1
|
Optimisation of Tet-On inducible systems for Sleeping Beauty-based chimeric antigen receptor (CAR) applications. Sci Rep 2020; 10:13125. [PMID: 32753634 PMCID: PMC7403325 DOI: 10.1038/s41598-020-70022-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/08/2020] [Indexed: 01/13/2023] Open
Abstract
Regulated expression of genetic elements that either encode polypeptides or various types of functional RNA is a fundamental goal for gene therapy. Inducible expression may be preferred over constitutive promoters to allow clinician-based control of gene expression. Existing Tet-On systems represent one of the tightest rheostats for control of gene expression in mammals. However, basal expression in absence of tetracycline compromises the widespread application of Tet-controlled systems in gene therapy. We demonstrate that the order of P2A-linked genes of interest was critical for maximal response and tightness of a chimeric antigen receptor (CAR)-based construct. The introduction of G72V mutation in the activation region of the TetR component of the rtTA further improved the fold response. Although the G72V mutation resulted in a removal of a cryptic splice site within rtTA, additional removal of this splice site led to only a modest improvement in the fold-response. Selective removal of key promoter elements (namely the BRE, TATA box, DPE and the four predicted Inr) confirmed the suitability of the minimal CMV promoter and its downstream sequences for supporting inducible expression. The results demonstrate marked improvement of the rtTA based Tet-On system in Sleeping Beauty for applications such as CAR T cell therapy.
Collapse
|
2
|
Lin B, Xu D, Leaman DW. X-linked inhibitor of apoptosis-associated factor 1 regulates TNF receptor 1 complex stability. FEBS Lett 2016; 590:4381-4392. [PMID: 27768232 DOI: 10.1002/1873-3468.12467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/17/2016] [Accepted: 08/30/2016] [Indexed: 11/06/2022]
Abstract
X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) is a cytokine-regulated, tumor necrosis factor (TNF) receptor-associated factor (TRAF) domain-containing protein that has a poorly defined cellular function. Here, we show that ectopically expressed XAF1 inhibits TNF-ɑ-induced NF-κB activation, whereas shRNA silencing of endogenous XAF1 augments it. Our data suggest that XAF1 may inhibit TNF-ɑ-induced NF-κB activation by disrupting the assembly of the TRADD/TRAF2/RIP1 complex (complex I) downstream of TNF receptor activation. XAF1 interacts with TRAF2 and inhibits TRAF2-dependent NF-κB activation, in part, by blocking TRAF2 polyubiquitination. Our findings also indicate that although XAF1 does not directly inhibit RIP1-dependent NF-κB activation, it binds RIP1 and disrupts RIP1/TRADD association. Our data suggest that XAF1 acts as a feedback regulator of the TNF receptor signaling pathway to suppress NF-κB activation.
Collapse
Affiliation(s)
- Boren Lin
- Department of Biological Sciences, The University of Toledo, OH, USA
| | - Da Xu
- Department of Biological Sciences, The University of Toledo, OH, USA
| | - Douglas W Leaman
- Department of Biological Sciences, The University of Toledo, OH, USA
| |
Collapse
|
3
|
Berens C, Bisle S, Klingenbeck L, Lührmann A. Applying an Inducible Expression System to Study Interference of Bacterial Virulence Factors with Intracellular Signaling. J Vis Exp 2015:e52903. [PMID: 26168006 DOI: 10.3791/52903] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The technique presented here allows one to analyze at which step a target protein, or alternatively a small molecule, interacts with the components of a signaling pathway. The method is based, on the one hand, on the inducible expression of a specific protein to initiate a signaling event at a defined and predetermined step in the selected signaling cascade. Concomitant expression, on the other hand, of the gene of interest then allows the investigator to evaluate if the activity of the expressed target protein is located upstream or downstream of the initiated signaling event, depending on the readout of the signaling pathway that is obtained. Here, the apoptotic cascade was selected as a defined signaling pathway to demonstrate protocol functionality. Pathogenic bacteria, such as Coxiella burnetii, translocate effector proteins that interfere with host cell death induction in the host cell to ensure bacterial survival in the cell and to promote their dissemination in the organism. The C. burnetii effector protein CaeB effectively inhibits host cell death after induction of apoptosis with UV-light or with staurosporine. To narrow down at which step CaeB interferes with the propagation of the apoptotic signal, selected proteins with well-characterized pro-apoptotic activity were expressed transiently in a doxycycline-inducible manner. If CaeB acts upstream of these proteins, apoptosis will proceed unhindered. If CaeB acts downstream, cell death will be inhibited. The test proteins selected were Bax, which acts at the level of the mitochondria, and caspase 3, which is the major executioner protease. CaeB interferes with cell death induced by Bax expression, but not by caspase 3 expression. CaeB, thus, interacts with the apoptotic cascade between these two proteins.
Collapse
Affiliation(s)
- Christian Berens
- Department Biologie, Friedrich-Alexander-Universität; Institut für Molekulare Pathogenese, Friedrich-Loeffler-Institut
| | - Stephanie Bisle
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen
| | - Leonie Klingenbeck
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen
| | - Anja Lührmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen;
| |
Collapse
|
4
|
Schöler J, Ferralli J, Thiry S, Chiquet-Ehrismann R. The intracellular domain of teneurin-1 induces the activity of microphthalmia-associated transcription factor (MITF) by binding to transcriptional repressor HINT1. J Biol Chem 2015; 290:8154-65. [PMID: 25648896 DOI: 10.1074/jbc.m114.615922] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Teneurins are large type II transmembrane proteins that are necessary for the normal development of the CNS. Although many studies highlight the significance of teneurins, especially during development, there is only limited information known about the molecular mechanisms of function. Previous studies have shown that the N-terminal intracellular domain (ICD) of teneurins can be cleaved at the membrane and subsequently translocates to the nucleus, where it can influence gene transcription. Because teneurin ICDs do not contain any intrinsic DNA binding sequences, interaction partners are required to affect transcription. Here, we identified histidine triad nucleotide binding protein 1 (HINT1) as a human teneurin-1 ICD interaction partner in a yeast two-hybrid screen. This interaction was confirmed in human cells, where HINT1 is known to inhibit the transcription of target genes by directly binding to transcription factors at the promoter. In a whole transcriptome analysis of BS149 glioblastoma cells overexpressing the teneurin-1 ICD, several microphthalmia-associated transcription factor (MITF) target genes were found to be up-regulated. Directly comparing the transcriptomes of MITF versus TEN1-ICD-overexpressing BS149 cells revealed 42 co-regulated genes, including glycoprotein non-metastatic b (GPNMB). Using real-time quantitative PCR to detect endogenous GPNMB expression upon overexpression of MITF and HINT1 as well as promoter reporter assays using GPNMB promoter constructs, we could demonstrate that the teneurin-1 ICD binds HINT1, thus switching on MITF-dependent transcription of GPNMB.
Collapse
Affiliation(s)
- Jonas Schöler
- From the Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland and the Faculty of Science, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Jacqueline Ferralli
- From the Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland and
| | - Stéphane Thiry
- From the Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland and
| | - Ruth Chiquet-Ehrismann
- From the Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland and the Faculty of Science, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
5
|
Fischedick G, Wu G, Adachi K, Araúzo-Bravo MJ, Greber B, Radstaak M, Köhler G, Tapia N, Iacone R, Anastassiadis K, Schöler HR, Zaehres H. Nanog induces hyperplasia without initiating tumors. Stem Cell Res 2014; 13:300-15. [PMID: 25173648 DOI: 10.1016/j.scr.2014.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 08/04/2014] [Indexed: 01/16/2023] Open
Abstract
Though expression of the homeobox transcription factor Nanog is generally restricted to pluripotent cells and early germ cells, many contradictory reports about Nanog's involvement in tumorigenesis exist. To address this, a modified Tet-On system was utilized to generate Nanog-inducible mice. Following prolonged Nanog expression, phenotypic alterations were found to be restricted to the intestinal tract, leaving other major organs unaffected. Intestinal and colonic epithelium hyperplasia was observed-intestinal villi had doubled in length and hyperplastic epithelium outgrowths were seen after 7days. Increased proliferation of crypt cells and downregulation of the tumor suppressors Cdx2 and Klf4 was detected. ChIP analysis showed physical interaction of Nanog with the Cdx2 and Klf4 promoters, indicating a regulatory conservation from embryonic development. Despite downregulation of tumor suppressors and increased proliferation, ectopic Nanog expression did not lead to tumor formation. We conclude that unlike other pluripotency-related transcription factors, Nanog cannot be considered an oncogene.
Collapse
Affiliation(s)
- Gerrit Fischedick
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany; University of Münster, Faculty of Medicine, Domagstrasse 3, 48149 Münster, Germany
| | - Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Kenjiro Adachi
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Marcos J Araúzo-Bravo
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany; Biodonostia Health Research Institute, 20014 San Sebastián, and IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | - Boris Greber
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Martina Radstaak
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Gabriele Köhler
- University of Münster, Gerhard-Domagk-Institut for Pathology, Domagkstraße 17, 48149 Münster, Germany
| | - Natalia Tapia
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Roberto Iacone
- Center for Regenerative Therapies, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany; F. Hoffmann-La Roche, Pharma Research and Early Development Discovery Technologies, 4070 Basel, Switzerland
| | - Konstantinos Anastassiadis
- Center for Regenerative Therapies, Technische Universität Dresden, Tatzberg 47-51, 01307 Dresden, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany; University of Münster, Faculty of Medicine, Domagstrasse 3, 48149 Münster, Germany.
| | - Holm Zaehres
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| |
Collapse
|
6
|
Michalak EM, Nacerddine K, Pietersen A, Beuger V, Pawlitzky I, Cornelissen-Steijger P, Wientjens E, Tanger E, Seibler J, van Lohuizen M, Jonkers J. Polycomb group gene Ezh2 regulates mammary gland morphogenesis and maintains the luminal progenitor pool. Stem Cells 2014; 31:1910-20. [PMID: 23712803 DOI: 10.1002/stem.1437] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/08/2013] [Accepted: 04/29/2013] [Indexed: 01/19/2023]
Abstract
Specification of the cellular hierarchy in the mammary gland involves complex signaling that remains poorly defined. Polycomb group proteins are known to contribute to the maintenance of stem cell identity through epigenetic modifications, leading to stable alterations in gene expression. The polycomb protein family member EZH2 is known to be important for stem cell maintenance in multiple tissues, but its role in mammary gland development and differentiation remains unknown. Our analyses show that EZH2 is predominantly expressed in luminal cells of the mouse mammary epithelium. As mammary gland development occurs mostly after birth, the analysis of EZH2 gene function in postnatal development is precluded by embryonic lethality of conventional EZH2 knockout mice. To investigate the role of EZH2 in normal mammary gland epithelium, we have generated novel transgenic mice that express doxycycline-regulatable short hairpin (sh) RNAs directed against Ezh2. Knockdown of EZH2 results in delayed outgrowth of the mammary epithelium during puberty, due to impaired terminal end bud formation and ductal elongation. Furthermore, our results demonstrate that EZH2 is required to maintain the luminal cell pool and may limit differentiation of luminal progenitors into CD61(+) differentiated luminal cells, suggesting a role for EZH2 in mammary luminal cell fate determination. Consistent with this, EZH2 knockdown reduced lobuloalveolar expansion during pregnancy, suggesting EZH2 is required for the differentiation of luminal progenitors to alveolar cells.
Collapse
Affiliation(s)
- Ewa Malgorzata Michalak
- Division of Molecular Pathology and Cancer Genomics Centre, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Tiemann U, Marthaler AG, Adachi K, Wu G, Fischedick GUL, Araúzo-Bravo MJ, Schöler HR, Tapia N. Counteracting activities of OCT4 and KLF4 during reprogramming to pluripotency. Stem Cell Reports 2014; 2:351-65. [PMID: 24672757 PMCID: PMC3964287 DOI: 10.1016/j.stemcr.2014.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 01/11/2014] [Accepted: 01/16/2014] [Indexed: 12/16/2022] Open
Abstract
Differentiated cells can be reprogrammed into induced pluripotent stem cells (iPSCs) after overexpressing four transcription factors, of which Oct4 is essential. To elucidate the role of Oct4 during reprogramming, we investigated the immediate transcriptional response to inducible Oct4 overexpression in various somatic murine cell types using microarray analysis. By downregulating somatic-specific genes, Oct4 induction influenced each transcriptional program in a unique manner. A significant upregulation of pluripotent markers could not be detected. Therefore, OCT4 facilitates reprogramming by interfering with the somatic transcriptional network rather than by directly initiating a pluripotent gene-expression program. Finally, Oct4 overexpression upregulated the gene Mgarp in all the analyzed cell types. Strikingly, Mgarp expression decreases during the first steps of reprogramming due to a KLF4-dependent inhibition. At later stages, OCT4 counteracts the repressive activity of KLF4, thereby enhancing Mgarp expression. We show that this temporal expression pattern is crucial for the efficient generation of iPSCs. OCT4 interferes with somatic transcriptional networks in a cell-type-specific manner OCT4 does not activate the pluripotent program at the early stages of reprogramming OCT4 and KLF4 regulate Mgarp transcriptional activity in an antagonistic manner A specific time pattern of Mgarp expression is crucial for inducing pluripotency
Collapse
Affiliation(s)
- Ulf Tiemann
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Adele Gabriele Marthaler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Kenjiro Adachi
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Gerrit Ulf Lennart Fischedick
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Marcos Jesús Araúzo-Bravo
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Hans Robert Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Natalia Tapia
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| |
Collapse
|
8
|
Rostovskaya M, Anastassiadis K. Differential expression of surface markers in mouse bone marrow mesenchymal stromal cell subpopulations with distinct lineage commitment. PLoS One 2012; 7:e51221. [PMID: 23236457 PMCID: PMC3517475 DOI: 10.1371/journal.pone.0051221] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 10/29/2012] [Indexed: 12/12/2022] Open
Abstract
Bone marrow mesenchymal stromal cells (BM MSCs) represent a heterogeneous population of progenitors with potential for generation of skeletal tissues. However the identity of BM MSC subpopulations is poorly defined mainly due to the absence of specific markers allowing in situ localization of those cells and isolation of pure cell types. Here, we aimed at characterization of surface markers in mouse BM MSCs and in their subsets with distinct differentiation potential. Using conditionally immortalized BM MSCs we performed a screening with 176 antibodies and high-throughput flow cytometry, and found 33 markers expressed in MSCs, and among them 3 were novel for MSCs and 13 have not been reported for MSCs from mice. Furthermore, we obtained clonally derived MSC subpopulations and identified bipotential progenitors capable for osteo- and adipogenic differentiation, as well as monopotential osteogenic and adipogenic clones, and thus confirmed heterogeneity of MSCs. We found that expression of CD200 was characteristic for the clones with osteogenic potential, whereas SSEA4 marked adipogenic progenitors lacking osteogenic capacity, and CD140a was expressed in adipogenic cells independently of their efficiency for osteogenesis. We confirmed our observations in cell sorting experiments and further investigated the expression of those markers during the course of differentiation. Thus, our findings provide to our knowledge the most comprehensive characterization of surface antigens expression in mouse BM MSCs to date, and suggest CD200, SSEA4 and CD140a as markers differentially expressed in distinct types of MSC progenitors.
Collapse
|
9
|
Kozlova EN, Berens C. Guiding Differentiation of Stem Cells in Vivo by Tetracycline-Controlled Expression of Key Transcription Factors. Cell Transplant 2012; 21:2537-54. [DOI: 10.3727/096368911x637407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transplantation of stem or progenitor cells is an attractive strategy for cell replacement therapy. However, poor long-term survival and insufficiently reproducible differentiation to functionally appropriate cells in vivo still present major obstacles for translation of this methodology to clinical applications. Numerous experimental studies have revealed that the expression of just a few transcription factors can be sufficient to drive stem cell differentiation toward a specific cell type, to transdifferentiate cells from one fate to another, or to dedifferentiate mature cells to pluripotent stem/progenitor cells (iPSCs). We thus propose here to apply the strategy of expressing the relevant key transcription factors to guide the differentiation of transplanted cells to the desired cell fate in vivo. To achieve this requires tools allowing us to control the expression of these genes in the transplant. Here, we describe drug-inducible systems that allow us to sequentially and timely activate gene expression from the outside, with a particular emphasis on the Tet system, which has been widely and successfully used in stem cells. These regulatory systems offer a tool for strictly limiting gene expression to the respective optimal stage after transplantation. This approach will direct the differentiation of the immature stem/progenitor cells in vivo to the desired cell type.
Collapse
Affiliation(s)
- Elena N Kozlova
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
10
|
Abstract
PR-Set7 is the sole monomethyltransferase responsible for H4K20 monomethylation (H4K20me1) that is the substrate for further methylation by Suv4-20h1/h2. PR-Set7 is required for proper cell cycle progression and is subject to degradation by the CRL4(Cdt2) ubiquitin ligase complex as a function of the cell cycle and DNA damage. This report demonstrates that PR-Set7 is an important downstream effector of CRL4(Cdt2) function during origin of DNA replication licensing, dependent on Suv4-20h1/2 activity. Aberrant rereplication correlates with decreased levels of H4K20me1 and increased levels of H4K20 trimethylation (H4K20me3). Expression of a degradation-resistant PR-Set7 mutant in the mouse embryo that is normally devoid of Suv4-20 does not compromise development or cell cycle progression unless Suv4-20h is coexpressed. PR-Set7 targeting to an artificial locus results in recruitment of the origin recognition complex (ORC) in a manner dependent on Suv4-20h and H4K20me3. Consistent with this, H4K20 methylation status plays a direct role in recruiting ORC through the binding properties of ORC1 and ORCA/LRWD1. Thus, coordinating the status of H4K20 methylation is pivotal for the proper selection of DNA replication origins in higher eukaryotes.
Collapse
|
11
|
Coronado D, Godet M, Bourillot PY, Tapponnier Y, Bernat A, Petit M, Afanassieff M, Markossian S, Malashicheva A, Iacone R, Anastassiadis K, Savatier P. A short G1 phase is an intrinsic determinant of naïve embryonic stem cell pluripotency. Stem Cell Res 2012. [PMID: 23178806 DOI: 10.1016/j.scr.2012.10.004] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
A short G1 phase is a characteristic feature of mouse embryonic stem cells (ESCs). To determine if there is a causal relationship between G1 phase restriction and pluripotency, we made use of the Fluorescence Ubiquitination Cell Cycle Indicator (FUCCI) reporter system to FACS-sort ESCs in the different cell cycle phases. Hence, the G1 phase cells appeared to be more susceptible to differentiation, particularly when ESCs self-renewed in the naïve state of pluripotency. Transitions from ground to naïve, then from naïve to primed states of pluripotency were associated with increased durations of the G1 phase, and cyclin E-mediated alteration of the G1/S transition altered the balance between self-renewal and differentiation. LIF withdrawal resulted in a lengthening of the G1 phase in naïve ESCs, which occurred prior to the appearance of early lineage-specific markers, and could be reversed upon LIF supplementation. We concluded that the short G1 phase observed in murine ESCs was a determinant of naïve pluripotency and was partially under the control of LIF signaling.
Collapse
|
12
|
Abstract
RNA interference (RNAi) is a promising strategy to suppress the expression of disease-relevant genes and induce post-transcriptional gene silencing. Their simplicity and stability endow RNAi with great advantages in molecular medicine. Several RNAi-based drugs are in various stages of clinical investigation. This review summarizes the ongoing research endeavors on RNAi in molecular medicine, delivery systems for RNAi-based drugs, and a compendium of RNAi drugs in different stages of clinical development. Of special interest are RNAi-based drug target discovery and validation, delivery systems for RNAi-based drugs, such as nanoparticles, rabies virus protein-based vehicles, and bacteriophages for RNA packaging.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Modern, Biopharmaceuticals, State Key, Laboratory Breeding Base of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China
| | | |
Collapse
|
13
|
Liu Q, Dong F. Gfi-1 inhibits the expression of eosinophil major basic protein (MBP) during G-CSF-induced neutrophilic differentiation. Int J Hematol 2012; 95:640-7. [PMID: 22552881 DOI: 10.1007/s12185-012-1078-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/30/2012] [Accepted: 04/05/2012] [Indexed: 10/28/2022]
Abstract
The zinc finger transcriptional repressor Gfi-1 has been shown to play a critical role in early granulopoiesis; however, its role in late neutrophilic development is poorly understood. We report here that forced expression of a dominant negative Gfi-1 mutant, N382S, resulted in augmented mRNA levels of eosinophil major basic protein (MBP) in myeloid cells induced with G-CSF to undergo terminal neutrophilic differentiation. MBP is a cytotoxic protein that is abundantly expressed in eosinophils, but not in neutrophils. Ectopic expression of MBP inhibited the proliferation and survival of differentiating myeloid cells in response to G-CSF. Significantly, while GFI-1 is upregulated during neutrophilic differentiation, it is rapidly downregulated upon induction of eosinophilic differentiation, which was associated with increased MBP expression. Knockdown of GFI-1 in eosinophilic cells also led to increased level of MBP mRNA. These results indicate that Gfi-1 functions to inhibit the expression of MBP and aberrant expression of MBP as a result of loss of Gfi-1 function may cause premature apoptosis of differentiating neutrophils. In contrast, the rapid downregulation of Gfi-1 during eosinophilic development may allow for abundant expression of MBP, a hallmark of eosinophilic differentiation.
Collapse
Affiliation(s)
- Qingquan Liu
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606, USA
| | | |
Collapse
|
14
|
Fischedick G, Klein DC, Wu G, Esch D, Höing S, Han DW, Reinhardt P, Hergarten K, Tapia N, Schöler HR, Sterneckert JL. Zfp296 is a novel, pluripotent-specific reprogramming factor. PLoS One 2012; 7:e34645. [PMID: 22485183 PMCID: PMC3317644 DOI: 10.1371/journal.pone.0034645] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 03/05/2012] [Indexed: 01/25/2023] Open
Abstract
Expression of the four transcription factors Oct4, Sox2, Klf4, and c-Myc (OSKM) is sufficient to reprogram somatic cells into induced pluripotent stem (iPSCs). However, this process is slow and inefficient compared with the fusion of somatic cells with embryonic stem cells (ESCs), indicating that ESCs express additional factors that can enhance the efficiency of reprogramming. We had previously developed a method to detect and isolate early neural induction intermediates during the differentiation of mouse ESCs. Using the gene expression profiles of these intermediates, we identified 23 ESC-specific transcripts and tested each for the ability to enhance iPSC formation. Of the tested factors, zinc finger protein 296 (Zfp296) led to the largest increase in mouse iPSC formation. We confirmed that Zfp296 was specifically expressed in pluripotent stem cells and germ cells. Zfp296 in combination with OSKM induced iPSC formation earlier and more efficiently than OSKM alone. Through mouse chimera and teratoma formation, we demonstrated that the resultant iPSCs were pluripotent. We showed that Zfp296 activates transcription of the Oct4 gene via the germ cell–specific conserved region 4 (CR4), and when overexpressed in mouse ESCs leads to upregulation of Nanog expression and downregulation of the expression of differentiation markers, including Sox17, Eomes, and T, which is consistent with the observation that Zfp296 enhances the efficiency of reprogramming. In contrast, knockdown of Zfp296 in ESCs leads to the expression of differentiation markers. Finally, we demonstrated that expression of Zfp296 in ESCs inhibits, but does not block, differentiation into neural cells.
Collapse
Affiliation(s)
- Gerrit Fischedick
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Diana C. Klein
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Daniel Esch
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Susanne Höing
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Dong Wook Han
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Peter Reinhardt
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Kerstin Hergarten
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Natalia Tapia
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hans R. Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- University of Münster, Faculty of Medicine, Münster, Germany
- * E-mail:
| | - Jared L. Sterneckert
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
15
|
Oda H, Hübner MR, Beck DB, Vermeulen M, Hurwitz J, Spector DL, Reinberg D. Regulation of the histone H4 monomethylase PR-Set7 by CRL4(Cdt2)-mediated PCNA-dependent degradation during DNA damage. Mol Cell 2010; 40:364-76. [PMID: 21035370 PMCID: PMC2999913 DOI: 10.1016/j.molcel.2010.10.011] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 09/30/2010] [Accepted: 10/07/2010] [Indexed: 11/26/2022]
Abstract
The histone methyltransferase PR-Set7/Set8 is the sole enzyme that catalyzes monomethylation of histone H4 at K20 (H4K20me1). Previous reports document disparate evidence regarding PR-Set7 expression during the cell cycle, the biological relevance of PR-Set7 interaction with PCNA, and its role in the cell. We find that PR-Set7 is indeed undetectable during S phase and instead is detected during late G2, mitosis, and early G1. PR-Set7 is transiently recruited to laser-induced DNA damage sites through its interaction with PCNA, after which 53BP1 is recruited dependent on PR-Set7 catalytic activity. During the DNA damage response, PR-Set7 interaction with PCNA through a specialized "PIP degron" domain targets it for PCNA-coupled CRL4(Cdt2)-dependent proteolysis. PR-Set7 mutant in its "PIP degron" is now detectable during S phase, during which the mutant protein accumulates. Outside the chromatin context, Skp2 promotes PR-Set7 degradation as well. These findings demonstrate a stringent spatiotemporal control of PR-Set7 that is essential for preserving the genomic integrity of mammalian cells.
Collapse
Affiliation(s)
- Hisanobu Oda
- Department of Biochemistry, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Dually inducible TetON systems for tissue-specific conditional gene expression in zebrafish. Proc Natl Acad Sci U S A 2010; 107:19933-8. [PMID: 21041642 DOI: 10.1073/pnas.1007799107] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Systems for spatial and temporal control of gene expression are essential for developmental studies and are of particular importance for research in adult model organisms. We present two modified dually inducible TetON systems for tissue-specific conditional control of gene expression in zebrafish based on (i) a tetracycline inducible transcriptional activator (TetActivator) fused to the ligand binding domain of a mutated glucocorticoid receptor (TetA-GBD) and (ii) a TetActivator fused with a domain of the Ecdysone receptor (TetA-EcR). Both systems showed strong induction of tetracycline-responsive promoters upon administration of the appropriate ligands (doxycycline and dexamethasone for TetA-GBD, and doxycycline and tebufenozide for TetA-EcR), and undetectable leakiness when compared with classical TetActivators. Combinations of transgenic lines expressing TetA-GBD specifically in the heart or the CNS with different Tet-responsive transgenic lines allows conditional and tissue-specific control of gene expression in embryos and adults. Importantly, induction is fully reversible and tunable by the doses of drugs used. The TetA-EcR system avoids the possible side effects of dexamethasone and displays improved sensitivity both in zebrafish and in mammalian cells. These results show that dually inducible TetON systems are convenient tools for reversible and very tightly controlled conditional gene expression in zebrafish.
Collapse
|
17
|
Danke C, Grünz X, Wittmann J, Schmidt A, Agha-Mohammadi S, Kutsch O, Jäck HM, Hillen W, Berens C. Adjusting transgene expression levels in lymphocytes with a set of inducible promoters. J Gene Med 2010; 12:501-15. [PMID: 20527043 DOI: 10.1002/jgm.1461] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Inducible gene expression systems are powerful research tools and could be of clinical value in the future, with lymphocytes being likely prime application targets. However, currently available regulatable promoters exhibit variation in their efficiency in a cell line-dependent-manner and are notorious for basal leakiness or poor inducibility. Data concerning the regulatory properties of different inducible promoters are scarce for lymphocytes. In the present study, we report a comprehensive analysis of how various inducible promoters perform and how their combination with a transsilencer and a reverse transactivator can result in optimally controlled gene expression in T-cells. METHODS The performance of the tetracycline-regulated (Tet)-inducible promoters Tet-responsive element (TRE), mouse mammary tumor virus (MMTV)/TRE, TREtight and second generation TRE (SG/TRE) was compared in several B-cell lines and in Jurkat T-cells using transient transfections in combination with Tet-On. To monitor transgene expression in a Jurkat cell line containing a transsilencer and a reverse transactivator, expression cassettes encoding enhanced green fluorescent protein, CD123 or a constitutively active, cytotoxic caspase-3 were flanked with insulators and stably integrated. The performance of TREtight and SG/TRE was furthermore analysed in transiently transfected primary CD4(+) human T-cells. RESULTS The promoters exhibit greatly diverging characteristics. MMTV/TRE permits moderate, TRE and TREtight permits intermediate and SG/TRE permits very high expression levels. TRE and SG/TRE are leaky, whereas MMTV/TRE and TREtight provide stringent expression control. Tetracycline derivatives add flexibility to transgene expression by introducing intermediate expression levels. CONCLUSIONS The different expression profiles of the promoters increase the flexibility to adjust transgene expression levels. The promoters provide an additional option to optimize system performance for many applications.
Collapse
Affiliation(s)
- Christina Danke
- Department Biology, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Anastassiadis K, Rostovskaya M, Lubitz S, Weidlich S, Stewart AF. Precise conditional immortalization of mouse cells using tetracycline-regulated SV40 large T-antigen. Genesis 2010; 48:220-32. [PMID: 20146354 DOI: 10.1002/dvg.20605] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cellular immortalization provides a way for expansion and subsequent molecular characterization of rare cell types. Ideally, immortalization can be achieved by the reversible expression of immortalizing proteins. Here, we describe the use of conditional immortalization based on a modified tetracycline-regulated system for the expression of SV40 large T-antigen in embryonic stem (ES) cells and mice. The modified system relies on a codon improved reverse tetracycline transactivator (irtTA) fused to the ligand-binding domain (LBD) of the androgen receptor (irtTA-ABD) or of a mutated glucocorticoid receptor (irtTA-GBD*). Induction of T-antigen is conferred only after addition of two ligands, one to activate the LBD (mibolerone for irtTA-ABD or dexamethasone for irtTA-GBD*) and one to activate the tetracycline transactivator (doxycycline). In ES cells, changes in gene expression upon large T induction were limited and reversible upon deinduction. Similarly, expression of T-antigen was very tightly regulated in mice. We have isolated and expanded bone marrow mesenchymal stem cells that could be genetically manipulated and maintained their differentiation properties after several passages of expansion under conditions that induce the expression of large T-antigen.
Collapse
Affiliation(s)
- Konstantinos Anastassiadis
- Center for Regenerative Therapies Dresden, BioInnovationsZentrum, Technische Universität Dresden, Dresden, Germany.
| | | | | | | | | |
Collapse
|
19
|
Doxycycline-dependent photoactivated gene expression in eukaryotic systems. Nat Methods 2009; 6:527-31. [PMID: 19503080 DOI: 10.1038/nmeth.1340] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Accepted: 05/15/2009] [Indexed: 11/08/2022]
Abstract
High spatial and temporal resolution of conditional gene expression is typically difficult to achieve in whole tissues or organisms. We synthesized two reversibly inhibited, photoactivatable ('caged') doxycycline derivatives with different membrane permeabilities for precise spatial and temporal light-controlled activation of transgenes based on the 'Tet-on' system. After incubation with caged doxycycline or caged cyanodoxycycline, we induced gene expression by local irradiation with UV light or by two-photon uncaging in diverse biological systems, including mouse organotypic brain cultures, developing mouse embryos and Xenopus laevis tadpoles. The amount of UV light needed for induction was harmless as we detected no signs of toxicity. This method allows high-resolution conditional transgene expression at different spatial scales, ranging from single cells to entire complex organisms.
Collapse
|
20
|
Ding L, Paszkowski-Rogacz M, Nitzsche A, Slabicki MM, Heninger AK, de Vries I, Kittler R, Junqueira M, Shevchenko A, Schulz H, Hubner N, Doss MX, Sachinidis A, Hescheler J, Iacone R, Anastassiadis K, Stewart AF, Pisabarro MT, Caldarelli A, Poser I, Theis M, Buchholz F. A genome-scale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity. Cell Stem Cell 2009; 4:403-15. [PMID: 19345177 DOI: 10.1016/j.stem.2009.03.009] [Citation(s) in RCA: 214] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 02/12/2009] [Accepted: 03/16/2009] [Indexed: 11/29/2022]
Abstract
Pluripotent embryonic stem cells (ESCs) maintain self-renewal while ensuring a rapid response to differentiation cues. The identification of genes maintaining ESC identity is important to develop these cells for their potential therapeutic use. Here we report a genome-scale RNAi screen for a global survey of genes affecting ESC identity via alteration of Oct4 expression. Factors with the strongest effect on Oct4 expression included components of the Paf1 complex, a protein complex associated with RNA polymerase II. Using a combination of proteomics, expression profiling, and chromatin immunoprecipitation, we demonstrate that the Paf1C binds to promoters of key pluripotency genes, where it is required to maintain a transcriptionally active chromatin structure. The Paf1C is developmentally regulated and blocks ESC differentiation upon overexpression, and the knockdown in ESCs causes expression changes similar to Oct4 or Nanog depletions. We propose that the Paf1C plays an important role in maintaining ESC identity.
Collapse
Affiliation(s)
- Li Ding
- Max-Planck-Institute for Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Inducible and reversible gene silencing by stable integration of an shRNA-encoding lentivirus in transgenic rats. Proc Natl Acad Sci U S A 2008; 105:18507-12. [PMID: 19017805 DOI: 10.1073/pnas.0806213105] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Currently, tools to generate loss-of-function mutations in rats are limited. Therefore, we have developed a lentiviral single-vector system for the temporal control of ubiquitous shRNA expression. Here, we report transgenic rats carrying an insulin receptor-specific shRNA transcribed from a regulatable promoter and identified by concomitant EGFP expression. In the absence of the inducer doxycycline (Dox), we observed no siRNA expression. However, Dox treatment at very low concentrations led to a rapid induction of the siRNA and ablation of INSR protein expression. As anticipated, blood glucose levels increased, whereas insulin signaling and glucose regulation were impaired. Importantly, this phenotype was reversible (i.e., discontinuation of Dox treatment led to INSR re-expression and remission of diabetes symptoms). The lentiviral system offers a simple tool for reversible gene ablation in the rat and can be used for other species that cannot be manipulated by conventional recombination techniques.
Collapse
|
22
|
Trajkovski M, Mziaut H, Schubert S, Kalaidzidis Y, Altkrüger A, Solimena M. Regulation of insulin granule turnover in pancreatic beta-cells by cleaved ICA512. J Biol Chem 2008; 283:33719-29. [PMID: 18824546 DOI: 10.1074/jbc.m804928200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Insulin maintains homeostasis of glucose by promoting its uptake into cells from the blood. Hyperglycemia triggers secretion of insulin from pancreatic beta-cells. This process is mediated by secretory granule exocytosis. However, how beta-cells keep granule stores relatively constant is still unknown. ICA512 is an intrinsic granule membrane protein, whose cytosolic domain binds beta2-syntrophin, an F-actin-associated protein, and is cleaved upon granule exocytosis. The resulting cleaved cytosolic fragment, ICA512-CCF, reaches the nucleus and up-regulates the transcription of granule genes, including insulin and ICA512. Here, we show that ICA512-CCF also dimerizes with intact ICA512 on granules, thereby displacing it from beta2-syntrophin. This leads to increased granule mobility and insulin release. Based on these findings, we propose a model whereby the generation of ICA512-CCF first amplifies insulin secretion. The ensuing reduction of granule stores would then increase the probability of newly generated ICA512-CCF to reach the nucleus and enhance granule biogenesis, thus allowing beta-cells to constantly adjust production of granules to their storage size and consumption. Pharmacological modulation of these feedback loops may alleviate deficient insulin release in diabetes.
Collapse
Affiliation(s)
- Mirko Trajkovski
- Laboratory of Experimental Diabetology, School of Medicine, Dresden University of Technology, Dresden 01307, Germany
| | | | | | | | | | | |
Collapse
|
23
|
Swinburne IA, Miguez DG, Landgraf D, Silver PA. Intron length increases oscillatory periods of gene expression in animal cells. Genes Dev 2008; 22:2342-6. [PMID: 18703678 DOI: 10.1101/gad.1696108] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Introns may affect gene expression by increasing the time required to transcribe the gene. One way for extended transcription times to affect the behavior of a gene expression program is through a negative feedback loop. Here, we show that a logically engineered negative feedback loop in animal cells produces expression pulses, which have a broad time distribution that increases with intron length. These results in combination with mathematical models provide insight into what may produce the intron-dependent pulse distributions. We conclude that the long production time required for large intron-containing genes is significant for the behavior of gene expression programs.
Collapse
Affiliation(s)
- Ian A Swinburne
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
24
|
Zeng H, Horie K, Madisen L, Pavlova MN, Gragerova G, Rohde AD, Schimpf BA, Liang Y, Ojala E, Kramer F, Roth P, Slobodskaya O, Dolka I, Southon EA, Tessarollo L, Bornfeldt KE, Gragerov A, Pavlakis GN, Gaitanaris GA. An inducible and reversible mouse genetic rescue system. PLoS Genet 2008; 4:e1000069. [PMID: 18464897 PMCID: PMC2346557 DOI: 10.1371/journal.pgen.1000069] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 04/10/2008] [Indexed: 12/13/2022] Open
Abstract
Inducible and reversible regulation of gene expression is a powerful approach for uncovering gene function. We have established a general method to efficiently produce reversible and inducible gene knockout and rescue in mice. In this system, which we named iKO, the target gene can be turned on and off at will by treating the mice with doxycycline. This method combines two genetically modified mouse lines: a) a KO line with a tetracycline-dependent transactivator replacing the endogenous target gene, and b) a line with a tetracycline-inducible cDNA of the target gene inserted into a tightly regulated (TIGRE) genomic locus, which provides for low basal expression and high inducibility. Such a locus occurs infrequently in the genome and we have developed a method to easily introduce genes into the TIGRE site of mouse embryonic stem (ES) cells by recombinase-mediated insertion. Both KO and TIGRE lines have been engineered for high-throughput, large-scale and cost-effective production of iKO mice. As a proof of concept, we have created iKO mice in the apolipoprotein E (ApoE) gene, which allows for sensitive and quantitative phenotypic analyses. The results demonstrated reversible switching of ApoE transcription, plasma cholesterol levels, and atherosclerosis progression and regression. The iKO system shows stringent regulation and is a versatile genetic system that can easily incorporate other techniques and adapt to a wide range of applications. We describe a technology for the creation of inducible and reversible gene inactivation in mice. It combines two genetically modified mouse lines: a knock-out line with a tetracycline transactivator replacing the endogenous target gene, and a line in which a tetracycline-inducible cDNA of the target gene has been inserted into a specific genomic locus. A critical component of this system is the unique chromosomal loci we have identified and engineered that offer a platform for easy insertion of any gene of interest for tightly controlled expression. Because of its simple binary nature, allowing independent modification of each of the two components and possibility of use in a high-throughput mode, we believe that our system will be useful for multiple applications, such as introducing mutant or humanized form of the target gene as well as functional manipulating tools. We have applied this technology to the Apolipoprotein E (ApoE) gene and have demonstrated that: a) the expression of ApoE is strictly dependent on the presence of doxycycline, a tetracycline group antibiotic, in the mouse diet, b) in the absence of doxycycline (ApoE repressed) atherosclerotic plaques are formed, confirming the importance of ApoE in the process, and c) upon re-induction of ApoE in the animals with doxicyclin, atherosclerosis regressed.
Collapse
Affiliation(s)
- Hongkui Zeng
- Omeros Corporation, Seattle, Washington, United States of America
| | - Kyoji Horie
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Linda Madisen
- Omeros Corporation, Seattle, Washington, United States of America
| | - Maria N. Pavlova
- Omeros Corporation, Seattle, Washington, United States of America
| | - Galina Gragerova
- Omeros Corporation, Seattle, Washington, United States of America
| | - Alex D. Rohde
- Omeros Corporation, Seattle, Washington, United States of America
| | - Brian A. Schimpf
- Omeros Corporation, Seattle, Washington, United States of America
| | - Yuqiong Liang
- Omeros Corporation, Seattle, Washington, United States of America
| | - Ethan Ojala
- Omeros Corporation, Seattle, Washington, United States of America
| | - Farah Kramer
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | - Patricia Roth
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Olga Slobodskaya
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Io Dolka
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Eileen A. Southon
- Neural Development Section, Mouse Cancer Genetics Program, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Lino Tessarollo
- Neural Development Section, Mouse Cancer Genetics Program, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
| | - Karin E. Bornfeldt
- Department of Pathology, University of Washington, Seattle, Washington, United States of America
| | | | - George N. Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, Maryland, United States of America
- * E-mail: (GGA); (GNP)
| | - George A. Gaitanaris
- Omeros Corporation, Seattle, Washington, United States of America
- * E-mail: (GGA); (GNP)
| |
Collapse
|
25
|
Redell MS, Tsimelzon A, Hilsenbeck SG, Tweardy DJ. Conditional overexpression of Stat3alpha in differentiating myeloid cells results in neutrophil expansion and induces a distinct, antiapoptotic and pro-oncogenic gene expression pattern. J Leukoc Biol 2007; 82:975-85. [PMID: 17634277 DOI: 10.1189/jlb.1206766] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Normal neutrophil development requires G-CSF signaling, which includes activation of Stat3. Studies of G-CSF-mediated Stat3 signaling in cell culture and transgenic mice have yielded conflicting data regarding the role of Stat3 in myelopoiesis. The specific functions of Stat3 remain unclear, in part, because two isoforms, Stat3alpha and Stat3beta, are expressed in myeloid cells. To understand the contribution of each Stat3 isoform to myelopoiesis, we conditionally overexpressed Stat3alpha or Stat3beta in the murine myeloid cell line 32Dcl3 (32D) and examined the consequences of overexpression on cell survival and differentiation. 32D cells induced to overexpress Stat3alpha, but not Stat3beta, generated a markedly higher number of neutrophils in response to G-CSF. This effect was a result of decreased apoptosis but not of increased proliferation. Comparison of gene expression profiles of G-CSF-stimulated, Stat3alpha-overexpressing 32D cells with those of cells with normal Stat3alpha expression revealed novel Stat3 gene targets, which may contribute to neutrophil expansion and improved survival, most notably Slc28a2, a purine nucleoside transporter, which is critical for maintenance of intracellular nucleotide levels and prevention of apoptosis, and Gpr65, an acid-sensing, G protein-coupled receptor with pro-oncogenic and antiapoptotic functions.
Collapse
Affiliation(s)
- Michele S Redell
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
26
|
Klopotowska D, Strzadala L, Matuszyk J. Inducibility of doxycycline-regulated gene in neural and neuroendocrine cells strongly depends on the appropriate choice of a tetracycline-responsive promoter. Neurochem Int 2007; 52:221-9. [PMID: 17618706 DOI: 10.1016/j.neuint.2007.05.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 05/10/2007] [Accepted: 05/16/2007] [Indexed: 11/25/2022]
Abstract
Elucidation of the mechanisms underlying specific receptor activation of neural and neuroendocrine cells will require the establishment of cellular systems that permit the regulation of the expression of the protein of interest. In a tetracycline (Tet)-regulated system, the gene encoding the protein of interest is under the control of a Tet promoter and its transcription is activated in the presence of doxycycline (Dox) by the Tet transactivator rtTA. Acceptable inducibility of the gene's expression requires a high level of its expression in the presence of Dox and a minimal basal expression in the absence of Dox. Two Tet promoters are compared here, the original PhCMV*-1 and the second-generation Ptight, with respect to the inducibility of the gene of interest in neuroendocrine and neural cells genetically engineered to express rtTA, namely PC12-Tet-On cells and MB-G-18 cells (mouse brain-derived cells with the phenotype of neuron-restricted precursors). This study demonstrates that the use of Ptight provided a much higher Dox-induced maximal expression in both cell lines, while the basal activities of the two Tet promoters were at similar levels. The additional use of the Tet-controlled silencer (tTS) caused almost complete abrogation of the leakiness of the Ptight promoter and an increase in the inducibility of the regulated gene, but the maximal levels of gene expression driven in the presence of Dox were also markedly reduced.
Collapse
Affiliation(s)
- Dagmara Klopotowska
- Department of Experimental Oncology, L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla 12, 53-114 Wroclaw, Poland
| | | | | |
Collapse
|
27
|
Stringent and reproducible tetracycline-regulated transgene expression by site-specific insertion at chromosomal loci with pre-characterised induction characteristics. BMC Mol Biol 2007; 8:30. [PMID: 17493262 PMCID: PMC1884169 DOI: 10.1186/1471-2199-8-30] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Accepted: 05/10/2007] [Indexed: 12/16/2022] Open
Abstract
Background The ability to regulate transgene expression has many applications, mostly concerning the analysis of gene function. Desirable induction characteristics, such as low un-induced expression, high induced expression and limited cellular heterogeneity, can be seriously impaired by chromosomal position effects at the site of transgene integration. Many clones may therefore need to be screened before one with optimal induction characteristics is identified. Furthermore, such screens must be repeated for each new transgene investigated, and comparisons between clones with different transgenes is complicated by their different integration sites. Results To circumvent these problems we have developed a "screen and insert" strategy in which clones carrying a transgene for a fluorescent reporter are first screened for those with optimal induction characteristics. Site-specific recombination (SSR) is then be used repeatedly to insert any new transgene at the reporter transgene locus of such clones so that optimal induction characteristics are conferred upon it. Here we have tested in a human fibrosarcoma cell line (HT1080) two of many possible implementations of this approach. Clones (e.g. Rht14-10) in which a GFP reporter gene is very stringently regulated by the tetracycline (tet) transactivator (tTA) protein were first identified flow-cytometrically. Transgenes encoding luciferase, I-SceI endonuclease or Rad52 were then inserted by SSR at a LoxP site adjacent to the GFP gene resulting stringent tet-regulated transgene expression. In clone Rht14-10, increases in expression from essentially background levels (+tet) to more than 104-fold above background (-tet) were reproducibly detected after Cre-mediated insertion of either the luciferase or the I-SceI transgenes. Conclusion Although previous methods have made use of SSR to integrate transgenes at defined sites, none has effectively combined this with a pre-selection step to identify integration sites that support optimal regulatory characteristics. Rht14-10 and similar HT1080-derived clones can now be used in conjunction with a convenient delivery vector (pIN2-neoMCS), in a simple 3-step protocol leading to stringent and reproducible transgene regulation. This approach will be particularly useful for transgenes whose products are very active at low concentrations and/or for comparisons of multiple related transgenes.
Collapse
|
28
|
Seibler J, Kleinridders A, Küter-Luks B, Niehaves S, Brüning JC, Schwenk F. Reversible gene knockdown in mice using a tight, inducible shRNA expression system. Nucleic Acids Res 2007; 35:e54. [PMID: 17376804 PMCID: PMC1874634 DOI: 10.1093/nar/gkm122] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
RNA interference through expression of short hairpin (sh)RNAs provides an efficient approach for gene function analysis in mouse genetics. Techniques allowing to control time and degree of gene silencing in vivo, however, are still lacking. Here we provide a generally applicable system for the temporal control of ubiquitous shRNA expression in mice. Depending on the dose of the inductor doxycycline, the knockdown efficiency reaches up to 90%. To demonstrate the feasibility of our tool, a mouse model of reversible insulin resistance was generated by expression of an insulin receptor (Insr)-specific shRNA. Upon induction, mice develop severe hyperglycemia within seven days. The onset and progression of the disease correlates with the concentration of doxycycline, and the phenotype returns to baseline shortly after withdrawal of the inductor. On a broad basis, this approach will enable new insights into gene function and molecular disease mechanisms.
Collapse
Affiliation(s)
- Jost Seibler
- Artemis Pharmaceuticals GmbH, Neurather Ring 1, Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
29
|
Storm MP, Bone HK, Beck CG, Bourillot PY, Schreiber V, Damiano T, Nelson A, Savatier P, Welham MJ. Regulation of Nanog expression by phosphoinositide 3-kinase-dependent signaling in murine embryonic stem cells. J Biol Chem 2007; 282:6265-73. [PMID: 17204467 DOI: 10.1074/jbc.m610906200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Embryonic stem (ES) cell pluripotency is regulated by a combination of extrinsic and intrinsic factors. Previously we have demonstrated that phosphoinositide 3-kinase (PI3K)-dependent signaling is required for efficient self-renewal of murine ES cells. In the study presented here, we have investigated the downstream molecular mechanisms that contribute to the ability of PI3Ks to regulate pluripotency. We show that inhibition of PI3K activity with either pharmacological or genetic tools results in decreased expression of RNA for the homeodomain transcription factor Nanog and decreased Nanog protein levels. Inhibition of glycogen synthase kinase 3 (GSK-3) activity by PI3Ks plays a key role in regulation of Nanog expression, because blockade of GSK-3 activity effectively reversed the effects of PI3K inhibition on Nanog RNA, and protein expression and self-renewal under these circumstances were restored. Furthermore, GSK-3 mutants mimicked the effects of PI3K or GSK-3 inhibition on Nanog expression. Importantly, expression of an inducible form of Nanog prevented the loss of self-renewal observed upon inhibition of PI3Ks, supporting a functional relationship between PI3Ks and Nanog expression. In addition, expression of a number of putative Nanog target genes was sensitive to PI3K inhibition. Thus, the new evidence provided in this study shows that PI3K-dependent regulation of ES cell self-renewal is mediated, at least in part, by the ability of PI3K signaling to maintain Nanog expression. Regulation of GSK-3 activity by PI3Ks appears to play a key role in this process.
Collapse
Affiliation(s)
- Mike P Storm
- Department of Pharmacy and Pharmacology and Centre for Regenerative Medicine, The University of Bath, Bath BA2 7AY, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Servert P, Garcia-Castro J, Díaz V, Lucas D, Gonzalez MA, Martínez-A C, Bernad A. Inducible model for beta-six-mediated site-specific recombination in mammalian cells. Nucleic Acids Res 2006; 34:e1. [PMID: 16394020 PMCID: PMC1325017 DOI: 10.1093/nar/gnj001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The prokaryotic β recombinase catalyzes site-specific recombination between two directly oriented minimal six sites in chromatin-integrated substrates. Here, we demonstrate that an enhanced green fluorescent protein (EGFP)-fused version of β recombinase (β-EGFP) is fully active, retaining most specific activity. It is used to develop a recombination-dependent activatable gene expression (RAGE) system based on the androgen receptor (AR) ligand-binding domain (LBD). Two hybrid molecules, a direct fusion of the LBD-AR to the C-terminus of β recombinase (β-AR) and a triple fusion of β-EGFP to the same ligand-binding domain (β-EGFP-AR), were engineered and their subcellular behavior, stability and catalytic activity were evaluated. Both chimeric β recombinase proteins showed in vivo inducible recombinogenic activity dependent on addition of an androgen receptor agonist, although the β-AR fusion protein demonstrated more accurate ligand-dependent translocation from cytoplasm to nucleus.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Antonio Bernad
- To whom correspondence should be addressed. Tel: +34 91 585 4562; Fax: +34 91 372 0493;
| |
Collapse
|
31
|
Muñoz I, Carrillo M, Zanuy S, Gómez A. Regulation of exogenous gene expression in fish cells: An evaluation of different versions of the tetracycline-regulated system. Gene 2005; 363:173-82. [PMID: 16236467 DOI: 10.1016/j.gene.2005.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 08/09/2005] [Accepted: 08/12/2005] [Indexed: 11/21/2022]
Abstract
The exogenous control of foreign gene expression is relevant to both basic research and biotechnological applications. In fish, the number of isolated genes has become larger in the last few years; however an efficient system for controlling gene expression is not yet available. The tetracycline-regulated system has proved to be efficient and it is widely used in mammals, but it has never been tested in fish. This work includes the establishment of the tetracycline-regulated system for use in fish cells, and the determination of the optimal conditions to achieve a tight exogenous expression regulation. We have compared the tet-off and tet-on systems and the performance of the transactivators under the control of promoters with different origin and strength. The results show that the tet-off is more efficient than the tet-on system for use in fish cells. The hCMV promoter/enhancer proved to be more efficient than the carp beta-actin promoter to drive the expression of the transactivator, since the use of the carp beta-actin promoter resulted in a high intra-clonal variability when stably expressed. An auto-regulated system approach proved useful only when transiently expressed.
Collapse
Affiliation(s)
- Iciar Muñoz
- Department of Fish Reproductive Physiology, Instituto de Acuicultura de Torrelasal, CSIC, Ribera de Cabanes, 12595, Torrelasal, Castellón, Spain
| | | | | | | |
Collapse
|
32
|
Muñoz I, Gómez A, Zanuy S, Carrillo M. A one-step approach to obtain cell clones expressing tetracycline-responsive transactivators. Anal Biochem 2004; 331:153-60. [PMID: 15246008 DOI: 10.1016/j.ab.2004.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2004] [Indexed: 10/26/2022]
Abstract
Despite the wide application of the tetracycline-regulated gene expression system, several drawbacks in establishing the system in in vitro-cultured cells have been described. Most of the problems are related to obtaining a reliable tetracycline-regulated cell clone, which often results in arduous labor. We describe here a new approach to facilitate the screening and selection of such cell clones. We have constructed a tetracycline-responsive plasmid that harbors an antibiotic resistance gene fused to the enhanced green fluorescent protein (EGFP) gene and the luciferase gene, both under the control of a bidirectional promoter. We demonstrate that the selection of tetracycline-regulated clones is highly simplified by using this plasmid. Only clones expressing the system in a functional manner are able to survive under antibiotic selection. In addition, a quick characterization of the responsiveness of the clones is possible by monitoring GFP expression in vivo.
Collapse
Affiliation(s)
- Iciar Muñoz
- Department of Fish Reproductive Physiology, Instituto de Acuicultura de Torrelasal, CSIC, Ribera de Cabanes, 12595 Torrelasal, Castellon, Spain
| | | | | | | |
Collapse
|
33
|
Qu Z, Thottassery JV, Van Ginkel S, Manuvakhova M, Westbrook L, Roland-Lazenby C, Hays S, Kern FG. Homogeneity and long-term stability of tetracycline-regulated gene expression with low basal activity by using the rtTA2S-M2 transactivator and insulator-flanked reporter vectors. Gene 2004; 327:61-73. [PMID: 14960361 DOI: 10.1016/j.gene.2003.10.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2003] [Revised: 10/09/2003] [Accepted: 10/15/2003] [Indexed: 11/26/2022]
Abstract
Inducible expression of tetracycline responsive element (TRE)-regulated genes in nearly all cells in a stable clone has generally been problematic, especially in long-term culture. Heterogeneity of tet-inducible expression is generally attributed to the instability of the original tet-transactivators tTA and rtTA. These transactivators have cryptic splice sites, prokaryotic codons and full VP16 domains, all of which contribute to their instability. Moreover, they also require high concentrations of Doxycycline (Dox). The 5 amino acid substitutions in the rtTA variant rtTA2S-M2 confer exquisite sensitivity to Dox. Moreover, humanized codons, removal of cryptic splice sites and minimal VP16 domains in rtTA2S-M2 results in its being better tolerated within cells. However, the ability of this modified transactivator to maintain homogeneous inducibility in long-term culture has not been examined. We demonstrate that rtTA2S-M2 expressing clones exhibit functional transactivator activity for over 7 months in culture. Furthermore, rtTA2S-M2 expressing clones with chromosomally integrated copies of a TRE-green fluorescent protein (GFP) reporter also exhibited homogeneous inducibility in long-term culture. Importantly, the inherent reduced toxicity and improved stability of rtTA2S-M2 obviates the need to continuously select for its message, once clones with functional transactivator are isolated. The use of rtTA2S-M2 did not, however, preclude clones with stably integrated TRE-reporter from exhibiting leakiness. However, inclusion of flanking double copies of a 'minimal core element' of the chicken beta-globin gene insulator, instead of the 1.4 kb region, in the TRE-reporter was sufficient to markedly reduce the frequency of clones with high basal expression. Inclusion of the insulator core also did not affect the maximal expression levels of the inducible gene, which typically equaled or exceeded that observed with the strong constitutive CMV promoter. Finally, with this system homogeneous inducibility was observed rapidly and with low doses of Dox.
Collapse
Affiliation(s)
- Zhican Qu
- Biochemistry and Molecular Biology Department, Drug Discovery Division, Southern Research Institute, 2000 Ninth Ave South, Birmingham, AL 35255, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Recillas-Targa F, Valadez-Graham V, Farrell CM. Prospects and implications of using chromatin insulators in gene therapy and transgenesis. Bioessays 2004; 26:796-807. [PMID: 15221861 DOI: 10.1002/bies.20059] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Gene therapy has emerged from the idea of inserting a wild-type copy of a gene in order to restore the proper expression and function of a damaged gene. Initial efforts have focused on finding the proper vector and delivery method to introduce a corrected gene to the affected tissue or cell type. Even though these first attempts are clearly promising, several problems remain unsolved. A major problem is the influence of chromatin structure on transgene expression. To overcome chromatin-dependent repressive transgenic states, researchers have begun to use chromatin regulatory elements to drive transgene expression. Insulators or chromatin boundaries are able to protect a transgene against chromatin position effects at their genomic integration sites, and they are able to maintain transgene expression for long periods of time. Therefore, these elements may be very useful tools in gene therapy applications for ensuring high-level and stable expression of transgenes.
Collapse
Affiliation(s)
- Félix Recillas-Targa
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México.
| | | | | |
Collapse
|
35
|
Abstract
Gene regulation by tetracyclines has become a widely-used tool to study gene functions in pro- and eukaryotes. This regulatory system originates from Gram-negative bacteria, in which it fine-tunes expression of a tetracycline-specific export protein mediating resistance against this antibiotic. This review attempts to describe briefly the selective pressures governing the evolution of tetracycline regulation, which have led to the unique regulatory properties underlying its success in manifold applications. After discussing the basic mechanisms we will present the large variety of designed alterations of activities which have contributed to the still growing tool-box of components available for adjusting the regulatory properties to study gene functions in different organisms or tissues. Finally, we provide an overview of the various experimental setups available for pro- and eukaryotes, and touch upon some highlights discovered by the use of tetracycline-dependent gene regulation.
Collapse
Affiliation(s)
- Christian Berens
- Lehrstuhl für Mikrobiologie, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
| | | |
Collapse
|
36
|
Guglielmi L, Truffinet V, Cogné M, Denizot Y. The β-globin HS4 insulator confers copy-number dependent expression of IgH regulatory elements in stable B cell transfectants. Immunol Lett 2003; 89:119-23. [PMID: 14556968 DOI: 10.1016/s0165-2478(03)00126-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Locus control regions (LCR) were first defined by their theoretical ability to enhance the expression of linked genes in a tissue-specific, position-independent and copy-number dependent manner. In fact, few of the so-called LCR identified completely fulfil this definition. For example, the regulatory elements located in 5' (Emu) and 3' (HS3a; HS1,2; HS3b; HS4) of the IgH locus display some properties of a LCR but lack a copy-number dependence and sometimes display position effects in transgenes. In order to study whether addition of insulators would allow to overcome such problems in transgenes, we studied constructs harboring a V(H) promoter-green fluorescent protein reporter gene linked to the 3' and/or 5' IgH elements, surrounded or not with the chicken beta-globin 5'HS4 insulator. When flanked with insulators it appeared that either 3' IgH and 5' IgH regulatory elements now behave as true LCR elements and noticeably display copy-number dependence in transfected pre-B or B cell lines.
Collapse
Affiliation(s)
- Laurence Guglielmi
- UMR CNRS 6101, Faculté de Médecine, 2 rue Dr Marcland, 87025, Limoges, France
| | | | | | | |
Collapse
|
37
|
Berens C, Hillen W. Gene regulation by tetracyclines. Constraints of resistance regulation in bacteria shape TetR for application in eukaryotes. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3109-21. [PMID: 12869186 DOI: 10.1046/j.1432-1033.2003.03694.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Tet repressor protein (TetR) regulates transcription of a family of tetracycline (tc) resistance determinants in Gram-negative bacteria. The resistance protein TetA, a membrane-spanning H+-[tc.M]+ antiporter, must be sensitively regulated because its expression is harmful in the absence of tc, yet it has to be expressed before the drugs' concentration reaches cytoplasmic levels inhibitory for protein synthesis. Consequently, TetR shows highly specific tetO binding to reduce basal expression and high affinity to tc to ensure sensitive induction. Tc can cross biological membranes by diffusion enabling this inducer to penetrate the majority of cells. These regulatory and pharmacological properties are the basis for application of TetR to selectively control the expression of single genes in lower and higher eukaryotes. TetR can be used for that purpose in some organisms without further modifications. In mammals and in a large variety of other organisms, however, eukaryotic transcriptional activator or repressor domains are fused to TetR to turn it into an efficient regulator. Mechanistic understanding and the ability to engineer and screen for mutants with specific properties allow tailoring of the DNA recognition specificity, the response to inducer tc and the dimerization specificity of TetR-based eukaryotic regulators. This review provides an overview of the TetR properties as they evolved in bacteria, the functional modifications necessary to transform it into a convenient, specific and efficient regulator for use in eukaryotes and how the interplay between structure--function studies in bacteria and specific requirements of particular applications in eukaryotes have made it a versatile and highly adaptable regulatory system.
Collapse
Affiliation(s)
- Christian Berens
- Lehrstuhl für Mikrobiologie, Institut für Mikrobiologie, Biochemie und Genetik, Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
| | | |
Collapse
|