1
|
Marchetti M, Piacentini L, Berloco MF, Casale AM, Cappucci U, Pimpinelli S, Fanti L. Cytological heterogeneity of heterochromatin among 10 sequenced Drosophila species. Genetics 2022; 222:iyac119. [PMID: 35946576 PMCID: PMC9526073 DOI: 10.1093/genetics/iyac119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/01/2022] [Indexed: 11/14/2022] Open
Abstract
In Drosophila chromosomal rearrangements can be maintained and are associated with karyotypic variability among populations from different geographic localities. The abundance of variability in gene arrangements among chromosomal arms is even greater when comparing more distantly related species and the study of these chromosomal changes has provided insights into the evolutionary history of species in the genus. In addition, the sequencing of genomes of several Drosophila species has offered the opportunity to establish the global pattern of genomic evolution, at both genetic and chromosomal level. The combined approaches of comparative analysis of syntenic blocks and direct physical maps on polytene chromosomes have elucidated changes in the orientation of genomic sequences and the difference between heterochromatic and euchromatic regions. Unfortunately, the centromeric heterochromatic regions cannot be studied using the cytological maps of polytene chromosomes because they are underreplicated and therefore reside in the chromocenter. In Drosophila melanogaster, a cytological map of the heterochromatin has been elaborated using mitotic chromosomes from larval neuroblasts. In the current work, we have expanded on that mapping by producing cytological maps of the mitotic heterochromatin in an additional 10 sequenced Drosophila species. These maps highlight 2 apparently different paths, for the evolution of the pericentric heterochromatin between the subgenera Sophophora and Drosophila. One path leads toward a progressive complexity of the pericentric heterochromatin (Sophophora) and the other toward a progressive simplification (Drosophila). These maps are also useful for a better understanding how karyotypes have been altered by chromosome arm reshuffling during evolution.
Collapse
Affiliation(s)
- Marcella Marchetti
- Istituto Pasteur Italia and Dipartimento di Biologia e Biotecnologie “Charles Darwin”, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Lucia Piacentini
- Istituto Pasteur Italia and Dipartimento di Biologia e Biotecnologie “Charles Darwin”, “Sapienza” University of Rome, 00185 Rome, Italy
| | | | - Assunta Maria Casale
- Istituto Pasteur Italia and Dipartimento di Biologia e Biotecnologie “Charles Darwin”, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Ugo Cappucci
- Istituto Pasteur Italia and Dipartimento di Biologia e Biotecnologie “Charles Darwin”, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Sergio Pimpinelli
- Istituto Pasteur Italia and Dipartimento di Biologia e Biotecnologie “Charles Darwin”, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Laura Fanti
- Istituto Pasteur Italia and Dipartimento di Biologia e Biotecnologie “Charles Darwin”, “Sapienza” University of Rome, 00185 Rome, Italy
| |
Collapse
|
2
|
Carron J, Della Coletta R, Lourenço GJ. Pseudogene Transcripts in Head and Neck Cancer: Literature Review and In Silico Analysis. Genes (Basel) 2021; 12:genes12081254. [PMID: 34440428 PMCID: PMC8391979 DOI: 10.3390/genes12081254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/25/2022] Open
Abstract
Once considered nonfunctional, pseudogene transcripts are now known to provide valuable information for cancer susceptibility, including head and neck cancer (HNC), a serious health problem worldwide, with about 50% unimproved overall survival over the last decades. The present review focuses on the role of pseudogene transcripts involved in HNC risk and prognosis. We combined current literature and in silico analyses from The Cancer Genome Atlas (TCGA) database to identify the most deregulated pseudogene transcripts in HNC and their genetic variations. We then built a co-expression network and performed gene ontology enrichment analysis to better understand the pseudogenes’ interactions and pathways in HNC. In the literature, few pseudogenes have been studied in HNC. Our in silico analysis identified 370 pseudogene transcripts associated with HNC, where SPATA31D5P, HERC2P3, SPATA31C2, MAGEB6P1, SLC25A51P1, BAGE2, DNM1P47, SPATA31C1, ZNF733P and OR2W5 were found to be the most deregulated and presented several genetic alterations. NBPF25P, HSP90AB2P, ZNF658B and DPY19L2P3 pseudogenes were predicted to interact with 12 genes known to participate in HNC, DNM1P47 was predicted to interact with the TP53 gene, and HLA-H pseudogene was predicted to interact with HLA-A and HLA-B genes. The identified pseudogenes were associated with cancer biology pathways involving cell communication, response to stress, cell death, regulation of the immune system, regulation of gene expression, and Wnt signaling. Finally, we assessed the prognostic values of the pseudogenes with the Kaplan–Meier Plotter database, and found that expression of SPATA31D5P, SPATA31C2, BAGE2, SPATA31C1, ZNF733P and OR2W5 pseudogenes were associated with patients’ survival. Due to pseudogene transcripts’ potential for cancer diagnosis, progression, and as therapeutic targets, our study can guide new research to HNC understanding and development of new target therapies.
Collapse
Affiliation(s)
- Juliana Carron
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas 13083-888, São Paulo, Brazil;
| | - Rafael Della Coletta
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA;
| | - Gustavo Jacob Lourenço
- Laboratory of Cancer Genetics, School of Medical Sciences, University of Campinas, Campinas 13083-888, São Paulo, Brazil;
- Correspondence: ; Tel.: +55-19-3521-9120
| |
Collapse
|
3
|
Wang J, Liu D, Gu Y, Zhou H, Li H, Shen X, Qian X. Potential prognostic markers and significant lncRNA-mRNA co-expression pairs in laryngeal squamous cell carcinoma. Open Life Sci 2021; 16:544-557. [PMID: 34131588 PMCID: PMC8174121 DOI: 10.1515/biol-2021-0052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 03/03/2021] [Accepted: 04/13/2021] [Indexed: 01/20/2023] Open
Abstract
lncRNA-mRNA co-expression pairs and prognostic markers related to the development of laryngeal squamous cell carcinoma (LSCC) were investigated. The lncRNA and mRNA expression data of LSCC in GSE84957 and RNA-seq data of 112 LSCC samples from TCGA database were used. Differentially expressed genes (DEGs) and lncRNAs (DE-lncRNAs) between LSCC and para-cancer tissues were identified. Co-expression analysis of DEGs and DE-lncRNA was conducted. Protein-protein interaction network for co-expressed DEGs of top 25 DE-lncRNA was constructed, followed by survival analysis for key nodes in co-expression network. Finally, expressions of several DE-lncRNAs and DEGs were verified using qRT-PCR. The lncRNA-mRNA network showed that ANKRD20A5P, C21orf15, CYP4F35P, LOC_I2_011146, XLOC_006053, XLOC_I2_003881, and LOC100506027 were highlighted in network. Some DEGs, including FUT7, PADI1, PPL, ARHGAP40, MUC21, and CEACAM1, were co-expressed with above lncRNAs. Survival analysis showed that PLOD1, GLT25D1, and KIF22 were significantly associated with prognosis. qRT-PCR results showed that the expressions of MUC21, CEACAM1, FUT7, PADI1, PPL, ARHGAP40, ANKRD20A5P, C21orf15, CYP4F35P, XLOC_I2_003881, LOC_I2_011146, and XLOC_006053 were downregulated, whereas the expression of LOC100506027 was upregulated in LSCC tissues. PLOD1, GLT25D1, and KIF22 may be potential prognostic markers in the development of LSCC. C21orf15-MUC21/CEACAM1/FUT7/PADI1/PPL/ARHGAP40 are potential lncRNA-mRNA pairs that play significant roles in the development of LSCC.
Collapse
Affiliation(s)
- Junguo Wang
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), No. 321 Zhongshan Road, Nanjing, 210008, China
- Department of Otolaryngology, Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Dingding Liu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), No. 321 Zhongshan Road, Nanjing, 210008, China
- Department of Otolaryngology, Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Yajun Gu
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), No. 321 Zhongshan Road, Nanjing, 210008, China
- Department of Otolaryngology, Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Han Zhou
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), No. 321 Zhongshan Road, Nanjing, 210008, China
- Department of Otolaryngology, Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Hui Li
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), No. 321 Zhongshan Road, Nanjing, 210008, China
- Department of Otolaryngology, Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Xiaohui Shen
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), No. 321 Zhongshan Road, Nanjing, 210008, China
- Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, 210008, China
| | - Xiaoyun Qian
- Department of Otolaryngology Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), No. 321 Zhongshan Road, Nanjing, 210008, China
- Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, 210008, China
| |
Collapse
|
4
|
Kundu S, Ray MD, Sharma A. Interplay between genome organization and epigenomic alterations of pericentromeric DNA in cancer. J Genet Genomics 2021; 48:184-197. [PMID: 33840602 DOI: 10.1016/j.jgg.2021.02.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/07/2021] [Accepted: 02/20/2021] [Indexed: 12/16/2022]
Abstract
In eukaryotic genome biology, the genomic organization inside the three-dimensional (3D) nucleus is highly complex, and whether this organization governs gene expression is poorly understood. Nuclear lamina (NL) is a filamentous meshwork of proteins present at the lining of inner nuclear membrane that serves as an anchoring platform for genome organization. Large chromatin domains termed as lamina-associated domains (LADs), play a major role in silencing genes at the nuclear periphery. The interaction of the NL and genome is dynamic and stochastic. Furthermore, many genes change their positions during developmental processes or under disease conditions such as cancer, to activate certain sorts of genes and/or silence others. Pericentromeric heterochromatin (PCH) is mostly in the silenced region within the genome, which localizes at the nuclear periphery. Studies show that several genes located at the PCH are aberrantly expressed in cancer. The interesting question is that despite being localized in the pericentromeric region, how these genes still manage to overcome pericentromeric repression. Although epigenetic mechanisms control the expression of the pericentromeric region, recent studies about genome organization and genome-nuclear lamina interaction have shed light on a new aspect of pericentromeric gene regulation through a complex and coordinated interplay between epigenomic remodeling and genomic organization in cancer.
Collapse
Affiliation(s)
- Subhadip Kundu
- Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - M D Ray
- Department of Surgical Oncology, IRCH, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Ashok Sharma
- Laboratory of Chromatin and Cancer Epigenetics, Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
5
|
A New Portrait of Constitutive Heterochromatin: Lessons from Drosophila melanogaster. Trends Genet 2019; 35:615-631. [PMID: 31320181 DOI: 10.1016/j.tig.2019.06.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022]
Abstract
Constitutive heterochromatin represents a significant portion of eukaryotic genomes, but its functions still need to be elucidated. Even in the most updated genetics and molecular biology textbooks, constitutive heterochromatin is portrayed mainly as the 'silent' component of eukaryotic genomes. However, there may be more complexity to the relationship between heterochromatin and gene expression. In the fruit fly Drosophila melanogaster, a model for heterochromatin studies, about one-third of the genome is heterochromatic and is concentrated in the centric, pericentric, and telomeric regions of the chromosomes. Recent findings indicate that hundreds of D. melanogaster genes can 'live and work' properly within constitutive heterochromatin. The genomic size of these genes is generally larger than that of euchromatic genes and together they account for a significant fraction of the entire constitutive heterochromatin. Thus, this peculiar genome component in spite its ability to induce silencing, has in fact the means for being quite dynamic. A major scope of this review is to revisit the 'dogma of silent heterochromatin'.
Collapse
|
6
|
Saha P, Sowpati DT, Mishra RK. Epigenomic and genomic landscape of Drosophila melanogaster heterochromatic genes. Genomics 2019; 111:177-185. [DOI: 10.1016/j.ygeno.2018.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/21/2018] [Accepted: 02/04/2018] [Indexed: 01/05/2023]
|
7
|
Clusters of alpha satellite on human chromosome 21 are dispersed far onto the short arm and lack ancient layers. Chromosome Res 2016; 24:421-36. [PMID: 27430641 DOI: 10.1007/s10577-016-9530-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
Abstract
Human alpha satellite (AS) sequence domains that currently function as centromeres are typically flanked by layers of evolutionarily older AS that presumably represent the remnants of earlier primate centromeres. Studies on several human chromosomes reveal that these older AS arrays are arranged in an age gradient, with the oldest arrays farthest from the functional centromere and arrays progressively closer to the centromere being progressively younger. The organization of AS on human chromosome 21 (HC21) has not been well-characterized. We have used newly available HC21 sequence data and an HC21p YAC map to determine the size, organization, and location of the AS arrays, and compared them to AS arrays found on other chromosomes. We find that the majority of the HC21 AS sequences are present on the p-arm of the chromosome and are organized into at least five distinct isolated clusters which are distributed over a larger distance from the functional centromere than that typically seen for AS on other chromosomes. Using both phylogenetic and L1 element age estimations, we found that all of the HC21 AS clusters outside the functional centromere are of a similar relatively recent evolutionary origin. HC21 contains none of the ancient AS layers associated with early primate evolution which is present on other chromosomes, possibly due to the fact that the p-arm of HC21 and the other acrocentric chromosomes underwent substantial reorganization about 20 million years ago.
Collapse
|
8
|
Enukashvily NI, Ponomartsev NV. Mammalian satellite DNA: a speaking dumb. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2013; 90:31-65. [PMID: 23582201 DOI: 10.1016/b978-0-12-410523-2.00002-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The tandemly organized highly repetitive satellite DNA is the main DNA component of centromeric/pericentromeric constitutive heterochromatin. For almost a century, it was considered as "junk DNA," only a small portion of which is used for kinetochore formation. The current review summarizes recent data about satellite DNA transcription. The possible functions of the transcripts are discussed.
Collapse
|
9
|
Pedrotti S, Busà R, Compagnucci C, Sette C. The RNA recognition motif protein RBM11 is a novel tissue-specific splicing regulator. Nucleic Acids Res 2011; 40:1021-32. [PMID: 21984414 PMCID: PMC3273811 DOI: 10.1093/nar/gkr819] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mammalian tissues display a remarkable complexity of splicing patterns. Nevertheless, only few examples of tissue-specific splicing regulators are known. Herein, we characterize a novel splicing regulator named RBM11, which contains an RNA Recognition Motif (RRM) at the amino terminus and a region lacking known homology at the carboxyl terminus. RBM11 is selectively expressed in brain, cerebellum and testis, and to a lower extent in kidney. RBM11 mRNA levels fluctuate in a developmentally regulated manner, peaking perinatally in brain and cerebellum, and at puberty in testis, in concomitance with differentiation events occurring in neurons and germ cells. Deletion analysis indicated that the RRM of RBM11 is required for RNA binding, whereas the carboxyl terminal region permits nuclear localization and homodimerization. RBM11 is localized in the nucleoplasm and enriched in SRSF2-containing splicing speckles. Transcription inhibition/release experiments and exposure of cells to stress revealed a dynamic movement of RBM11 between nucleoplasm and speckles, suggesting that its localization is affected by the transcriptional status of the cell. Splicing assays revealed a role for RBM11 in the modulation of alternative splicing. In particular, RBM11 affected the choice of alternative 5′ splice sites in BCL-X by binding to specific sequences in exon 2 and antagonizing the SR protein SRSF1. Thus, our findings identify RBM11 as a novel tissue-specific splicing factor with potential implication in the regulation of alternative splicing during neuron and germ cell differentiation.
Collapse
Affiliation(s)
- Simona Pedrotti
- Department of Public Health and Cell Biology, Section of Anatomy, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | | | | |
Collapse
|
10
|
Brun ME, Lana E, Rivals I, Lefranc G, Sarda P, Claustres M, Mégarbané A, De Sario A. Heterochromatic genes undergo epigenetic changes and escape silencing in immunodeficiency, centromeric instability, facial anomalies (ICF) syndrome. PLoS One 2011; 6:e19464. [PMID: 21559330 PMCID: PMC3084872 DOI: 10.1371/journal.pone.0019464] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/30/2011] [Indexed: 12/01/2022] Open
Abstract
Immunodeficiency, Centromeric Instability, Facial Anomalies (ICF) syndrome is a rare autosomal recessive disorder that is characterized by a marked immunodeficiency, severe hypomethylation of the classical satellites 2 and 3 associated with disruption of constitutive heterochromatin, and facial anomalies. Sixty percent of ICF patients have mutations in the DNMT3B (DNA methyltransferase 3B) gene, encoding a de novo DNA methyltransferase. In the present study, we have shown that, in ICF lymphoblasts and peripheral blood, juxtacentromeric heterochromatic genes undergo dramatic changes in DNA methylation, indicating that they are bona fide targets of the DNMT3B protein. DNA methylation in heterochromatic genes dropped from about 80% in normal cells to approximately 30% in ICF cells. Hypomethylation was observed in five ICF patients and was associated with activation of these silent genes. Although DNA hypomethylation occurred in all the analyzed heterochromatic genes and in all the ICF patients, gene expression was restricted to some genes, every patient having his own group of activated genes. Histone modifications were preserved in ICF patients. Heterochromatic genes were associated with histone modifications that are typical of inactive chromatin: they had low acetylation on H3 and H4 histones and were slightly enriched in H3K9Me(3), both in ICF and controls. This was also the case for those heterochromatic genes that escaped silencing. This finding suggests that gene activation was not generalized to all the cells, but rather was restricted to a clonal cell population that may contribute to the phenotypic variability observed in ICF syndrome. A slight increase in H3K27 monomethylation was observed both in heterochromatin and active euchromatin in ICF patients; however, no correlation between this modification and activation of heterochromatic genes was found.
Collapse
Affiliation(s)
| | - Erica Lana
- INSERM U827, Montpellier, France
- Université Montpellier 1, Montpellier, France
| | | | - Gérard Lefranc
- CNRS UPR 1142, Montpellier, France
- Université Montpellier 2, Montpellier, France
| | | | - Mireille Claustres
- INSERM U827, Montpellier, France
- Université Montpellier 1, Montpellier, France
- CHRU, Montpellier, France
| | - André Mégarbané
- Unité de Génétique Médicale and Laboratoire Associé INSERM à l’UMR S910, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
- Institut Jérôme Lejeune, Paris, France
| | - Albertina De Sario
- INSERM U827, Montpellier, France
- Université Montpellier 1, Montpellier, France
| |
Collapse
|
11
|
Dimitri P, Caizzi R, Giordano E, Carmela Accardo M, Lattanzi G, Biamonti G. Constitutive heterochromatin: a surprising variety of expressed sequences. Chromosoma 2009; 118:419-35. [PMID: 19412619 DOI: 10.1007/s00412-009-0211-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 03/30/2009] [Accepted: 04/01/2009] [Indexed: 10/20/2022]
Abstract
The organization of chromosomes into euchromatin and heterochromatin is amongst the most important and enigmatic aspects of genome evolution. Constitutive heterochromatin is a basic yet still poorly understood component of eukaryotic chromosomes, and its molecular characterization by means of standard genomic approaches is intrinsically difficult. Although recent evidence indicates that the presence of transcribed genes in constitutive heterochromatin is a conserved trait that accompanies the evolution of eukaryotic genomes, the term heterochromatin is still considered by many as synonymous of gene silencing. In this paper, we comprehensively review data that provide a clearer picture of transcribed sequences within constitutive heterochromatin, with a special emphasis on Drosophila and humans.
Collapse
Affiliation(s)
- Patrizio Dimitri
- Laboratorio di Genomica Funzionale e Proteomica di Sistemi modello and Istituto Pasteur-Fondazione Bolognetti, Dipartimento di Genetica e Biologia Molecolare Charles Darwin, Università La Sapienza, 00185, Italy.
| | | | | | | | | | | |
Collapse
|
12
|
Toyoda Y, Hagiya Y, Adachi T, Hoshijima K, Kuo MT, Ishikawa T. MRP class of human ATP binding cassette (ABC) transporters: historical background and new research directions. Xenobiotica 2008; 38:833-62. [DOI: 10.1080/00498250701883514] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Gene dosage change of TPTE and BAGE2 and breakpoint analysis in Robertsonian Down syndrome. J Hum Genet 2007; 53:136-143. [DOI: 10.1007/s10038-007-0229-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Accepted: 11/13/2007] [Indexed: 10/22/2022]
|
14
|
Abstract
BACKGROUND Promoter-associated CpG islands (PCIs) mediate methylation-dependent gene silencing, yet tend to co-locate to transcriptionally active genes. To address this paradox, we used data mining to assess the behavior of PCI-positive (PCI+) genes in the human genome. RESULTS PCI+ genes exhibit a bimodal distribution: (1) a 'housekeeping-like' subset characterized by higher GC content and lower intron length/number, and (2) a 'pseudogene paralog' subset characterized by lower GC content and higher intron length/number (p<0.001). These subsets are functionally distinguishable, with the former gene group characterized by higher expression levels and lower evolutionary rate (p<0.001). PCI-negative (PCI-) genes exhibit higher evolutionary rate and narrower expression breadth than PCI+ genes (p<0.001), consistent with more frequent tissue-specific inactivation. CONCLUSIONS Adaptive evolution of the human genome appears driven in part by declining transcription of a subset of PCI+ genes, predisposing to both CpG-->TpA mutation and intron insertion. We propose a model of evolving biological complexity in which environmentally-selected gains or losses of PCI methylation respectively favor positive or negative selection, thus polarizing PCI+ gene structures around a genomic core of ancestral PCI- genes.
Collapse
Affiliation(s)
- Clara S.M. Tang
- Laboratory of Computational Oncology, Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong
| | - Richard J. Epstein
- Laboratory of Computational Oncology, Department of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
15
|
Rossi F, Moschetti R, Caizzi R, Corradini N, Dimitri P. Cytogenetic and molecular characterization of heterochromatin gene models in Drosophila melanogaster. Genetics 2006; 175:595-607. [PMID: 17110485 PMCID: PMC1800633 DOI: 10.1534/genetics.106.065441] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the past decade, genome-sequencing projects have yielded a great amount of information on DNA sequences in several organisms. The release of the Drosophila melanogaster heterochromatin sequence by the Drosophila Heterochromatin Genome Project (DHGP) has greatly facilitated studies of mapping, molecular organization, and function of genes located in pericentromeric heterochromatin. Surprisingly, genome annotation has predicted at least 450 heterochromatic gene models, a figure 10-fold above that defined by genetic analysis. To gain further insight into the locations and functions of D. melanogaster heterochromatic genes and genome organization, we have FISH mapped 41 gene models relative to the stained bands of mitotic chromosomes and the proximal divisions of polytene chromosomes. These genes are contained in eight large scaffolds, which together account for approximately 1.4 Mb of heterochromatic DNA sequence. Moreover, developmental Northern analysis showed that the expression of 15 heterochromatic gene models tested is similar to that of the vital heterochromatic gene Nipped-A, in that it is not limited to specific stages, but is present throughout all development, despite its location in a supposedly "silent" region of the genome. This result is consistent with the idea that genes resident in heterochromatin can encode essential functions.
Collapse
Affiliation(s)
- Fabrizio Rossi
- Laboratorio di Genomica Funzionale e Proteomica di Sistemi complessi, Dipartimento di Genetica e Biologia Molecolare Charles Darwin, Università La Sapienza, 00185 Roma, Italy
| | | | | | | | | |
Collapse
|
16
|
Corradini N, Rossi F, Giordano E, Caizzi R, Verní F, Dimitri P. Drosophila melanogaster as a model for studying protein-encoding genes that are resident in constitutive heterochromatin. Heredity (Edinb) 2006; 98:3-12. [PMID: 17080025 DOI: 10.1038/sj.hdy.6800877] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The organization of chromosomes into euchromatin and heterochromatin is one of the most enigmatic aspects of genome evolution. For a long time, heterochromatin was considered to be a genomic wasteland, incompatible with gene expression. However, recent studies--primarily conducted in Drosophila melanogaster--have shown that this peculiar genomic component performs important cellular functions and carries essential genes. New research on the molecular organization, function and evolution of heterochromatin has been facilitated by the sequencing and annotation of heterochromatic DNA. About 450 predicted genes have been identified in the heterochromatin of D. melanogaster, indicating that the number of active genes is higher than had been suggested by genetic analysis. Most of the essential genes are still unknown at the molecular level, and a detailed functional analysis of the predicted genes is difficult owing to the lack of mutant alleles. Far from being a peculiarity of Drosophila, heterochromatic genes have also been found in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Oryza sativa and Arabidopsis thaliana, as well as in humans. The presence of expressed genes in heterochromatin seems paradoxical because they appear to function in an environment that has been considered incompatible with gene expression. In the future, genetic, functional genomic and proteomic analyses will offer powerful approaches with which to explore the functions of heterochromatic genes and to elucidate the mechanisms driving their expression.
Collapse
Affiliation(s)
- N Corradini
- Laboratorio di Genomica Funzionale e Proteomica di Sistemi modello and Dipartimento di Genetica e Biologia Molecolare 'Charles Darwin', Università 'La Sapienza', Piazzale Aldo Moro 5, 00185 Roma, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Grunau C, Buard J, Brun ME, De Sario A. Mapping of the juxtacentromeric heterochromatin-euchromatin frontier of human chromosome 21. Genome Res 2006; 16:1198-207. [PMID: 16963709 PMCID: PMC1581429 DOI: 10.1101/gr.5440306] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Euchromatin and heterochromatin are functional compartments of the genome. However, little is known about the structure and the precise location of the heterochromatin-euchromatin boundaries in higher eukaryotes. Constitutive heterochromatin in centromeric regions is associated with (1) specific histone methylation patterns, (2) high levels of DNA methylation, (3) low recombination frequency, and (4) the repression of transcription. All of this contrasts with the permissive structure of euchromatin found along chromosome arms. On the sequence level, the transition between these two domains consists most often of patchworks of segmental duplications. We present here a comprehensive analysis of gene expression, DNA methylation in CpG islands, distribution of histone isoforms, and recombination activity for the juxtacentromeric (or pericentromeric) region of the long arm of human chromosome 21. We demonstrate that most HapMap data are reliable within this region. We show that high linkage disequilibrium between pairs of SNPs extends 719-737 kb from the centromeric alpha-satellite. In the same region we find a peak of histone isoforms H3K9Me3 and H3K27Me (715-822 kb distal to the alpha-satellite). In normal somatic cells, CpG islands proximal to this peak are highly methylated, whereas distal CpG islands are not or very little methylated. This methylation profile undergoes dramatic changes in cancer cells and during spermatogenesis. As a consequence, transcription from heterochromatic genes is activated in the testis, and aberrant gene activation can occur during neoplastic transformation. Our data indicate that the frontier between the juxtacentromeric heterochromatic domain and euchromatic domain of the long arm of chromosome 21 is marked by a heterochromatic peak located approximately 750 kb distal to the alpha-satellite.
Collapse
Affiliation(s)
- Christoph Grunau
- Institut de Génétique Humaine, CNRS UPR 1142, 34396 Montpellier, France
- Corresponding author.E-mail ; fax +33-4-99-61-99-01
| | - Jérome Buard
- Institut de Génétique Humaine, CNRS UPR 1142, 34396 Montpellier, France
- Corresponding author.E-mail ; fax +33-4-99-61-99-01
| | | | - Albertina De Sario
- Institut de Génétique Humaine, CNRS UPR 1142, 34396 Montpellier, France
- Corresponding author.E-mail ; fax +33-4-99-61-99-01
| |
Collapse
|
18
|
Bailey JA, Eichler EE. Primate segmental duplications: crucibles of evolution, diversity and disease. Nat Rev Genet 2006; 7:552-64. [PMID: 16770338 DOI: 10.1038/nrg1895] [Citation(s) in RCA: 396] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Compared with other mammals, the genomes of humans and other primates show an enrichment of large, interspersed segmental duplications (SDs) with high levels of sequence identity. Recent evidence has begun to shed light on the origin of primate SDs, pointing to a complex interplay of mechanisms and indicating that distinct waves of duplication took place during primate evolution. There is also evidence for a strong association between duplication, genomic instability and large-scale chromosomal rearrangements. Exciting new findings suggest that SDs have not only created novel primate gene families, but might have also influenced current human genic and phenotypic variation on a previously unappreciated scale. A growing number of examples link natural human genetic variation of these regions to susceptibility to common disease.
Collapse
Affiliation(s)
- Jeffrey A Bailey
- Department of Pathology, Case Western University School of Medicine and University Hospitals of Cleveland, Ohio 44106, USA
| | | |
Collapse
|
19
|
Mudge JM, Jackson MS. Evolutionary implications of pericentromeric gene expression in humans. Cytogenet Genome Res 2005; 108:47-57. [PMID: 15545715 DOI: 10.1159/000080801] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Accepted: 02/09/2004] [Indexed: 11/19/2022] Open
Abstract
Human pericentromeric sequences are enriched for recent sequence duplications. The continual creation and shuffling of these duplications can create novel intron-exon structures and it has been suggested that these regions have a function as gene nurseries. However, these sequences are also rich in satellite repeats which can repress transcription, and analyses of chromosomes 10 and 21 have suggested that they are transcript poor. Here, we investigate the relationship between pericentromeric duplication and transcription by analyzing the in silico transcriptional profiles within the proximal 1.5 Mb of genomic sequence on all human chromosome arms in relation to duplication status. We identify an approximately 5x excess of transcripts specific to cancer and/or testis in pericentromeric duplications compared to surrounding single copy sequence, with the expression of >50% of all transcripts in duplications being restricted to these tissues. We also identify an approximately 5x excess of transcripts in duplications which contain large quantities of interspersed repeats. These results indicate that the transcriptional profiles of duplicated and single copy sequences within pericentromeric DNA are distinct, suggesting that pericentromeric instability is unlikely to represent a common route for gene creation but may have a disproportionate effect upon genes whose function is restricted to the germ line.
Collapse
Affiliation(s)
- J M Mudge
- The Institute of Human Genetics, The International Centre For Life, University of Newcastle Upon Tyne, UK
| | | |
Collapse
|
20
|
Grunau C, Sanchez C, Ehrlich M, van der Bruggen P, Hindermann W, Rodriguez C, Krieger S, Dubeau L, Fiala E, De Sario A. Frequent DNA hypomethylation of human juxtacentromeric BAGE loci in cancer. Genes Chromosomes Cancer 2005; 43:11-24. [PMID: 15704127 DOI: 10.1002/gcc.20155] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The BAGE (B melanoma antigens) sequence family contains 15 nearly identical sequences that are in the juxtacentromeric regions of chromosomes 9, 13, 18, and 21. BAGE loci are expressed in male germ tissue and in a high percentage of cancers and cancer cell lines. We analyzed the DNA methylation state of the sequences in or near the promoters of the BAGE loci by a quantitative bisulfite and PCR-based assay (multiplex COBRA) using MboI and HphI in 18 somatic tissue samples, 4 testis and 4 sperm samples, and 48 tumors and tumor cell lines. In 94% of the control somatic tissue samples, DNA was highly methylated in the analyzed regions. In contrast, 98% of tumor DNA samples displayed hypomethylation. Also, DNA from testes and sperm was hypomethylated in at least one of the BAGE loci. BAGE transcripts were observed in only 47% of the analyzed tumor samples. Consequently, we propose BAGE hypomethylation as a new, highly informative epigenetic biomarker for the diagnosis of cancer, whose hypomethylation in cancer may be causally related to that of juxtacentromeric satellite DNA.
Collapse
Affiliation(s)
- Christoph Grunau
- Institut de Génétique Humaine, CNRS UPR 1142, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Although heterochromatin has been studied for 80 years, its genetic function and molecular organization have remained elusive. In almost all organisms, heterochromatin has been regarded as genetically inactive chromosome regions. However, from genetic and genomic studies in Drosophila melanogaster and other organisms including humans, it is now clear that transcriptionally active domains are present within constitutive heterochromatin. These domains contain essential coding genes whose expression during development ensures the formation of the proper biochemical and morphological phenotypes, together with several gene models defined by genome annotation whose functions still need to be determined.
Collapse
Affiliation(s)
- Patrizio Dimitri
- Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, 70-00185 Roma, Italy.
| | | | | | | |
Collapse
|
22
|
Locke DP, Jiang Z, Pertz LM, Misceo D, Archidiacono N, Eichler EE. Molecular evolution of the human chromosome 15 pericentromeric region. Cytogenet Genome Res 2004; 108:73-82. [PMID: 15545718 DOI: 10.1159/000080804] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2003] [Accepted: 12/09/2003] [Indexed: 11/19/2022] Open
Abstract
We present a detailed molecular evolutionary analysis of 1.2 Mb from the pericentromeric region of human 15q11. Sequence analysis indicates the region has been subject to extensive interchromosomal and intrachromosomal duplications during primate evolution. Comparative FISH analyses among non-human primates show remarkable quantitative and qualitative differences in the organization and duplication history of this region - including lineage-specific deletions and duplication expansions. Phylogenetic and comparative analyses reveal that the region is composed of at least 24 distinct segmental duplications or duplicons that have populated the pericentromeric regions of the human genome over the last 40 million years of human evolution. The value of combining both cytogenetic and experimental data in understanding the complex forces which have shaped these regions is discussed.
Collapse
Affiliation(s)
- D P Locke
- Department of Genetics, Center for Computational Genomics, Case Western Reserve University School of Medicine and University Hospitals of Cleveland, Cleveland, OH, USA
| | | | | | | | | | | |
Collapse
|
23
|
Rudd MK, Schueler MG, Willard HF. Sequence organization and functional annotation of human centromeres. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 68:141-9. [PMID: 15338612 DOI: 10.1101/sqb.2003.68.141] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- M K Rudd
- Institute for Genome Sciences & Policy, Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
24
|
Katoh M, Ayabe F, Norikane S, Okada T, Masumoto H, Horike SI, Shirayoshi Y, Oshimura M. Construction of a novel human artificial chromosome vector for gene delivery. Biochem Biophys Res Commun 2004; 321:280-90. [PMID: 15358173 DOI: 10.1016/j.bbrc.2004.06.145] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Indexed: 11/27/2022]
Abstract
Potential problems of conventional transgenes include insertional disruption of the host genome and unpredictable, irreproducible expression of the transgene by random integration. Alternatively, human artificial chromosomes (HACs) can circumvent some of the problems. Although several HACs were generated and their mitotic stability was assessed, a practical way for introducing exogenous genes by the HACs has yet to be explored. In this study, we developed a novel HAC from sequence-ready human chromosome 21 by telomere-directed chromosome truncation and added a loxP sequence for site-specific insertion of circular DNA by the Cre/loxP system. This 21HAC vector, delivered to a human cell line HT1080 by microcell fusion, bound centromere proteins A, B, and C and was mitotically stable during long-term culture without selection. The EGFP gene inserted in the HAC vector expressed persistently. These results suggest that the HAC vector provides useful system for functional studies of genes in isogenic cell lines.
Collapse
Affiliation(s)
- Motonobu Katoh
- Department of Human Genome Sciences (Kirin Brewery), Graduate School of Medical Science, Tottori University, 86 Nishimachi, Yonago, Tottori 683-8503, Japan
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Humphray SJ, Oliver K, Hunt AR, Plumb RW, Loveland JE, Howe KL, Andrews TD, Searle S, Hunt SE, Scott CE, Jones MC, Ainscough R, Almeida JP, Ambrose KD, Ashwell RIS, Babbage AK, Babbage S, Bagguley CL, Bailey J, Banerjee R, Barker DJ, Barlow KF, Bates K, Beasley H, Beasley O, Bird CP, Bray-Allen S, Brown AJ, Brown JY, Burford D, Burrill W, Burton J, Carder C, Carter NP, Chapman JC, Chen Y, Clarke G, Clark SY, Clee CM, Clegg S, Collier RE, Corby N, Crosier M, Cummings AT, Davies J, Dhami P, Dunn M, Dutta I, Dyer LW, Earthrowl ME, Faulkner L, Fleming CJ, Frankish A, Frankland JA, French L, Fricker DG, Garner P, Garnett J, Ghori J, Gilbert JGR, Glison C, Grafham DV, Gribble S, Griffiths C, Griffiths-Jones S, Grocock R, Guy J, Hall RE, Hammond S, Harley JL, Harrison ESI, Hart EA, Heath PD, Henderson CD, Hopkins BL, Howard PJ, Howden PJ, Huckle E, Johnson C, Johnson D, Joy AA, Kay M, Keenan S, Kershaw JK, Kimberley AM, King A, Knights A, Laird GK, Langford C, Lawlor S, Leongamornlert DA, Leversha M, Lloyd C, Lloyd DM, Lovell J, Martin S, Mashreghi-Mohammadi M, Matthews L, McLaren S, McLay KE, et alHumphray SJ, Oliver K, Hunt AR, Plumb RW, Loveland JE, Howe KL, Andrews TD, Searle S, Hunt SE, Scott CE, Jones MC, Ainscough R, Almeida JP, Ambrose KD, Ashwell RIS, Babbage AK, Babbage S, Bagguley CL, Bailey J, Banerjee R, Barker DJ, Barlow KF, Bates K, Beasley H, Beasley O, Bird CP, Bray-Allen S, Brown AJ, Brown JY, Burford D, Burrill W, Burton J, Carder C, Carter NP, Chapman JC, Chen Y, Clarke G, Clark SY, Clee CM, Clegg S, Collier RE, Corby N, Crosier M, Cummings AT, Davies J, Dhami P, Dunn M, Dutta I, Dyer LW, Earthrowl ME, Faulkner L, Fleming CJ, Frankish A, Frankland JA, French L, Fricker DG, Garner P, Garnett J, Ghori J, Gilbert JGR, Glison C, Grafham DV, Gribble S, Griffiths C, Griffiths-Jones S, Grocock R, Guy J, Hall RE, Hammond S, Harley JL, Harrison ESI, Hart EA, Heath PD, Henderson CD, Hopkins BL, Howard PJ, Howden PJ, Huckle E, Johnson C, Johnson D, Joy AA, Kay M, Keenan S, Kershaw JK, Kimberley AM, King A, Knights A, Laird GK, Langford C, Lawlor S, Leongamornlert DA, Leversha M, Lloyd C, Lloyd DM, Lovell J, Martin S, Mashreghi-Mohammadi M, Matthews L, McLaren S, McLay KE, McMurray A, Milne S, Nickerson T, Nisbett J, Nordsiek G, Pearce AV, Peck AI, Porter KM, Pandian R, Pelan S, Phillimore B, Povey S, Ramsey Y, Rand V, Scharfe M, Sehra HK, Shownkeen R, Sims SK, Skuce CD, Smith M, Steward CA, Swarbreck D, Sycamore N, Tester J, Thorpe A, Tracey A, Tromans A, Thomas DW, Wall M, Wallis JM, West AP, Whitehead SL, Willey DL, Williams SA, Wilming L, Wray PW, Young L, Ashurst JL, Coulson A, Blöcker H, Durbin R, Sulston JE, Hubbard T, Jackson MJ, Bentley DR, Beck S, Rogers J, Dunham I. DNA sequence and analysis of human chromosome 9. Nature 2004; 429:369-74. [PMID: 15164053 PMCID: PMC2734081 DOI: 10.1038/nature02465] [Show More Authors] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Accepted: 03/08/2004] [Indexed: 11/09/2022]
Abstract
Chromosome 9 is highly structurally polymorphic. It contains the largest autosomal block of heterochromatin, which is heteromorphic in 6-8% of humans, whereas pericentric inversions occur in more than 1% of the population. The finished euchromatic sequence of chromosome 9 comprises 109,044,351 base pairs and represents >99.6% of the region. Analysis of the sequence reveals many intra- and interchromosomal duplications, including segmental duplications adjacent to both the centromere and the large heterochromatic block. We have annotated 1,149 genes, including genes implicated in male-to-female sex reversal, cancer and neurodegenerative disease, and 426 pseudogenes. The chromosome contains the largest interferon gene cluster in the human genome. There is also a region of exceptionally high gene and G + C content including genes paralogous to those in the major histocompatibility complex. We have also detected recently duplicated genes that exhibit different rates of sequence divergence, presumably reflecting natural selection.
Collapse
Affiliation(s)
- S J Humphray
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Gardiner K, Fortna A, Bechtel L, Davisson MT. Mouse models of Down syndrome: how useful can they be? Comparison of the gene content of human chromosome 21 with orthologous mouse genomic regions. Gene 2003; 318:137-47. [PMID: 14585506 DOI: 10.1016/s0378-1119(03)00769-8] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
With an incidence of approximately 1 in 700 live births, Down syndrome (DS) remains the most common genetic cause of mental retardation. The phenotype is assumed to be due to overexpression of some number of the >300 genes encoded by human chromosome 21. Mouse models, in particular the chromosome 16 segmental trisomies, Ts65Dn and Ts1Cje, are indispensable for DS-related studies of gene-phenotype correlations. Here we compare the updated gene content of the finished sequence of human chromosome 21 (364 genes and putative genes) with the gene content of the homologous mouse genomic regions (291 genes and putative genes) obtained from annotation of the public sector C57Bl/6 draft sequence. Annotated genes fall into one of three classes. First, there are 170 highly conserved, human/mouse orthologues. Second, there are 83 minimally conserved, possible orthologues. Included among the conserved and minimally conserved genes are 31 antisense transcripts. Third, there are species-specific genes: 111 spliced human transcripts show no orthologues in the syntenic mouse regions although 13 have homologous sequences elsewhere in the mouse genomic sequence, and 38 spliced mouse transcripts show no identifiable human orthologues. While these species-specific genes are largely based solely on spliced EST data, a majority can be verified in RNA expression experiments. In addition, preliminary data suggest that many human-specific transcripts may represent a novel class of primate-specific genes. Lastly, updated functional annotation of orthologous genes indicates genes encoding components of several cellular pathways are dispersed throughout the orthologous mouse chromosomal regions and are not completely represented in the Down syndrome segmental mouse models. Together, these data point out the potential for existing mouse models to produce extraneous phenotypes and to fail to produce DS-relevant phenotypes.
Collapse
Affiliation(s)
- Katheleen Gardiner
- Eleanor Roosevelt Institute at the University of Denver, 1899 Gaylord Street, Denver, CO 80206-1210, USA.
| | | | | | | |
Collapse
|
27
|
Golfier G, Chibon F, Aurias A, Chen XN, Korenberg J, Rossier J, Potier MC. The 200-kb segmental duplication on human chromosome 21 originates from a pericentromeric dissemination involving human chromosomes 2, 18 and 13. Gene 2003; 312:51-9. [PMID: 12909340 DOI: 10.1016/s0378-1119(03)00673-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Regions close to human centromeres contain DNA fragments spanning hundreds of kilobases that exhibit a high degree of sequence identity (>95%). Here we report the genomic structure and evolution of a family of four paralogous regions related to a 220-kb genomic fragment present on the long arm of human chromosome 21 (21q22.1). Phylogenetic classification of the paralogous sequences obtained from the draft of the Human Genome Project are in agreement with results from comparative fluorescence in situ hybridization on metaphase chromosomes from human and great apes. The original copy present in 21q22.1 in human was duplicated in great apes after the divergence of the orang-utan and inserted in a pericentromeric region, most likely the ancestor of HSA2q, then disseminated by transposition of a larger fragment to other pericentromeric locations: HSA18p11, HSA13q11 and HSA21q11.1. The degree of dissemination varies among species.
Collapse
MESH Headings
- Animals
- Chromosome Aberrations
- Chromosomes, Human, Pair 13/genetics
- Chromosomes, Human, Pair 18/genetics
- Chromosomes, Human, Pair 2/genetics
- Chromosomes, Human, Pair 21/genetics
- Gene Duplication
- Genome, Human
- Humans
- In Situ Hybridization, Fluorescence
- Pan paniscus/genetics
- Phylogeny
Collapse
Affiliation(s)
- Geoffroy Golfier
- Neurobiologie et Diversité Cellulaire, CNRS UMR7637, Ecole Supérieure de Physique et Chimie Industrielles, 10 rue Vauquelin, 75005 Paris, France
| | | | | | | | | | | | | |
Collapse
|