1
|
Frankenberg SR, Lucas S, Feigin CY, Doronina L, Steffen R, Hartley G, Grady P, Menzies BR, De Paoli-Iseppi R, Donnellan S, Klein M, Newton A, Black JR, Clark M, Cooper S, O'Neill R, Clark N, Schmitz J, Pask AJ. Unearthing the secrets of Australia's most enigmatic and cryptic mammal, the marsupial mole. SCIENCE ADVANCES 2025; 11:eado4140. [PMID: 39742480 DOI: 10.1126/sciadv.ado4140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025]
Abstract
The marsupial moles are arguably Australia's most enigmatic marsupials. Almost indistinguishable from placental (eutherian) moles, they provide a striking example of convergent evolution. Exploring the genome of the southern marsupial mole, we provide insights into its unusual biology. We show definitively by retrophylogenomic analysis that marsupial moles are most closely related to bandicoots and bilbies (order Peramelemorphia). We find evidence of a marked decline in marsupial mole effective population size, most likely preceding the arrival of humans in regions near its range, and potentially corresponding to periods of climatic change. Our analysis of loss of eye function-an adaptation to subterranean life-reveals a structured order of loss of gene function associated first with the lens, then cone, and finally rod cells. Last, we identify genetic changes suggestive of adaptation to an oxygen-poor environment and of its evolution of partially descended testes.
Collapse
Affiliation(s)
- Stephen R Frankenberg
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sarah Lucas
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Charles Y Feigin
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Environment and Genetics, La Trobe University, Bundoora, Victoria 3086, Australia
| | - Liliya Doronina
- Institute of Experimental Pathology, ZMBE, University of Münster, 48149 Münster, Germany
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, Münster 48149, Germany
- JICE-Joint Institute for Individualisation in a Changing Environment, University of Münster, Hüfferstraße 1, Münster 48149, Germany
| | - Raphael Steffen
- Institute of Experimental Pathology, ZMBE, University of Münster, 48149 Münster, Germany
| | - Gabrielle Hartley
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Patrick Grady
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Brandon R Menzies
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Stephen Donnellan
- South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
| | - Mitzi Klein
- Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Axel Newton
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jay R Black
- School of Geography, Earth and Atmospheric Sciences; Melbourne Trace Analysis for Chemical, Earth and Environmental Sciences Platform, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael Clark
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Steven Cooper
- South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia
- School of Biological Sciences and Environment Institute, The University of Adelaide, South Australia 5005, Australia
| | - Rachel O'Neill
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Nathan Clark
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jürgen Schmitz
- Institute of Experimental Pathology, ZMBE, University of Münster, 48149 Münster, Germany
| | - Andrew J Pask
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
2
|
A potential role for endogenous proteins as sacrificial sunscreens and antioxidants in human tissues. Redox Biol 2015; 5:101-113. [PMID: 25911998 PMCID: PMC4412910 DOI: 10.1016/j.redox.2015.04.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 01/19/2023] Open
Abstract
Excessive ultraviolet radiation (UVR) exposure of the skin is associated with adverse clinical outcomes. Although both exogenous sunscreens and endogenous tissue components (including melanins and tryptophan-derived compounds) reduce UVR penetration, the role of endogenous proteins in absorbing environmental UV wavelengths is poorly defined. Having previously demonstrated that proteins which are rich in UVR-absorbing amino acid residues are readily degraded by broadband UVB-radiation (containing UVA, UVB and UVC wavelengths) here we hypothesised that UV chromophore (Cys, Trp and Tyr) content can predict the susceptibility of structural proteins in skin and the eye to damage by physiologically relevant doses (up to 15.4 J/cm2) of solar UVR (95% UVA, 5% UVB). We show that: i) purified suspensions of UV-chromophore-rich fibronectin dimers, fibrillin microfibrils and β- and γ-lens crystallins undergo solar simulated radiation (SSR)-induced aggregation and/or decomposition and ii) exposure to identical doses of SSR has minimal effect on the size or ultrastructure of UV chromophore-poor tropoelastin, collagen I, collagen VI microfibrils and α-crystallin. If UV chromophore content is a factor in determining protein stability in vivo, we would expect that the tissue distribution of Cys, Trp and Tyr-rich proteins would correlate with regional UVR exposure. From bioinformatic analysis of 244 key structural proteins we identified several biochemically distinct, yet UV chromophore-rich, protein families. The majority of these putative UV-absorbing proteins (including the late cornified envelope proteins, keratin associated proteins, elastic fibre-associated components and β- and γ-crystallins) are localised and/or particularly abundant in tissues that are exposed to the highest doses of environmental UVR, specifically the stratum corneum, hair, papillary dermis and lens. We therefore propose that UV chromophore-rich proteins are localised in regions of high UVR exposure as a consequence of an evolutionary pressure to express sacrificial protein sunscreens which reduce UVR penetration and hence mitigate tissue damage. Major structural proteins such as collagen I and tropoelastin are UVA-resistant. In contrast, proteins which are rich in Cys, Trp and Tyr residues are UV-susceptible. These proteins are concentrated in UV exposed tissues. UV-chromophore (Cys, Trp, Tyr)-rich proteins may act as endogenous sunscreens.
Collapse
|
3
|
Nikitina NV, Kidson SH. Eye development in the Cape dune mole rat. Dev Genes Evol 2014; 224:107-17. [PMID: 24570380 DOI: 10.1007/s00427-014-0468-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
Abstract
Studies on mammalian species with naturally reduced eyes can provide valuable insights into the evolutionary developmental mechanisms underlying the reduction of the eye structures. Because few naturally microphthalmic animals have been studied and eye reduction must have evolved independently in many of the modern groups, novel evolutionary developmental models for eye research have to be sought. Here, we present a first report on embryonic eye development in the Cape dune mole rat, Bathyergus suillus. The eyes of these animals contain all the internal structures characteristic of the normal eye but exhibit abnormalities in the anterior chamber structures. The lens is small but develops normally and exhibits a normal expression of α- and γ-crystallins. One of the interesting features of these animals is an extremely enlarged and highly pigmented ciliary body. In order to understand the molecular basis of this unusual feature, the expression pattern of an early marker of the ciliary zone, Ptmb4, was investigated in this animal. Surprisingly, in situ hybridization results revealed that Ptmb4 expression was absent from the ciliary body zone of the developing Bathyergus eye.
Collapse
Affiliation(s)
- Natalya V Nikitina
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa,
| | | |
Collapse
|
4
|
Li Y, Hough RB, Piatigorsky J. Tissue-specific activity of the blind mole rat and the two nucleotide-mutated mouse alphaB-crystallin promoter in transgenic mice. Proc Natl Acad Sci U S A 2007; 104:2608-13. [PMID: 17293452 PMCID: PMC1796782 DOI: 10.1073/pnas.0611684104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The alphaB-crystallin and HspB2 genes are located approximately 0.9 kb apart in a head-to-head arrangement in mammals. Previous experiments have shown that a truncated -668/+45 alphaB-crystallin enhancer/promoter fragment from blind mole rats (Spalax ehrenbergi), which have nonfunctional lenses, lacks lens activity and has enhanced muscle activity in transgenic mice. Here we show that the full-length mole rat alphaB-crystallin intergenic region behaves similarly in transgenic mice. A two-nucleotide mutation ((-273)CA-->G) in the mouse alphaB-crystallin enhancer/promoter fragment mimicking the wild-type mole rat sequence functionally converted the mouse promoter fragment to that of the wild-type mole rat promoter when tested in transgenic mice. The reciprocal mutation in the mole rat promoter fragment ((-272)G-->CA) did not affect its activity. Oligonucleotides from the wild-type mouse and mole rat alphaB-crystallin promoter region under study formed distinct complexes with nuclear proteins from cultured cells. The mouse mutant sequence lost binding ability, whereas the mutated mole rat sequence gained the ability to form a complex similar in size to that of the wild-type mouse oligonucleotide. Our data support the idea that blind mole rats' alphaB-crystallin promoter activity was modified during the evolution of subterranean life and shows that tissue-specific promoter activity can be modulated by changing as few as two apparently neutral nucleotides in the mouse alphaB-crystallin enhancer region, implying the importance of the context of regulatory sequences for promoter activity.
Collapse
Affiliation(s)
- Yan Li
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-0704
| | - R. Barry Hough
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-0704
| | - Joram Piatigorsky
- Laboratory of Molecular and Developmental Biology, National Eye Institute, National Institutes of Health, Bethesda, MD 20892-0704
- *To whom correspondence should be addressed at: Laboratory of Molecular and Developmental Biology, 7 Memorial Drive/Building 7, Room 100, Bethesda, MD 20892-0704. E-mail:
| |
Collapse
|
5
|
Liu Y, Zhang X, Luo L, Wu M, Zeng R, Cheng G, Hu B, Liu B, Liang JJ, Shang F. A novel alphaB-crystallin mutation associated with autosomal dominant congenital lamellar cataract. Invest Ophthalmol Vis Sci 2006; 47:1069-75. [PMID: 16505043 PMCID: PMC2078606 DOI: 10.1167/iovs.05-1004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To identify the mutation and the underlying mechanism of cataractogenesis in a five-generation autosomal dominant congenital lamellar cataract family. METHODS Nineteen mutation hot spots associated with autosomal dominant congenital cataract have been screened by PCR-based DNA sequencing. Recombinant wild-type and mutant human alphaB-crystallin were expressed in Escherichia coli and purified to homogeneity. The recombinant proteins were characterized by far UV circular dichroism, intrinsic tryptophan fluorescence, Bis-ANS fluorescence, multiangle light-scattering, and the measurement of chaperone activity. RESULTS A novel missense mutation in the third exon of the alphaB-crystallin gene (CRYAB) was found to cosegregate with the disease phenotype in a five-generation autosomal dominant congenital lamellar cataract family. The single-base substitution (G-->A) results in the replacement of the aspartic acid residue by asparagine at codon 140. Far UV circular dichroism spectra indicated that the mutation did not significantly alter the secondary structure. However, intrinsic tryptophan fluorescence spectra and Bis-ANS fluorescence spectra indicated that the mutation resulted in alterations in tertiary and/or quaternary structures and surface hydrophobicity of alphaB-crystallin. Multiangle light-scattering measurement showed that the mutant alphaB-crystallin tended to aggregate into a larger complex than did the wild-type. The mutant alphaB-crystallin was more susceptible than wild-type to thermal denaturation. Furthermore, the mutant alphaB-crystallin not only lost its chaperone-like activity, it also behaved as a dominant negative which inhibited the chaperone-like activity of wild-type alphaB-crystallin. CONCLUSIONS These data indicate that the altered tertiary and/or quaternary structures and the dominant negative effect of D140N mutant alphaB-crystallin underlie the molecular mechanism of cataractogenesis of this pedigree.
Collapse
Affiliation(s)
- Yizhi Liu
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xinyu Zhang
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | - Lixia Luo
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Mingxing Wu
- Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ruiping Zeng
- Medical Genetic Department, Sun Yat-sen University, Guangzhou, China
| | - Gang Cheng
- Daan Gene Diagnosis Center, Sun Yat-sen University, Guangzhou, China
| | - Bin Hu
- Daan Gene Diagnosis Center, Sun Yat-sen University, Guangzhou, China
| | - Bingfen Liu
- Center for Ophthalmic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jack J. Liang
- Center for Ophthalmic Research, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Fu Shang
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| |
Collapse
|
6
|
Nikitina NV, Maughan-Brown B, O'Riain MJ, Kidson SH. Postnatal development of the eye in the naked mole rat (Heterocephalus glaber). ACTA ACUST UNITED AC 2004; 277:317-37. [PMID: 15052660 DOI: 10.1002/ar.a.20025] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The naked mole rat (Heterocephalus glaber) is a subterranean rodent whose eyes are thought to be visually nonfunctional and as such is an ideal animal with which to pursue questions in evolutionary developmental biology. This report is the first in-depth study on the development and morphology of the naked mole rat eye. Using standard histological analysis and scanning and transmission electron microscopy, we describe the structural features of the eye. We further report on the morphological changes that accompany the development of this eye from neonate to adult and compare them with those that occur during mouse eye development. We observed numerous abnormalities in the shape and cellular arrangement of the structures of the anterior chamber, with notable malformations of the lens. Cell proliferation and cell death assays were conducted to investigate the possible causes of lens malformation. We found that neither of these processes appeared abnormal, indicating that they were not responsible for the lens phenotype of the mole rat. In order to investigate the process of lens differentiation, we analyzed the expression of gamma-crystallins using Western blots and immunocytochemistry. At birth, levels of gamma-crystallin appear normal, but soon thereafter, the gamma-crystallin expression is terminated. Absence of detectable gamma-crystallins in adults suggests that there is a gradual degradation and loss of these proteins. The evolutionary factors that could be responsible for the eye morphology of the naked mole rat are discussed. A model for abnormal lens differentiation and the role it plays in the morphogenesis of the rest of the eye in the naked mole rats is proposed.
Collapse
Affiliation(s)
- Natalya V Nikitina
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | | | | |
Collapse
|
7
|
Prasad SS, Schnerch A, Lam DY, To E, Jim J, Kaufman PL, Matsubara JA. Immunohistochemical investigations of neurofilament M' and alphabeta-crystallin in the magnocellular layers of the primate lateral geniculate nucleus. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 109:216-20. [PMID: 12531531 DOI: 10.1016/s0169-328x(02)00564-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The magnocellular and parvocellular pathways are two major processing streams in the primate visual system. Using high-density grid arrayed cDNA clones to hybridize to cDNA probes from cortical regions of each pathway, a list of candidate differentially expressed genes was produced [Mol. Brain Res. 82 (2000) 11-24]. Magnocellular pathway candidates include neurofilament M' and alphabeta-crystallin. Using antibodies generated against these proteins, immunohistochemical analysis revealed preferential staining of the magnocellular layers in the primate lateral geniculate nucleus, providing verification of two candidate magnocellular-enriched genes.
Collapse
Affiliation(s)
- S S Prasad
- Department of Ophthalmology and Visual Sciences, University of British Columbia, 2550 Willow Street, Vancouver, British Columbia, Canada V5Z 3N9
| | | | | | | | | | | | | |
Collapse
|
8
|
David-Gray ZK, Bellingham J, Munoz M, Avivi A, Nevo E, Foster RG. Adaptive loss of ultraviolet-sensitive/violet-sensitive (UVS/VS) cone opsin in the blind mole rat (Spalax ehrenbergi). Eur J Neurosci 2002; 16:1186-94. [PMID: 12405979 DOI: 10.1046/j.1460-9568.2002.02161.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In previous studies, fully functional rod and long-wavelength-sensitive (LWS) cone photopigments have been isolated from the eye of the subterranean blind mole rat (Spalax ehrenbergi superspecies). Spalax possesses subcutaneous atrophied eyes and lacks any ability to respond to visual images. By contrast this animal retains the ability to entrain circadian rhythms of locomotor behaviour to environmental light cues. As this is the only known function of the eye, the rod and LWS photopigments are thought to mediate this response. Most mammals are dichromats possessing, in addition to a single rod photopigment, two classes of cone photopigment, LWS and ultraviolet-sensitive/violet-sensitive (UVS/VS) with differing spectral sensitivities which mediate colour vision. In this paper we explore whether Spalax is a dichromat and has the potential to use colour discrimination for photoentrainment. Using immunocytochemistry and molecular approaches we demonstrate that Spalax is a LWS monochromat. Spalax lacks a functional UVS/VS cone photopigment due to the accumulation of several deleterious mutational changes that have rendered the gene nonfunctional. Using phylogenetic analysis we show that the loss of this class of photoreceptor is likely to have arisen from the visual ecology of this species, and is not an artefact of having an ancestor which lacked a functional UVS/VS cone photopigment. We conclude that colour discrimination is not a prerequisite for photoentrainment in this species.
Collapse
Affiliation(s)
- Z K David-Gray
- Department of Integrative and Molecular Neuroscience, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, Imperial College of Science, Technology and Medicine, Charing Cross Hospital, London, UK.
| | | | | | | | | | | |
Collapse
|
9
|
Avivi A, Oster H, Joel A, Beiles A, Albrecht U, Nevo E. Circadian genes in a blind subterranean mammal II: conservation and uniqueness of the three Period homologs in the blind subterranean mole rat, Spalax ehrenbergi superspecies. Proc Natl Acad Sci U S A 2002; 99:11718-23. [PMID: 12193657 PMCID: PMC129335 DOI: 10.1073/pnas.182423299] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2002] [Indexed: 11/18/2022] Open
Abstract
We demonstrated that a subterranean, visually blind mammal has a functional set of three Per genes that are important components of the circadian clockwork in mammals. The mole rat superspecies Spalax ehrenbergi is a blind subterranean animal that lives its entire life underground in darkness. It has degenerated eyes, but the retina and highly hypertrophic harderian gland are involved in photoperiodic perception. All three Per genes oscillate with a periodicity of 24 h in the suprachiasmatic nuclei, eye, and harderian gland and are expressed in peripheral organs. This oscillation is maintained under constant conditions. The light inducibility of sPer1 and sPer2, which are similar in structure to those of other mammals, indicates the role of these genes in clock resetting. However, sPer3 is unique in mammals and has two truncated isoforms, and its expressional analysis leaves its function unresolved. Per's expression analysis in the harderian gland suggests an important participation of this organ in the stabilization and resetting mechanism of the central pacemaker in the suprachiasmatic nuclei and in unique adaptation to life underground.
Collapse
Affiliation(s)
- Aaron Avivi
- Laboratory of Animal Molecular Evolution, Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel.
| | | | | | | | | | | |
Collapse
|
10
|
Hough RB, Avivi A, Davis J, Joel A, Nevo E, Piatigorsky J. Adaptive evolution of small heat shock protein/alpha B-crystallin promoter activity of the blind subterranean mole rat, Spalax ehrenbergi. Proc Natl Acad Sci U S A 2002; 99:8145-50. [PMID: 12060761 PMCID: PMC123035 DOI: 10.1073/pnas.122231099] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Blind mole rats have degenerated subcutaneous eyes that are visually nonfunctional. In this investigation, we have compared the tissue specificity of the small heat shock protein (shsp)/alphaB-crystallin promoter of the mole rat superspecies, Spalax ehrenbergi, with that of the mouse. Earlier experiments showed that mouse shsp/alphaB-crystallin promoter/enhancer activity is high in the lens and moderate in the heart and skeletal muscle of transgenic mice. Here, we show in transgenic mouse experiments using the firefly luciferase reporter gene that, despite relatively few changes in sequence, the mole rat shsp/alphaB-crystallin promoter/enhancer has selectively lost lens activity after 13.5 days of embryogenesis (E13.5). The ratios of mole rat/mouse promoter activity were 0.01 for lens, 1.7 for heart, and 13.6 for skeletal muscle in 8-wk-old transgenic mice. Our data indicate that the shsp/alphaB-crystallin promoter/enhancer has undergone adaptive changes corresponding to the subterranean evolution of the blind mole rat. We speculate that selective pressures on metabolic economy may have contributed to these tissue-specific modifications of promoter/enhancer function during adaptation to life underground.
Collapse
Affiliation(s)
- R B Hough
- Laboratory of Molecular and Developmental Biology, National Eye Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
11
|
Smulders RHPH, van Dijk MAM, Hoevenaars S, Lindner RA, Carver JA, de Jong WW. The eye lens protein alphaA-crystallin of the blind mole rat Spalax ehrenbergi: effects of altered functional constraints. Exp Eye Res 2002; 74:285-91. [PMID: 11950238 DOI: 10.1006/exer.2001.1124] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The rudimentary eyes of the mole rat Spalax ehrenbergi have lost their visual function, but are still required for the control of circadian rhythms. It has previously been found that alphaA-crystallin, a major eye lens protein in other mammals, evolved much faster in the mole rat than in rodents with normal vision. Yet, although mole rat alphaA-crystallin seems superfluous as a lens protein, its rate of change is still much slower than that of pseudogenes, suggesting some remaining function. The authors therefore studied the structure and function of recombinant mole rat alphaA-crystallin. Circular dichroism (CD), tryptophan fluorescence and gel permeation analyses indicated that the overall structure and stability of mole rat alphaA-crystallin are comparable to that of rat alphaA-crystallin. However, the chaperone-like activity of mole rat alphaA-crystallin is considerably lower than that of its rat orthologue. Two-dimensional NMR spectroscopy of mole rat alphaA-crystallin suggests that this may be in part due to a diminished flexibility of the C-terminal extension, which is thought to be important for the chaperoning capacity. Overall, mole rat alphaA-crystallin appears to still be a viable protein, confirming that it has some as yet elusive role, despite the loss of its primary lens function.
Collapse
Affiliation(s)
- Ronald H P H Smulders
- Department of Biochemistry, University of Nijmegen, 6500 HB Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
12
|
Wang K, Spector A. ATP causes small heat shock proteins to release denatured protein. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:6335-45. [PMID: 11737188 DOI: 10.1046/j.0014-2956.2001.02580.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Small heat-shock proteins (sHSPs) are a ubiquitous family of low molecular mass (15-30 kDa) stress proteins that have been found in all organisms. Under stress, sHSPs such as alpha-crystallin can act as chaperones binding partially denatured proteins and preventing further denaturation and aggregation. Recently, it has been proposed that the function of sHSPs is to stabilize stress-denatured protein and then act cooperatively with other HSPs to renature the partially denatured protein in an ATP-dependent manner. However, the process by which this occurs is obscure. As no significant phosphorylation of alpha-crystallin was observed during the renaturation, the role of ATP is not clear. It is now shown that ATP at normal physiological concentrations causes sHSPs to change their confirmation and release denatured protein, allowing other molecular chaperones such as HSP70 to renature the protein and renew its biological activity. In the absence of ATP, sHSPs such as alpha-crystallin are more efficient than HSP70 in preventing stress-induced protein aggregation. This work also indicates that in mammalian systems at normal cellular ATP concentrations, sHSPs are not effective chaperones.
Collapse
Affiliation(s)
- K Wang
- Department of Ophthalmology, Columbia University, New York 10032, USA.
| | | |
Collapse
|
13
|
Wang K. alpha-B- and alpha-A-crystallin prevent irreversible acidification-induced protein denaturation. Biochem Biophys Res Commun 2001; 287:642-7. [PMID: 11563843 DOI: 10.1006/bbrc.2001.5636] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
alpha-Crystallin (alpha), a major structural protein of the mammalian lens, is a large, physically heterogeneous macromolecule with an average molecular weight of approximately 800 kDa and is composed of two 20-kDa polypeptides designated as alphaA and alphaB. A line of evidence strongly suggests that alphaB may have an essential nonlenticular function. Here it is demonstrated that alphaB can bind partially denatured enzymes effectively at acidic pH and prevent their irreversible aggregation, but cannot prevent loss of enzyme activity. However, when the inactive luciferase bound to alphaB was treated with reticulocyte lysate (a rich source of molecular chaperones) and an ATP-generating system, more than 50% of the original luciferase activity could be recovered. Somewhat less activation was observed when alphaA-bound enzyme or the alpha-bound enzyme was renatured similarly. The overall results suggest that alpha acts as a chaperone to stabilize denaturing proteins at acidic pH so that at a later time they can be reactivated by other chaperones.
Collapse
Affiliation(s)
- K Wang
- Department of Ophthalmology, Columbia University, 630 West 168th Street, New York, New York 10032, USA.
| |
Collapse
|