1
|
Rojas-Pirela M, Andrade-Alviárez D, Rojas V, Kemmerling U, Cáceres AJ, Michels PA, Concepción JL, Quiñones W. Phosphoglycerate kinase: structural aspects and functions, with special emphasis on the enzyme from Kinetoplastea. Open Biol 2020; 10:200302. [PMID: 33234025 PMCID: PMC7729029 DOI: 10.1098/rsob.200302] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Phosphoglycerate kinase (PGK) is a glycolytic enzyme that is well conserved among the three domains of life. PGK is usually a monomeric enzyme of about 45 kDa that catalyses one of the two ATP-producing reactions in the glycolytic pathway, through the conversion of 1,3-bisphosphoglycerate (1,3BPGA) to 3-phosphoglycerate (3PGA). It also participates in gluconeogenesis, catalysing the opposite reaction to produce 1,3BPGA and ADP. Like most other glycolytic enzymes, PGK has also been catalogued as a moonlighting protein, due to its involvement in different functions not associated with energy metabolism, which include pathogenesis, interaction with nucleic acids, tumorigenesis progression, cell death and viral replication. In this review, we have highlighted the overall aspects of this enzyme, such as its structure, reaction kinetics, activity regulation and possible moonlighting functions in different protistan organisms, especially both free-living and parasitic Kinetoplastea. Our analysis of the genomes of different kinetoplastids revealed the presence of open-reading frames (ORFs) for multiple PGK isoforms in several species. Some of these ORFs code for unusually large PGKs. The products appear to contain additional structural domains fused to the PGK domain. A striking aspect is that some of these PGK isoforms are predicted to be catalytically inactive enzymes or ‘dead’ enzymes. The roles of PGKs in kinetoplastid parasites are analysed, and the apparent significance of the PGK gene duplication that gave rise to the different isoforms and their expression in Trypanosoma cruzi is discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaiso, Valparaiso 2373223, Chile
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Verónica Rojas
- Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaiso, Valparaiso 2373223, Chile
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Universidad de Chile, Facultad de Medicina, Santiago de Chile 8380453, Santigo de Chile
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Paul A Michels
- Centre for Immunity, Infection and Evolution, The King's Buildings, Edinburgh EH9 3FL, UK.,Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3FL, UK
| | - Juan Luis Concepción
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| |
Collapse
|
2
|
The UDP-glucose pyrophosphorylase from Giardia lamblia is redox regulated and exhibits promiscuity to use galactose-1-phosphate. Biochim Biophys Acta Gen Subj 2015; 1850:88-96. [DOI: 10.1016/j.bbagen.2014.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/26/2014] [Accepted: 10/06/2014] [Indexed: 12/21/2022]
|
3
|
A unique hexokinase in Cryptosporidium parvum, an apicomplexan pathogen lacking the Krebs cycle and oxidative phosphorylation. Protist 2014; 165:701-14. [PMID: 25216472 DOI: 10.1016/j.protis.2014.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 08/10/2014] [Accepted: 08/13/2014] [Indexed: 01/25/2023]
Abstract
Cryptosporidium parvum may cause virtually untreatable infections in AIDS patients, and is recently identified as one of the top four diarrheal pathogens in children in developing countries. Cryptosporidium differs from other apicomplexans (e.g., Plasmodium and Toxoplasma) by lacking many metabolic pathways including the Krebs cycle and cytochrome-based respiratory chain, thus relying mainly on glycolysis for ATP production. Here we report the molecular and biochemical characterizations of a hexokinase in C. parvum (CpHK). Our phylogenetic reconstructions indicated that apicomplexan hexokinases including CpHK were highly divergent from those of humans and animals (i.e., at the base of the eukaryotic clade). CpHK displays unique kinetic features that differ from those in mammals and Toxoplasma gondii (TgHK) in the preference towards various hexoses and its capacity to use ATP and other NTPs. CpHK also displays substrate inhibition by ATP. Moreover, 2-deoxy-D-glucose (2DG) could not only inhibit the CpHK activity, but also the parasite growth in vitro at concentrations nontoxic to host cells (IC(50) = 0.54 mM). While the exact action of 2-deoxy-D-glucose on the parasite is subject to further verification, our data suggest that CpHK and the glycolytic pathway may be explored for developing anti-cryptosporidial therapeutics.
Collapse
|
4
|
Butterfield ER, Howe CJ, Nisbet RER. An analysis of dinoflagellate metabolism using EST data. Protist 2012; 164:218-36. [PMID: 23085481 DOI: 10.1016/j.protis.2012.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 09/10/2012] [Accepted: 09/10/2012] [Indexed: 01/03/2023]
Abstract
The dinoflagellates are an important group of eukaryotic, single celled algae. They are the sister group of the Apicomplexa, a group of intracellular parasites and photosynthetic algae including the malaria parasite Plasmodium. Many apicomplexan mitochondria have a number of unusual features, including the lack of a pyruvate dehydrogenase and the existence of a branched TCA cycle. Here, we analyse dinoflagellate EST (expressed sequence tag) data to determine whether these features are apicomplexan-specific, or if they are more widespread. We show that dinoflagellates have replaced a key subunit (E1) of pyruvate dehydrogenase with a subunit of bacterial origin and that transcripts encoding many of the proteins that are essential in a conventional ATP synthase/Complex V are absent, as is the case in Apicomplexa. There is a pathway for synthesis of starch or glycogen as a storage carbohydrate. Transcripts encoding isocitrate lyase and malate synthase are present, consistent with ultrastructural reports of a glyoxysome. Finally, evidence for a conventional haem biosynthesis pathway is found, in contrast to the Apicomplexa, Chromera and early branching dinoflagellates (Perkinsus, Oxyrrhis).
Collapse
Affiliation(s)
- Erin R Butterfield
- Sansom Institute for Health Research, University of South Australia, North Terrace, Adelaide, SA 5000, Australia
| | | | | |
Collapse
|
5
|
Cellular and biochemical characterization of two closely related triosephosphate isomerases from Trichomonas vaginalis. Parasitology 2012; 139:1729-38. [DOI: 10.1017/s003118201200114x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYThe glycolytic enzyme triosephosphate isomerase catalyses the isomerization between glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. Here we report that Trichomonas vaginalis contains 2 fully functional tpi genes. Both genes are located in separated chromosomal context with different promoter regulatory elements and encode ORFs of 254 amino acids; the only differences between them are the character of 4 amino acids located in α-helices 1, 2 and 8. Semi-quantitative RT-PCR assays showed that tpi2 transcript is approximately 3·3-fold more abundant than tpi1. Using an anti-TvTIM2 polyclonal antibody it was demonstrated that TIM proteins have a cytoplasmic localization and both enzymes are able to complement an Escherichia coli strain carrying a deletion of its endogenous tpi gene. Both TIM proteins assemble as dimers and their secondary structure assessment is essentially identical to TIM from Saccharomyces cerevisiae. The kinetic catalytic constants of the recombinant enzymes using glyceraldehyde-3-phosphate as substrate are similar to the catalytic constants of TIMs from other organisms including parasitic protozoa. As T. vaginalis depends on glycolysis for ATP production, we speculate 2 possible reasons to maintain a duplicated tpi copy on its genome: an increase in gene dosage or an early event of neofunctionalization of TIM as a moonlighting protein.
Collapse
|
6
|
Ma’ayeh SY, Brook-Carter PT. Representational difference analysis identifies specific genes in the interaction of Giardia duodenalis with the murine intestinal epithelial cell line, IEC-6. Int J Parasitol 2012; 42:501-9. [DOI: 10.1016/j.ijpara.2012.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 10/28/2022]
|
7
|
Takishita K, Kolisko M, Komatsuzaki H, Yabuki A, Inagaki Y, Cepicka I, Smejkalová P, Silberman JD, Hashimoto T, Roger AJ, Simpson AGB. Multigene phylogenies of diverse Carpediemonas-like organisms identify the closest relatives of 'amitochondriate' diplomonads and retortamonads. Protist 2012; 163:344-55. [PMID: 22364773 DOI: 10.1016/j.protis.2011.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 12/14/2011] [Indexed: 11/28/2022]
Abstract
Diplomonads, retortamonads, and "Carpediemonas-like" organisms (CLOs) are a monophyletic group of protists that are microaerophilic/anaerobic and lack typical mitochondria. Most diplomonads and retortamonads are parasites, and the pathogen Giardia intestinalis is known to possess reduced mitochondrion-related organelles (mitosomes) that do not synthesize ATP. By contrast, free-living CLOs have larger organelles that superficially resemble some hydrogenosomes, organelles that in other protists are known to synthesize ATP anaerobically. This group represents an excellent system for studying the evolution of parasitism and anaerobic, mitochondrion-related organelles. Understanding these evolutionary transitions requires a well-resolved phylogeny of diplomonads, retortamonads and CLOs. Unfortunately, until now the deep relationships amongst these taxa were unresolved due to limited data for almost all of the CLO lineages. To address this, we assembled a dataset of up to six protein-coding genes that includes representatives from all six CLO lineages, and complements existing rRNA datasets. Multigene phylogenetic analyses place CLOs as well as the retortamonad Chilomastix as a paraphyletic basal assemblage to the lineage comprising diplomonads and the retortamonad Retortamonas. In particular, the CLO Dysnectes was shown to be the closest relative of the diplomonads + Retortamonas clade, with strong support. This phylogeny is consistent with a drastic degeneration of mitochondrion-related organelles during the evolution from a free-living organism resembling extant CLOs to a probable parasite/commensal common ancestor of diplomonads and Retortamonas.
Collapse
Affiliation(s)
- Kiyotaka Takishita
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Opperdoes FR, De Jonckheere JF, Tielens AG. Naegleria gruberi metabolism. Int J Parasitol 2011; 41:915-24. [DOI: 10.1016/j.ijpara.2011.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 03/30/2011] [Accepted: 04/23/2011] [Indexed: 01/08/2023]
|
9
|
Maruyama S, Suzaki T, Weber APM, Archibald JM, Nozaki H. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids. BMC Evol Biol 2011; 11:105. [PMID: 21501489 PMCID: PMC3101172 DOI: 10.1186/1471-2148-11-105] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 04/18/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Euglenophytes are a group of photosynthetic flagellates possessing a plastid derived from a green algal endosymbiont, which was incorporated into an ancestral host cell via secondary endosymbiosis. However, the impact of endosymbiosis on the euglenophyte nuclear genome is not fully understood due to its complex nature as a 'hybrid' of a non-photosynthetic host cell and a secondary endosymbiont. RESULTS We analyzed an EST dataset of the model euglenophyte Euglena gracilis using a gene mining program designed to detect laterally transferred genes. We found E. gracilis genes showing affinity not only with green algae, from which the secondary plastid in euglenophytes evolved, but also red algae and/or secondary algae containing red algal-derived plastids. Phylogenetic analyses of these 'red lineage' genes suggest that E. gracilis acquired at least 14 genes via eukaryote-to-eukaryote lateral gene transfer from algal sources other than the green algal endosymbiont that gave rise to its current plastid. We constructed an EST library of the aplastidic euglenid Peranema trichophorum, which is a eukaryovorous relative of euglenophytes, and also identified 'red lineage' genes in its genome. CONCLUSIONS Our data show genome mosaicism in E. gracilis and P. trichophorum. One possible explanation for the presence of these genes in these organisms is that some or all of them were independently acquired by lateral gene transfer and contributed to the successful integration and functioning of the green algal endosymbiont as a secondary plastid. Alternative hypotheses include the presence of a phagocytosed alga as the single source of those genes, or a cryptic tertiary endosymbiont harboring secondary plastid of red algal origin, which the eukaryovorous ancestor of euglenophytes had acquired prior to the secondary endosymbiosis of a green alga.
Collapse
Affiliation(s)
- Shinichiro Maruyama
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Bunkyo, Japan.
| | | | | | | | | |
Collapse
|
10
|
Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic "supergroups". Proc Natl Acad Sci U S A 2009; 106:3859-64. [PMID: 19237557 DOI: 10.1073/pnas.0807880106] [Citation(s) in RCA: 347] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nearly all of eukaryotic diversity has been classified into 6 suprakingdom-level groups (supergroups) based on molecular and morphological/cell-biological evidence; these are Opisthokonta, Amoebozoa, Archaeplastida, Rhizaria, Chromalveolata, and Excavata. However, molecular phylogeny has not provided clear evidence that either Chromalveolata or Excavata is monophyletic, nor has it resolved the relationships among the supergroups. To establish the affinities of Excavata, which contains parasites of global importance and organisms regarded previously as primitive eukaryotes, we conducted a phylogenomic analysis of a dataset of 143 proteins and 48 taxa, including 19 excavates. Previous phylogenomic studies have not included all major subgroups of Excavata, and thus have not definitively addressed their interrelationships. The enigmatic flagellate Andalucia is sister to typical jakobids. Jakobids (including Andalucia), Euglenozoa and Heterolobosea form a major clade that we name Discoba. Analyses of the complete dataset group Discoba with the mitochondrion-lacking excavates or "metamonads" (diplomonads, parabasalids, and Preaxostyla), but not with the final excavate group, Malawimonas. This separation likely results from a long-branch attraction artifact. Gradual removal of rapidly-evolving taxa from the dataset leads to moderate bootstrap support (69%) for the monophyly of all Excavata, and 90% support once all metamonads are removed. Most importantly, Excavata robustly emerges between unikonts (Amoebozoa + Opisthokonta) and "megagrouping" of Archaeplastida, Rhizaria, and chromalveolates. Our analyses indicate that Excavata forms a monophyletic suprakingdom-level group that is one of the 3 primary divisions within eukaryotes, along with unikonts and a megagroup of Archaeplastida, Rhizaria, and the chromalveolate lineages.
Collapse
|
11
|
|
12
|
Origins of a cyanobacterial 6-phosphogluconate dehydrogenase in plastid-lacking eukaryotes. BMC Evol Biol 2008; 8:151. [PMID: 18485228 PMCID: PMC2416651 DOI: 10.1186/1471-2148-8-151] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Accepted: 05/17/2008] [Indexed: 12/01/2022] Open
Abstract
Background Plastids have inherited their own genomes from a single cyanobacterial ancestor, but the majority of cyanobacterial genes, once retained in the ancestral plastid genome, have been lost or transferred into the eukaryotic host nuclear genome via endosymbiotic gene transfer. Although previous studies showed that cyanobacterial gnd genes, which encode 6-phosphogluconate dehydrogenase, are present in several plastid-lacking protists as well as primary and secondary plastid-containing phototrophic eukaryotes, the evolutionary paths of these genes remain elusive. Results Here we show an extended phylogenetic analysis including novel gnd gene sequences from Excavata and Glaucophyta. Our analysis demonstrated the patchy distribution of the excavate genes in the gnd gene phylogeny. The Diplonema gene was related to cytosol-type genes in red algae and Opisthokonta, while heterolobosean genes occupied basal phylogenetic positions with plastid-type red algal genes within the monophyletic eukaryotic group that is sister to cyanobacterial genes. Statistical tests based on exhaustive maximum likelihood analyses strongly rejected that heterolobosean gnd genes were derived from a secondary plastid of green lineage. In addition, the cyanobacterial gnd genes from phototrophic and phagotrophic species in Euglenida were robustly monophyletic with Stramenopiles, and this monophyletic clade was moderately separated from those of red algae. These data suggest that these secondary phototrophic groups might have acquired the cyanobacterial genes independently of secondary endosymbioses. Conclusion We propose an evolutionary scenario in which plastid-lacking Excavata acquired cyanobacterial gnd genes via eukaryote-to-eukaryote lateral gene transfer or primary endosymbiotic gene transfer early in eukaryotic evolution, and then lost either their pre-existing or cyanobacterial gene.
Collapse
|
13
|
Cáceres AJ, Quiñones W, Gualdrón M, Cordeiro A, Avilán L, Michels PAM, Concepción JL. Molecular and biochemical characterization of novel glucokinases from Trypanosoma cruzi and Leishmania spp. Mol Biochem Parasitol 2007; 156:235-45. [PMID: 17904661 DOI: 10.1016/j.molbiopara.2007.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2007] [Revised: 08/17/2007] [Accepted: 08/22/2007] [Indexed: 10/22/2022]
Abstract
Glucokinase genes, found in the genome databases of Trypanosoma cruzi and Leishmania major, were cloned and sequenced. Their expression in Escherichia coli resulted in the synthesis of soluble and active enzymes, TcGlcK and LmjGlcK, with a molecular mass of 43 kDa and 46 kDa, respectively. The enzymes were purified, and values of their kinetic parameters determined. The K(m) values for glucose were 1.0 mM for TcGlcK and 3.3 mM for LmjGlcK. For ATP, the K(m) values were 0.36 mM (TcGlcK) and 0.35 mM (LmjGlcK). A lower K(m) value for glucose (2.55 mM) was found when the (His)(6)-tag was removed from the recombinant LmjGlcK, whereas the TcGlcK retained the same value. The V(max)'s of the T. cruzi and L. major GlcKs were 36.3 and 30.9 U/mg of protein, respectively. No inhibition was exerted by glucose-6-phosphate. Similarly, no inhibition by inorganic pyrophosphate was found in contrast to previous observations made for the T. cruzi and L. mexicana hexokinases. Both trypanosomatid enzymes were only able to phosphorylate glucose indicating that they are true glucokinases. Gel-filtration chromatography showed that the GlcK of both trypanosomatids may occur as a monomer or dimer, dependent on the protein concentration. Both GlcK sequences have a type-1 peroxisome-targeting signal. Indeed, they were shown to be present inside glycosomes using three different methods. These glucokinases present highest, albeit still a moderate 24% sequence identity with their counterpart from Trichomonas vaginalis, which has been classified into group A of the hexokinase family. This group comprises mainly eubacterial and cyanobacterial glucokinases. Indeed, multiple sequence comparisons, as well as kinetic properties, strongly support the notion that these trypanosomatid enzymes belong to group A of the hexokinases, in which they, according to a phylogenetic analysis, form a separate cluster.
Collapse
Affiliation(s)
- Ana Judith Cáceres
- Unidad de Bioquímica de Parásitos, Centro de Ingeniería Genética, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | | | | | | | | | | | | |
Collapse
|
14
|
Makiuchi T, Nara T, Annoura T, Hashimoto T, Aoki T. Occurrence of multiple, independent gene fusion events for the fifth and sixth enzymes of pyrimidine biosynthesis in different eukaryotic groups. Gene 2007; 394:78-86. [PMID: 17383832 DOI: 10.1016/j.gene.2007.02.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 02/13/2007] [Accepted: 02/13/2007] [Indexed: 02/06/2023]
Abstract
The genes encoding orotate phosphoribosyltransferase (OPRT) and orotidine-5'-monophosphate decarboxylase (OMPDC), the fifth and sixth enzymes in the de novo pyrimidine biosynthetic pathway, are fused as OPRT-OMPDC in most eukaryotic groups. On the other hand, the inversely linked OMPDC-OPRT fusion is present in trypanosomatids, belonging to kinetoplastids together with bodonids in a supergroup, Euglenozoa. Here, we show the presence of OMPDC-OPRT in the bodonid, Bodo caudatus, while OPRT-OMPDC in Euglena gracilis, another euglenozoan species belonging to euglenoids. These results suggest that the OMPDC-OPRT fusion event occurred in a common ancestor of kinetoplastids. Genome sequence database searches further revealed the presence of OMPDC-OPRT in stramenopiles and cyanobacteria. Phylogenetic reconstruction of OPRT and OMPDC rejected statistically the monophyly of the OPRT domains of stramenopile and kinetoplastid OMPDC-OPRT, demonstrating that these gene fusions do not share a common evolutionary origin, despite the identical gene order. Thus, the OMPDC-OPRT fusion is likely to have emerged independently in these eukaryotic groups. Phylogenetic analyses also suggested that cyanobacterial OMPDC-OPRT arose via lateral transfer. We conclude that gene fusion events occur more frequently than previously thought and that lateral gene transfer has made a marked contribution to establishment of the rearranged structure of OPRT and OMPDC genes in eukaryotes.
Collapse
Affiliation(s)
- Takashi Makiuchi
- Department of Molecular and Cellular Parasitology, Juntendo University School of Medicine, Hongo 2-1-1, Bunkyo-ku, Tokyo 113-8421, Japan
| | | | | | | | | |
Collapse
|
15
|
Andersson JO, Sjögren ÅM, Horner DS, Murphy CA, Dyal PL, Svärd SG, Logsdon JM, Ragan MA, Hirt RP, Roger AJ. A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution. BMC Genomics 2007; 8:51. [PMID: 17298675 PMCID: PMC1805757 DOI: 10.1186/1471-2164-8-51] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Accepted: 02/14/2007] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Comparative genomic studies of the mitochondrion-lacking protist group Diplomonadida (diplomonads) has been lacking, although Giardia lamblia has been intensively studied. We have performed a sequence survey project resulting in 2341 expressed sequence tags (EST) corresponding to 853 unique clones, 5275 genome survey sequences (GSS), and eleven finished contigs from the diplomonad fish parasite Spironucleus salmonicida (previously described as S. barkhanus). RESULTS The analyses revealed a compact genome with few, if any, introns and very short 3' untranslated regions. Strikingly different patterns of codon usage were observed in genes corresponding to frequently sampled ESTs versus genes poorly sampled, indicating that translational selection is influencing the codon usage of highly expressed genes. Rigorous phylogenomic analyses identified 84 genes--mostly encoding metabolic proteins--that have been acquired by diplomonads or their relatively close ancestors via lateral gene transfer (LGT). Although most acquisitions were from prokaryotes, more than a dozen represent likely transfers of genes between eukaryotic lineages. Many genes that provide novel insights into the genetic basis of the biology and pathogenicity of this parasitic protist were identified including 149 that putatively encode variant-surface cysteine-rich proteins which are candidate virulence factors. A number of genomic properties that distinguish S. salmonicida from its human parasitic relative G. lamblia were identified such as nineteen putative lineage-specific gene acquisitions, distinct mutational biases and codon usage and distinct polyadenylation signals. CONCLUSION Our results highlight the power of comparative genomic studies to yield insights into the biology of parasitic protists and the evolution of their genomes, and suggest that genetic exchange between distantly-related protist lineages may be occurring at an appreciable rate in eukaryote genome evolution.
Collapse
Affiliation(s)
- Jan O Andersson
- Institute of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - Åsa M Sjögren
- The Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - David S Horner
- Department of Zoology, The Natural History Museum, London, UK
- Dipartimento di Scienze Biomolecolare e Biotecnologie, University of Milan, Milan, Italy
| | - Colleen A Murphy
- Institute for Marine Biosciences, National Research Council of Canada, Halifax, Nova Scotia, Canada
| | - Patricia L Dyal
- Department of Zoology, The Natural History Museum, London, UK
| | - Staffan G Svärd
- Institute of Cell and Molecular Biology, Uppsala University, Biomedical Center, Uppsala, Sweden
| | - John M Logsdon
- Roy J. Carver Center for Comparative Genomics, Department of Biological Sciences, University of Iowa, Iowa City, USA
| | - Mark A Ragan
- Institute for Marine Biosciences, National Research Council of Canada, Halifax, Nova Scotia, Canada
- ARC Centre in Bioinformatics, and Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Robert P Hirt
- Department of Zoology, The Natural History Museum, London, UK
- School of Biology, The Devonshire building, The University of Newcastle upon Tyne, UK
| | - Andrew J Roger
- The Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
16
|
Richards TA, Dacks JB, Campbell SA, Blanchard JL, Foster PG, McLeod R, Roberts CW. Evolutionary origins of the eukaryotic shikimate pathway: gene fusions, horizontal gene transfer, and endosymbiotic replacements. EUKARYOTIC CELL 2006; 5:1517-31. [PMID: 16963634 PMCID: PMC1563581 DOI: 10.1128/ec.00106-06] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Currently the shikimate pathway is reported as a metabolic feature of prokaryotes, ascomycete fungi, apicomplexans, and plants. The plant shikimate pathway enzymes have similarities to prokaryote homologues and are largely active in chloroplasts, suggesting ancestry from the plastid progenitor genome. Toxoplasma gondii, which also possesses an alga-derived plastid organelle, encodes a shikimate pathway with similarities to ascomycete genes, including a five-enzyme pentafunctional arom. These data suggests that the shikimate pathway and the pentafunctional arom either had an ancient origin in the eukaryotes or was conveyed by eukaryote-to-eukaryote horizontal gene transfer (HGT). We expand sampling and analyses of the shikimate pathway genes to include the oomycetes, ciliates, diatoms, basidiomycetes, zygomycetes, and the green and red algae. Sequencing of cDNA from Tetrahymena thermophila confirmed the presence of a pentafused arom, as in fungi and T. gondii. Phylogenies and taxon distribution suggest that the arom gene fusion event may be an ancient eukaryotic innovation. Conversely, the Plantae lineage (represented here by both Viridaeplantae and the red algae) acquired different prokaryotic genes for all seven steps of the shikimate pathway. Two of the phylogenies suggest a derivation of the Plantae genes from the cyanobacterial plastid progenitor genome, but if the full Plantae pathway was originally of cyanobacterial origin, then the five other shikimate pathway genes were obtained from a minimum of two other eubacterial genomes. Thus, the phylogenies demonstrate both separate HGTs and shared derived HGTs within the Plantae clade either by primary HGT transfer or secondarily via the plastid progenitor genome. The shared derived characters support the holophyly of the Plantae lineage and a single ancestral primary plastid endosymbiosis. Our analyses also pinpoints a minimum of 50 gene/domain loss events, demonstrating that loss and replacement events have been an important process in eukaryote genome evolution.
Collapse
Affiliation(s)
- Thomas A Richards
- Deparment of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
17
|
Stechmann A, Baumgartner M, Silberman JD, Roger AJ. The glycolytic pathway of Trimastix pyriformis is an evolutionary mosaic. BMC Evol Biol 2006; 6:101. [PMID: 17123440 PMCID: PMC1665464 DOI: 10.1186/1471-2148-6-101] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Accepted: 11/23/2006] [Indexed: 11/29/2022] Open
Abstract
Background Glycolysis and subsequent fermentation is the main energy source for many anaerobic organisms. The glycolytic pathway consists of ten enzymatic steps which appear to be universal amongst eukaryotes. However, it has been shown that the origins of these enzymes in specific eukaryote lineages can differ, and sometimes involve lateral gene transfer events. We have conducted an expressed sequence tag (EST) survey of the anaerobic flagellate Trimastix pyriformis to investigate the nature of the evolutionary origins of the glycolytic enzymes in this relatively unstudied organism. Results We have found genes in the Trimastix EST data that encode enzymes potentially catalyzing nine of the ten steps of the glycolytic conversion of glucose to pyruvate. Furthermore, we have found two different enzymes that in principle could catalyze the conversion of phosphoenol pyruvate (PEP) to pyruvate (or the reverse reaction) as part of the last step in glycolysis. Our phylogenetic analyses of all of these enzymes revealed at least four cases where the relationship of the Trimastix genes to homologs from other species is at odds with accepted organismal relationships. Although lateral gene transfer events likely account for these anomalies, with the data at hand we were not able to establish with confidence the bacterial donor lineage that gave rise to the respective Trimastix enzymes. Conclusion A number of the glycolytic enzymes of Trimastix have been transferred laterally from bacteria instead of being inherited from the last common eukaryotic ancestor. Thus, despite widespread conservation of the glycolytic biochemical pathway across eukaryote diversity, in a number of protist lineages the enzymatic components of the pathway have been replaced by lateral gene transfer from disparate evolutionary sources. It remains unclear if these replacements result from selectively advantageous properties of the introduced enzymes or if they are neutral outcomes of a gene transfer 'ratchet' from food or endosymbiotic organisms or a combination of both processes.
Collapse
Affiliation(s)
- Alexandra Stechmann
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Building, Halifax, Canada
| | - Manuela Baumgartner
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Building, Halifax, Canada
- Department für Biologie I, Botanik, Ludwig-Maximilians-Universität München, Menzingerstraße 67, D-80638 München, Germany
| | - Jeffrey D Silberman
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Building, Halifax, Canada
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Sir Charles Tupper Building, Halifax, Canada
- Canadian Institute for Advanced Research, Evolutionary Biology Program, Dalhousie University, Sir Charles Tupper Building, Halifax, Canada
| |
Collapse
|
18
|
Liapounova NA, Hampl V, Gordon PMK, Sensen CW, Gedamu L, Dacks JB. Reconstructing the mosaic glycolytic pathway of the anaerobic eukaryote Monocercomonoides. EUKARYOTIC CELL 2006; 5:2138-46. [PMID: 17071828 PMCID: PMC1694820 DOI: 10.1128/ec.00258-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
All eukaryotes carry out glycolysis, interestingly, not all using the same enzymes. Anaerobic eukaryotes face the challenge of fewer molecules of ATP extracted per molecule of glucose due to their lack of a complete tricarboxylic acid cycle. This may have pressured anaerobic eukaryotes to acquire the more ATP-efficient alternative glycolytic enzymes, such as pyrophosphate-fructose 6-phosphate phosphotransferase and pyruvate orthophosphate dikinase, through lateral gene transfers from bacteria and other eukaryotes. Most studies of these enzymes in eukaryotes involve pathogenic anaerobes; Monocercomonoides, an oxymonad belonging to the eukaryotic supergroup Excavata, is a nonpathogenic anaerobe representing an evolutionarily and ecologically distinct sampling of an anaerobic glycolytic pathway. We sequenced cDNA encoding glycolytic enzymes from a previously established cDNA library of Monocercomonoides and analyzed the relationships of these enzymes to those from other organisms spanning the major groups of Eukaryota, Bacteria, and Archaea. We established that, firstly, Monocercomonoides possesses alternative versions of glycolytic enzymes: fructose-6-phosphate phosphotransferase, both pyruvate kinase and pyruvate orthophosphate dikinase, cofactor-independent phosphoglycerate mutase, and fructose-bisphosphate aldolase (class II, type B). Secondly, we found evidence for the monophyly of oxymonads, kinetoplastids, diplomonads, and parabasalids, the major representatives of the Excavata. We also found several prokaryote-to-eukaryote as well as eukaryote-to-eukaryote lateral gene transfers involving glycolytic enzymes from anaerobic eukaryotes, further suggesting that lateral gene transfer was an important factor in the evolution of this pathway for denizens of this environment.
Collapse
Affiliation(s)
- Natalia A Liapounova
- Department of Biological Sciences, the University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Razmjou E, Haghighi A, Rezaian M, Kobayashi S, Nozaki T. Genetic diversity of glucose phosphate isomerase from Entamoeba histolytica. Parasitol Int 2006; 55:307-11. [PMID: 16979933 DOI: 10.1016/j.parint.2006.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 07/30/2006] [Accepted: 08/03/2006] [Indexed: 11/26/2022]
Abstract
To investigate the molecular basis of zymodeme analysis in the enteric protozoan parasite Entamoeba histolytica, genes encoding glucose phosphate isomerase (GPI) were isolated from four representative E. histolytica strains belonging to zymodeme II, IIalpha-, XIV, or XIX. Two alleles were obtained from each strain; six alleles with eight polymorphic nucleotide positions were identified among the four strains. Two of these eight polymorphic nucleotides resulted in non-conserved amino acid substitutions. Three GPI isoenzymes with distinct predicted isoelectric points were identified, which agrees well with the observed electrophoretic patterns of GPI from these strains. Amino acid comparisons of GPI from E. histolytica and other organisms revealed that all amino acid residues implicated for substrate binding and catalysis were conserved. Biochemical characterization of recombinant E. histolytica GPI confirmed that it possessed kinetic parameters similar to GPI from other organisms. The electrophoretic mobility of three GPI isoenzymes was examined by starch gel electrophoresis. Thus, we have established the molecular basis of the classical isoenzymes patterns that have been used for grouping E. histolytica isolates and for differentiation of E. histolytica from non-pathogenic Entamoeba dispar.
Collapse
Affiliation(s)
- Elham Razmjou
- Department of Medical Parasitology and Mycology, School of Public Health and Institute of Public Health Research, Tehran University of Medical Sciences, Iran
| | | | | | | | | |
Collapse
|
20
|
Simpson AGB, Inagaki Y, Roger AJ. Comprehensive multigene phylogenies of excavate protists reveal the evolutionary positions of "primitive" eukaryotes. Mol Biol Evol 2005; 23:615-25. [PMID: 16308337 DOI: 10.1093/molbev/msj068] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Many of the protists thought to represent the deepest branches on the eukaryotic tree are assigned to a loose assemblage called the "excavates." This includes the mitochondrion-lacking diplomonads and parabasalids (e.g., Giardia and Trichomonas) and the jakobids (e.g., Reclinomonas). We report the first multigene phylogenetic analyses to include a comprehensive sampling of excavate groups (six nuclear-encoded protein-coding genes, nine of the 10 recognized excavate groups). Excavates coalesce into three clades with relatively strong maximum likelihood bootstrap support. Only the phylogenetic position of Malawimonas is uncertain. Diplomonads, parabasalids, and the free-living amitochondriate protist Carpediemonas are closely related to each other. Two other amitochondriate excavates, oxymonads and Trimastix, form the second monophyletic group. The third group is comprised of Euglenozoa (e.g., trypanosomes), Heterolobosea, and jakobids. Unexpectedly, jakobids appear to be specifically related to Heterolobosea. This tree topology calls into question the concept of Discicristata as a supergroup of eukaryotes united by discoidal mitochondrial cristae and makes it implausible that jakobids represent an independent early-diverging eukaryotic lineage. The close jakobids-Heterolobosea-Euglenozoa connection demands complex evolutionary scenarios to explain the transition between the presumed ancestral bacterial-type mitochondrial RNA polymerase found in jakobids and the phage-type protein in other eukaryotic lineages, including Euglenozoa and Heterolobosea.
Collapse
Affiliation(s)
- Alastair G B Simpson
- Canadian Institute for Advanced Research, Program in Evolutionary Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | |
Collapse
|
21
|
Pütz S, Gelius-Dietrich G, Piotrowski M, Henze K. Rubrerythrin and peroxiredoxin: two novel putative peroxidases in the hydrogenosomes of the microaerophilic protozoon Trichomonas vaginalis. Mol Biochem Parasitol 2005; 142:212-23. [PMID: 15904985 DOI: 10.1016/j.molbiopara.2005.04.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 03/22/2005] [Accepted: 04/11/2005] [Indexed: 10/25/2022]
Abstract
The parasitic flagellate Trichomonas vaginalis contains hydrogenosomes, anaerobic organelles related to mitochondria, that generate ATP from the fermentative conversion of pyruvate to acetate, CO2 and molecular hydrogen. Although an essentially anaerobic organism, Trichomonas encounters low oxygen concentrations in its natural habitat and has to protect itself, and especially the oxygen-sensitve enzymes of hydrogenosomal metabolism, from oxidative damage. We have identified two novel proteins in the hydrogenosomal proteome with strong similarity to two putative prokaryotic peroxidases, rubrerythrin and periplasmic thiol peroxidase. Both proteins have previously been found in many prokaryotes but were not known from eukaryotes, suggesting a significant prokaryotic component in the oxygen-detoxification system of trichomonad hydrogenosomes.
Collapse
Affiliation(s)
- Simone Pütz
- Institut für Botanik III, Heinrich Heine Universtität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
22
|
Hampl V, Horner DS, Dyal P, Kulda J, Flegr J, Foster PG, Embley TM. Inference of the Phylogenetic Position of Oxymonads Based on Nine Genes: Support for Metamonada and Excavata. Mol Biol Evol 2005; 22:2508-18. [PMID: 16120804 DOI: 10.1093/molbev/msi245] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Circumscribing major eukaryote groups and resolving higher order relationships between them are among the most challenging tasks facing molecular evolutionists. Recently, evidence suggesting a new supergroup (the Excavata) comprising a wide array of flagellates has been collected. This group consists of diplomonads, retortamonads, Carpediemonas, heteroloboseans, Trimastix, jakobids, and Malawimonas, all of which possess a particular type of ventral feeding groove that is proposed to be homologous. Euglenozoans, parabasalids, and oxymonads have also been associated with Excavata as their relationships to one or more core excavate taxa were demonstrated. However, the main barrier to the general acceptance of Excavata is that its existence is founded primarily on cytoskeletal similarities, without consistent support from molecular phylogenetics. In gene trees, Excavata are typically not recovered together. In this paper, we present an analysis of the phylogenetic position of oxymonads (genus Monocercomonoides) based on concatenation of eight protein sequences (alpha-tubulin, beta-tubulin, gamma-tubulin, EF-1alpha, EF-2, cytosolic (cyt) HSP70, HSP90, and ubiquitin) and 18S rRNA. We demonstrate that the genes are in conflict regarding the position of oxymonads. Concatenation of alpha- and beta-tubulin placed oxymonads in the plant-chromist part of the tree, while the concatenation of other genes recovered a well-supported group of Metamonada (oxymonads, diplomonads, and parabasalids) that branched weakly with euglenozoans--connecting all four excavates included in the analyses and thus providing conditional support for the existence of Excavata.
Collapse
Affiliation(s)
- Vladimír Hampl
- Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
23
|
Saavedra E, Encalada R, Pineda E, Jasso-Chávez R, Moreno-Sánchez R. Glycolysis in Entamoeba histolytica. Biochemical characterization of recombinant glycolytic enzymes and flux control analysis. FEBS J 2005; 272:1767-83. [PMID: 15794763 DOI: 10.1111/j.1742-4658.2005.04610.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The synthesis of ATP in the human parasite Entamoeba histolytica is carried out solely by the glycolytic pathway. Little kinetic and structural information is available for most of the pathway enzymes. We report here the gene cloning, overexpression and purification of hexokinase, hexose-6-phosphate isomerase, inorganic pyrophosphate-dependent phosphofructokinase, fructose-1,6 bisphosphate aldolase (ALDO), triosephosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), phosphoglycerate kinase, phosphoglycerate mutase (PGAM), enolase, and pyruvate phosphate dikinase (PPDK) enzymes from E. histolytica. Kinetic characterization of these 10 recombinant enzymes was made, establishing the kinetic constants at optimal and physiological pH values, analyzing the effect of activators and inhibitors, and investigating the storage stability and oligomeric state. Determination of the catalytic efficiencies at the pH optimum and at pH values that resemble those of the amoebal trophozoites was performed for each enzyme to identify possible controlling steps. This analysis suggested that PGAM, ALDO, GAPDH, and PPDK might be flux control steps, as they showed the lowest catalytic efficiencies. An in vitro reconstruction of the final stages of glycolysis was made to determine their flux control coefficients. Our results indicate that PGAM and PPDK exhibit high control coefficient values at physiological pH.
Collapse
Affiliation(s)
- Emma Saavedra
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Tlalpan, México DF, México.
| | | | | | | | | |
Collapse
|
24
|
Henriquez FL, Richards TA, Roberts F, McLeod R, Roberts CW. The unusual mitochondrial compartment of Cryptosporidium parvum. Trends Parasitol 2005; 21:68-74. [PMID: 15664529 DOI: 10.1016/j.pt.2004.11.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent studies, including the Cryptosporidium parvum Genome Project, have provided evidence for a mitochondrial-derived compartment in this parasite. This organelle appears to lack a genome, and thus must be entirely dependent on nuclear-encoded proteins. Here, we review the evidence for such an organelle in C. parvum and its probable function. There is no adequate treatment for infection by this parasite and so the elucidation of the role of this organelle and the effective targeting of its functions by antimicrobial agents might provide new treatments for infection by C. parvum.
Collapse
Affiliation(s)
- Fiona L Henriquez
- Department of Immunology, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 27 Taylor St, Glasgow, UK, G4 0NR
| | | | | | | | | |
Collapse
|
25
|
Arisue N, Maki Y, Yoshida H, Wada A, Sánchez LB, Müller M, Hashimoto T. Comparative analysis of the ribosomal components of the hydrogenosome-containing protist, Trichomonas vaginalis. J Mol Evol 2005; 59:59-71. [PMID: 15383908 DOI: 10.1007/s00239-004-2604-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Accepted: 01/12/2004] [Indexed: 10/26/2022]
Abstract
The ribosomes of the amitochondriate but hydrogenosome-containing protist lineage, the trichomonads, have previously been reported to be prokaryotic or primitive eukaryotic, based on evidence that they have a 70S sedimentation coefficient and a small number of proteins, similar to prokaryotic ribosomes. In order to determine whether the components of the trichomonad ribosome indeed differ from those of typical eukaryotic ribosomes, the ribosome of a representative trichomonad, Trichomonas vaginalis, was characterized. The sedimentation coefficient of the T. vaginalis ribosome was smaller than that of Saccharomyces cerevisiae and larger than that of Escherichia coli. Based on two-dimensional PAGE analysis, the number of different ribosomal proteins was estimated to be approximately 80. This number is the same as those obtained for typical eukaryotes (approximately 80) but larger than that of E. coli (approximately 55). N-Terminal amino acid sequencing of 18 protein spots and the complete sequences of 4 ribosomal proteins as deduced from their genes revealed these sequences to display typical eukaryotic features. Phylogenetic analyses of the five ribosomal proteins currently available also clearly confirmed that the T. vaginalis sequences are positioned within a eukaryotic clade. Comparison of deduced secondary structure models of the small and large subunit rRNAs of T. vaginalis with those of other eukaryotes revealed that all helices commonly found in typical eukaryotes are present and conserved in T. vaginalis, while variable regions are shortened or lost. These lines of evidence demonstrate that the T. vaginalis ribosome has no prokaryotic or primitive eukaryotic features but is clearly a typical eukaryotic type.
Collapse
Affiliation(s)
- Nobuko Arisue
- Department of Biosystems Science, Graduate University for Advanced Studies (Sokendai), Hayama, Kanagawa 240-0193, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Hampl V, Cepicka I, Flegr J, Tachezy J, Kulda J. Critical analysis of the topology and rooting of the parabasalian 16S rRNA tree. Mol Phylogenet Evol 2005; 32:711-23. [PMID: 15288049 DOI: 10.1016/j.ympev.2004.03.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Revised: 03/01/2004] [Indexed: 11/22/2022]
Abstract
The morphological classification of the protozoan phylum Parabasala is not in absolute agreement with the 16S rRNA phylogeny. However, there are strong indications that tree-construction artifacts play a considerable role in the shaping of the 16S rRNA tree. We have performed rigorous analyses designed to minimize such artifacts using the slow-fast and taxa-exclusion methods. The analyses, which included new sequences from the genera Monocercomonas and Hexamastix, in most respects confirmed the previously suggested tree topology and polyphyly of Hypermastigida and Monocercomonadidae but detected one artificial cluster of long branches (Trichonymphidae, Pseudotrichonymphidae, Hexamastix, and Tricercomitus). They also indicated that the rooting of the phylum on the trichonymphid branch is probably wrong and that reliable rooting on the basis of current data is likely impossible. We discuss the tree topology in the view of anagenesis of cytoskeletal and motility organelles and suggest that a robust taxonomic revision requires extensive analysis of other gene sequences.
Collapse
Affiliation(s)
- Vladimír Hampl
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic.
| | | | | | | | | |
Collapse
|
27
|
Huang J, Mullapudi N, Lancto CA, Scott M, Abrahamsen MS, Kissinger JC. Phylogenomic evidence supports past endosymbiosis, intracellular and horizontal gene transfer in Cryptosporidium parvum. Genome Biol 2004; 5:R88. [PMID: 15535864 PMCID: PMC545779 DOI: 10.1186/gb-2004-5-11-r88] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 08/16/2004] [Accepted: 09/10/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The apicomplexan parasite Cryptosporidium parvum is an emerging pathogen capable of causing illness in humans and other animals and death in immunocompromised individuals. No effective treatment is available and the genome sequence has recently been completed. This parasite differs from other apicomplexans in its lack of a plastid organelle, the apicoplast. Gene transfer, either intracellular from an endosymbiont/donor organelle or horizontal from another organism, can provide evidence of a previous endosymbiotic relationship and/or alter the genetic repertoire of the host organism. Given the importance of gene transfers in eukaryotic evolution and the potential implications for chemotherapy, it is important to identify the complement of transferred genes in Cryptosporidium. RESULTS We have identified 31 genes of likely plastid/endosymbiont (n = 7) or prokaryotic (n = 24) origin using a phylogenomic approach. The findings support the hypothesis that Cryptosporidium evolved from a plastid-containing lineage and subsequently lost its apicoplast during evolution. Expression analyses of candidate genes of algal and eubacterial origin show that these genes are expressed and developmentally regulated during the life cycle of C. parvum. CONCLUSIONS Cryptosporidium is the recipient of a large number of transferred genes, many of which are not shared by other apicomplexan parasites. Genes transferred from distant phylogenetic sources, such as eubacteria, may be potential targets for therapeutic drugs owing to their phylogenetic distance or the lack of homologs in the host. The successful integration and expression of the transferred genes in this genome has changed the genetic and metabolic repertoire of the parasite.
Collapse
Affiliation(s)
- Jinling Huang
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Nandita Mullapudi
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Cheryl A Lancto
- Veterinary and Biomedical Sciences, University of Minnesota, St Paul, MN 55108, USA
| | - Marla Scott
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | | | - Jessica C Kissinger
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
28
|
Tjaden J, Haferkamp I, Boxma B, Tielens AGM, Huynen M, Hackstein JHP. A divergent ADP/ATP carrier in the hydrogenosomes of Trichomonas gallinae argues for an independent origin of these organelles. Mol Microbiol 2004; 51:1439-46. [PMID: 14982636 DOI: 10.1111/j.1365-2958.2004.03918.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The evolution of mitochondrial ADP and ATP exchanging proteins (AACs) highlights a key event in the evolution of the eukaryotic cell, as ATP exporting carriers were indispensable in establishing the role of mitochondria as ATP-generating cellular organelles. Hydrogenosomes, i.e. ATP- and hydrogen-generating organelles of certain anaerobic unicellular eukaryotes, are believed to have evolved from the same ancestral endosymbiont that gave rise to present day mitochondria. Notably, the hydrogenosomes of the parasitic anaerobic flagellate Trichomonas seemed to be deficient in mitochondrial-type AACs. Instead, HMP 31, a different member of the mitochondrial carrier family (MCF) with a hitherto unknown function, is abundant in the hydrogenosomal membranes of Trichomonas vaginalis. Here we show that the homologous HMP 31 of closely related Trichomonas gallinae specifically transports ADP and ATP with high efficiency, as do genuine mitochondrial AACs. However, phylogenetic analysis and its resistance against bongkrekic acid (BKA, an efficient inhibitor of mitochondrial-type AACs) identify HMP 31 as a member of the mitochondrial carrier family that is distinct from all mitochondrial and hydrogenosomal AACs studied so far. Thus, our data support the hypothesis that the various hydrogenosomes evolved repeatedly and independently.
Collapse
Affiliation(s)
- Joachim Tjaden
- Department of Plant Physiology, University of Kaiserslautern, Erwin Schroedinger Strasse, D-67663 Kaiserslautern, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Dolezal P, Vanácová S, Tachezy J, Hrdý I. Malic enzymes of Trichomonas vaginalis: two enzyme families, two distinct origins. Gene 2004; 329:81-92. [PMID: 15033531 DOI: 10.1016/j.gene.2003.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2003] [Accepted: 12/23/2003] [Indexed: 10/26/2022]
Abstract
The cytosolic malic enzyme of the amitochondriate protist Trichomonas vaginalis was purified to homogeneity and characterized. The corresponding gene was sequenced and compared with its hydrogenosomal homologue from the same organism. The enzymes were found to differ in coenzyme specificity, molecular mass and physiological role. The cytosolic malic enzyme is a dimer consisting of two 42-kDa subunits with strict specificity for nicotinamide adenine dinucleotide phosphate (NADP(+)), and has a presumed function of pyruvate and NADPH production. The hydrogenosomal malic enzyme is a tetramer of 60-kDa subunits that preferentially utilizes nicotinamide adenine dinucleotide (NAD(+)) to NADP(+). The hydrogenosomal enzyme supplies the hydrogenosome with pyruvate for further catabolic processes linked with substrate-level phosphorylation. Phylogenetic analysis of malic enzymes showed the existence of two distinct families of these enzymes in nature, which differ in subunit size. The trichomonad cytosolic malic enzyme belongs to the small subunit-type family that occurs almost exclusively in prokaryotes. In contrast, the hydrogenosomal malic enzyme displays a close relationship with the large subunit-type family of the enzyme, which is found in mitochondria, plastids and the cytosol of eukaryotes. The eubacterial origin of trichomonad cytosolic malic enzyme suggests an occurrence of horizontal gene transfer from a eubacterium to the ancestor of T. vaginalis. The presence of both prokaryotic and eukaryotic type of malic enzyme in different compartments of a single eukaryotic cell appears to be unique in nature.
Collapse
Affiliation(s)
- Pavel Dolezal
- Department of Parasitology, Faculty of Science, Charles University, Vinicná 7, 12844, Prague 2, Czech Republic
| | | | | | | |
Collapse
|
30
|
van der Giezen M, Cox S, Tovar J. The iron-sulfur cluster assembly genes iscS and iscU of Entamoeba histolytica were acquired by horizontal gene transfer. BMC Evol Biol 2004; 4:7. [PMID: 15040816 PMCID: PMC373444 DOI: 10.1186/1471-2148-4-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2003] [Accepted: 02/20/2004] [Indexed: 11/10/2022] Open
Abstract
Background Iron-sulfur (FeS) proteins are present in all living organisms and play important roles in electron transport and metalloenzyme catalysis. The maturation of FeS proteins in eukaryotes is an essential function of mitochondria, but little is known about this process in amitochondriate eukaryotes. Here we report on the identification and analysis of two genes encoding critical FeS cluster (Isc) biosynthetic proteins from the amitochondriate human pathogen Entamoeba histolytica. Results E. histolytica IscU and IscS were found to contain all features considered essential for their biological activity, including amino acid residues involved in substrate and/or co-factor binding. The IscU protein differs significantly from other eukaryotic homologs and resembles the long type isoforms encountered in some bacteria. Phylogenetic analyses of E. histolytica IscS and IscU showed a close relationship with homologs from Helicobacter pylori and Campylobacter jejuni, to the exclusion of mitochondrial isoforms. Conclusions The bacterial-type FeS cluster assembly genes of E. histolytica suggest their lateral acquisition from epsilon proteobacteria. This is a clear example of horizontal gene transfer (HGT) from eubacteria to unicellular eukaryotic organisms, a phenomenon known to contribute significantly to the evolution of eukaryotic genomes.
Collapse
Affiliation(s)
- Mark van der Giezen
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Siân Cox
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| | - Jorge Tovar
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
31
|
Marti M, Hehl AB. Encystation-specific vesicles in Giardia: a primordial Golgi or just another secretory compartment? Trends Parasitol 2004; 19:440-6. [PMID: 14519581 DOI: 10.1016/s1471-4922(03)00201-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Matthias Marti
- Division of Infection and Immunity, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia
| | | |
Collapse
|
32
|
Hansen T, Wendorff D, Schönheit P. Bifunctional Phosphoglucose/Phosphomannose Isomerases from the Archaea Aeropyrum pernix and Thermoplasma acidophilum Constitute a Novel Enzyme Family within the Phosphoglucose Isomerase Superfamily. J Biol Chem 2004; 279:2262-72. [PMID: 14551194 DOI: 10.1074/jbc.m309849200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hyperthermophilic crenarchaeon Aeropyrum pernix contains phosphoglucose isomerase (PGI) activity. However, obvious homologs with significant identity to known PGIs could not be identified in the sequenced genome of this organism. The PGI activity from A. pernix was purified and characterized. Kinetic analysis revealed that, unlike all known PGIs, the enzyme catalyzed reversible isomerization not only of glucose 6-phosphate but also of epimeric mannose 6-phosphate at similar catalytic efficiency, thus defining the protein as bifunctional phosphoglucose/phosphomannose isomerase (PGI/PMI). The gene pgi/pmi encoding PGI/PMI (open reading frame APE0768) was identified by matrix-assisted laser desorption ionization time-of-flight analyses; the gene was overexpressed in Escherichia coli as functional PGI/PMI. Putative PGI/PMI homologs were identified in several (hyper)thermophilic archaea and two bacteria. The homolog from Thermoplasma acidophilum (Ta1419) was overexpressed in E. coli, and the recombinant enzyme was characterized as bifunctional PGI/PMI. PGI/PMIs showed low sequence identity to the PGI superfamily and formed a distinct phylogenetic cluster. However, secondary structure predictions and the presence of several conserved amino acids potentially involved in catalysis indicate some structural and functional similarity to the PGI superfamily. Thus, we propose that bifunctional PGI/PMI constitutes a novel protein family within the PGI superfamily.
Collapse
Affiliation(s)
- Thomas Hansen
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany
| | | | | |
Collapse
|
33
|
Lopez AB, Sener K, Jarroll EL, van Keulen H. Transcription regulation is demonstrated for five key enzymes in Giardia intestinalis cyst wall polysaccharide biosynthesis. Mol Biochem Parasitol 2003; 128:51-7. [PMID: 12706796 DOI: 10.1016/s0166-6851(03)00049-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The cyst wall of Giardia intestinalis contains proteins and a novel N-acetylgalactosamine (GalNAc) polysaccharide, which is its major constituent. GalNAc is not present in growing trophozoites, but is synthesized during encystment via an inducible pathway of enzymes that produce UDP-GalNAc from fructose 6-phosphate. This report focuses on the regulation of these enzymes and thus the genes for glucosamine 6-phosphate N-acetyltransferase (GNA), phosphoacetylglucosamine mutase (AGM), UDP-N-acetylglucosamine pyrophosphorylase (UAP), and UDP-N-acetylglucosamine 4-epimerase (UAE) were cloned and expressed in Escherichia coli. Each of these expressed enzymes had the predicted activity and was used to generate antibodies. Northern and Western blot analyses demonstrated that both the mRNA and protein levels for all of these enzymes increase during encystment. Nuclear run-on assays of these and the previously analyzed glucosamine 6-phosphate deaminase (GNP; glucosamine 6-P isomerase) showed that all of the genes responsible for UDP-GalNAc synthesis during encystment are induced at the transcription level.
Collapse
Affiliation(s)
- Alex B Lopez
- Department of Biological, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | | | | | | |
Collapse
|
34
|
Richards TA, Hirt RP, Williams BAP, Embley TM. Horizontal gene transfer and the evolution of parasitic protozoa. Protist 2003; 154:17-32. [PMID: 12812367 DOI: 10.1078/143446103764928468] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Emelyanov VV. Mitochondrial connection to the origin of the eukaryotic cell. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1599-618. [PMID: 12694174 DOI: 10.1046/j.1432-1033.2003.03499.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Phylogenetic evidence is presented that primitively amitochondriate eukaryotes containing the nucleus, cytoskeleton, and endomembrane system may have never existed. Instead, the primary host for the mitochondrial progenitor may have been a chimeric prokaryote, created by fusion between an archaebacterium and a eubacterium, in which eubacterial energy metabolism (glycolysis and fermentation) was retained. A Rickettsia-like intracellular symbiont, suggested to be the last common ancestor of the family Rickettsiaceae and mitochondria, may have penetrated such a host (pro-eukaryote), surrounded by a single membrane, due to tightly membrane-associated phospholipase activity, as do present-day rickettsiae. The relatively rapid evolutionary conversion of the invader into an organelle may have occurred in a safe milieu via numerous, often dramatic, changes involving both partners, which resulted in successful coupling of the host glycolysis and the symbiont respiration. Establishment of a potent energy-generating organelle made it possible, through rapid dramatic changes, to develop genuine eukaryotic elements. Such sequential, or converging, global events could fill the gap between prokaryotes and eukaryotes known as major evolutionary discontinuity.
Collapse
|
36
|
Cáceres AJ, Portillo R, Acosta H, Rosales D, Quiñones W, Avilan L, Salazar L, Dubourdieu M, Michels PAM, Concepción JL. Molecular and biochemical characterization of hexokinase from Trypanosoma cruzi. Mol Biochem Parasitol 2003; 126:251-62. [PMID: 12615324 DOI: 10.1016/s0166-6851(02)00294-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Trypanosoma cruzi hexokinase gene has been cloned, sequenced, and expressed as an active enzyme in Escherichia coli. Sequence analysis revealed 67% identity with its counterpart in Trypanosoma brucei but low similarity with all other available hexokinase sequences including those of human. It contains an N-terminal peroxisome-targeting signal (PTS-2) and has a calculated basic isoelectric point (pI = 9.67), a feature often associated with glycosomal proteins. The polypeptide has a predicted mass of approximately 50 kDa similar to that of many non-vertebrate hexokinases and the vertebrate hexokinase isoenzyme IV. The natural enzyme was purified to homogeneity from T. cruzi epimastigotes and appeared to exist in several aggregation states, an apparent tetramer being the predominant form. Its kinetic properties were compared with those of the purified recombinant protein. Higher K(m) values for glucose and ATP were found for the (His)(6)-tag-containing recombinant hexokinase. However, removal of the tag produced an enzyme displaying similar values as the natural enzyme (K(m) for glucose = 43 and 60 microM for the natural and the recombinant protein, respectively). None of these enzymes presented activity with fructose. As reported previously for hexokinases from several trypanosomatids, no inhibition was exerted by glucose 6-phosphate (G6-P). In contrast, a mixed-type inhibition was observed with inorganic pyrophosphate (PPi, K(i) = 0.5mM).
Collapse
Affiliation(s)
- Ana Judith Cáceres
- Unidad de Bioquímica de Parásitos, Centro de Ingeniería Genética, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Embley TM, van der Giezen M, Horner DS, Dyal PL, Foster P. Mitochondria and hydrogenosomes are two forms of the same fundamental organelle. Philos Trans R Soc Lond B Biol Sci 2003; 358:191-201; discussion 201-2. [PMID: 12594927 PMCID: PMC1693103 DOI: 10.1098/rstb.2002.1190] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Published data suggest that hydrogenosomes, organelles found in diverse anaerobic eukaryotes that make energy and hydrogen, were once mitochondria. As hydrogenosomes generally lack a genome, the conversion is probably one way. The sources of the key hydrogenosomal enzymes, pyruvate : ferredoxin oxidoreductase (PFO) and hydrogenase, are not resolved by current phylogenetic analyses, but it is likely that both were present at an early stage of eukaryotic evolution. Once thought to be restricted to a few unusual anaerobic eukaryotes, the proteins are intimately integrated into the fabric of diverse eukaryotic cells, where they are targeted to different cell compartments, and not just hydrogenosomes. There is no evidence supporting the view that PFO and hydrogenase originated from the mitochondrial endosymbiont, as posited by the hydrogen hypothesis for eukaryogenesis. Other organelles derived from mitochondria have now been described in anaerobic and parasitic microbial eukaryotes, including species that were once thought to have diverged before the mitochondrial symbiosis. It thus seems possible that all eukaryotes may eventually be shown to contain an organelle of mitochondrial ancestry, to which different types of biochemistry can be targeted. It remains to be seen if, despite their obvious differences, this family of organelles shares a common function of importance for the eukaryotic cell, other than energy production, that might provide the underlying selection pressure for organelle retention.
Collapse
Affiliation(s)
- T Martin Embley
- Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| | | | | | | | | |
Collapse
|
38
|
Andersson JO, Sjögren AM, Davis LAM, Embley TM, Roger AJ. Phylogenetic analyses of diplomonad genes reveal frequent lateral gene transfers affecting eukaryotes. Curr Biol 2003; 13:94-104. [PMID: 12546782 DOI: 10.1016/s0960-9822(03)00003-4] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Lateral gene transfer (LGT) is an important evolutionary mechanism among prokaryotes. The situation in eukaryotes is less clear; the human genome sequence failed to give strong support for any recent transfers from prokaryotes to vertebrates, yet a number of LGTs from prokaryotes to protists (unicellular eukaryotes) have been documented. Here, we perform a systematic analysis to investigate the impact of LGT on the evolution of diplomonads, a group of anaerobic protists. RESULTS Phylogenetic analyses of 15 genes present in the genome of the Atlantic Salmon parasite Spironucleus barkhanus and/or the intestinal parasite Giardia lamblia show that most of these genes originated via LGT. Half of the genes are putatively involved in processes related to an anaerobic lifestyle, and this finding suggests that a common ancestor, which most probably was aerobic, of Spironucleus and Giardia adapted to an anaerobic environment in part by acquiring genes via LGT from prokaryotes. The sources of the transferred diplomonad genes are found among all three domains of life, including other eukaryotes. Many of the phylogenetic reconstructions show eukaryotes emerging in several distinct regions of the tree, strongly suggesting that LGT not only involved diplomonads, but also involved other eukaryotic groups. CONCLUSIONS Our study shows that LGT is a significant evolutionary mechanism among diplomonads in particular and protists in general. These findings provide insights into the evolution of biochemical pathways in early eukaryote evolution and have important implications for studies of eukaryotic genome evolution and organismal relationships. Furthermore, "fusion" hypotheses for the origin of eukaryotes need to be rigorously reexamined in the light of these results.
Collapse
Affiliation(s)
- Jan O Andersson
- The Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry, Dalhousie University, B3H 4H7, Halifax, Nova Scotia, Canada.
| | | | | | | | | |
Collapse
|
39
|
Abstract
Single-gene trees have failed to locate the root of the eukaryote tree because of systematic biases in sequence evolution. Structural genetic data should yield more reliable insights into deep phylogenetic relationships. We searched major protist groups for the presence or absence of a gene fusion in order to locate the root of the eukaryote tree. In striking contrast to previous molecular studies, we show that all eukaryote groups ancestrally with two cilia (bikonts) are evolutionarily derived. The root lies between bikonts and opisthokonts (animals, Fungi, Choanozoa). Amoebozoa either diverged even earlier or are sister of bikonts or (less likely) opisthokonts.
Collapse
Affiliation(s)
- Alexandra Stechmann
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
| | | |
Collapse
|
40
|
Abstract
Traditional views on deep evolutionary events have been seriously challenged over the last few years, following the identification of major pitfalls affecting molecular phylogeny reconstruction. Here we describe the principally encountered artifacts, notably long branch attraction, and their causes (i.e., difference in evolutionary rates, mutational saturation, compositional biases). Additional difficulties due to phenomena of biological nature (i.e., lateral gene transfer, recombination, hidden paralogy) are also discussed. Moreover, contrary to common beliefs, we show that the use of rare genomic events can also be misleading and should be treated with the same caution as standard molecular phylogeny. The universal tree of life, as described in most textbooks, is partly affected by tree reconstruction artifacts, e.g. (i) the bacterial rooting of the universal tree of life; (ii) the early emergence of amitochondriate lineages in eukaryotic phylogenies; and (iii) the position of hyperthermophilic taxa in bacterial phylogenies. We present an alternative view of this tree, based on recent evidence obtained from reanalyses of ancient data sets and from novel analyses of large combination of genes.
Collapse
Affiliation(s)
- Simonetta Gribaldo
- Phylogénie, Bioinformatique et Génome, UMR 7622 CNRS, Université Pierre et Marie Curie, 9 quai St. Bernard Bât. B-75005 Paris, France
| | | |
Collapse
|
41
|
Andersson JO, Roger AJ. Evolutionary analyses of the small subunit of glutamate synthase: gene order conservation, gene fusions, and prokaryote-to-eukaryote lateral gene transfers. EUKARYOTIC CELL 2002; 1:304-10. [PMID: 12455964 PMCID: PMC118040 DOI: 10.1128/ec.1.2.304-310.2002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lateral gene transfer has been identified as an important mode of genome evolution within prokaryotes. Except for the special case of gene transfer from organelle genomes to the eukaryotic nucleus, only a few cases of lateral gene transfer involving eukaryotes have been described. Here we present phylogenetic and gene order analyses on the small subunit of glutamate synthase (encoded by gltD) and its homologues, including the large subunit of sulfide dehydrogenase (encoded by sudA). The scattered distribution of the sudA and sudB gene pair and the phylogenetic analysis strongly suggest that lateral gene transfer was involved in the propagation of the genes in the three domains of life. One of these transfers most likely occurred between a prokaryote and an ancestor of diplomonad protists. Furthermore, phylogenetic analyses indicate that the gene for the small subunit of glutamate synthase was transferred from a low-GC gram-positive bacterium to a common ancestor of animals, fungi, and plants. Interestingly, in both examples, the eukaryotes encode a single gene that corresponds to a conserved operon structure in prokaryotes. Our analyses, together with several recent publications, show that lateral gene transfers from prokaryotes to unicellular eukaryotes occur with appreciable frequency. In the case of the genes for sulfide dehydrogenase, the transfer affected only a limited group of eukaryotes--the diplomonads--while the transfer of the glutamate synthase gene probably happened earlier in evolution and affected a wider range of eukaryotes.
Collapse
Affiliation(s)
- Jan O Andersson
- The Canadian Institute for Advanced Research, Program in Evolutionary Biology, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4H7, Canada.
| | | |
Collapse
|
42
|
Nixon JEJ, Wang A, Field J, Morrison HG, McArthur AG, Sogin ML, Loftus BJ, Samuelson J. Evidence for lateral transfer of genes encoding ferredoxins, nitroreductases, NADH oxidase, and alcohol dehydrogenase 3 from anaerobic prokaryotes to Giardia lamblia and Entamoeba histolytica. EUKARYOTIC CELL 2002; 1:181-90. [PMID: 12455953 PMCID: PMC118039 DOI: 10.1128/ec.1.2.181-190.2002] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Giardia lamblia and Entamoeba histolytica are amitochondriate, microaerophilic protists which use fermentation enzymes like those of bacteria to survive anaerobic conditions within the intestinal lumen. Genes encoding fermentation enzymes and related electron transport peptides (e.g., ferredoxins) in giardia organisms and amebae are hypothesized to be derived from either an ancient anaerobic eukaryote (amitochondriate fossil hypothesis), a mitochondrial endosymbiont (hydrogen hypothesis), or anaerobic bacteria (lateral transfer hypothesis). The goals here were to complete the molecular characterization of giardial and amebic fermentation enzymes and to determine the origins of the genes encoding them, when possible. A putative giardia [2Fe-2S]ferredoxin which had a hypothetical organelle-targeting sequence at its N terminus showed similarity to mitochondrial ferredoxins and the hydrogenosomal ferredoxin of Trichomonas vaginalis (another luminal protist). However, phylogenetic trees were star shaped, with weak bootstrap support, so we were unable to confirm or rule out the endosymbiotic origin of the giardia [2Fe-2S]ferredoxin gene. Putative giardial and amebic 6-kDa ferredoxins, ferredoxin-nitroreductase fusion proteins, and oxygen-insensitive nitroreductases each tentatively supported the lateral transfer hypothesis. Although there were not enough sequences to perform meaningful phylogenetic analyses, the unique common occurrence of these peptides and enzymes in giardia organisms, amebae, and the few anaerobic prokaryotes suggests the possibility of lateral transfer. In contrast, there was more robust phylogenetic evidence for the lateral transfer of G. lamblia genes encoding an NADH oxidase from a gram-positive coccus and a microbial group 3 alcohol dehydrogenase from thermoanaerobic prokaryotes. In further support of lateral transfer, the G. lamblia NADH oxidase and adh3 genes appeared to have an evolutionary history distinct from those of E. histolytica.
Collapse
Affiliation(s)
- Julie E J Nixon
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|