as ionotropic receptors. Type I metabotropic glutamate receptors are coupled to activation of protein kinase C, which has also been shown to mediate the immediate-early gene response to morphine. To determine if activation of metabotropic glutamate receptors is involved in rapid effects of morphine on the brain, rats were given the type I metabotropic glutamate receptor antagonist (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA; 0.2 mg/kg, i.p.) or vehicle 30 min before morphine treatment. Pretreatment with AIDA completely blocked morphine-induced c-Fos expression in the caudate-putamen.Taken together, these results demonstrate involvement of both AMPA and type I metabotropic glutamate receptors in the acute effects of morphine on the forebrain, supporting an important role for glutamatergic neurotransmission mediated by non-NMDA glutamate receptors in morphine's actions.
Collapse
Affiliation(s)
- M M Garcia
- Department of Otolaryngology, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA, USA
| | | | | | | |
Collapse
|
12
|
Abstract
This review covers beta-phenylethylamines and isoquinoline alkaloids and compounds derived from them, including further products of oxidation, condensation with formaldehyde and rearrangement, some of which do not contain an isoquinoline system, together with naphthylisoquinoline alkaloids, which have a different biogenetic origin. The occurrence of the alkaloids, with the structures of new bases, together with their reactions, syntheses and biological activities are reported. The literature from July 2001 to June 2002 is reviewed, with 581 references cited.
Collapse
|
13
|
Liu PK. Ischemia-reperfusion-related repair deficit after oxidative stress: implications of faulty transcripts in neuronal sensitivity after brain injury. J Biomed Sci 2003; 10:4-13. [PMID: 12566981 PMCID: PMC2695961 DOI: 10.1007/bf02255992] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2002] [Accepted: 06/26/2002] [Indexed: 01/09/2023] Open
Abstract
Diseases of the heart are the No. 1 killer in industrialized countries. Brain injury can develop as a result of cerebral ischemia-reperfusion due to stroke (brain attack) and other cardiovascular diseases. Learning about the disease is the best way to reduce disability and death. We present here whether gene repair activities are associated with neuronal death in an ischemia-reperfusion model that simulates stroke in male Long-Evans rats. This experimental stroke model is known to induce necrosis in the ischemic cortex. Cerebral ischemia causes overactivation of membrane receptors and accumulation of extracellur glutamate and intracellular calcium, which activates neuronal nitric oxide synthase, causing damage to lipids, proteins, and nucleic acids, and reduces energy sources with consequent functional deterioration, leading to cell death. Restoration processes normally repair genes with few errors. However, ischemia elevates oxidative DNA lesions despite these repair mechanisms. These episodes concurrently occur with the induction of immediate-early genes that critically activate other late genes in the signal transduction pathway. Damage, repair, and transcription of the c-FOS gene are presented here as examples, because Fos peptide, one of the components of activator protein 1, activates nerve growth factor and repair mechanisms. The results of our studies show that treatments with 7-nitroindazole, a specific inhibitor of nitric oxide synthase known to attenuate nitric oxide, oxidative DNA lesions, and necrosis, increase intact c-fos mRNA levels after stroke. This suggests that the accuracy of gene expression could be accounted for the recovery of cellular function after cerebral injury.
Collapse
Affiliation(s)
- Philip K Liu
- Departments of Neurosurgery and Molecular and Cell Biology and Cardiovascular Disease Program of the Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
14
|
Abstract
This paper is the twenty-fourth installment of the annual review of research concerning the opiate system. It summarizes papers published during 2001 that studied the behavioral effects of the opiate peptides and antagonists. The particular topics covered this year include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology(Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration and thermoregulation (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| | | |
Collapse
|
15
|
Li SM, Yin LL, Shi J, Lin ZB, Zheng JW. The effect of 7-nitroindazole on the acquisition and expression of D-methamphetamine-induced place preference in rats. Eur J Pharmacol 2002; 435:217-23. [PMID: 11821029 DOI: 10.1016/s0014-2999(01)01610-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study investigated the role of nitric oxide (NO) in the rewarding effects of D-methamphetamine using 7-nitroindazole, a potent inhibitor of neuronal nitric oxide synthase (nNOS), as determined by the conditioned place preference paradigm. Male Sprague-Dawley rats treated with D-methamphetamine (1 mg/kg) or saline every other day for 8 days (four drug and four saline sessions) developed marked place preference for the drug-paired side. The administration of 7-nitroindazole (12.5-50 mg/kg) 30 min prior to the exposure to D-methamphetamine dose-dependently attenuated the acquisition of D-methamphetamine-induced conditioned place preference. In addition, when it was acutely administered 30 min prior to the testing session of an already established D-methamphetamine-induced conditioned place preference, 7-nitroindazole (12.5-50 mg/kg) attenuated the expression of this conditioned response in a dose-dependent manner, while 7-nitroindazole (25 and 50 mg/kg) alone showed no place preference effects. These findings indicate that nitric oxide (NO) is involved in the rewarding properties of methamphetamine and suggest that selective nNOS inhibitors maybe useful in the management of methamphetamine abuse.
Collapse
Affiliation(s)
- Su-Min Li
- Department of Neuropharmacology, National Institute on Drug Dependence, Peking University, 38 Xueyuan Road, 100083, Beijing, PR China
| | | | | | | | | |
Collapse
|
16
|
Abstract
The role of pH on the calcium dependence of nitric oxide synthase (NOS) of Cyprinus carpio brain was investigated. This fish is known to survive prolonged periods of hypoxia. Under this condition, cerebral blood flow is no longer regulated by nitric oxide (NO). Nitric oxide synthase activity is pH dependent in the range of pH between 7.4 and 6.2 with a decrease when tissue acidifies. At acidic pH, the dependence of the NOS activity on the free Ca(2+) concentrations changes considerably and shows an EC(50) of 0.13 microM at pH 7.1 and of 5.1 microM at pH 6.2 for the soluble enzyme. The variation in the Ca(2+) dependence with acidification is greater for the soluble than for the particulate enzyme. This may be the main factor protecting sudden NO formation mainly during anoxic-normoxic transitions.
Collapse
Affiliation(s)
- A Conte
- Department of Agricultural Science, University of Modena e Reggio Emilia, Reggio Emilia, Italy.
| |
Collapse
|