1
|
Gao Q, Lu S, Wang Y, He L, Wang M, Jia R, Chen S, Zhu D, Liu M, Zhao X, Yang Q, Wu Y, Zhang S, Huang J, Mao S, Ou X, Sun D, Tian B, Cheng A. Bacterial DNA methyltransferase: A key to the epigenetic world with lessons learned from proteobacteria. Front Microbiol 2023; 14:1129437. [PMID: 37032876 PMCID: PMC10073500 DOI: 10.3389/fmicb.2023.1129437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023] Open
Abstract
Epigenetics modulates expression levels of various important genes in both prokaryotes and eukaryotes. These epigenetic traits are heritable without any change in genetic DNA sequences. DNA methylation is a universal mechanism of epigenetic regulation in all kingdoms of life. In bacteria, DNA methylation is the main form of epigenetic regulation and plays important roles in affecting clinically relevant phenotypes, such as virulence, host colonization, sporulation, biofilm formation et al. In this review, we survey bacterial epigenomic studies and focus on the recent developments in the structure, function, and mechanism of several highly conserved bacterial DNA methylases. These methyltransferases are relatively common in bacteria and participate in the regulation of gene expression and chromosomal DNA replication and repair control. Recent advances in sequencing techniques capable of detecting methylation signals have enabled the characterization of genome-wide epigenetic regulation. With their involvement in critical cellular processes, these highly conserved DNA methyltransferases may emerge as promising targets for developing novel epigenetic inhibitors for biomedical applications.
Collapse
Affiliation(s)
- Qun Gao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
| | - Shuwei Lu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yuwei Wang
- Key Laboratory of Livestock and Poultry Provenance Disease Research in Mianyang, Sichuan, China
| | - Longgui He
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingshu Wang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Renyong Jia
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shun Chen
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dekang Zhu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mafeng Liu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xinxin Zhao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiao Yang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Ying Wu
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juan Huang
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Sai Mao
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xumin Ou
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Di Sun
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bin Tian
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Anchun Cheng
- Research Center of Avian Diseases, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, Sichuan, China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Muhammad JS, Khan NA, Maciver SK, Alharbi AM, Alfahemi H, Siddiqui R. Epigenetic-Mediated Antimicrobial Resistance: Host versus Pathogen Epigenetic Alterations. Antibiotics (Basel) 2022; 11:809. [PMID: 35740215 PMCID: PMC9220109 DOI: 10.3390/antibiotics11060809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/07/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Since the discovery of antibiotics, humans have been benefiting from them by decreasing the morbidity and mortality associated with bacterial infections. However, in the past few decades, misuse of antibiotics has led to the emergence of bacterial infections resistant to multiple drugs, a significant health concern. Bacteria exposed to inappropriate levels of antibiotics lead to several genetic changes, enabling them to survive in the host and become more resistant. Despite the understanding and targeting of genetic-based biochemical changes in the bacteria, the increasing levels of antibiotic resistance are not under control. Many reports hint at the role of epigenetic modifications in the bacterial genome and host epigenetic reprogramming due to interaction with resistant pathogens. Epigenetic changes, such as the DNA-methylation-based regulation of bacterial mutation rates or bacteria-induced histone modification in human epithelial cells, facilitate its long-term survival. In this review article, epigenetic changes leading to the development of antibiotic resistance in clinically relevant bacteria are discussed. Additionally, recent lines of evidence focusing on human host epigenetic changes due to the human-pathogen interactions are presented. As genetic mechanisms cannot explain the transient nature of antimicrobial resistance, we believe that epigenetics may provide new frontiers in antimicrobial discovery.
Collapse
Affiliation(s)
- Jibran Sualeh Muhammad
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Naveed Ahmed Khan
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates;
| | - Sutherland K. Maciver
- Centre for Discovery Brain Sciences, Edinburgh Medical School-Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, Scotland, UK;
| | - Ahmad M. Alharbi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia;
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, P.O. Box 1988, Al-Baha 65799, Saudi Arabia;
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah 26666, United Arab Emirates
| |
Collapse
|
3
|
Wilkinson DJ, Dickins B, Robinson K, Winter JA. Genomic diversity of Helicobacter pylori populations from different regions of the human stomach. Gut Microbes 2022; 14:2152306. [PMID: 36469575 PMCID: PMC9728471 DOI: 10.1080/19490976.2022.2152306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Individuals infected with Helicobacter pylori harbor unique and diverse populations of quasispecies, but diversity between and within different regions of the human stomach and the process of bacterial adaptation to each location are not yet well understood. We applied whole-genome deep sequencing to characterize the within- and between-stomach region genetic diversity of H. pylori populations from paired antrum and corpus biopsies of 15 patients, along with single biopsies from one region of an additional 3 patients, by scanning allelic diversity. We combined population deep sequencing with more conventional sequencing of multiple H. pylori single colony isolates from individual biopsies to generate a unique dataset. Single colony isolates were used to validate the scanning allelic diversity pipelines. We detected extensive population allelic diversity within the different regions of each patient's stomach. Diversity was most commonly found within non-coding, hypothetical, outer membrane, restriction modification system, virulence, lipopolysaccharide biosynthesis, efflux systems, and chemotaxis-associated genes. Antrum and corpus populations from the same patient grouped together phylogenetically, indicating that most patients were initially infected with a single strain, which then diversified. Single colonies from the antrum and corpus of the same patients grouped into distinct clades, suggesting mechanisms for within-location adaptation across multiple H. pylori isolates from different patients. The comparisons made available by combined sequencing and analysis of isolates and populations enabled comprehensive analysis of the genetic changes associated with H. pylori diversification and stomach region adaptation.
Collapse
Affiliation(s)
- Daniel James Wilkinson
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
- School of Science and Technology, Nottingham Trent University, UK
| | - Benjamin Dickins
- School of Science and Technology, Nottingham Trent University, UK
| | - Karen Robinson
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Jody Anne Winter
- School of Science and Technology, Nottingham Trent University, UK
- CONTACT Jody Anne Winter School of Science and Technology, Nottingham Trent University Clifton Campus, Clifton Lane, NottinghamNG118NS, UK
| |
Collapse
|
4
|
Nutrient Loading and Viral Memory Drive Accumulation of Restriction Modification Systems in Bloom-Forming Cyanobacteria. mBio 2021; 12:e0087321. [PMID: 34060332 PMCID: PMC8262939 DOI: 10.1128/mbio.00873-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The mechanisms driving cyanobacterial harmful algal blooms (HABs) like those caused by Microcystis aeruginosa remain elusive, but improved defense against viral predation has been implicated for success in eutrophic environments. Our genus-level analyses of 139,023 genomes revealed that HAB-forming cyanobacteria carry vastly more restriction modification systems per genome (RMPG) than nearly all other prokaryotic genera, suggesting that viral defense is a cornerstone of their ecological success. In contrast, picocyanobacteria that numerically dominate nutrient-poor systems have the fewest RMPG within the phylum Cyanobacteria. We used classic resource competition models to explore the hypothesis that nutrient enrichments drive ecological selection for high RMPG due to increased host-phage contact rate. These classic models, agnostic to the mechanism of defense, explain how nutrient loading can select for increased RMPG but, importantly, fail to explain the extreme accumulation of these defense systems. However, extreme accumulation of RMPG can be achieved in a novel “memory” model that accounts for a unique activity of restriction modification systems: the accidental methylation of viral DNA by the methyltransferase. The methylated virus “remembers” the RM defenses of its former host and can evade these defenses if they are present in the next host. This viral memory leads to continual RM system devaluation; RMs accumulate extensively because the benefit of each addition is diminished. Our modeling leads to the hypothesis that nutrient loading and virion methylation drive the extreme accumulation of RMPG in HAB-forming cyanobacteria. Finally, our models suggest that hosts with different RMPG values can coexist when hosts have unique sets of RM systems.
Collapse
|
5
|
Promiscuous DNA cleavage by HpyAII endonuclease is modulated by the HNH catalytic residues. Biosci Rep 2020; 40:226299. [PMID: 32880391 PMCID: PMC7494987 DOI: 10.1042/bsr20201633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 11/17/2022] Open
Abstract
Helicobacter pylori is a carcinogenic bacterium that is responsible for 5.5% of all human gastric cancers. H. pylori codes for an unusually large number of restriction-modification (R-M) systems and several of them are strain-specific and phase-variable. HpyAII is a novel Type IIs phase-variable restriction endonuclease present in 26695 strain of H. pylori. We show that HpyAII prefers two-site substrates over one-site substrates for maximal cleavage activity. HpyAII is less stringent in metal ion requirement and shows higher cleavage activity with Ni2+ over Mg2+. Mutational analysis of the putative residues of the HNH motif of HpyAII confirms that the protein has an active HNH site for the cleavage of DNA. However, mutation of the first Histidine residue of the HNH motif to Alanine does not abolish the enzymatic activity, but instead causes loss of fidelity compared with wildtype HpyAII. Previous studies have shown that mutation of the first Histidine residue of the HNH motif of all other known HNH motif motif-containing enzymes completely abolishes enzymatic activity. We found, in the case of HpyAII, mutation of an active site residue leads to the loss of endonuclease fidelity. The present study provides further insights into the evolution of restriction enzymes.
Collapse
|
6
|
Abstract
In all domains of life, genomes contain epigenetic information superimposed over the nucleotide sequence. Epigenetic signals control DNA-protein interactions and can cause phenotypic change in the absence of mutation. A nearly universal mechanism of epigenetic signalling is DNA methylation. In bacteria, DNA methylation has roles in genome defence, chromosome replication and segregation, nucleoid organization, cell cycle control, DNA repair and regulation of transcription. In many bacterial species, DNA methylation controls reversible switching (phase variation) of gene expression, a phenomenon that generates phenotypic cell variants. The formation of epigenetic lineages enables the adaptation of bacterial populations to harsh or changing environments and modulates the interaction of pathogens with their eukaryotic hosts.
Collapse
|
7
|
Watanabe M, Kojima H, Umezawa K, Fukui M. Genomic Characteristics of Desulfonema ishimotonii Tokyo 01 T Implying Horizontal Gene Transfer Among Phylogenetically Dispersed Filamentous Gliding Bacteria. Front Microbiol 2019; 10:227. [PMID: 30837965 PMCID: PMC6390638 DOI: 10.3389/fmicb.2019.00227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/28/2019] [Indexed: 11/13/2022] Open
Abstract
Desulfonema ishimotonii strain Tokyo 01T is a filamentous sulfate-reducing bacterium isolated from a marine sediment. In this study, the genome of this strain was sequenced and analyzed with a focus on gene transfer from phylogenetically distant organisms. While the strain belongs to the class Deltaproteobacteria, hundreds of proteins encoded in the genome showed the highest sequence similarities to those of organisms outside of the class Deltaproteobacteria, suggesting that more than 20% of the genome is putatively of foreign origins. Many of these proteins had the highest sequence identities with proteins encoded in the genomes of filamentous bacteria, including giant sulfur oxidizers of the orders Thiotrichales, cyanobacteria of various genera, and uncultured bacteria of the candidate phylum KSB3. As mobile genetic elements transferred from phylogenetically distant organisms, putative inteins were identified in the GyrB and DnaE proteins encoded in the genome of strain Tokyo 01T. Genes involved in DNA recombination and repair were enriched in comparison to the closest relatives in the same family. Some of these genes were also related to those of organisms outside of the class Deltaproteobacteria, suggesting that they were acquired by horizontal gene transfer from diverse bacteria. The genomic data suggested significant genetic transfer among filamentous gliding bacteria in phylogenetically dispersed lineages including filamentous sulfate reducers. This study provides insights into the genomic evolution of filamentous bacteria belonging to diverse lineages, characterized by various physiological functions and different ecological roles.
Collapse
Affiliation(s)
- Miho Watanabe
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hisaya Kojima
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Kazuhiro Umezawa
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| | - Manabu Fukui
- Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
8
|
Gorrell R, Kwok T. The Helicobacter pylori Methylome: Roles in Gene Regulation and Virulence. Curr Top Microbiol Immunol 2017; 400:105-127. [PMID: 28124151 DOI: 10.1007/978-3-319-50520-6_5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The methylome is defined as a map of DNA methylation patterns at single-base resolution. DNA methylation in bacteria was first discovered as a function of restriction-modification (R-M) systems. R-M systems in Helicobacter pylori, like those in other bacteria, are important host-specificity determinants that provide protection against foreign DNA. Moreover, the gene regulatory role of the methyltransferase (Mtase) unit of various Helicobacter pylori R-M systems is being increasingly recognized. Recent advances in the application of single-molecule real-time (SMRT) DNA sequencing to analyse DNA methylation have revealed for the first time comprehensive pictures of the genome-wide distribution of methylation sites in various strains of H. pylori. The methylomic data published so far have not only confirmed the significant inter-strain diversity of H. pylori Mtases and their DNA methylation profiles, but also identified numerous novel Mtase target recognition sites. The precise knowledge of the nucleotide sequence of Mtase recognition sites and their distribution within the H. pylori genome will in turn enable researchers to more readily test hypotheses on how H. pylori Mtases function to orchestrate gene regulation and/or modulate virulence. Methylomic studies hold promise for providing a deeper understanding into the roles of H. pylori Mtase and R-M systems in the physiology, epigenetics and possibly also pathogenesis of this important human pathogen. Consequently, the knowledge gained will provide crucial insights into the potential application of H. pylori methylomes as novel biomarkers for the prediction of disease outcome and/or antibiotic susceptibility.
Collapse
Affiliation(s)
- Rebecca Gorrell
- Infection and Immunity, and Cancer Programs, Monash Biomedicine Discovery Institute, Clayton, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, Australia.,Department of Microbiology, Monash University, Clayton, 3800, Australia
| | - Terry Kwok
- Infection and Immunity, and Cancer Programs, Monash Biomedicine Discovery Institute, Clayton, Australia. .,Department of Biochemistry and Molecular Biology, Monash University, Clayton, 3800, Australia. .,Department of Microbiology, Monash University, Clayton, 3800, Australia.
| |
Collapse
|
9
|
Whole genome sequence analysis indicates recent diversification of mammal-associated Campylobacter fetus and implicates a genetic factor associated with H2S production. BMC Genomics 2016; 17:713. [PMID: 27599479 PMCID: PMC5013579 DOI: 10.1186/s12864-016-3058-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/30/2016] [Indexed: 12/11/2022] Open
Abstract
Background Campylobacter fetus (C. fetus) can cause disease in both humans and animals. C. fetus has been divided into three subspecies: C. fetus subsp. fetus (Cff), C. fetus subsp. venerealis (Cfv) and C. fetus subsp. testudinum (Cft). Subspecies identification of mammal-associated C. fetus strains is crucial in the control of Bovine Genital Campylobacteriosis (BGC), a syndrome associated with Cfv. The prescribed methods for subspecies identification of the Cff and Cfv isolates are: tolerance to 1 % glycine and H2S production. Results In this study, we observed the deletion of a putative cysteine transporter in the Cfv strains, which are not able to produce H2S from L-cysteine. Phylogenetic reconstruction of the core genome single nucleotide polymorphisms (SNPs) within Cff and Cfv strains divided these strains into five different clades and showed that the Cfv clade and a Cff clade evolved from a single Cff ancestor. Conclusions Multiple C. fetus clades were observed, which were not consistent with the biochemical differentiation of the strains. This suggests the need for a closer evaluation of the current C. fetus subspecies differentiation, considering that the phenotypic differentiation is still applied in BGC control programs. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3058-7) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Uchiyama I, Albritton J, Fukuyo M, Kojima KK, Yahara K, Kobayashi I. A Novel Approach to Helicobacter pylori Pan-Genome Analysis for Identification of Genomic Islands. PLoS One 2016; 11:e0159419. [PMID: 27504980 PMCID: PMC4978471 DOI: 10.1371/journal.pone.0159419] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/01/2016] [Indexed: 01/03/2023] Open
Abstract
Genomes of a given bacterial species can show great variation in gene content and thus systematic analysis of the entire gene repertoire, termed the pan-genome, is important for understanding bacterial intra-species diversity, population genetics, and evolution. Here, we analyzed the pan-genome from 30 completely sequenced strains of the human gastric pathogen Helicobacter pylori belonging to various phylogeographic groups, focusing on 991 accessory (not fully conserved) orthologous groups (OGs). We developed a method to evaluate the mobility of genes within a genome, using the gene order in the syntenically conserved regions as a reference, and classified the 991 accessory OGs into five classes: Core, Stable, Intermediate, Mobile, and Unique. Phylogenetic networks based on the gene content of Core and Stable classes are highly congruent with that created from the concatenated alignment of fully conserved core genes, in contrast to those of Intermediate and Mobile classes, which show quite different topologies. By clustering the accessory OGs on the basis of phylogenetic pattern similarity and chromosomal proximity, we identified 60 co-occurring gene clusters (CGCs). In addition to known genomic islands, including cag pathogenicity island, bacteriophages, and integrating conjugative elements, we identified some novel ones. One island encodes TerY-phosphorylation triad, which includes the eukaryote-type protein kinase/phosphatase gene pair, and components of type VII secretion system. Another one contains a reverse-transcriptase homolog, which may be involved in the defense against phage infection through altruistic suicide. Many of the CGCs contained restriction-modification (RM) genes. Different RM systems sometimes occupied the same (orthologous) locus in the strains. We anticipate that our method will facilitate pan-genome studies in general and help identify novel genomic islands in various bacterial species.
Collapse
Affiliation(s)
- Ikuo Uchiyama
- Laboratory of Genome Informatics, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
- * E-mail:
| | - Jacob Albritton
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Masaki Fukuyo
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
| | - Kenji K. Kojima
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
- Institute of Medical Sciences, the University of Tokyo, Minato-ku, Tokyo, Japan
- Genetic Information Research Institute, Los Altos, California, United States of America
| | - Koji Yahara
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
- Biostatistics Center, Kurume University, Kurume, Fukuoka, Japan
| | - Ichizo Kobayashi
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, Japan
- Institute of Medical Sciences, the University of Tokyo, Minato-ku, Tokyo, Japan
- Tohoku University, Graduate School of Life Sciences, Sendai, Japan
- Kyorin University, Faculty of Medicine, Mitaka, Japan
| |
Collapse
|
11
|
Pfeifer E, Hünnefeld M, Popa O, Polen T, Kohlheyer D, Baumgart M, Frunzke J. Silencing of cryptic prophages in Corynebacterium glutamicum. Nucleic Acids Res 2016; 44:10117-10131. [PMID: 27492287 PMCID: PMC5137423 DOI: 10.1093/nar/gkw692] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 12/14/2022] Open
Abstract
DNA of viral origin represents a ubiquitous element of bacterial genomes. Its integration into host regulatory circuits is a pivotal driver of microbial evolution but requires the stringent regulation of phage gene activity. In this study, we describe the nucleoid-associated protein CgpS, which represents an essential protein functioning as a xenogeneic silencer in the Gram-positive Corynebacterium glutamicum. CgpS is encoded by the cryptic prophage CGP3 of the C. glutamicum strain ATCC 13032 and was first identified by DNA affinity chromatography using an early phage promoter of CGP3. Genome-wide profiling of CgpS binding using chromatin affinity purification and sequencing (ChAP-Seq) revealed its association with AT-rich DNA elements, including the entire CGP3 prophage region (187 kbp), as well as several other elements acquired by horizontal gene transfer. Countersilencing of CgpS resulted in a significantly increased induction frequency of the CGP3 prophage. In contrast, a strain lacking the CGP3 prophage was not affected and displayed stable growth. In a bioinformatics approach, cgpS orthologs were identified primarily in actinobacterial genomes as well as several phage and prophage genomes. Sequence analysis of 618 orthologous proteins revealed a strong conservation of the secondary structure, supporting an ancient function of these xenogeneic silencers in phage-host interaction.
Collapse
Affiliation(s)
- Eugen Pfeifer
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Max Hünnefeld
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Ovidiu Popa
- Quantitative and Theoretical Biology, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Tino Polen
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Dietrich Kohlheyer
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Meike Baumgart
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Julia Frunzke
- Institute of Bio- und Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
12
|
Yahara K, Furuta Y, Morimoto S, Kikutake C, Komukai S, Matelska D, Dunin-Horkawicz S, Bujnicki JM, Uchiyama I, Kobayashi I. Genome-wide survey of codons under diversifying selection in a highly recombining bacterial species, Helicobacter pylori. DNA Res 2016; 23:135-43. [PMID: 26961370 PMCID: PMC4833421 DOI: 10.1093/dnares/dsw003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 01/23/2016] [Indexed: 01/04/2023] Open
Abstract
Selection has been a central issue in biology in eukaryotes as well as prokaryotes. Inference of selection in recombining bacterial species, compared with clonal ones, has been a challenge. It is not known how codons under diversifying selection are distributed along the chromosome or among functional categories or how frequently such codons are subject to mutual homologous recombination. Here, we explored these questions by analysing genes present in >90% among 29 genomes of Helicobacter pylori, one of the bacterial species with the highest mutation and recombination rates. By a method for recombining sequences, we identified codons under diversifying selection (dN/dS> 1), which were widely distributed and accounted for ∼0.2% of all the codons of the genome. The codons were enriched in genes of host interaction/cell surface and genome maintenance (DNA replication,recombination, repair, and restriction modification system). The encoded amino acid residues were sometimes found adjacent to critical catalytic/binding residues in protein structures.Furthermore, by estimating the intensity of homologous recombination at a single nucleotide level, we found that these codons appear to be more frequently subject to recombination.We expect that the present study provides a new approach to population genomics of selection in recombining prokaryotes.
Collapse
Affiliation(s)
- Koji Yahara
- Biostatistics Center, Kurume University, Kurume, Fukuoka 830-0011, Japan
- Institute of Life Science, College of Medicine, Swansea University, Swansea SA2 8PP, UK
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| | - Yoshikazu Furuta
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo108-8639, Japan
| | - Shinpei Morimoto
- Division of Biostatistics, Kurume University School of Medicine, Fukuoka 830-0011, Japan
| | - Chie Kikutake
- Division of Biostatistics, Kurume University School of Medicine, Fukuoka 830-0011, Japan
| | - Sho Komukai
- Division of Biostatistics, Kurume University School of Medicine, Fukuoka 830-0011, Japan
| | - Dorota Matelska
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trodena 4, 02-109 Warsaw, Poland
| | - Stanisław Dunin-Horkawicz
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trodena 4, 02-109 Warsaw, Poland
| | - Janusz M. Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, Trodena 4, 02-109 Warsaw, Poland
- Laboratory of Bioinformatics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Ikuo Uchiyama
- Laboratory of Genome Informatics, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Ichizo Kobayashi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo108-8639, Japan
- Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
13
|
Mou KT, Muppirala UK, Severin AJ, Clark TA, Boitano M, Plummer PJ. A comparative analysis of methylome profiles of Campylobacter jejuni sheep abortion isolate and gastroenteric strains using PacBio data. Front Microbiol 2015; 5:782. [PMID: 25642218 PMCID: PMC4294202 DOI: 10.3389/fmicb.2014.00782] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/20/2014] [Indexed: 12/13/2022] Open
Abstract
Campylobacter jejuni is a leading cause of human gastrointestinal disease and small ruminant abortions in the United States. The recent emergence of a highly virulent, tetracycline-resistant C. jejuni subsp. jejuni sheep abortion clone (clone SA) in the United States, and that strain's association with human disease, has resulted in a heightened awareness of the zoonotic potential of this organism. Pacific Biosciences' Single Molecule, Real-Time sequencing technology was used to explore the variation in the genome-wide methylation patterns of the abortifacient clone SA (IA3902) and phenotypically distinct gastrointestinal-specific C. jejuni strains (NCTC 11168 and 81-176). Several notable differences were discovered that distinguished the methylome of IA3902 from that of 11168 and 81-176: identification of motifs novel to IA3902, genome-specific hypo- and hypermethylated regions, strain level variability in genes methylated, and differences in the types of methylation motifs present in each strain. These observations suggest a possible role of methylation in the contrasting disease presentations of these three C. jejuni strains. In addition, the methylation profiles between IA3902 and a luxS mutant were explored to determine if variations in methylation patterns could be identified that might explain the role of LuxS-dependent methyl recycling in IA3902 abortifacient potential.
Collapse
Affiliation(s)
- Kathy T Mou
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University Ames, IA, USA
| | - Usha K Muppirala
- Genome Informatics Facility, Office of Biotechnology, Iowa State University Ames, IA, USA
| | - Andrew J Severin
- Genome Informatics Facility, Office of Biotechnology, Iowa State University Ames, IA, USA
| | | | | | - Paul J Plummer
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University Ames, IA, USA
| |
Collapse
|
14
|
Oliveira PH, Touchon M, Rocha EPC. The interplay of restriction-modification systems with mobile genetic elements and their prokaryotic hosts. Nucleic Acids Res 2014; 42:10618-31. [PMID: 25120263 PMCID: PMC4176335 DOI: 10.1093/nar/gku734] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/29/2014] [Accepted: 07/30/2014] [Indexed: 01/21/2023] Open
Abstract
The roles of restriction-modification (R-M) systems in providing immunity against horizontal gene transfer (HGT) and in stabilizing mobile genetic elements (MGEs) have been much debated. However, few studies have precisely addressed the distribution of these systems in light of HGT, its mechanisms and its vectors. We analyzed the distribution of R-M systems in 2261 prokaryote genomes and found their frequency to be strongly dependent on the presence of MGEs, CRISPR-Cas systems, integrons and natural transformation. Yet R-M systems are rare in plasmids, in prophages and nearly absent from other phages. Their abundance depends on genome size for small genomes where it relates with HGT but saturates at two occurrences per genome. Chromosomal R-M systems might evolve under cycles of purifying and relaxed selection, where sequence conservation depends on the biochemical activity and complexity of the system and total gene loss is frequent. Surprisingly, analysis of 43 pan-genomes suggests that solitary R-M genes rarely arise from the degradation of R-M systems. Solitary genes are transferred by large MGEs, whereas complete systems are more frequently transferred autonomously or in small MGEs. Our results suggest means of testing the roles for R-M systems and their associations with MGEs.
Collapse
Affiliation(s)
- Pedro H Oliveira
- Institut Pasteur, Microbial Evolutionary Genomics, Département Génomes et Génétique, Paris, France CNRS, UMR3525, Paris, France
| | - Marie Touchon
- Institut Pasteur, Microbial Evolutionary Genomics, Département Génomes et Génétique, Paris, France CNRS, UMR3525, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Microbial Evolutionary Genomics, Département Génomes et Génétique, Paris, France CNRS, UMR3525, Paris, France
| |
Collapse
|
15
|
Krebes J, Morgan RD, Bunk B, Spröer C, Luong K, Parusel R, Anton BP, König C, Josenhans C, Overmann J, Roberts RJ, Korlach J, Suerbaum S. The complex methylome of the human gastric pathogen Helicobacter pylori. Nucleic Acids Res 2013; 42:2415-32. [PMID: 24302578 PMCID: PMC3936762 DOI: 10.1093/nar/gkt1201] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The genome of Helicobacter pylori is remarkable for its large number of restriction-modification (R-M) systems, and strain-specific diversity in R-M systems has been suggested to limit natural transformation, the major driving force of genetic diversification in H. pylori. We have determined the comprehensive methylomes of two H. pylori strains at single base resolution, using Single Molecule Real-Time (SMRT®) sequencing. For strains 26695 and J99-R3, 17 and 22 methylated sequence motifs were identified, respectively. For most motifs, almost all sites occurring in the genome were detected as methylated. Twelve novel methylation patterns corresponding to nine recognition sequences were detected (26695, 3; J99-R3, 6). Functional inactivation, correction of frameshifts as well as cloning and expression of candidate methyltransferases (MTases) permitted not only the functional characterization of multiple, yet undescribed, MTases, but also revealed novel features of both Type I and Type II R-M systems, including frameshift-mediated changes of sequence specificity and the interaction of one MTase with two alternative specificity subunits resulting in different methylation patterns. The methylomes of these well-characterized H. pylori strains will provide a valuable resource for future studies investigating the role of H. pylori R-M systems in limiting transformation as well as in gene regulation and host interaction.
Collapse
Affiliation(s)
- Juliane Krebes
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany, German Center for Infection Research, Hannover-Braunschweig Site, Carl-Neuberg-Straße 1, 30625 Hannover, Germany, New England Biolabs, 240 County Road, Ipswich, MA 01938, USA, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany and Pacific Biosciences, 1380 Willow Road, Menlo Park, CA 94025, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Maldonado-Contreras A, Mane SP, Zhang XS, Pericchi L, Alarcón T, Contreras M, Linz B, Blaser MJ, Domínguez-Bello MG. Phylogeographic evidence of cognate recognition site patterns and transformation efficiency differences in H. pylori: theory of strain dominance. BMC Microbiol 2013; 13:211. [PMID: 24050390 PMCID: PMC3849833 DOI: 10.1186/1471-2180-13-211] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 08/28/2013] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Helicobacter pylori has diverged in parallel to its human host, leading to distinct phylogeographic populations. Recent evidence suggests that in the current human mixing in Latin America, European H. pylori (hpEurope) are increasingly dominant at the expense of Amerindian haplotypes (hspAmerind). This phenomenon might occur via DNA recombination, modulated by restriction-modification systems (RMS), in which differences in cognate recognition sites (CRS) and in active methylases will determine direction and frequency of gene flow. We hypothesized that genomes from hspAmerind strains that evolved from a small founder population have lost CRS for RMS and active methylases, promoting hpEurope's DNA invasion. We determined the observed and expected frequencies of CRS for RMS in DNA from 7 H. pylori whole genomes and 110 multilocus sequences. We also measured the number of active methylases by resistance to in vitro digestion by 16 restriction enzymes of genomic DNA from 9 hpEurope and 9 hspAmerind strains, and determined the direction of DNA uptake in co-culture experiments of hspAmerind and hpEurope strains. RESULTS Most of the CRS were underrepresented with consistency between whole genomes and multilocus sequences. Although neither the frequency of CRS nor the number of active methylases differ among the bacterial populations (average 8.6 ± 2.6), hspAmerind strains had a restriction profile distinct from that in hpEurope strains, with 15 recognition sites accounting for the differences. Amerindians strains also exhibited higher transformation rates than European strains, and were more susceptible to be subverted by larger DNA hpEurope-fragments than vice versa. CONCLUSIONS The geographical variation in the pattern of CRS provides evidence for ancestral differences in RMS representation and function, and the transformation findings support the hypothesis of Europeanization of the Amerindian strains in Latin America via DNA recombination.
Collapse
|
17
|
MacGregor BJ, Biddle JF, Teske A. Mobile elements in a single-filament orange Guaymas Basin Beggiatoa ("Candidatus Maribeggiatoa") sp. draft genome: evidence for genetic exchange with cyanobacteria. Appl Environ Microbiol 2013; 79:3974-85. [PMID: 23603674 PMCID: PMC3697557 DOI: 10.1128/aem.03821-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 04/15/2013] [Indexed: 11/20/2022] Open
Abstract
The draft genome sequence of a single orange Beggiatoa ("Candidatus Maribeggiatoa") filament collected from a microbial mat at a hydrothermal site in Guaymas Basin (Gulf of California, Mexico) shows evidence of extensive genetic exchange with cyanobacteria, in particular for sensory and signal transduction genes. A putative homing endonuclease gene and group I intron within the 23S rRNA gene; several group II catalytic introns; GyrB and DnaE inteins, also encoding homing endonucleases; multiple copies of sequences similar to the fdxN excision elements XisH and XisI (required for heterocyst differentiation in some cyanobacteria); and multiple sequences related to an open reading frame (ORF) (00024_0693) of unknown function all have close non-Beggiatoaceae matches with cyanobacterial sequences. Sequences similar to the uncharacterized ORF and Xis elements are found in other Beggiatoaceae genomes, a variety of cyanobacteria, and a few phylogenetically dispersed pleiomorphic or filamentous bacteria. We speculate that elements shared among filamentous bacterial species may have been exchanged in microbial mats and that some of them may be involved in cell differentiation.
Collapse
Affiliation(s)
- Barbara J MacGregor
- Department of Marine Sciences, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA.
| | | | | |
Collapse
|
18
|
Vasu K, Nagaraja V. Diverse functions of restriction-modification systems in addition to cellular defense. Microbiol Mol Biol Rev 2013; 77:53-72. [PMID: 23471617 PMCID: PMC3591985 DOI: 10.1128/mmbr.00044-12] [Citation(s) in RCA: 405] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Restriction-modification (R-M) systems are ubiquitous and are often considered primitive immune systems in bacteria. Their diversity and prevalence across the prokaryotic kingdom are an indication of their success as a defense mechanism against invading genomes. However, their cellular defense function does not adequately explain the basis for their immaculate specificity in sequence recognition and nonuniform distribution, ranging from none to too many, in diverse species. The present review deals with new developments which provide insights into the roles of these enzymes in other aspects of cellular function. In this review, emphasis is placed on novel hypotheses and various findings that have not yet been dealt with in a critical review. Emerging studies indicate their role in various cellular processes other than host defense, virulence, and even controlling the rate of evolution of the organism. We also discuss how R-M systems could have successfully evolved and be involved in additional cellular portfolios, thereby increasing the relative fitness of their hosts in the population.
Collapse
Affiliation(s)
- Kommireddy Vasu
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
19
|
Nykyri J, Niemi O, Koskinen P, Nokso-Koivisto J, Pasanen M, Broberg M, Plyusnin I, Törönen P, Holm L, Pirhonen M, Palva ET. Revised phylogeny and novel horizontally acquired virulence determinants of the model soft rot phytopathogen Pectobacterium wasabiae SCC3193. PLoS Pathog 2012; 8:e1003013. [PMID: 23133391 PMCID: PMC3486870 DOI: 10.1371/journal.ppat.1003013] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 09/18/2012] [Indexed: 11/19/2022] Open
Abstract
Soft rot disease is economically one of the most devastating bacterial diseases affecting plants worldwide. In this study, we present novel insights into the phylogeny and virulence of the soft rot model Pectobacterium sp. SCC3193, which was isolated from a diseased potato stem in Finland in the early 1980s. Genomic approaches, including proteome and genome comparisons of all sequenced soft rot bacteria, revealed that SCC3193, previously included in the species Pectobacterium carotovorum, can now be more accurately classified as Pectobacterium wasabiae. Together with the recently revised phylogeny of a few P. carotovorum strains and an increasing number of studies on P. wasabiae, our work indicates that P. wasabiae has been unnoticed but present in potato fields worldwide. A combination of genomic approaches and in planta experiments identified features that separate SCC3193 and other P. wasabiae strains from the rest of soft rot bacteria, such as the absence of a type III secretion system that contributes to virulence of other soft rot species. Experimentally established virulence determinants include the putative transcriptional regulator SirB, two partially redundant type VI secretion systems and two horizontally acquired clusters (Vic1 and Vic2), which contain predicted virulence genes. Genome comparison also revealed other interesting traits that may be related to life in planta or other specific environmental conditions. These traits include a predicted benzoic acid/salicylic acid carboxyl methyltransferase of eukaryotic origin. The novelties found in this work indicate that soft rot bacteria have a reservoir of unknown traits that may be utilized in the poorly understood latent stage in planta. The genomic approaches and the comparison of the model strain SCC3193 to other sequenced Pectobacterium strains, including the type strain of P. wasabiae, provides a solid basis for further investigation of the virulence, distribution and phylogeny of soft rot bacteria and, potentially, other bacteria as well.
Collapse
Affiliation(s)
- Johanna Nykyri
- Department of Agricultural Sciences, Plant Pathology, University of Helsinki, Helsinki, Finland
| | - Outi Niemi
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| | - Patrik Koskinen
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| | | | - Miia Pasanen
- Department of Agricultural Sciences, Plant Pathology, University of Helsinki, Helsinki, Finland
| | - Martin Broberg
- Department of Agricultural Sciences, Plant Pathology, University of Helsinki, Helsinki, Finland
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| | - Ilja Plyusnin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Petri Törönen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Liisa Holm
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Minna Pirhonen
- Department of Agricultural Sciences, Plant Pathology, University of Helsinki, Helsinki, Finland
| | - E. Tapio Palva
- Department of Biosciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Furuta Y, Kobayashi I. Movement of DNA sequence recognition domains between non-orthologous proteins. Nucleic Acids Res 2012; 40:9218-32. [PMID: 22821560 PMCID: PMC3467074 DOI: 10.1093/nar/gks681] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Comparisons of proteins show that they evolve through the movement of domains. However, in many cases, the underlying mechanisms remain unclear. Here, we observed the movements of DNA recognition domains between non-orthologous proteins within a prokaryote genome. Restriction-modification (RM) systems, consisting of a sequence-specific DNA methyltransferase and a restriction enzyme, contribute to maintenance/evolution of genomes/epigenomes. RM systems limit horizontal gene transfer but are themselves mobile. We compared Type III RM systems in Helicobacter pylori genomes and found that target recognition domain (TRD) sequences are mobile, moving between different orthologous groups that occupy unique chromosomal locations. Sequence comparisons suggested that a likely underlying mechanism is movement through homologous recombination of similar DNA sequences that encode amino acid sequence motifs that are conserved among Type III DNA methyltransferases. Consistent with this movement, incongruence was observed between the phylogenetic trees of TRD regions and other regions in proteins. Horizontal acquisition of diverse TRD sequences was suggested by detection of homologs in other Helicobacter species and distantly related bacterial species. One of these RM systems in H. pylori was inactivated by insertion of another RM system that likely transferred from an oral bacterium. TRD movement represents a novel route for diversification of DNA-interacting proteins.
Collapse
Affiliation(s)
- Yoshikazu Furuta
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | | |
Collapse
|
21
|
Natural transformation of an engineered Helicobacter pylori strain deficient in type II restriction endonucleases. J Bacteriol 2012; 194:3407-16. [PMID: 22522893 DOI: 10.1128/jb.00113-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Restriction-modification (RM) systems are important for bacteria to limit foreign DNA invasion. The naturally competent bacterium Helicobacter pylori has highly diverse strain-specific type II systems. To evaluate the roles of strain-specific restriction in H. pylori natural transformation, a markerless type II restriction endonuclease-deficient (REd) mutant was constructed. We deleted the genes encoding all four active type II restriction endonucleases in H. pylori strain 26695 using sacB-mediated counterselection. Transformation by donor DNA with exogenous cassettes methylated by Escherichia coli was substantially (1.7 and 2.0 log(10) for cat and aphA, respectively) increased in the REd strain. There also was significantly increased transformation of the REd strain by donor DNA from other H. pylori strains, to an extent corresponding to their shared type II R-M system strain specificity with 26695. Comparison of the REd and wild-type strains indicates that restriction did not affect the length of DNA fragment integration during natural transformation. There also were no differentials in cell growth or susceptibility to DNA damage. In total, the data indicate that the type II REd mutant has enhanced competence with no loss of growth or repair facility compared to the wild type, facilitating H. pylori mutant construction and other genetic engineering.
Collapse
|
22
|
Chung DH, Huddleston JR, Farkas J, Westpheling J. Identification and characterization of CbeI, a novel thermostable restriction enzyme from Caldicellulosiruptor bescii DSM 6725 and a member of a new subfamily of HaeIII-like enzymes. J Ind Microbiol Biotechnol 2011; 38:1867-77. [PMID: 21604181 DOI: 10.1007/s10295-011-0976-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 04/07/2011] [Indexed: 11/27/2022]
Abstract
Potent HaeIII-like DNA restriction activity was detected in cell-free extracts of Caldicellulosiruptor bescii DSM 6725 using plasmid DNA isolated from Escherichia coli as substrate. Incubation of the plasmid DNA in vitro with HaeIII methyltransferase protected it from cleavage by HaeIII nuclease as well as cell-free extracts of C. bescii. The gene encoding the putative restriction enzyme was cloned and expressed in E. coli with a His-tag at the C-terminus. The purified protein was 38 kDa as predicted by the 981-bp nucleic acid sequence, was optimally active at temperatures between 75°C and 85°C, and was stable for more than 1 week when stored at 35°C. The cleavage sequence was determined to be 5'-GG/CC-3', indicating that CbeI is an isoschizomer of HaeIII. A search of the C. bescii genome sequence revealed the presence of both a HaeIII-like restriction endonuclease (Athe 2438) and DNA methyltransferase (Athe 2437). Preliminary analysis of other Caldicellulosiruptor species suggested that this restriction/modification activity is widespread in this genus. A phylogenetic analysis based on sequence alignment and conserved motif searches identified features of CbeI distinct from other members of this group and classified CbeI as a member of a novel subfamily of HaeIII-like enzymes.
Collapse
Affiliation(s)
- Dae-Hwan Chung
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
23
|
Ishikawa K, Handa N, Sears L, Raleigh EA, Kobayashi I. Cleavage of a model DNA replication fork by a methyl-specific endonuclease. Nucleic Acids Res 2011; 39:5489-98. [PMID: 21441537 PMCID: PMC3141261 DOI: 10.1093/nar/gkr153] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epigenetic DNA methylation is involved in many biological processes. An epigenetic status can be altered by gain or loss of a DNA methyltransferase gene or its activity. Repair of DNA damage can also remove DNA methylation. In response to such alterations, DNA endonucleases that sense DNA methylation can act and may cause cell death. Here, we explored the possibility that McrBC, a methylation-dependent DNase of Escherichia coli, cleaves DNA at a replication fork. First, we found that in vivo restriction by McrBC of bacteriophage carrying a foreign DNA methyltransferase gene is increased in the absence of homologous recombination. This suggests that some cleavage events are repaired by recombination and must take place during or after replication. Next, we demonstrated that the enzyme can cleave a model DNA replication fork in vitro. Cleavage of a fork required methylation on both arms and removed one, the other or both of the arms. Most cleavage events removed the methylated sites from the fork. This result suggests that acquisition of even rarely occurring modification patterns will be recognized and rejected efficiently by modification-dependent restriction systems that recognize two sites. This process might serve to maintain an epigenetic status along the genome through programmed cell death.
Collapse
Affiliation(s)
- Ken Ishikawa
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Shirokanedai, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
24
|
Ishikawa K, Fukuda E, Kobayashi I. Conflicts targeting epigenetic systems and their resolution by cell death: novel concepts for methyl-specific and other restriction systems. DNA Res 2010; 17:325-42. [PMID: 21059708 PMCID: PMC2993543 DOI: 10.1093/dnares/dsq027] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Epigenetic modification of genomic DNA by methylation is important for defining the epigenome and the transcriptome in eukaryotes as well as in prokaryotes. In prokaryotes, the DNA methyltransferase genes often vary, are mobile, and are paired with the gene for a restriction enzyme. Decrease in a certain epigenetic methylation may lead to chromosome cleavage by the partner restriction enzyme, leading to eventual cell death. Thus, the pairing of a DNA methyltransferase and a restriction enzyme forces an epigenetic state to be maintained within the genome. Although restriction enzymes were originally discovered for their ability to attack invading DNAs, it may be understood because such DNAs show deviation from this epigenetic status. DNAs with epigenetic methylation, by a methyltransferase linked or unlinked with a restriction enzyme, can also be the target of DNases, such as McrBC of Escherichia coli, which was discovered because of its methyl-specific restriction. McrBC responds to specific genome methylation systems by killing the host bacterial cell through chromosome cleavage. Evolutionary and genomic analysis of McrBC homologues revealed their mobility and wide distribution in prokaryotes similar to restriction–modification systems. These findings support the hypothesis that this family of methyl-specific DNases evolved as mobile elements competing with specific genome methylation systems through host killing. These restriction systems clearly demonstrate the presence of conflicts between epigenetic systems.
Collapse
Affiliation(s)
- Ken Ishikawa
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan
| | | | | |
Collapse
|
25
|
Chan SH, Opitz L, Higgins L, O'loane D, Xu SY. Cofactor requirement of HpyAV restriction endonuclease. PLoS One 2010; 5:e9071. [PMID: 20140205 PMCID: PMC2816704 DOI: 10.1371/journal.pone.0009071] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 01/14/2010] [Indexed: 01/28/2023] Open
Abstract
Background Helicobacter pylori is the etiologic agent of common gastritis and a risk factor for gastric cancer. It is also one of the richest sources of Type II restriction-modification (R-M) systems in microorganisms. Principal Findings We have cloned, expressed and purified a new restriction endonuclease HpyAV from H. pylori strain 26695. We determined the HpyAV DNA recognition sequence and cleavage site as CCTTC 6/5. In addition, we found that HpyAV has a unique metal ion requirement: its cleavage activity is higher with transition metal ions than in Mg++. The special metal ion requirement of HpyAV can be attributed to the presence of a HNH catalytic site similar to ColE9 nuclease instead of the canonical PD-X-D/EXK catalytic site found in many other REases. Site-directed mutagenesis was carried out to verify the catalytic residues of HpyAV. Mutation of the conserved metal-binding Asn311 and His320 to alanine eliminated cleavage activity. HpyAV variant H295A displayed approximately 1% of wt activity. Conclusions/Significance Some HNH-type endonucleases have unique metal ion cofactor requirement for optimal activities. Homology modeling and site-directed mutagenesis confirmed that HpyAV is a member of the HNH nuclease family. The identification of catalytic residues in HpyAV paved the way for further engineering of the metal binding site. A survey of sequenced microbial genomes uncovered 10 putative R-M systems that show high sequence similarity to the HpyAV system, suggesting lateral transfer of a prototypic HpyAV-like R-M system among these microorganisms.
Collapse
Affiliation(s)
- Siu-Hong Chan
- Research Department, New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
| | - Lars Opitz
- Research Department, New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
| | - Lauren Higgins
- Research Department, New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
| | - Diana O'loane
- Research Department, New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
| | - Shuang-yong Xu
- Research Department, New England Biolabs, Inc., Ipswich, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
26
|
Ferri L, Gori A, Biondi EG, Mengoni A, Bazzicalupo M. Plasmid electroporation of Sinorhizobium strains: The role of the restriction gene hsdR in type strain Rm1021. Plasmid 2010; 63:128-35. [PMID: 20097223 DOI: 10.1016/j.plasmid.2010.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Revised: 01/13/2010] [Accepted: 01/18/2010] [Indexed: 10/19/2022]
Abstract
Although horizontal gene transfer mediated by plasmids is important to the generation of the genetic variability of Sinorhizobium strains, the barriers which can reduce horizontal gene transfer between bacteria have not yet been studied in Sinorhizobium. We studied the plasmid transfer by electroporation and its restriction in strains of Sinorhizobium meliloti and S. medicae. After conditions for electroporation were established, three S. meliloti strains (including the sequenced type strain Rm1021) and two S. medicae strains were electroporated with plasmid DNA extracted from strains of both species. The efficiency of transformation was found to be variable among different strains. The acquisition of plasmid DNA was found to be donor-dependent in S. meliloti strain Rm1021 that prefers self-DNA more than the DNA from other Sinorhizobium strains. All other strains tested did not show a preference for self-DNA. In strain Rm1021, the inactivation of the hsdR gene, coding for a putative type-I restriction enzyme, increased the efficiency of transformation and conjugation with non-self DNA; the transformation capability was again reduced in hsdR mutant when the cloned hsdR gene was expressed from a lac promoter. Phylogenetic analysis of the hsdR gene clearly indicated that this gene was horizontally transferred to strain Rm1021, explaining its absence in the other strains tested.
Collapse
Affiliation(s)
- Lorenzo Ferri
- Dept. of Evolutionary Biology, University of Florence, via Romana 17-19, I-50125 Firenze, Italy
| | | | | | | | | |
Collapse
|
27
|
Furuta Y, Abe K, Kobayashi I. Genome comparison and context analysis reveals putative mobile forms of restriction-modification systems and related rearrangements. Nucleic Acids Res 2010; 38:2428-43. [PMID: 20071371 PMCID: PMC2853133 DOI: 10.1093/nar/gkp1226] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The mobility of restriction–modification (RM) gene complexes and their association with genome rearrangements is a subject of active investigation. Here we conducted systematic genome comparisons and genome context analysis on fully sequenced prokaryotic genomes to detect RM-linked genome rearrangements. RM genes were frequently found to be linked to mobility-related genes such as integrase and transposase homologs. They were flanked by direct and inverted repeats at a significantly high frequency. Insertion by long target duplication was observed for I, II, III and IV restriction types. We found several RM genes flanked by long inverted repeats, some of which had apparently inserted into a genome with a short target duplication. In some cases, only a portion of an apparently complete RM system was flanked by inverted repeats. We also found a unit composed of RM genes and an integrase homolog that integrated into a tRNA gene. An allelic substitution of a Type III system with a linked Type I and IV system pair, and allelic diversity in the putative target recognition domain of Type IIG systems were observed. This study revealed the possible mobility of all types of RM systems, and the diversity in their mobility-related organization.
Collapse
Affiliation(s)
- Yoshikazu Furuta
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | | | | |
Collapse
|
28
|
Vale FF, Mégraud F, Vítor JMB. Geographic distribution of methyltransferases of Helicobacter pylori: evidence of human host population isolation and migration. BMC Microbiol 2009; 9:193. [PMID: 19737407 PMCID: PMC2749054 DOI: 10.1186/1471-2180-9-193] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 09/08/2009] [Indexed: 12/23/2022] Open
Abstract
Background Helicobacter pylori colonizes the human stomach and is associated with gastritis, peptic ulcer, and gastric cancer. This ubiquitous association between H. pylori and humans is thought to be present since the origin of modern humans. The H. pylori genome encodes for an exceptional number of restriction and modifications (R-M) systems. To evaluate if R-M systems are an adequate tool to determine the geographic distribution of H. pylori strains, we typed 221 strains from Africa, America, Asia, and Europe, and evaluated the expression of different 29 methyltransferases. Results Independence tests and logistic regression models revealed that ten R-M systems correlate with geographical localization. The distribution pattern of these methyltransferases may have been originated by co-divergence of regional H. pylori after its human host migrated out of Africa. The expression of specific methyltransferases in the H. pylori population may also reflect the genetic and cultural background of its human host. Methyltransferases common to all strains, M. HhaI and M. NaeI, are likely conserved in H. pylori, and may have been present in the bacteria genome since the human diaspora out of Africa. Conclusion This study indicates that some methyltransferases are useful geomarkers, which allow discrimination of bacterial populations, and that can be added to our tools to investigate human migrations.
Collapse
Affiliation(s)
- Filipa F Vale
- Engineering Faculty, Portuguese Catholic University, Estrada Octávio Pato, 2635-631 Rio de Mouro, Portugal.
| | | | | |
Collapse
|
29
|
Humbert O, Salama NR. The Helicobacter pylori HpyAXII restriction-modification system limits exogenous DNA uptake by targeting GTAC sites but shows asymmetric conservation of the DNA methyltransferase and restriction endonuclease components. Nucleic Acids Res 2008; 36:6893-906. [PMID: 18978016 PMCID: PMC2588503 DOI: 10.1093/nar/gkn718] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 09/26/2008] [Accepted: 09/30/2008] [Indexed: 12/15/2022] Open
Abstract
The naturally competent organism Helicobacter pylori encodes a large number of restriction-modification (R-M) systems that consist of a restriction endonuclease and a DNA methyltransferase. R-M systems are not only believed to limit DNA exchange among bacteria but may also have other cellular functions. We report a previously uncharacterized H. pylori type II R-M system, M.HpyAXII/R.HpyAXII. We show that this system targets GTAC sites, which are rare in the H. pylori chromosome but numerous in ribosomal RNA genes. As predicted, this type II R-M system showed attributes of a selfish element. Deletion of the methyltransferase M.HpyAXII is lethal when associated with an active endonuclease R.HpyAXII unless compensated by adaptive mutation or gene amplification. R.HpyAXII effectively restricted both unmethylated plasmid and chromosomal DNA during natural transformation and was predicted to belong to the novel 'half pipe' structural family of endonucleases. Analysis of a panel of clinical isolates revealed that R.HpyAXII was functional in a small number of H. pylori strains (18.9%, n = 37), whereas the activity of M.HpyAXII was highly conserved (92%, n = 50), suggesting that GTAC methylation confers a selective advantage to H. pylori. However, M.HpyAXII activity did not enhance H. pylori fitness during stomach colonization of a mouse infection model.
Collapse
Affiliation(s)
- Olivier Humbert
- Division of Human Biology, Fred Hutchinson Cancer Research Center and Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Nina R. Salama
- Division of Human Biology, Fred Hutchinson Cancer Research Center and Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| |
Collapse
|
30
|
Cell death upon epigenetic genome methylation: a novel function of methyl-specific deoxyribonucleases. Genome Biol 2008; 9:R163. [PMID: 19025584 PMCID: PMC2614495 DOI: 10.1186/gb-2008-9-11-r163] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/16/2008] [Accepted: 11/21/2008] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Alteration in epigenetic methylation can affect gene expression and other processes. In Prokaryota, DNA methyltransferase genes frequently move between genomes and present a potential threat. A methyl-specific deoxyribonuclease, McrBC, of Escherichia coli cuts invading methylated DNAs. Here we examined whether McrBC competes with genome methylation systems through host killing by chromosome cleavage. RESULTS McrBC inhibited the establishment of a plasmid carrying a PvuII methyltransferase gene but lacking its recognition sites, likely through the lethal cleavage of chromosomes that became methylated. Indeed, its phage-mediated transfer caused McrBC-dependent chromosome cleavage. Its induction led to cell death accompanied by chromosome methylation, cleavage and degradation. RecA/RecBCD functions affect chromosome processing and, together with the SOS response, reduce lethality. Our evolutionary/genomic analyses of McrBC homologs revealed: a wide distribution in Prokaryota; frequent distant horizontal transfer and linkage with mobility-related genes; and diversification in the DNA binding domain. In these features, McrBCs resemble type II restriction-modification systems, which behave as selfish mobile elements, maintaining their frequency by host killing. McrBCs are frequently found linked with a methyltransferase homolog, which suggests a functional association. CONCLUSIONS Our experiments indicate McrBC can respond to genome methylation systems by host killing. Combined with our evolutionary/genomic analyses, they support our hypothesis that McrBCs have evolved as mobile elements competing with specific genome methylation systems through host killing. To our knowledge, this represents the first report of a defense system against epigenetic systems through cell death.
Collapse
|
31
|
Ohno S, Handa N, Watanabe-Matsui M, Takahashi N, Kobayashi I. Maintenance forced by a restriction-modification system can be modulated by a region in its modification enzyme not essential for methyltransferase activity. J Bacteriol 2008; 190:2039-49. [PMID: 18192396 PMCID: PMC2258900 DOI: 10.1128/jb.01319-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 01/02/2008] [Indexed: 11/20/2022] Open
Abstract
Several type II restriction-modification gene complexes can force their maintenance on their host bacteria by killing cells that have lost them in a process called postsegregational killing or genetic addiction. It is likely to proceed by dilution of the modification enzyme molecule during rounds of cell division following the gene loss, which exposes unmethylated recognition sites on the newly replicated chromosomes to lethal attack by the remaining restriction enzyme molecules. This process is in apparent contrast to the process of the classical types of postsegregational killing systems, in which built-in metabolic instability of the antitoxin allows release of the toxin for lethal action after the gene loss. In the present study, we characterize a mutant form of the EcoRII gene complex that shows stronger capacity in such maintenance. This phenotype is conferred by an L80P amino acid substitution (T239C nucleotide substitution) mutation in the modification enzyme. This mutant enzyme showed decreased DNA methyltransferase activity at a higher temperature in vivo and in vitro than the nonmutated enzyme, although a deletion mutant lacking the N-terminal 83 amino acids did not lose activity at either of the temperatures tested. Under a condition of inhibited protein synthesis, the activity of the L80P mutant was completely lost at a high temperature. In parallel, the L80P mutant protein disappeared more rapidly than the wild-type protein. These results demonstrate that the capability of a restriction-modification system in forcing maintenance on its host can be modulated by a region of its antitoxin, the modification enzyme, as in the classical postsegregational killing systems.
Collapse
Affiliation(s)
- Satona Ohno
- Department of Medical Genome Sciences, Graduate School of Frontier Science and Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | |
Collapse
|
32
|
Pouillot F, Fayolle C, Carniel E. A putative DNA adenine methyltransferase is involved in Yersinia pseudotuberculosis pathogenicity. MICROBIOLOGY-SGM 2007; 153:2426-2434. [PMID: 17660407 DOI: 10.1099/mic.0.2007/005736-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Some adenine methyltransferases have been shown not only to protect specific DNA restriction sites from cleavage by a restriction endonuclease, but also to play a role in various bacterial processes and sometimes in bacterial virulence. This study focused on a type I restriction-modification system (designated yrmI) of Y. pseudotuberculosis. This system is composed of three adjacent genes which could potentially encode an N6-adenine DNA methylase (YamA), an enzyme involved in site-specific recognition (YrsA) and a restriction endonuclease (YreA). Screening of 85 isolates of Y. pestis and Y. pseudotuberculosis indicated that the yrmI system has been lost by Y. pestis and that yamA (but not yrsA or yreA) is present in all Y. pseudotuberculosis strains tested, suggesting that it may be important at some stages of the epidemiological cycle of this species. To further investigate the role of yamA in Y. pseudotuberculosis survival, multiplication or virulence, a DeltayamA mutant of Y. pseudotuberculosis IP32953 was constructed by allelic exchange with a kanamycin cassette. The fact that DeltayamA mutants were obtained indicated that this gene is not essential for Y. pseudotuberculosis viability. The IP32953DeltayamA mutant strain grew as well as the wild-type in a rich medium at both 28 degrees C and 37 degrees C. It also grew normally in a chemically defined medium at 28 degrees C, but exhibited a growth defect at 37 degrees C. In contrast to the Dam adenine methyltransferase, a mutation in yamA did not impair the functions of DNA repair or resistance to detergents. However, the DeltayamA mutant exhibited a virulence defect in a mouse model of intragastric infection. The in silico analysis indicated that the chromosomal region carrying the Y. pseudotuberculosis yrmI locus has been replaced in Y. pestis by a horizontally acquired region which potentially encodes another methyltransferase. YamA might thus be dispensable for Y. pestis growth and virulence because this species has acquired another gene fulfilling the same functions.
Collapse
Affiliation(s)
- Flavie Pouillot
- Yersinia Research Unit, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Corinne Fayolle
- Yersinia Research Unit, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | - Elisabeth Carniel
- Yersinia Research Unit, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
33
|
Affiliation(s)
- Roy David Magnuson
- Department of Biological Sciences, University of Alabama in Huntsville, 301 Sparkman Drive, WH 258, Huntsville, AL 35758, USA.
| |
Collapse
|
34
|
Vale FF, Vítor JMB. Genomic methylation: a tool for typing Helicobacter pylori isolates. Appl Environ Microbiol 2007; 73:4243-9. [PMID: 17483255 PMCID: PMC1932799 DOI: 10.1128/aem.00199-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 05/01/2007] [Indexed: 01/26/2023] Open
Abstract
The genome sequences of three Helicobacter pylori strains revealed an abundant number of putative restriction and modification (R-M) systems within a small genome (1.60 to 1.67 Mb). Each R-M system includes an endonuclease that cleaves a specific DNA sequence and a DNA methyltransferase that methylates either adenosine or cytosine within the same DNA sequence. These are believed to be a defense mechanism, protecting bacteria from foreign DNA. They have been classified as selfish genetic elements; in some instances it has been shown that they are not easily lost from their host cell. Possibly because of this phenomenon, the H. pylori genome is very rich in R-M systems, with considerable variation in potential recognition sequences. For this reason the protective aspect of the methyltransferase gene has been proposed as a tool for typing H. pylori isolates. We studied the expression of H. pylori methyltransferases by digesting the genomic DNAs of 50 strains with 31 restriction endonucleases. We conclude that methyltransferase diversity is sufficiently high to enable the use of the genomic methylation status as a typing tool. The stability of methyltransferase expression was assessed by comparing the methylation status of genomic DNAs from strains that were isolated either from the same patient at different times or from different stomach locations (antrum and corpus). We found a group of five methyltransferases common to all tested strains. These five may be characteristic of the genetic pool analyzed, and their biological role may be important in the host/bacterium interaction.
Collapse
Affiliation(s)
- Filipa F Vale
- Faculdade de Engenharia, Universidade Católica Portuguesa, Rio de Mouro, Portugal
| | | |
Collapse
|
35
|
Oyarzabal OA, Rad R, Backert S. Conjugative transfer of chromosomally encoded antibiotic resistance from Helicobacter pylori to Campylobacter jejuni. J Clin Microbiol 2007; 45:402-8. [PMID: 17135441 PMCID: PMC1829062 DOI: 10.1128/jcm.01456-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 09/18/2006] [Accepted: 11/15/2006] [Indexed: 01/24/2023] Open
Abstract
Many strains of Helicobacter pylori are naturally competent for transformation and able to transfer chromosomal DNA among different isolates using a conjugation-like mechanism. In this study, we sought to determine whether H. pylori can transfer DNA into Campylobacter jejuni, a closely related species of the Campylobacterales group. To monitor the transfer, a chromosomally encoded streptomycin resistance cassette prearranged by a specific mutation in the rpsL gene of H. pylori was used. Mating of the bacteria on plates or in liquid broth medium produced C. jejuni progeny containing the streptomycin marker. DNA transfer was unidirectional, from H. pylori to C. jejuni, and the progeny were genetically identical to C. jejuni recipient strains. DNase I treatment reduced but did not eliminate transfer, and DNase I-treated cell supernatants did not transform, ruling out phage transduction. Recombinants also did not occur when the mating bacteria were separated by a membrane, suggesting that DNA transfer requires cell-to-cell contact. Transfer of the streptomycin marker was independent of the H. pylori comB transformation system, the cag pathogenicity island, and another type IV secretion system called tfs3. These findings indicated that a DNase I-resistant, conjugation-like mechanism may contribute to horizontal DNA transfer between different members of the Campylobacteriales group. The significance of this DNA uptake by C. jejuni in the context of acquiring antibiotic resistance is discussed.
Collapse
Affiliation(s)
- Omar A Oyarzabal
- Department of Poultry Science, Auburn University, Auburn, Alabama 36849, USA
| | | | | |
Collapse
|
36
|
Affiliation(s)
| | | | - Arnaldo Zaha
- Universidade Federal do Rio Grande do Sul, Brazil
| |
Collapse
|
37
|
Bayliss CD, Callaghan MJ, Moxon ER. High allelic diversity in the methyltransferase gene of a phase variable type III restriction-modification system has implications for the fitness of Haemophilus influenzae. Nucleic Acids Res 2006; 34:4046-59. [PMID: 16914439 PMCID: PMC1557822 DOI: 10.1093/nar/gkl568] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2006] [Revised: 07/21/2006] [Accepted: 07/22/2006] [Indexed: 11/29/2022] Open
Abstract
Phase variable restriction-modification (R-M) systems are widespread in Eubacteria. Haemophilus influenzae encodes a phase variable homolog of Type III R-M systems. Sequence analysis of this system in 22 non-typeable H.influenzae isolates revealed a hypervariable region in the central portion of the mod gene whereas the res gene was conserved. Maximum likelihood (ML) analysis indicated that most sites outside this hypervariable region experienced strong negative selection but evidence of positive selection for a few sites in adjacent regions. A phylogenetic analysis of 61 Type III mod genes revealed clustering of these H.influenzae mod alleles with mod genes from pathogenic Neisseriae and, based on sequence analysis, horizontal transfer of the mod-res complex between these species. Neisserial mod alleles also contained a hypervariable region and all mod alleles exhibited variability in the repeat tract. We propose that this hypervariable region encodes the target recognition domain (TRD) of the Mod protein and that variability results in alterations to the recognition sequence of this R-M system. We argue that the high allelic diversity and phase variable nature of this R-M system have arisen due to selective pressures exerted by diversity in bacteriophage populations but also have implications for other fitness attributes of these bacterial species.
Collapse
Affiliation(s)
- Christopher D Bayliss
- Molecular Infectious Diseases Group, Weatherall Institute for Molecular Medicine, University of Oxford, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.
| | | | | |
Collapse
|
38
|
Watanabe M, Yuzawa H, Handa N, Kobayashi I. Hyperthermophilic DNA methyltransferase M.PabI from the archaeon Pyrococcus abyssi. Appl Environ Microbiol 2006; 72:5367-75. [PMID: 16885288 PMCID: PMC1538712 DOI: 10.1128/aem.00433-06] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 05/08/2006] [Indexed: 12/31/2022] Open
Abstract
Genome sequence comparisons among multiple species of Pyrococcus, a hyperthermophilic archaeon, revealed a linkage between a putative restriction-modification gene complex and several large genome polymorphisms/rearrangements. From a region apparently inserted into the Pyrococcus abyssi genome, a hyperthermoresistant restriction enzyme [PabI; 5'-(GTA/C)] with a novel structure was discovered. In the present work, the neighboring methyltransferase homologue, M.PabI, was characterized. Its N-terminal half showed high similarities to the M subunit of type I systems and a modification enzyme of an atypical type II system, M.AhdI, while its C-terminal half showed high similarity to the S subunit of type I systems. M.PabI expressed within Escherichia coli protected PabI sites from RsaI, a PabI isoschizomer. M.PabI, purified following overexpression, was shown to generate 5'-GTm6AC, which provides protection against PabI digestion. M.PabI was found to be highly thermophilic; it showed methylation at 95 degrees C and retained at least half the activity after 9 min at 95 degrees C. This hyperthermophilicity allowed us to obtain activation energy and other thermodynamic parameters for the first time for any DNA methyltransferases. We also determined the kinetic parameters of kcat, Km, DNA, and Km, AdoMet. The activity of M.PabI was optimal at a slightly acidic pH and at an NaCl concentration of 200 to 500 mM and was inhibited by Zn2+ but not by Mg2+, Ca2+, or Mn2+. These and previous results suggest that this unique methyltransferase and PabI constitute a type II restriction-modification gene complex that inserted into the P. abyssi genome relatively recently. As the most thermophilic of all the characterized DNA methyltransferases, M.PabI may help in the analysis of DNA methylation and its application to DNA engineering.
Collapse
Affiliation(s)
- Miki Watanabe
- Laboratory of Social Genome Sciences, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
39
|
Zhao F, Zhang X, Liang C, Wu J, Bao Q, Qin S. Genome-wide analysis of restriction-modification system in unicellular and filamentous cyanobacteria. Physiol Genomics 2005; 24:181-90. [PMID: 16368872 DOI: 10.1152/physiolgenomics.00255.2005] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Cyanobacteria are an ancient group of gram-negative bacteria with strong genome size variation ranging from 1.6 to 9.1 Mb. Here, we first retrieved all the putative restriction-modification (RM) genes in the draft genome of Spirulina and then performed a range of comparative and bioinformatic analyses on RM genes from unicellular and filamentous cyanobacterial genomes. We have identified 6 gene clusters containing putative Type I RMs and 11 putative Type II RMs or the solitary methyltransferases (MTases). RT-PCR analysis reveals that 6 of 18 MTases are not expressed in Spirulina, whereas one hsdM gene, with a mutated cognate hsdS, was detected to be expressed. Our results indicate that the number of RM genes in filamentous cyanobacteria is significantly higher than in unicellular species, and this expansion of RM systems in filamentous cyanobacteria may be related to their wide range of ecological tolerance. Furthermore, a coevolutionary pattern is found between hsdM and hsdR, with a large number of site pairs positively or negatively correlated, indicating the functional importance of these pairing interactions between their tertiary structures. No evidence for positive selection is found for the majority of RMs, e.g., hsdM, hsdS, hsdR, and Type II restriction endonuclease gene families, while a group of MTases exhibit a remarkable signature of adaptive evolution. Sites and genes identified here to have been under positive selection would provide targets for further research on their structural and functional evaluations.
Collapse
Affiliation(s)
- Fangqing Zhao
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | | | | | | | | | | |
Collapse
|
40
|
Backert S, Kwok T, König W. Conjugative plasmid DNA transfer in Helicobacter pylori mediated by chromosomally encoded relaxase and TraG-like proteins. MICROBIOLOGY-SGM 2005; 151:3493-3503. [PMID: 16272373 DOI: 10.1099/mic.0.28250-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
One of the striking characteristics of Helicobacter pylori is the extensive genetic diversity among clinical isolates. This diversity has been attributed to an elevated mutation rate, impaired DNA repair, DNA transfer and frequent recombination events. Plasmids have also been identified in H. pylori but it remained unknown whether conjugation can contribute to DNA transfer between clinical isolates. To examine whether H. pylori possesses intrinsic capability for conjugative plasmid transfer, shuttle vectors were introduced into H. pylori containing an oriT sequence of the conjugative IncPalpha plasmid RP4 but no mobilization (mob) genes. It was shown that these vectors could stably replicate and be mobilized among clinical H. pylori strains. It was also demonstrated that traG and relaxase (rlx) homologues carried on the H. pylori chromosome were important for plasmid transfer. Primer extension studies and mutagenesis further confirmed that the relaxase homologue rlx1 in H. pylori encodes a functional enzyme capable of acting on the RP4 oriT. Furthermore, the findings of this study indicate that traG and rlx1 act independently of the previously described type IV secretion systems, including that encoded by the cag pathogenicity island and the comB transformation apparatus, in mediating conjugative plasmid DNA transfer between H. pylori strains.
Collapse
Affiliation(s)
- Steffen Backert
- Department of Medical Microbiology, Otto von Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Terry Kwok
- Department of Medical Microbiology, Otto von Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany
| | - Wolfgang König
- Department of Medical Microbiology, Otto von Guericke University, Leipziger Str. 44, D-39120 Magdeburg, Germany
| |
Collapse
|
41
|
Handa N, Kobayashi I. Type III restriction is alleviated by bacteriophage (RecE) homologous recombination function but enhanced by bacterial (RecBCD) function. J Bacteriol 2005; 187:7362-73. [PMID: 16237019 PMCID: PMC1272966 DOI: 10.1128/jb.187.21.7362-7373.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 08/18/2005] [Indexed: 11/20/2022] Open
Abstract
Previous works have demonstrated that DNA breaks generated by restriction enzymes stimulate, and are repaired by, homologous recombination with an intact, homologous DNA region through the function of lambdoid bacteriophages lambda and Rac. In the present work, we examined the effect of bacteriophage functions, expressed in bacterial cells, on restriction of an infecting tester phage in a simple plaque formation assay. The efficiency of plaque formation on an Escherichia coli host carrying EcoRI, a type II restriction system, is not increased by the presence of Rac prophage-presumably because, under the single-infection conditions of the plaque assay, a broken phage DNA cannot find a homologue with which to recombine. To our surprise, however, we found that the efficiency of plaque formation in the presence of a type III restriction system, EcoP1 or EcoP15, is increased by the bacteriophage-mediated homologous recombination functions recE and recT of Rac prophage. This type III restriction alleviation does not depend on lar on Rac, unlike type I restriction alleviation. On the other hand, bacterial RecBCD-homologous recombination function enhances type III restriction. These results led us to hypothesize that the action of type III restriction enzymes takes place on replicated or replicating DNA in vivo and leaves daughter DNAs with breaks at nonallelic sites, that bacteriophage-mediated homologous recombination reconstitutes an intact DNA from them, and that RecBCD exonuclease blocks this repair by degradation from the restriction breaks.
Collapse
Affiliation(s)
- Naofumi Handa
- Laboratory of Social Genome Sciences, Department of Medical Genome Sciences, Graduate School of Frontier Science and Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | |
Collapse
|
42
|
Ichige A, Kobayashi I. Stability of EcoRI restriction-modification enzymes in vivo differentiates the EcoRI restriction-modification system from other postsegregational cell killing systems. J Bacteriol 2005; 187:6612-21. [PMID: 16166522 PMCID: PMC1251573 DOI: 10.1128/jb.187.19.6612-6621.2005] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 07/11/2005] [Indexed: 11/20/2022] Open
Abstract
Certain type II restriction modification gene systems can kill host cells when these gene systems are eliminated from the host cells. Such ability to cause postsegregational killing of host cells is the feature of bacterial addiction modules, each of which consists of toxin and antitoxin genes. With these addiction modules, the differential stability of toxin and antitoxin molecules in cells plays an essential role in the execution of postsegregational killing. We here examined in vivo stability of the EcoRI restriction enzyme (toxin) and modification enzyme (antitoxin), the gene system of which has previously been shown to cause postsegregational host killing in Escherichia coli. Using two different methods, namely, quantitative Western blot analysis and pulse-chase immunoprecipitation analysis, we demonstrated that both the EcoRI restriction enzyme and modification enzyme are as stable as bulk cellular proteins and that there is no marked difference in their stability. The numbers of EcoRI restriction and modification enzyme molecules present in a host cell during the steady-state growth were estimated. We monitored changes in cellular levels of the EcoRI restriction and modification enzymes during the postsegregational killing. Results from these analyses together suggest that the EcoRI gene system does not rely on differential stability between the toxin and the antitoxin molecules for execution of postsegregational cell killing. Our results provide insights into the mechanism of postsegregational killing by restriction-modification systems, which seems to be distinct from mechanisms of postsegregational killing by other bacterial addiction modules.
Collapse
Affiliation(s)
- Asao Ichige
- Department of Medical Genome Sciences, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | |
Collapse
|
43
|
Gorrell RJ, Yang J, Kusters JG, van Vliet AHM, Robins-Browne RM. Restriction of DNA encoding selectable markers decreases the transformation efficiency of Helicobacter pylori. ACTA ACUST UNITED AC 2005; 44:213-9. [PMID: 15866218 DOI: 10.1016/j.femsim.2004.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2004] [Revised: 10/19/2004] [Accepted: 10/20/2004] [Indexed: 11/18/2022]
Abstract
Helicobacter pylori populations recovered from the human stomach display extensive recombination and quasispecies development, and this suggests frequent exchange of DNA between different strains in vivo. In vitro, however, most H. pylori strains display restriction to the uptake of non-self DNA, as measured using selectable markers, regardless of their competency for transformation with self DNA. We have examined the effect of different selectable markers on double-crossover recombination efficiencies in three reference strains (1061, 26695 & SS1) and one clinical isolate (CHP1) of H. pylori. All strains were efficiently transformable to kanamycin or chloramphenicol resistance by using self-genomic DNA from isogenic mutants bearing the aphA3 or cat cassettes, respectively. However, strains 26695 and CHP1 showed a 3-5-log reduction in transformation efficiency by non-self recombinant DNA containing aphA3, when compared to cat. Strain 1061 readily accepted either cassette, and strain SS1 was poorly tolerant of any non-self DNA. Genome-wide random mutagenesis of these strains was only achievable with a selectable marker that allowed high transformation efficiency. Digestion of 32P-labelled cassettes by H. pylori lysates mirrored the transformation results and indicated that in some strains these cassettes are the targets of enzymatic restriction.
Collapse
Affiliation(s)
- Rebecca J Gorrell
- Department of Microbiology & Immunology, University of Melbourne, Parkville Vic. 3010, Australia; Microbiological Research Unit, Murdoch Childrens Research Institute, Parkville Vic. 3052, Australia.
| | | | | | | | | |
Collapse
|
44
|
Ishikawa K, Watanabe M, Kuroita T, Uchiyama I, Bujnicki JM, Kawakami B, Tanokura M, Kobayashi I. Discovery of a novel restriction endonuclease by genome comparison and application of a wheat-germ-based cell-free translation assay: PabI (5'-GTA/C) from the hyperthermophilic archaeon Pyrococcus abyssi. Nucleic Acids Res 2005; 33:e112. [PMID: 16040595 PMCID: PMC1178009 DOI: 10.1093/nar/gni113] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 06/18/2005] [Accepted: 06/30/2005] [Indexed: 11/22/2022] Open
Abstract
To search for restriction endonucleases, we used a novel plant-based cell-free translation procedure that bypasses the toxicity of these enzymes. To identify candidate genes, the related genomes of the hyperthermophilic archaea Pyrococcus abyssi and Pyrococcus horikoshii were compared. In line with the selfish mobile gene hypothesis for restriction-modification systems, apparent genome rearrangement around putative restriction genes served as a selecting criterion. Several candidate restriction genes were identified and then amplified in such a way that they were removed from their own translation signal. During their cloning into a plasmid, the genes became connected with a plant translation signal. After in vitro transcription by T7 RNA polymerase, the mRNAs were separated from the template DNA and translated in a wheat-germ-based cell-free protein synthesis system. The resulting solution could be directly assayed for restriction activity. We identified two deoxyribonucleases. The novel enzyme was denoted as PabI, purified and found to recognize 5'-GTAC and leave a 3'-TA overhang (5'-GTA/C), a novel restriction enzyme-generated terminus. PabI is active up to 90 degrees C and optimally active at a pH of around 6 and in NaCl concentrations ranging from 100 to 200 mM. We predict that it has a novel 3D structure.
Collapse
Affiliation(s)
- Ken Ishikawa
- Department of Medical Genome Sciences, Graduate School of Frontier Science, University of Tokyo4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of TokyoTokyo, Japan
| | - Miki Watanabe
- Department of Medical Genome Sciences, Graduate School of Frontier Science, University of Tokyo4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Toshihiro Kuroita
- TSURUGA Institute of Biotechnology, Toyobo Co., LtdTsuruga-shi, Japan
| | | | - Janusz M. Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell BiologyWarsaw, Poland
| | - Bunsei Kawakami
- TSURUGA Institute of Biotechnology, Toyobo Co., LtdTsuruga-shi, Japan
| | - Masaru Tanokura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, University of TokyoTokyo, Japan
| | - Ichizo Kobayashi
- Department of Medical Genome Sciences, Graduate School of Frontier Science, University of Tokyo4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Graduate Program in Biophysics and Biochemistry, Graduate School of Science, University of TokyoTokyo, Japan
| |
Collapse
|
45
|
Mruk I, Cichowicz M, Kaczorowski T. Characterization of the LlaCI methyltransferase from Lactococcus lactis subsp. cremoris W15 provides new insights into the biology of type II restriction-modification systems. MICROBIOLOGY-SGM 2004; 149:3331-3341. [PMID: 14600245 DOI: 10.1099/mic.0.26562-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The gene encoding the LlaCI methyltransferase (M.LlaCI) from Lactococcus lactis subsp. cremoris W15 was overexpressed in Escherichia coli. The enzyme was purified to apparent homogeneity using three consecutive steps of chromatography on phosphocellulose, blue-agarose and Superose 12HR, yielding a protein of M(r) 31 300+/-1000 under denaturing conditions. The exact position of the start codon AUG was determined by protein microsequencing. This enzyme recognizes the specific palindromic sequence 5'-AAGCTT-3'. Purified M.LlaCI was characterized. Unlike many other methyltransferases, M.LlaCI exists in solution predominantly as a dimer. It modifies the first adenine residue at the 5' end of the specific sequence to N(6)-methyladenine and thus is functionally identical to the corresponding methyltransferases of the HindIII (Haemophilus influenzae Rd) and EcoVIII (Escherichia coli E1585-68) restriction-modification systems. This is reflected in the identity of M.LlaCI with M.HindIII and M.EcoVIII noted at the amino acid sequence level (50 % and 62 %, respectively) and in the presence of nine sequence motifs conserved among N(6)-adenine beta-class methyltransferases. However, polyclonal antibodies raised against M.EcoVIII cross-reacted with M.LlaCI but not with M.HindIII. Restriction endonucleases require Mg(2+) for phosphodiester bond cleavage. Mg(2+) was shown to be a strong inhibitor of the M.LlaCI enzyme and its isospecific homologues. This observation suggests that sensitivity of the M.LlaCI to Mg(2+) may strengthen the restriction activity of the cognate endonuclease in the bacterial cell. Other biological implications of this finding are also discussed.
Collapse
Affiliation(s)
- Iwona Mruk
- Department of Microbiology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | - Magdalena Cichowicz
- Department of Microbiology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| | - Tadeusz Kaczorowski
- Department of Microbiology, University of Gdańsk, Kładki 24, 80-822 Gdańsk, Poland
| |
Collapse
|
46
|
Sibley MH, Raleigh EA. Cassette-like variation of restriction enzyme genes in Escherichia coli C and relatives. Nucleic Acids Res 2004; 32:522-34. [PMID: 14744977 PMCID: PMC373321 DOI: 10.1093/nar/gkh194] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2003] [Revised: 12/08/2003] [Accepted: 12/08/2003] [Indexed: 11/13/2022] Open
Abstract
A surprising result of comparative bacterial genomics has been the large amount of DNA found to be present in one strain but not in another of the same species. We examine in detail one location where gene content varies extensively, the restriction cluster in Escherichia coli. This region is designated the Immigration Control Region (ICR) for the density and variability of restriction functions found there. To better define the boundaries of this variable locus, we determined the sequence of the region from a restrictionless strain, E.coli C. Here we compare the 13.7 kb E.coli C sequence spanning the site of the ICR with corresponding sequences from five E.coli strains and Salmonella typhimurium LT2. To discuss this variation, we adopt the term 'framework' to refer to genes that are stable components of genomes within related lineages, while 'migratory' genes are transient inhabitants of the genome. Strikingly, seven different migratory DNA segments, encoding different sets of genes and gene fragments, alternatively occupy a single well-defined location in the seven strains examined. The flanking framework genes, yjiS and yjiA, display approximately normal patterns of conservation. The patterns observed are consistent with the action of a site-specific recombinase. Since no nearby gene codes for a likely recombinase of known families, such a recombinase must be of a new family or unlinked.
Collapse
|
47
|
|
48
|
|
49
|
Han FC, Ng HC, Ho B. Stability of randomly amplified polymorphic DNA fingerprinting in genotyping clinical isolates of Helicobacter pylori. World J Gastroenterol 2003; 9:2021-4. [PMID: 12970898 PMCID: PMC4656666 DOI: 10.3748/wjg.v9.i9.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: H pylori genomes are highly diversified. This project was designed to genotype H pylori isolates by the polymerase chain reaction (PCR)-based randomly amplified polymorphic DNA (RAPD) fingerprinting technique and to verify its stability by Southern blotting and DNA sequencing.
METHODS: Clinical isolates of H pylori were cultured from gastric antra and cardia of 73 individuals, and genomic DNA was prepared for each isolate. RAPD was carried out under optimized conditions. 23S rDNA was regarded as an internal control, and a 361 bp rDNA fragment (RDF) was used as a probe to screen the RAPD products by Southern blotting. Ten RDFs from different clinical isolates and the flanking regions (both upstream and downstream) of four RDFs were amplified and sequenced.
RESULTS: H pylori isolates from different individuals had different RAPD profiles, but the profiles for isolates cultured from different gastric sites of a given individual were identical in all but one case. Isolates from 27 individuals were RDF positive by Southern blotting. Sequences of the RDFs and their flanking regions were almost the same between the RDF positive and negative isolates as determined by Southern blotting. There was no binding site for random PCR primer inside the sequences.
CONCLUSION: RAPD is very useful in genotyping H pylori grossly on a large scale. However, it seems unstable in amplification of low yield fragments, especially those that do not appear as visible bands on the agarose gel stained with EB, since the primer is partially matched to the template.
Collapse
Affiliation(s)
- Feng-Chan Han
- Department of Microbiology, Faculty of Medicine, National University of Singapore, Republic of Singapore.
| | | | | |
Collapse
|
50
|
Han FC, Gong M, Ng HC, Ho B. Identification of H. pylori strain specific DNA sequences between two clinical isolates from NUD and gastric ulcer by SSH. World J Gastroenterol 2003; 9:1747-51. [PMID: 12918113 PMCID: PMC4611536 DOI: 10.3748/wjg.v9.i8.1747] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: The genomes of Helicobacter pylori (H. pylori) from different individuals are different. This project was to identify the strain specific DNA sequences between two clinical H. pylori isolates by suppression subtractive hybridization (SSH).
METHODS: Two clinical H. pylori isolates, one from gastric ulcer (GU, tester) and the other from non-ulcer dyspepsia (NUD, driver), were cultured and the genomic DNA was prepared and submitted to Alu I digestion. Then two different adaptors were ligated respectively to the 5’-end of two aliquots of the tester DNA fragments and SSH was made between the tester and driver DNA. The un-hybridized tester DNA sequences were amplified by two sequential PCR and cloned into pGEM-T-Easy Vector. The tester strain specific inserts were screened and disease related DNA sequences were identified by dot blotting.
RESULTS: Among the 240 colonies randomly chosen, 50 contained the tester strain specific DNA sequences. Twenty three inserts were sequenced and the sizes ranged from 261 bp to 1036 bp. Fifteen inserts belonged to the H.pylori plasmid pHPO100 that is about 3.5 kb and codes a replication protein A. Other inserts had patches of homologous to the genes of H.pylori in GenBank. Various patterns of dot blots were given and no GU strain unique DNA sequences were found when 4 inserts were used as probes to screen the genomic DNA from 27 clinical isolates, 8 from GU, 12 from duodenum ulcer (DU), 4 from GU-DU, 2 from NUD and 1 from gastric cancer (GC). But a 670 bp DNA fragment (GU198) that was a bit homologous to the 3’-end of the gene of thymidylate kinase was positive in 7 GU strains (7/8), 3 GU-DU strains (3/4) and 3 DU strains (3/12). A 384 bp fragment (GU79) of the replication gene A (repA) was positive only in 4 H.pylori isolates, 2 from GU and 2 from GU-DU.
CONCLUSION: Differences exist in the genes of different H.pylori isolates. SSH is very effective to screen H.pylori strain specific DNA sequences between two clinical isolates, and some of these sequences may have clinical significance.
Collapse
Affiliation(s)
- Feng-Chan Han
- Department of Microbiology, Faculty of Medicine, National University of Singapore.
| | | | | | | |
Collapse
|