1
|
Damasceno JD, Beverley SM, Tosi LRO. A transposon-based tool for transformation and mutagenesis in trypanosomatid protozoa. Methods Mol Biol 2015; 1201:235-245. [PMID: 25388118 PMCID: PMC4287265 DOI: 10.1007/978-1-4939-1438-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The ability of transposable elements to mobilize across genomes and affect the expression of genes makes them exceptional tools for genetic manipulation methodologies. Several transposon-based systems have been modified and incorporated into shuttle mutagenesis approaches in a variety of organisms. We have found that the Mos1 element, a DNA transposon from Drosophila mauritiana, is suitable and readily adaptable to a variety of strategies to the study of trypanosomatid parasitic protozoa. Trypanosomatids are the causative agents of a wide range of neglected diseases in underdeveloped regions of the globe. In this chapter we describe the basic elements and the available protocols for the in vitro use of Mos1 derivatives in the protozoan parasite Leishmania.
Collapse
Affiliation(s)
- Jeziel D Damasceno
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | | | | |
Collapse
|
2
|
Abstract
Leishmania parasites cause a variety of devastating diseases in tropical areas around the world. Due to the lack of vaccines and limited availability of drugs, new therapeutic targets are urgently needed. A variety of genetic tools have been developed to investigate the complex biology of this parasite and its interactions with the host. One of the main techniques is the generation of knock-out parasites via targeted gene replacement, a process that takes advantage of the parasites ability to undergo homologous recombination. Studying the effect of gene deletions in vitro and in infectivity models in vivo allows understanding the function of a target gene and its potential as a therapeutic target. Other genetic manipulations available include episomal and chromosomal complementation and the generation of overproducer strains. However, there are also limitations, such as the lack of RNA interference machinery in most Leishmania species and limited options for inducible expression systems. The genomes of several Leishmania species have now been sequenced and will provide powerful resources in combination with the genetic tools that are available. The increasing knowledge of parasite biology and host parasite interactions derived from these studies will raise the number of potential therapeutic targets, which are sorely needed to combat leishmaniasis.
Collapse
|
3
|
Thomas X, Hedhili S, Beuf L, Demattéi MV, Laparra H, Khong GN, Breitler JC, Montandon F, Carnus E, Norre F, Burtin D, Gantet P, Bigot Y, Renault S. The mariner Mos1 transposase produced in tobacco is active in vitro. Genetica 2010; 138:519-30. [PMID: 19847655 DOI: 10.1007/s10709-009-9414-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 10/05/2009] [Indexed: 11/25/2022]
Abstract
The mariner-like transposon Mos1 is used for insertional mutagenesis and transgenesis in different animals (insects, nematodes), but has never been used in plants. In this paper, the transposition activity of Mos1 was tested in Nicotiana tabacum, but no transposition event was detected. In an attempt to understand the absence of in planta transposition, Mos1 transposase (MOS1) was produced and purified from transgenic tobacco (HMNtMOS1). HMNtMOS1 was able to perform all transposition reaction steps in vitro: binding to ITR, excision and integration of the same pseudo-transposon used in in planta transposition assays. The in vitro transposition reaction was not inhibited by tobacco nuclear proteins, and did not depend on the temperature used for plant growth. Several hypotheses are proposed that could explain the inhibition of HMNtMOS1 activity in planta.
Collapse
Affiliation(s)
- Xavier Thomas
- Université François Rabelais de Tours, GICC, Parc de Grandmont, 37200 Tours, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
A variety of recombinant protein expression systems have been developed for heterologous genes in both prokaryotic and eukaryotic systems such as bacteria, yeast, mammals, insects, transgenic animals, and plants. Recently Leishmania tarentolae, a trypanosomatid protozoan parasite of the white-spotted wall gecko (Tarentola annularis), has been suggested as candidate for heterologous genes expression. Trypanosomatidae are rich in glycoproteins, which can account for more than 10% of total protein; the oligosaccharide structures are similar to those of mammals with N-linked galactose, and fucose residues. To date several heterologous proteins have been expressed in L. tarentolae including both cytoplasmic enzymes and membrane receptors. Significant advances in the development of new strains and vectors, improved techniques, and the commercial availability of those tools coupled with a better understanding of the biology of Leishmania species will lead to value and power in commercial and research labs alike.
Collapse
|
5
|
Physical properties of DNA components affecting the transposition efficiency of the mariner Mos1 element. Mol Genet Genomics 2009; 282:531-46. [PMID: 19774400 DOI: 10.1007/s00438-009-0484-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Accepted: 09/02/2009] [Indexed: 10/20/2022]
Abstract
Previous studies have shown that the transposase and the inverted terminal repeat (ITR) of the Mos1 mariner elements are suboptimal for transposition; and that hyperactive transposases and transposon with more efficient ITR configurations can be obtained by rational molecular engineering. In an attempt to determine the extent to which this element is suboptimal for transposition, we investigate here the impact of the three main DNA components on its transposition efficiency in bacteria and in vitro. We found that combinations of natural and synthetic ITRs obtained by systematic evolution of ligands by exponential enrichment did increase the transposition rate. We observed that when untranslated terminal regions were associated with their respective natural ITRs, they acted as transposition enhancers, probably via the early transposition steps. Finally, we demonstrated that the integrity of the Mos1 inner region was essential for transposition. These findings allowed us to propose prototypes of optimized Mos1 vectors, and to define the best sequence features of their associated marker cassettes. These vector prototypes were assayed in HeLa cells, in which Mos1 vectors had so far been found to be inactive. The results obtained revealed that using these prototypes does not circumvent this problem. However, such vectors can be expected to provide new tools for the use in genome engineering in systems such as Caenorhabditis elegans in which Mos1 is very active.
Collapse
|
6
|
Damasceno JD, Beverley SM, Tosi LRO. A transposon toolkit for gene transfer and mutagenesis in protozoan parasites. Genetica 2009; 138:301-11. [PMID: 19763844 DOI: 10.1007/s10709-009-9406-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 08/25/2009] [Indexed: 11/27/2022]
Abstract
Protozoan parasites affect millions of people around the world. Treatment and control of these diseases are complicated partly due to the intricate biology of these organisms. The interactions of species of Plasmodium, Leishmania and trypanosomes with their hosts are mediated by an unusual control of gene expression that is not fully understood. The availability of the genome sequence of these protozoa sets the stage for using more comprehensive, genome-wide strategies to study gene function. Transposons are effective tools for the systematic introduction of genetic alterations and different transposition systems have been adapted to study gene function in these human pathogens. A mariner transposon toolkit for use in vivo or in vitro in Leishmania parasites has been developed and can be used in a variety of applications. These modified mariner elements not only permit the inactivation of genes, but also mediate the rescue of translational gene fusions, bringing a major contribution to the investigation of Leishmania gene function. The piggyBac and Tn5 transposons have also been shown to mobilize across Plasmodium spp. genomes circumventing the current limitations in the genetic manipulation of these organisms.
Collapse
Affiliation(s)
- Jeziel D Damasceno
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | | | | |
Collapse
|
7
|
Dias MVS, Basso LR, Coelho PSR. New transposons to generate GFP protein fusions in Candida albicans. Gene 2008; 417:13-8. [DOI: 10.1016/j.gene.2008.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 03/11/2008] [Accepted: 03/11/2008] [Indexed: 11/17/2022]
|
8
|
Laurentino EC, Ruiz JC, Brito LO, Fiandt M, Nicoletti LM, Jamur MC, Oliver C, Tosi LRO, Cruz AK. The use of Tn5 transposable elements in a gene trapping strategy for the protozoan Leishmania. Int J Parasitol 2007; 37:735-42. [PMID: 17362967 DOI: 10.1016/j.ijpara.2006.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 12/17/2006] [Accepted: 12/22/2006] [Indexed: 11/28/2022]
Abstract
The use of transposable elements as a gene-trapping strategy is a powerful tool for gene discovery. Herein we describe the development of a transposable system, based on the bacterial Tn5 transposon, which has been used successfully in Leishmania braziliensis. The transposon carries the neomycin phosphotransferase gene, which is expressed only when inserted in-frame with a Leishmania gene present in the target DNA. Four cosmid clones from a L. braziliensis genomic library were used as targets in transposition reactions and four insertional libraries were constructed and transfected in L. braziliensis. Clones resistant to G418 were selected and analysed by immunofluorescence in order to identify the subcellular localisation of the protein coded by the trapped gene. A definitive subcellular localisation for neomycin phosphotransferase/targeted protein fusion was not obtained in any of the four Leishmania clones investigated. However, the constructed transposable element is highly efficient considering the frequency of insertion in large targets and is therefore a useful tool for functional genetic studies in Leishmania. Our data confirm the utility of the Tn5 transposon system for insertion of sequencing priming sites into target DNA. Furthermore, the high frequency of insertion and even distribution are important in studying genomic regions bearing long and polymorphic repetitive sequences.
Collapse
Affiliation(s)
- Eliane C Laurentino
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av Bandeirantes, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Mureev S, Kushnir S, Kolesnikov AA, Breitling R, Alexandrov K. Construction and analysis of Leishmania tarentolae transgenic strains free of selection markers. Mol Biochem Parasitol 2007; 155:71-83. [PMID: 17658188 DOI: 10.1016/j.molbiopara.2007.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2006] [Revised: 05/12/2007] [Accepted: 05/17/2007] [Indexed: 11/15/2022]
Abstract
The trypanosomatid protozoan Leishmania tarentolae has been extensively used as a model system for studying causative agents of several tropical diseases and more recently as a host for recombinant protein production. Here we analyze the rates of partial or complete deletions of expression cassettes integrated into small ribosomal RNA and tubulin gene clusters as well as into ornithine decarboxylase gene of L. tarentolae. In approximately 60% of cases gene conversion was responsible for the deletion while in the rest of the cases deletion occurred within the expression cassette. We used this observation to design constitutive and inducible expression vectors that could be stably integrated into the genome and subsequently depleted of the antibiotic resistance genes using thymidine kinase or bleomycin resistance genes as negative selection markers. This enabled us to obtain L. tarentolae strains containing constitutive or inducible markerless expression cassettes. Analysis of the markerless strains demonstrated that although stability varied among clones some were stable for as many as 200 generations. We expect that this approach will be useful for the construction of strains carrying multiple expression cassettes for analysis of trypanosomatid pathogenicity mechanisms and overexpression of multi-subunit protein complexes for biochemical and structural studies.
Collapse
Affiliation(s)
- Sergei Mureev
- Department of Physical Biochemistry, Max-Planck-Institute for molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | | | | | | | | |
Collapse
|
10
|
Squina FM, Pedrosa AL, Nunes VS, Cruz AK, Tosi LRO. Shuttle mutagenesis and targeted disruption of a telomere-located essential gene of Leishmania. Parasitology 2006; 134:511-22. [PMID: 17169165 DOI: 10.1017/s0031182006001892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2006] [Revised: 10/06/2006] [Accepted: 10/10/2006] [Indexed: 11/06/2022]
Abstract
Leishmania mutants have contributed greatly to extend our knowledge of this parasite's biology. Here we report the use of the mariner in vitro transposition system as a source of reagents for shuttle mutagenesis and targeted disruption of Leishmania genes. The locus-specific integration was achieved by the disruption of the subtelomeric gene encoding a DNA-directed RNA polymerase III subunit (RPC2). Further inactivation of RPC2 alleles required the complementation of the intact gene, which was transfected in an episomal context. However, attempts to generate a RPC2 chromosomal null mutant resulted in genomic rearrangements that maintained copies of the intact locus in the genome. The maintenance of the RPC2 chromosomal locus in complemented mutants was not mediated by an increase in the number of copies and did not involve chromosomal translocations, which are the typical characteristics of the genomic plasticity of this parasite. Unlike the endogenous locus, the selectable marker used to disrupt RPC2 did not display a tendency to remain in its chromosomal location but was targeted into supernumerary episomal molecules.
Collapse
Affiliation(s)
- F M Squina
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Brasil
| | | | | | | | | |
Collapse
|
11
|
Augusto MJ, Squina FM, Marchini JFM, Dias FC, Tosi LRO. Specificity of modified Drosophila mariner transposons in the identification of Leishmania genes. Exp Parasitol 2004; 108:109-13. [PMID: 15582507 DOI: 10.1016/j.exppara.2004.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Revised: 07/02/2004] [Accepted: 08/03/2004] [Indexed: 11/24/2022]
Abstract
Genetic manipulation of the protozoan Leishmania has led to a better understanding of the survival and development of these pathogens within their hosts. The association of the Leishmania genome sequencing information with the ability of transposons to introduce or destroy phenotypes allows a global perspective on the role and importance of genes in cellular pathways. Herein we report the construction and testing of mariner transposable elements carrying the neomycin phosphotransferase, green fluorescent protein, or beta-glucuronidase genes as reporters for translational fusion events. We demonstrate that the expression of the reporter genes will occur only when the genes are inserted in-frame within predicted genes. Our results not only add to the mariner toolkit for gene manipulation but also strengthen the evidence that the mariner system is a reliable means for the study of gene expression in Leishmania.
Collapse
Affiliation(s)
- Marlei J Augusto
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes 3900, 14049-900 Ribeirão Preto-SP, Brazil
| | | | | | | | | |
Collapse
|
12
|
Abstract
Trypanosomatid protozoans cause important diseases of humans and their domestic livestock. Various molecular genetic tools are now allowing rapid progress in understanding many of the unique aspects of the molecular and cell biology of these organisms. Diploidy and the lack or difficulty of sexual crossing has been a challenge for forward genetics, but powerful selections and functional complementation have helped to overcome it in Leishmania. RNA interference has been adapted for forward genetics in trypanosomes, in which it is also a powerful tool for reverse genetics. Interestingly, the efficacy of different genetic tools has steered research into different aspects of the biology of these parasites.
Collapse
Affiliation(s)
- Stephen M Beverley
- Department of Molecular Microbiology, Washington University Medical School, St Louis, Missouri 63110, USA.
| |
Collapse
|
13
|
Beverley SM, Akopyants NS, Goyard S, Matlib RS, Gordon JL, Brownstein BH, Stormo GD, Bukanova EN, Hott CT, Li F, MacMillan S, Muo JN, Schwertman LA, Smeds MR, Wang Y. Putting the Leishmania genome to work: functional genomics by transposon trapping and expression profiling. Philos Trans R Soc Lond B Biol Sci 2002; 357:47-53. [PMID: 11839181 PMCID: PMC1692916 DOI: 10.1098/rstb.2001.1048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Leishmania are important protozoan pathogens of humans in temperate and tropical regions. The study of gene expression during the infectious cycle, in mutants or after environmental or chemical stimuli, is a powerful approach towards understanding parasite virulence and the development of control measures. Like other trypanosomatids, Leishmania gene expression is mediated by a polycistronic transcriptional process that places increased emphasis on post-transcriptional regulatory mechanisms including RNA processing and protein translation. With the impending completion of the Leishmania genome, global approaches surveying mRNA and protein expression are now feasible. Our laboratory has developed the Drosophila transposon mariner as a tool for trapping Leishmania genes and studying their regulation in the form of protein fusions; a classic approach in other microbes that can be termed 'proteogenomics'. Similarly, we have developed reagents and approaches for the creation of DNA microarrays, which permit the measurement of RNA abundance across the parasite genome. Progress in these areas promises to greatly increase our understanding of global mechanisms of gene regulation at both mRNA and protein levels, and to lead to the identification of many candidate genes involved in virulence.
Collapse
Affiliation(s)
- Stephen M Beverley
- Department of Molecular Microbiology, Washington University Medical School, 660 S Euclid Avenue, Box 8230, St Louis, MO 63110, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|