1
|
Brinza I, Boiangiu RS, Mihasan M, Gorgan DL, Stache AB, Abd-Alkhalek A, El-Nashar H, Ayoub I, Mostafa N, Eldahshan O, Singab AN, Hritcu L. Rhoifolin, baicalein 5,6-dimethyl ether and agathisflavone prevent amnesia induced in scopolamine zebrafish (Danio rerio) model by increasing the mRNA expression of bdnf, npy, egr-1, nfr2α, and creb1 genes. Eur J Pharmacol 2024; 984:177013. [PMID: 39378928 DOI: 10.1016/j.ejphar.2024.177013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/10/2024]
Abstract
The increasing attention towards age-related diseases has generated significant interest in the concept of cognitive dysfunction associated with Alzheimer's disease (AD). Certain limitations are associated with the current therapies, and flavonoids have been reported to exhibit multiple biological activities and anti-AD effects in several AD models owing to their antioxidative, anti-inflammatory, and anti-amyloidogenic properties. In this study, we performed an initial in silico predictions of the pharmacokinetic properties of three flavonoids (rhoifolin, baicalein 5,6-dimethyl ether and agathisflavone). Subsequently, we evaluated the antiamnesic and antioxidant potential of flavonoids in concentrations of 1, 3, and 5 μg/L in scopolamine (100 μM)-induced amnesic zebrafish (Danio rerio) model. Zebrafish behavior was analyzed by novel tank diving test (NTT), Y-maze, and novel object recognition test (NOR). Acetylcholinesterase (AChE) activity, brain antioxidant status and the expression of bdnf, npy, egr1, nrf2α, creb1 genes, and CREB-1 protein level was measured to elucidate the underlying mechanism of action. Our flavonoids improved memory and decreased anxiety-like behavior of scopolamine-induced amnesia in zebrafish. Also, the studied flavonoids reduced AChE activity and brain oxidative stress and upregulated the gene expression, collectively contributing to neuroprotective properties. The results of our study add new perspectives on the properties of flavonoids to regulate the evolution of neurodegenerative diseases, especially AD, by modulating the expression of genes involved in the regulation of synaptic plasticity, axonal growth, and guidance, sympathetic and vagal transmission, the antioxidant response and cell proliferation and growth.
Collapse
Affiliation(s)
- Ion Brinza
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Razvan Stefan Boiangiu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Marius Mihasan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Dragos Lucian Gorgan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania
| | - Alexandru Bogdan Stache
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania; Department of Molecular Genetics, Center for Fundamental Research and Experimental Development in Translation Medicine-TRANSCEND, Regional Institute of Oncology, 700483 Iasi, Romania
| | | | - Heba El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Iriny Ayoub
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Nada Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Omayma Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Abdel Nasser Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt; Center of Drug Discovery Research and Development, Ain Shams University, Cairo 11566, Egypt
| | - Lucian Hritcu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania.
| |
Collapse
|
2
|
Ali M, Garcia P, Lunkes LP, Sciortino A, Thomas M, Heurtaux T, Grzyb K, Halder R, Coowar D, Skupin A, Buée L, Blum D, Buttini M, Glaab E. Single cell transcriptome analysis of the THY-Tau22 mouse model of Alzheimer's disease reveals sex-dependent dysregulations. Cell Death Discov 2024; 10:119. [PMID: 38453894 PMCID: PMC10920792 DOI: 10.1038/s41420-024-01885-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Alzheimer's disease (AD) progression and pathology show pronounced sex differences, but the factors driving these remain poorly understood. To gain insights into early AD-associated molecular changes and their sex dependency for tau pathology in the cortex, we performed single-cell RNA-seq in the THY-Tau22 AD mouse model. By examining cell type-specific and cell type-agnostic AD-related gene activity changes and their sex-dimorphism for individual genes, pathways and cellular sub-networks, we identified both statistically significant alterations and interpreted the upstream mechanisms controlling them. Our results confirm several significant sex-dependent alterations in gene activity in the THY-Tau22 model mice compared to controls, with more pronounced alterations in females. Both changes shared across multiple cell types and cell type-specific changes were observed. The differential genes showed significant over-representation of known AD-relevant processes, such as pathways associated with neuronal differentiation, programmed cell death and inflammatory responses. Regulatory network analysis of these genes revealed upstream regulators that modulate many of the downstream targets with sex-dependent changes. Most key regulators have been previously implicated in AD, such as Egr1, Klf4, Chchd2, complement system genes, and myelin-associated glycoproteins. Comparing with similar data from the Tg2576 AD mouse model and human AD patients, we identified multiple genes with consistent, cell type-specific and sex-dependent alterations across all three datasets. These shared changes were particularly evident in the expression of myelin-associated genes such as Mbp and Plp1 in oligodendrocytes. In summary, we observed significant cell type-specific transcriptomic changes in the THY-Tau22 mouse model, with a strong over-representation of known AD-associated genes and processes. These include both sex-neutral and sex-specific patterns, characterized by consistent shifts in upstream master regulators and downstream target genes. Collectively, these findings provide insights into mechanisms influencing sex-specific susceptibility to AD and reveal key regulatory proteins that could be targeted for developing treatments addressing sex-dependent AD pathology.
Collapse
Affiliation(s)
- Muhammad Ali
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Pierre Garcia
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Laetitia P Lunkes
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Alessia Sciortino
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Melanie Thomas
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Tony Heurtaux
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, 8 avenue du Swing, L-4367, Belvaux, Luxembourg
- Luxembourg Center of Neuropathology, L-3555, Dudelange, Luxembourg
| | - Kamil Grzyb
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Rashi Halder
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Djalil Coowar
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Alex Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Luc Buée
- University of Lille, Inserm, CHU Lille, UMR-S1172 Lille Neuroscience & Cognition (LilNCog), Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - David Blum
- University of Lille, Inserm, CHU Lille, UMR-S1172 Lille Neuroscience & Cognition (LilNCog), Lille, France
- Alzheimer and Tauopathies, LabEx DISTALZ, Lille, France
| | - Manuel Buttini
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
3
|
Ali M, Huarte OU, Heurtaux T, Garcia P, Rodriguez BP, Grzyb K, Halder R, Skupin A, Buttini M, Glaab E. Single-Cell Transcriptional Profiling and Gene Regulatory Network Modeling in Tg2576 Mice Reveal Gender-Dependent Molecular Features Preceding Alzheimer-Like Pathologies. Mol Neurobiol 2024; 61:541-566. [PMID: 35980567 PMCID: PMC10861719 DOI: 10.1007/s12035-022-02985-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 07/29/2022] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) onset and progression is influenced by a complex interplay of several environmental and genetic factors, one of them gender. Pronounced gender differences have been observed both in the relative risk of developing AD and in clinical disease manifestations. A molecular level understanding of these gender disparities is still missing, but could provide important clues on cellular mechanisms modulating the disease and reveal new targets for gender-oriented disease-modifying precision therapies. We therefore present here a comprehensive single-cell analysis of disease-associated molecular gender differences in transcriptomics data from the neocortex, one of the brain regions most susceptible to AD, in one of the most widely used AD mouse models, the Tg2576 model. Cortical areas are also most commonly used in studies of post-mortem AD brains. To identify disease-linked molecular processes that occur before the onset of detectable neuropathology, we focused our analyses on an age with no detectable plaques and microgliosis. Cell-type specific alterations were investigated at the level of individual genes, pathways, and gene regulatory networks. The number of differentially expressed genes (DEGs) was not large enough to build context-specific gene regulatory networks for each individual cell type, and thus, we focused on the study of cell types with dominant changes and included analyses of changes across the combination of cell types. We observed significant disease-associated gender differences in cellular processes related to synapse organization and reactive oxygen species metabolism, and identified a limited set of transcription factors, including Egr1 and Klf6, as key regulators of many of the disease-associated and gender-dependent gene expression changes in the model. Overall, our analyses revealed significant cell-type specific gene expression changes in individual genes, pathways and sub-networks, including gender-specific and gender-dimorphic changes in both upstream transcription factors and their downstream targets, in the Tg2576 AD model before the onset of overt disease. This opens a window into molecular events that could determine gender-susceptibility to AD, and uncovers tractable target candidates for potential gender-specific precision medicine for AD.
Collapse
Affiliation(s)
- Muhammad Ali
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
- School for Mental Health and Neuroscience (MHeNs), Department of Psychiatry and Neuropsychology, Maastricht University, 6200, Maastricht, the Netherlands
| | - Oihane Uriarte Huarte
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), L-3555, Dudelange, Luxembourg
| | - Tony Heurtaux
- Luxembourg Center of Neuropathology (LCNP), L-3555, Dudelange, Luxembourg
- Department of Life Sciences and Medicine (DLSM), University of Luxembourg, L‑4362, Esch-Sur-Alzette, Luxembourg
| | - Pierre Garcia
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), L-3555, Dudelange, Luxembourg
| | - Beatriz Pardo Rodriguez
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), L-3555, Dudelange, Luxembourg
- University of the Basque Country, Cell Biology and Histology Department, 48940, Leioa, Vizcaya, Basque Country, Spain
| | - Kamil Grzyb
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Rashi Halder
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Alexander Skupin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
- Department of Physics and Materials Science, University of Luxembourg, 162a av. de la Faïencerie, 1511, Luxembourg, Luxembourg
- Department of Neuroscience, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Manuel Buttini
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
- Luxembourg Center of Neuropathology (LCNP), L-3555, Dudelange, Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
4
|
Hu YT, Chen XL, Zhang YN, McGurran H, Stormmesand J, Breeuwsma N, Sluiter A, Zhao J, Swaab D, Bao AM. Sex differences in hippocampal β-amyloid accumulation in the triple-transgenic mouse model of Alzheimer's disease and the potential role of local estrogens. Front Neurosci 2023; 17:1117584. [PMID: 36968493 PMCID: PMC10030503 DOI: 10.3389/fnins.2023.1117584] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/22/2023] [Indexed: 03/29/2023] Open
Abstract
Introduction Epidemiological studies show that women have a higher prevalence of Alzheimer's disease (AD) than men. Peripheral estrogen reduction during aging in women is proposed to play a key role in this sex-associated prevalence, however, the underlying mechanism remains elusive. We previously found that transcription factor early growth response-1 (EGR1) significantly regulates cholinergic function. EGR1 stimulates acetylcholinesterase (AChE) gene expression and is involved in AD pathogenesis. We aimed to investigate whether the triple-transgenic AD (3xTg-AD) mice harboring PS1 M146V , APP Swe , and Tau P301L show sex differences in β-amyloid (Aβ) and hyperphosphorylated tau (p-Tau), the two primary AD hallmarks, and how local 17β-estradiol (E2) may regulate the expression of EGR1 and AChE. Methods We first sacrificed male and female 3xTg-AD mice at 3-4, 7-8, and 11-12 months and measured the levels of Aβ, p-Tau, EGR1, and AChE in the hippocampal complex. Second, we infected SH-SY5Y cells with lentivirus containing the amyloid precursor protein construct C99, cultured with or without E2 administration we measured the levels of extracellular Aβ and intracellular EGR1 and AChE. Results Female 3xTg-AD mice had higher levels of Aβ compared to males, while no p-Tau was found in either group. In SH-SY5Y cells infected with lentivirus containing the amyloid precursor protein construct C99, we observed significantly increased extracellular Aβ and decreased expression of intracellular EGR1 and AChE. By adding E2 to the culture medium, extracellular Aβ(l-42) was significantly decreased while intracellular EGR1 and AChE expression were elevated. Discussion This data shows that the 3xTg-AD mouse model can be useful for studying the human sex differences of AD, but only in regards to Ap. Furthermore, in vitro data shows local E2 may be protective for EGR1 and cholinergic functions in AD while suppressing soluble Aβ(1-42) levels. Altogether, this study provides further in vivo and in vitro data supporting the human epidemiological data indicating a higher prevalence of AD in women is related to changes in brain estrogen levels.
Collapse
Affiliation(s)
- Yu-Ting Hu
- Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin-Lu Chen
- Department of Neurobiology and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Ya-Nan Zhang
- Department of Neurobiology and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Hugo McGurran
- Netherlands Institute for Neuroscience, The Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Jochem Stormmesand
- Netherlands Institute for Neuroscience, The Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Nicole Breeuwsma
- Netherlands Institute for Neuroscience, The Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Arja Sluiter
- Netherlands Institute for Neuroscience, The Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Juan Zhao
- Netherlands Institute for Neuroscience, The Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Dick Swaab
- Department of Neurobiology and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Netherlands Institute for Neuroscience, The Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
- *Correspondence: Dick Swaab,
| | - Ai-Min Bao
- Department of Neurobiology and Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
- Ai-Min Bao,
| |
Collapse
|
5
|
Tau mRNA Metabolism in Neurodegenerative Diseases: A Tangle Journey. Biomedicines 2022; 10:biomedicines10020241. [PMID: 35203451 PMCID: PMC8869323 DOI: 10.3390/biomedicines10020241] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/07/2022] Open
Abstract
Tau proteins are known to be mainly involved in regulation of microtubule dynamics. Besides this function, which is critical for axonal transport and signal transduction, tau proteins also have other roles in neurons. Moreover, tau proteins are turned into aggregates and consequently trigger many neurodegenerative diseases termed tauopathies, of which Alzheimer’s disease (AD) is the figurehead. Such pathological aggregation processes are critical for the onset of these diseases. Among the various causes of tau protein pathogenicity, abnormal tau mRNA metabolism, expression and dysregulation of tau post-translational modifications are critical steps. Moreover, the relevance of tau function to general mRNA metabolism has been highlighted recently in tauopathies. In this review, we mainly focus on how mRNA metabolism impacts the onset and development of tauopathies. Thus, we intend to portray how mRNA metabolism of, or mediated by, tau is associated with neurodegenerative diseases.
Collapse
|
6
|
EGR1 recruits TET1 to shape the brain methylome during development and upon neuronal activity. Nat Commun 2019; 10:3892. [PMID: 31467272 PMCID: PMC6715719 DOI: 10.1038/s41467-019-11905-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/12/2019] [Indexed: 02/07/2023] Open
Abstract
Life experience can leave lasting marks, such as epigenetic changes, in the brain. How life experience is translated into storable epigenetic information remains largely unknown. With unbiased data-driven approaches, we predicted that Egr1, a transcription factor important for memory formation, plays an essential role in brain epigenetic programming. We performed EGR1 ChIP-seq and validated thousands of EGR1 binding sites with methylation patterns established during postnatal brain development. More specifically, these EGR1 binding sites become hypomethylated in mature neurons but remain heavily methylated in glia. We further demonstrated that EGR1 recruits a DNA demethylase TET1 to remove the methylation marks and activate downstream genes. The frontal cortices from the knockout mice lacking Egr1 or Tet1 share strikingly similar profiles in both gene expression and DNA methylation. In summary, our study reveals EGR1 programs the brain methylome together with TET1 providing new insight into how life experience may shape the brain methylome. It is unclear why neuronal activity induced methylation changes are limited to specific loci in the genome. Here, authors show that the DNA demethylation enzyme, TET1, gains its specificity via the interaction with EGR1, a sequence specific DNA binding protein.
Collapse
|
7
|
Akila Parvathy Dharshini S, Taguchi YH, Michael Gromiha M. Exploring the selective vulnerability in Alzheimer disease using tissue specific variant analysis. Genomics 2019; 111:936-949. [PMID: 29879491 DOI: 10.1016/j.ygeno.2018.05.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/03/2018] [Accepted: 05/30/2018] [Indexed: 02/08/2023]
Abstract
The selective vulnerability of distinct regions of the brain is a critical factor in neurodegenerative disorders. In Alzheimer's disease (AD), neurons in hippocampus situated in medial temporal lobe are immensely damaged. Identifying tissue-specific variants is essential in order to perceive the selective vulnerability in AD. In current work, we aligned mRNA-seq data with HG19/HG38 genomic assembly and identified specific variations present in temporal, frontal and other lobes of the AD using sequence alignment map tools. We compared the results with the genome-wide association and gene expression quantitative trait loci studies of the various neurological disorders. We also distinguished variants and epitranscriptomic modifications through the RNA-modification database and evaluated the variant effect in the coding/UTR regions. In addition, we developed genetic and functional interaction networks to understand the relationship between predicted vulnerable variations and differentially expressed genes. We found that genes involved in gliogenesis, intermediate filament organization are altered in the temporal lobe. Oxidative phosphorylation, and calcium ion homeostasis are modified in the frontal lobe, and protein degradation, apoptotic signaling are altered in other lobes. From this study, we propose that disruption of glial cell structural integrity, defective gliogenesis, and failure in glia-neuron communication are the primary factors for selective vulnerability.
Collapse
Affiliation(s)
- S Akila Parvathy Dharshini
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| | - Y-H Taguchi
- Department of Physics, Chuo University, Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India; Advanced Computational Drug Discovery Unit (ACDD), Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| |
Collapse
|
8
|
Zhao X, Wang X, Su G, Sun Q, Fu J, Zhang H, Teng J. The effect of early growth response 1 on levels of Amyloid-β 40 peptide in U87MG cells. J Cell Biochem 2018; 120:3514-3519. [PMID: 30548663 DOI: 10.1002/jcb.27627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 08/14/2018] [Indexed: 11/11/2022]
Abstract
A recent study has shown that early growth response 1 (EGR1) plays a critical role in the β-amyloid cascade and tau hypotheses. In addition, evidence has suggested that EGR1 can regulate levels of amyloid-beta peptides, key molecules in the pathogenesis of Alzheimer's disease (AD). However, whether EGR1 is a deleterious or protective factor in the AD is still controversial. In this present study, we constructed an overexpression plasmid, CMV-EGFP-EGR1-Kanamycin, and transfected it into U87MG cells to investigate the effects of EGR1 expression on amyloid-β (1-40) peptide (Aβ40) levels. U87MG cells transfected by CMV-EGFP-EGR1-Kanamycin and CMV-EGFP-Kanamycin were assigned, respectively, to experimental and control groups. Fluorescence microscopy was used to observe transfection efficiencies of the plasmids after 6 hours. EGR1 messenger RNA levels were measured by quantitative reverse transcription polymerase chain reaction. Aβ40 secretion was analyzed by enzyme-linked immunosorbent assay. Expression of the amyloid precursor protein, beta-secretase enzyme, and presenilin 1 proteins were analyzed by Western blot analysis. The results showed that EGR1 overexpression increased Aβ40 secretion in vitro, possibly through increasing BACE1 expression. Based on these results, EGR1 might be a promising therapeutic target for the AD.
Collapse
Affiliation(s)
- Xinyu Zhao
- Department of Neurology, The Frist Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojie Wang
- Department of Neurology, The Frist Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Gang Su
- Department of Neurology, The Frist Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Sun
- Department of Neurology, The Frist Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jitong Fu
- Department of Neurology, The Frist Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huili Zhang
- Department of Neurology, The Frist Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junfang Teng
- Department of Neurology, The Frist Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
The exploration of novel Alzheimer's therapeutic agents from the pool of FDA approved medicines using drug repositioning, enzyme inhibition and kinetic mechanism approaches. Biomed Pharmacother 2018; 109:2513-2526. [PMID: 30551512 DOI: 10.1016/j.biopha.2018.11.115] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/19/2018] [Accepted: 11/25/2018] [Indexed: 12/11/2022] Open
Abstract
Novel drug development is onerous, time consuming and overpriced process with particularly low success and relatively high enfeebling rates. To overcome this burden, drug repositioning approach is being used to predict the possible therapeutic effects of FDA approved drugs in different diseases. Herein, we designed a computational and enzyme inhibitory mechanistic approach to fetch the promising drugs from the pool of FDA approved drugs against AD. The binding interaction patterns and conformations of screened drugs within active region of AChE were confirmed through molecular docking profiles. The possible associations of selected drugs with AD genes were predicted by pharmacogenomics analysis and confirmed through data mining. The stability behaviour of docked complexes (Drugs-AChE) were checked by MD simulations. The possible therapeutic potential of repositioned drugs against AChE were checked by in vitro analysis. Taken together, Cinitapride displayed a comparable results with standard and can be used as possible therapeutic agent in the treatment of AD.
Collapse
|
10
|
Robbins JP, Perfect L, Ribe EM, Maresca M, Dangla-Valls A, Foster EM, Killick R, Nowosiad P, Reid MJ, Polit LD, Nevado AJ, Ebner D, Bohlooly-Y M, Buckley N, Pangalos MN, Price J, Lovestone S. Clusterin Is Required for β-Amyloid Toxicity in Human iPSC-Derived Neurons. Front Neurosci 2018; 12:504. [PMID: 30090055 PMCID: PMC6068261 DOI: 10.3389/fnins.2018.00504] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/04/2018] [Indexed: 02/01/2023] Open
Abstract
Our understanding of the molecular processes underlying Alzheimer's disease (AD) is still limited, hindering the development of effective treatments, and highlighting the need for human-specific models. Advances in identifying components of the amyloid cascade are progressing, including the role of the protein clusterin in mediating β-amyloid (Aβ) toxicity. Mutations in the clusterin gene (CLU), a major genetic AD risk factor, are known to have important roles in Aβ processing. Here we investigate how CLU mediates Aβ-driven neurodegeneration in human induced pluripotent stem cell (iPSC)-derived neurons. We generated a novel CLU-knockout iPSC line by CRISPR/Cas9-mediated gene editing to investigate Aβ-mediated neurodegeneration in cortical neurons differentiated from wild type and CLU knockout iPSCs. We measured response to Aβ using an imaging assay and measured changes in gene expression using qPCR and RNA sequencing. In wild type neurons imaging indicated that neuronal processes degenerate following treatment with Aβ25-35 peptides and Aβ1-42 oligomers, in a dose dependent manner, and that intracellular levels of clusterin are increased following Aβ treatment. However, in CLU knockout neurons Aβ exposure did not affect neurite length, suggesting that clusterin is an important component of the amyloid cascade. Transcriptomic data were analyzed to elucidate the pathways responsible for the altered response to Aβ in neurons with the CLU deletion. Four of the five genes previously identified as downstream to Aβ and Dickkopf-1 (DKK1) proteins in an Aβ-driven neurotoxic pathway in rodent cells were also dysregulated in human neurons with the CLU deletion. AD and lysosome pathways were the most significantly dysregulated pathways in the CLU knockout neurons, and pathways relating to cytoskeletal processes were most dysregulated in Aβ treated neurons. The absence of neurodegeneration in the CLU knockout neurons in response to Aβ compared to the wild type neurons supports the role of clusterin in Aβ-mediated AD pathogenesis.
Collapse
Affiliation(s)
| | - Leo Perfect
- Department of Basic and Clinical Neuroscience, King's College London, London, United Kingdom
| | - Elena M Ribe
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Marcello Maresca
- Translational Genomics, Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | | | | | - Richard Killick
- Department of Old Age Psychiatry, King's College London, London, United Kingdom
| | - Paulina Nowosiad
- Department of Basic and Clinical Neuroscience, King's College London, London, United Kingdom
| | - Matthew J Reid
- Department of Basic and Clinical Neuroscience, King's College London, London, United Kingdom
| | - Lucia Dutan Polit
- Department of Basic and Clinical Neuroscience, King's College London, London, United Kingdom
| | - Alejo J Nevado
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Daniel Ebner
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Mohammad Bohlooly-Y
- Translational Genomics, Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Noel Buckley
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Menelas N Pangalos
- Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | - Jack Price
- Department of Basic and Clinical Neuroscience, King's College London, London, United Kingdom
| | - Simon Lovestone
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
Hoyt CT, Domingo-Fernández D, Balzer N, Güldenpfennig A, Hofmann-Apitius M. A systematic approach for identifying shared mechanisms in epilepsy and its comorbidities. Database (Oxford) 2018; 2018:5032610. [PMID: 29873705 PMCID: PMC6007221 DOI: 10.1093/database/bay050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/26/2018] [Indexed: 12/31/2022]
Abstract
Cross-sectional epidemiological studies have shown that the incidence of several nervous system diseases is more frequent in epilepsy patients than in the general population. Some comorbidities [e.g. Alzheimer's disease (AD) and Parkinson's disease] are also risk factors for the development of seizures; suggesting they may share pathophysiological mechanisms with epilepsy. A literature-based approach was used to identify gene overlap between epilepsy and its comorbidities as a proxy for a shared genetic basis for disease, or genetic pleiotropy, as a first effort to identify shared mechanisms. While the results identified neurological disorders as the group of diseases with the highest gene overlap, this analysis was insufficient for identifying putative common mechanisms shared across epilepsy and its comorbidities. This motivated the use of a dedicated literature mining and knowledge assembly approach in which a cause-and-effect model of epilepsy was captured with Biological Expression Language. After enriching the knowledge assembly with information surrounding epilepsy, its risk factors, its comorbidities, and anti-epileptic drugs, a novel comparative mechanism enrichment approach was used to propose several downstream effectors (including the GABA receptor, GABAergic pathways, etc.) that could explain the therapeutic effects carbamazepine in both the contexts of epilepsy and AD. We have made the Epilepsy Knowledge Assembly available at https://www.scai.fraunhofer.de/content/dam/scai/de/downloads/bioinformatik/epilepsy.bel and queryable through NeuroMMSig at http://neurommsig.scai.fraunhofer.de. The source code used for analysis and tutorials for reproduction are available on GitHub at https://github.com/cthoyt/epicom.
Collapse
Affiliation(s)
- Charles Tapley Hoyt
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Konrad-Adenauer-Straße, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
- Department of Life Science Informatics, Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Endenicher Allee 19C, Bonn 53113, Germany
- Corresponding author: Tel: +49 2241 14-2268; Fax: +49 2241 14-2656;
| | - Daniel Domingo-Fernández
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Konrad-Adenauer-Straße, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
- Department of Life Science Informatics, Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Endenicher Allee 19C, Bonn 53113, Germany
| | - Nora Balzer
- Department of Life Science Informatics, Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Endenicher Allee 19C, Bonn 53113, Germany
| | - Anka Güldenpfennig
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Konrad-Adenauer-Straße, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
| | - Martin Hofmann-Apitius
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing, Konrad-Adenauer-Straße, Schloss Birlinghoven, 53754 Sankt Augustin, Germany
- Department of Life Science Informatics, Bonn-Aachen International Center for IT, Rheinische Friedrich-Wilhelms-Universität Bonn, Endenicher Allee 19C, Bonn 53113, Germany
| |
Collapse
|
12
|
Huin V, Buée L, Behal H, Labreuche J, Sablonnière B, Dhaenens CM. Alternative promoter usage generates novel shorter MAPT mRNA transcripts in Alzheimer's disease and progressive supranuclear palsy brains. Sci Rep 2017; 7:12589. [PMID: 28974731 PMCID: PMC5626709 DOI: 10.1038/s41598-017-12955-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/12/2017] [Indexed: 11/09/2022] Open
Abstract
Alternative promoter usage is an important mechanism for transcriptome diversity and the regulation of gene expression. Indeed, this alternative usage may influence tissue/subcellular specificity, protein translation and function of the proteins. The existence of an alternative promoter for MAPT gene was considered for a long time to explain differential tissue specificity and differential response to transcription and growth factors between mRNA transcripts. The alternative promoter usage could explain partly the different tau proteins expression patterns observed in tauopathies. Here, we report on our discovery of a functional alternative promoter for MAPT, located upstream of the gene's second exon (exon 1). By analyzing genome databases and brain tissue from control individuals and patients with Alzheimer's disease or progressive supranuclear palsy, we identified novel shorter transcripts derived from this alternative promoter. These transcripts are increased in patients' brain tissue as assessed by 5'RACE-PCR and qPCR. We suggest that these new MAPT isoforms can be translated into normal or amino-terminal-truncated tau proteins. We further suggest that activation of MAPT's alternative promoter under pathological conditions leads to the production of truncated proteins, changes in protein localization and function, and thus neurodegeneration.
Collapse
Affiliation(s)
- Vincent Huin
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France.
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Hélène Behal
- Univ. Lille, CHU Lille, EA 2694 - Santé publique: épidémiologie et qualité des soins, Unité de Biostatistiques, F-59000, Lille, France
| | - Julien Labreuche
- Univ. Lille, CHU Lille, EA 2694 - Santé publique: épidémiologie et qualité des soins, Unité de Biostatistiques, F-59000, Lille, France
| | - Bernard Sablonnière
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| | - Claire-Marie Dhaenens
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000, Lille, France
| |
Collapse
|
13
|
Cho C, MacDonald R, Shang J, Cho MJ, Chalifour LE, Paudel HK. Early growth response-1-mediated down-regulation of drebrin correlates with loss of dendritic spines. J Neurochem 2017; 142:56-73. [DOI: 10.1111/jnc.14031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/28/2017] [Accepted: 03/22/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Chulmin Cho
- Department of Neurology and Neurosurgery; McGill University; Montreal Quebec Canada
- Lady Davis Institute for Medical Research; Jewish General Hospital; Montreal Quebec Canada
| | - Ryen MacDonald
- Department of Neurology and Neurosurgery; McGill University; Montreal Quebec Canada
- Lady Davis Institute for Medical Research; Jewish General Hospital; Montreal Quebec Canada
| | - Jijun Shang
- Lady Davis Institute for Medical Research; Jewish General Hospital; Montreal Quebec Canada
| | - Moon Jeong Cho
- Department of Neurology and Neurosurgery; McGill University; Montreal Quebec Canada
- Lady Davis Institute for Medical Research; Jewish General Hospital; Montreal Quebec Canada
| | - Lorraine E. Chalifour
- Lady Davis Institute for Medical Research; Jewish General Hospital; Montreal Quebec Canada
- Department of Medicine; McGill University; Montreal Quebec Canada
| | - Hemant K. Paudel
- Department of Neurology and Neurosurgery; McGill University; Montreal Quebec Canada
- Lady Davis Institute for Medical Research; Jewish General Hospital; Montreal Quebec Canada
- Department of Medicine; McGill University; Montreal Quebec Canada
| |
Collapse
|
14
|
Preciados M, Yoo C, Roy D. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases. Int J Mol Sci 2016; 17:E2086. [PMID: 27983596 PMCID: PMC5187886 DOI: 10.3390/ijms17122086] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/21/2016] [Accepted: 11/29/2016] [Indexed: 12/13/2022] Open
Abstract
During the development of an individual from a single cell to prenatal stages to adolescence to adulthood and through the complete life span, humans are exposed to countless environmental and stochastic factors, including estrogenic endocrine disrupting chemicals. Brain cells and neural circuits are likely to be influenced by estrogenic endocrine disruptors (EEDs) because they strongly dependent on estrogens. In this review, we discuss both environmental, epidemiological, and experimental evidence on brain health with exposure to oral contraceptives, hormonal therapy, and EEDs such as bisphenol-A (BPA), polychlorinated biphenyls (PCBs), phthalates, and metalloestrogens, such as, arsenic, cadmium, and manganese. Also we discuss the brain health effects associated from exposure to EEDs including the promotion of neurodegeneration, protection against neurodegeneration, and involvement in various neurological deficits; changes in rearing behavior, locomotion, anxiety, learning difficulties, memory issues, and neuronal abnormalities. The effects of EEDs on the brain are varied during the entire life span and far-reaching with many different mechanisms. To understand endocrine disrupting chemicals mechanisms, we use bioinformatics, molecular, and epidemiologic approaches. Through those approaches, we learn how the effects of EEDs on the brain go beyond known mechanism to disrupt the circulatory and neural estrogen function and estrogen-mediated signaling. Effects on EEDs-modified estrogen and nuclear respiratory factor 1 (NRF1) signaling genes with exposure to natural estrogen, pharmacological estrogen-ethinyl estradiol, PCBs, phthalates, BPA, and metalloestrogens are presented here. Bioinformatics analysis of gene-EEDs interactions and brain disease associations identified hundreds of genes that were altered by exposure to estrogen, phthalate, PCBs, BPA or metalloestrogens. Many genes modified by EEDs are common targets of both 17 β-estradiol (E2) and NRF1. Some of these genes are involved with brain diseases, such as Alzheimer's Disease (AD), Parkinson's Disease, Huntington's Disease, Amyotrophic Lateral Sclerosis, Autism Spectrum Disorder, and Brain Neoplasms. For example, the search of enriched pathways showed that top ten E2 interacting genes in AD-APOE, APP, ATP5A1, CALM1, CASP3, GSK3B, IL1B, MAPT, PSEN2 and TNF-underlie the enrichment of the Kyoto Encyclopedia of Genes and Genomes (KEGG) AD pathway. With AD, the six E2-responsive genes are NRF1 target genes: APBB2, DPYSL2, EIF2S1, ENO1, MAPT, and PAXIP1. These genes are also responsive to the following EEDs: ethinyl estradiol (APBB2, DPYSL2, EIF2S1, ENO1, MAPT, and PAXIP1), BPA (APBB2, EIF2S1, ENO1, MAPT, and PAXIP1), dibutyl phthalate (DPYSL2, EIF2S1, and ENO1), diethylhexyl phthalate (DPYSL2 and MAPT). To validate findings from Comparative Toxicogenomics Database (CTD) curated data, we used Bayesian network (BN) analysis on microarray data of AD patients. We observed that both gender and NRF1 were associated with AD. The female NRF1 gene network is completely different from male human AD patients. AD-associated NRF1 target genes-APLP1, APP, GRIN1, GRIN2B, MAPT, PSEN2, PEN2, and IDE-are also regulated by E2. NRF1 regulates targets genes with diverse functions, including cell growth, apoptosis/autophagy, mitochondrial biogenesis, genomic instability, neurogenesis, neuroplasticity, synaptogenesis, and senescence. By activating or repressing the genes involved in cell proliferation, growth suppression, DNA damage/repair, apoptosis/autophagy, angiogenesis, estrogen signaling, neurogenesis, synaptogenesis, and senescence, and inducing a wide range of DNA damage, genomic instability and DNA methylation and transcriptional repression, NRF1 may act as a major regulator of EEDs-induced brain health deficits. In summary, estrogenic endocrine disrupting chemicals-modified genes in brain health deficits are part of both estrogen and NRF1 signaling pathways. Our findings suggest that in addition to estrogen signaling, EEDs influencing NRF1 regulated communities of genes across genomic and epigenomic multiple networks may contribute in the development of complex chronic human brain health disorders.
Collapse
Affiliation(s)
- Mark Preciados
- Department of Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA.
| | - Changwon Yoo
- Department of Biostatistics, Florida International University, Miami, FL 33199, USA.
| | - Deodutta Roy
- Department of Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
15
|
Qin X, Wang Y, Paudel HK. Early Growth Response 1 (Egr-1) Is a Transcriptional Activator of β-Secretase 1 (BACE-1) in the Brain. J Biol Chem 2016; 291:22276-22287. [PMID: 27576688 DOI: 10.1074/jbc.m116.738849] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Indexed: 11/06/2022] Open
Abstract
Accumulation of amyloid-β peptide (Aβ) in the brain is regarded as central to Alzheimer's disease (AD) pathogenesis. Aβ is generated by a sequential cleavage of amyloid precursor protein (APP) by β-secretase 1 (BACE-1) followed by γ-secretase. BACE-1 cleavage of APP is the committed step in Aβ synthesis. Understanding the mechanism by which BACE-1 is activated leading to Aβ synthesis in the brain can provide better understanding of AD pathology and help to develop novel therapies. In this study, we found that the levels of Aβ and BACE-1 are significantly reduced in the brains of mice lacking transcription factor early growth response 1 (Egr-1) when compared with the WT. We demonstrate that in COS-7 cells, Egr-1 binds to the BACE-1 promoter and activates BACE-1 transcription. In rat hippocampal primary neurons, overexpression of Egr-1 induces BACE-1 expression, activates BACE-1, promotes amyloidogenic APP processing, and enhances Aβ synthesis. In mouse hippocampal primary neurons, knockdown of BACE-1 almost completely blocks Egr-1-induced amyloidogenic APP processing and Aβ synthesis. Our data indicate that Egr-1 promotes Aβ synthesis via transcriptional activation of BACE-1 and suggest that Egr-1 plays role in activation of BACE-1 and acceleration of Aβ synthesis in AD brain. Egr-1 is a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Xike Qin
- From the Lady Davis Institute for Medical Research, Jewish General Hospital, and
| | - Yunling Wang
- From the Lady Davis Institute for Medical Research, Jewish General Hospital, and
| | - Hemant K Paudel
- From the Lady Davis Institute for Medical Research, Jewish General Hospital, and the Department of Neurology and Neurosurgery, McGill University, Montréal, Quebec H4H 1R3, Canada
| |
Collapse
|
16
|
Kumar A, Thakur M. Binding of transcription factors to Presenilin 1 and 2 promoter cis-acting elements varies during the development of mouse cerebral cortex. Neurosci Lett 2016; 628:98-104. [DOI: 10.1016/j.neulet.2016.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/06/2016] [Accepted: 05/09/2016] [Indexed: 01/18/2023]
|
17
|
Jiang S, Tang L, Zhao N, Yang W, Qiu Y, Chen HZ. A Systems View of the Differences between APOE ε4 Carriers and Non-carriers in Alzheimer's Disease. Front Aging Neurosci 2016; 8:171. [PMID: 27462267 PMCID: PMC4941795 DOI: 10.3389/fnagi.2016.00171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/27/2016] [Indexed: 12/19/2022] Open
Abstract
APOE ε4 is the strongest genetic risk factor for late-onset Alzheimer's disease (AD) and accounts for 50-65% of late-onset AD. Late-onset AD patients carrying or not carrying APOE ε4 manifest many clinico-pathological distinctions. Thus, we applied a weighted gene co-expression network analysis to identify specific co-expression modules in AD based on APOE ε4 stratification. Two specific modules were identified in AD APOE ε4 carriers and one module was identified in non-carriers. The hub genes of one module of AD APOE ε4 carriers were ISOC1, ENO3, GDF10, GNB3, XPO4, ACLY and MATN2. The other module of AD APOE ε4 carriers consisted of 10 hub genes including ANO3, ARPP21, HPCA, RASD2, PCP4 and ADORA2A. The module of AD APOE ε4 non-carriers consisted of 16 hub genes including DUSP5, TNFRSF18, ZNF331, DNAJB5 and RIN1. The module of AD APOE ε4 carriers including ISOC1 and ENO3 and the module of non-carriers contained the most highly connected hub gene clusters. mRNA expression of the genes in the cluster of the ISOC1 and ENO3 module of carriers was shown to be correlated in a time-dependent manner under APOE ε4 treatment but not under APOE ε3 treatment. In contrast, mRNA expression of the genes in the cluster of non-carriers' module was correlated under APOE ε3 treatment but not under APOE ε4 treatment. The modules of carriers demonstrated genetic bases and were mainly enriched in hereditary disorders and neurological diseases, energy metabolism-associated signaling and G protein-coupled receptor-associated pathways. The module including ISOC1 and ENO3 harbored two conserved promoter motifs in its hub gene cluster that could be regulated by common transcription factors and miRNAs. The module of non-carriers was mainly enriched in neurological, immunological and cardiovascular diseases and was correlated with Parkinson's disease. These data demonstrate that AD in APOE ε4 carriers involves more genetic factors and particular biological processes, whereas AD in APOE ε4 non-carriers shares more common pathways with other types of diseases. The study reveals differential genetic bases and pathogenic and pathological processes between carriers and non-carriers, providing new insight into the mechanisms of the differences between APOE ε4 carriers and non-carriers in AD.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai China
| | - Ling Tang
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai China
| | - Na Zhao
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai China
| | - Wanling Yang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam Hong Kong
| | - Yu Qiu
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai China
| | - Hong-Zhuan Chen
- Department of Pharmacology, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai China
| |
Collapse
|
18
|
Nelo-Bazán MA, Latorre P, Bolado-Carrancio A, Pérez-Campo FM, Echenique-Robba P, Rodríguez-Rey JC, Carrodeguas JA. Early growth response 1 (EGR-1) is a transcriptional regulator of mitochondrial carrier homolog 1 (MTCH 1)/presenilin 1-associated protein (PSAP). Gene 2016; 578:52-62. [PMID: 26692143 DOI: 10.1016/j.gene.2015.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 11/26/2015] [Accepted: 12/07/2015] [Indexed: 01/25/2023]
Abstract
Attempts to elucidate the cellular function of MTCH1 (mitochondrial carrier homolog 1) have not yet rendered a clear insight into the function of this outer mitochondrial membrane protein. Classical biochemical and cell biology approaches have not produced the expected outcome. In vitro experiments have indicated a likely role in the regulation of cell death by apoptosis, and its reported interaction with presenilin 1 suggests a role in the cellular pathways in which this membrane protease participates, nevertheless in vivo data are missing. In an attempt to identify cellular pathways in which this protein might participate, we have studied its promoter looking for transcriptional regulators. We have identified several putative binding sites for EGR-1 (Early growth response 1; a protein involved in growth, proliferation and differentiation), in the proximal region of the MTCH1 promoter. Chromatin immunoprecipitation showed an enrichment of these sequences in genomic DNA bound to EGR-1 and transient overexpression of EGR-1 in cultured HEK293T cells induces an increase of endogenous MTCH1 levels. We also show that MTCH1 levels increase in response to treatment of cells with doxorubicin, an apoptosis inducer through DNA damage. The endogenous levels of MTCH1 decrease when EGR-1 levels are lowered by RNA interference. Our results indicate that EGR-1 is a transcriptional regulator of MTCH1 and give some clues about the cellular processes in which MTCH1 might participate.
Collapse
Affiliation(s)
- María Alejandra Nelo-Bazán
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain; Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain.
| | - Pedro Latorre
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain; Department of Animal Production and Food Science and Technology, University of Zaragoza, Spain.
| | | | - Flor M Pérez-Campo
- Department of Internal Medicine, Hospital U. Marqués de Valdecilla-IDIVAL University of Cantabria, 39008 Santander, Cantabria, Spain.
| | - Pablo Echenique-Robba
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain; Instituto de Química Física Rocasolano, CSIC, Madrid, Spain; Zaragoza Scientific Center for Advanced Modeling (ZCAM), Universidad de Zaragoza, Spain; Departamento de Física Teórica, Universidad de Zaragoza, Spain; Unidad Asociada IQFR-BIFI, Madrid-Zaragoza, Spain.
| | | | - José Alberto Carrodeguas
- Institute for Biocomputation and Physics of Complex Systems, University of Zaragoza, Zaragoza, Spain; Department of Biochemistry and Molecular and Cellular Biology, University of Zaragoza, Zaragoza, Spain; Unidad Asociada IQFR-BIFI, Madrid-Zaragoza, Spain.
| |
Collapse
|
19
|
Zhu QB, Unmehopa U, Bossers K, Hu YT, Verwer R, Balesar R, Zhao J, Bao AM, Swaab D. MicroRNA-132 and early growth response-1 in nucleus basalis of Meynert during the course of Alzheimer's disease. Brain 2016; 139:908-21. [PMID: 26792551 DOI: 10.1093/brain/awv383] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/02/2015] [Indexed: 12/21/2022] Open
Abstract
The cholinergic nucleus basalis of Meynert, which is important for memory functions, shows neuronal activation ('up-phase') during the early stages of Alzheimer's disease and neurodegeneration ('down-phase') in later stages of Alzheimer's disease. MicroRNA-132 (miR-132) and the transcription factor early growth response-1 (EGR1) were proposed as possible candidate molecules regulating such an up-down activity pattern of the nucleus basalis of Meynert during the course of Alzheimer's disease, as they both show this up-down pattern of expression in the prefrontal cortex during the course of Alzheimer's disease. Not only do these two molecules stimulate synaptic activity and plasticity, they are also involved in Alzheimer's disease pathology and might, in addition, affect cholinergic function. In the nucleus basalis of Meynert, we investigated the expression of miR-132 and EGR1 along the entire course of Alzheimer's disease. Forty-nine post-mortem nucleus basalis of Meynert samples were studied, ranging from non-demented controls (Braak stage = 0) to late Alzheimer's disease patients (Braak stage = VI), and from clinical Reisberg scale 1 to 7. Each Braak stage contained seven samples, that were all well matched for confounding factors, i.e. age (range 58-91), sex, post-mortem delay, cerebrospinal fluid pH (as a measure for agonal state), APOE genotype, clock time of death, tissue fixation time, and tissue storage time. The alterations of these two molecules were studied over the course of Alzheimer's disease in relation to the expression of 4G8-stained amyloid-β, hyperphosphorylated tau stained by antibody AT8, neuronal fibrillary tangles and neuropil threads stained by silver, and in relation to alterations in choline acetyltransferase. We found that the expression of miR-132 and EGR1 in the nucleus basalis of Meynert was quite stable during the early stages of Alzheimer's disease and decreased significantly only during late Alzheimer's disease stages. In addition, miR-132 and EGR1 showed a significant positive correlation with choline acetyltransferase expression (r = 0.49, P < 0.001 and r = 0.61, P < 0.001), while choline acetyltransferase expression showed a significantly negative correlation with hyperphosphorylated tau (r = -0.33, P = 0.021) but no correlation with 4G8-stained amyloid-β. From the functional changes of miR-132 and EGR1 along the course of Alzheimer's disease we conclude: (i) that these two molecules may play a role in keeping the cholinergic function intact in early Alzheimer's disease stages; and (ii) that these molecules may contribute to the late neurodegeneration of this cholinergic nucleus.
Collapse
Affiliation(s)
- Qiong-Bin Zhu
- 1 Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Unga Unmehopa
- 2 Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Koen Bossers
- 2 Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Yu-Ting Hu
- 1 Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Ronald Verwer
- 2 Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Rawien Balesar
- 2 Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Juan Zhao
- 2 Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Ai-Min Bao
- 1 Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China
| | - Dick Swaab
- 1 Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, P.R. China 2 Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
20
|
Ordemann JM, Austin RN. Lead neurotoxicity: exploring the potential impact of lead substitution in zinc-finger proteins on mental health. Metallomics 2016; 8:579-88. [DOI: 10.1039/c5mt00300h] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This critical review focuses on one possible link between the cellular biology of lead and its neurotoxic effects: the link between Pb2+substitution for Zn2+in zinc-finger proteins and mental illness in adulthood.
Collapse
|
21
|
Cai Y, An SSA, Kim S. Mutations in presenilin 2 and its implications in Alzheimer's disease and other dementia-associated disorders. Clin Interv Aging 2015; 10:1163-72. [PMID: 26203236 PMCID: PMC4507455 DOI: 10.2147/cia.s85808] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Mutations in the genes encoding presenilin 1 (PSEN1), presenilin 2 (PSEN2), and amyloid precursor protein have been identified as the main genetic causes of familial AD. To date, more than 200 mutations have been described worldwide in PSEN1, which is highly homologous with PSEN2, while mutations in PSEN2 have been rarely reported. We performed a systematic review of studies describing the mutations identified in PSEN2. Most PSEN2 mutations were detected in European and in African populations. Only two were found in Korean populations. Interestingly, PSEN2 mutations appeared not only in AD patients but also in patients with other disorders, including frontotemporal dementia, dementia with Lewy bodies, breast cancer, dilated cardiomyopathy, and Parkinson's disease with dementia. Here, we have summarized the PSEN2 mutations and the potential implications of these mutations in dementia-associated disorders.
Collapse
Affiliation(s)
- Yan Cai
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam-si, Gyeonggi-do, South Korea
| | - Seong Soo A An
- Department of Bionano Technology, Gachon Medical Research Institute, Gachon University, Seongnam-si, Gyeonggi-do, South Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, South Korea
| |
Collapse
|
22
|
Expression of early growth response 1 affects miR-106a/signal transducer and activator of transcription 3 regulating cognitive impairment in ovariectomized mice. Menopause 2015; 21:1143-50. [PMID: 24686449 DOI: 10.1097/gme.0000000000000234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE This study aims to investigate the effects of early growth response 1 (Egr1) on miR-106a/signal transducer and activator of transcription 3 (STAT3) regulating cognitive impairment in an ovariectomy model. METHODS Using the Morris water maze test, we assessed escape latency and time spent in a quadrant among mice at 6, 8, and 12 weeks after ovariectomy and their age-matched controls (n = 15 each group). Egr1, miR-106a, and STAT3 messenger RNA expression (n = 7) in the hippocampus and cortex of mice at 6, 8, and 12 weeks after ovariectomy was detected by quantitative real-time polymerase chain reaction, whereas Egr1, phospho-STAT3 (p-STAT3), and STAT3 protein expression (n = 8) was evaluated by Western blot analysis. Moreover, alterations in miR-106a and STAT3 expression were investigated in neuroblastoma (SH-SY5Y) cells transfected with a human Egr1 interference fragment (si-Egr1) or an Egr1-overexpressing plasmid (GV141-Egr1), respectively. RESULTS Escape latency was significantly increased and time spent in a platform quadrant was reduced in mice at 12 weeks after ovariectomy compared with age-matched controls. Egr1 and miR-106a expression was obviously increased in the hippocampus and cortex at 12 weeks after ovariectomy, whereas STAT3 levels were decreased compared with 12-week controls. After SH-SY5Y cell transfection with the si-Egr1 fragment, miR-106a levels decreased and STAT3/p-STAT3 levels increased, whereas cotransfection of the miR-106a mimic caused a significant decrease in STAT3 levels. MiR-106a messenger RNA expression was significantly increased and STAT3/p-STAT3 protein levels were decreased by Egr1 overexpression, whereas simultaneous transfection with the miR-106a inhibitor inhibited alterations in STAT3 levels. CONCLUSIONS This study suggests that Egr1 decreases STAT3 expression via miR-106a in ovariectomized mice with cognitive impairment, indicating that Egr1 represents a potential target for therapeutic intervention in postmenopausal cognitive decline.
Collapse
|
23
|
Role of promoter DNA sequence variations on the binding of EGR1 transcription factor. Arch Biochem Biophys 2014; 549:1-11. [PMID: 24657079 DOI: 10.1016/j.abb.2014.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/02/2014] [Accepted: 03/10/2014] [Indexed: 12/20/2022]
Abstract
In response to a wide variety of stimuli such as growth factors and hormones, EGR1 transcription factor is rapidly induced and immediately exerts downstream effects central to the maintenance of cellular homeostasis. Herein, our biophysical analysis reveals that DNA sequence variations within the target gene promoters tightly modulate the energetics of binding of EGR1 and that nucleotide substitutions at certain positions are much more detrimental to EGR1-DNA interaction than others. Importantly, the reduction in binding affinity poorly correlates with the loss of enthalpy and gain of entropy-a trend indicative of a complex interplay between underlying thermodynamic factors due to the differential role of water solvent upon nucleotide substitution. We also provide a rationale for the physical basis of the effect of nucleotide substitutions on the EGR1-DNA interaction at atomic level. Taken together, our study bears important implications on understanding the molecular determinants of a key protein-DNA interaction at the cross-roads of human health and disease.
Collapse
|
24
|
Koldamova R, Schug J, Lefterova M, Cronican AA, Fitz NF, Davenport FA, Carter A, Castranio EL, Lefterov I. Genome-wide approaches reveal EGR1-controlled regulatory networks associated with neurodegeneration. Neurobiol Dis 2013; 63:107-14. [PMID: 24269917 DOI: 10.1016/j.nbd.2013.11.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/17/2013] [Accepted: 11/12/2013] [Indexed: 11/29/2022] Open
Abstract
Early growth response gene 1 (Egr1) is a member of the immediate early gene (IEG) family of transcription factors and plays a role in memory formation. To identify EGR1 target genes in brain of Alzheimer's disease (AD) model mice - APP23, we applied chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequencing (ChIP-seq). Functional annotation of genes associated with EGR1 binding revealed a set of related networks including synaptic vesicle transport, clathrin-mediated endocytosis (CME), intracellular membrane fusion and transmission of signals elicited by Ca(2+) influx. EGR1 binding is associated with significant enrichment of activating chromatin marks and appears enriched near genes that are up-regulated in the brains of APP23 mice. Among the putative EGR1 targets identified and validated in this study are genes related to synaptic plasticity and transport of proteins, such as Arc, Grin1, Syn2, Vamp2 and Stx6, and genes implicated in AD such as Picalm, Psen2 and App. We also demonstrate a potential regulatory link between EGR1 and its newly identified targets in vivo, since conditions that up-regulate Egr1 levels in brain, such as a spatial memory test, also lead to increased expression of the targets. On the other hand, protein levels of EGR1 and ARC, SYN2, STX6 and PICALM are significantly lower in the brain of adult APP mice than in age-matched wild type animals. The results of this study suggest that EGR1 regulates the expression of genes involved in CME, vesicular transport and synaptic transmission that may be critical for AD pathogenesis.
Collapse
Affiliation(s)
- Radosveta Koldamova
- Department of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - Jonathan Schug
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA 19104, USA; Functional Genomics Core, Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Martina Lefterova
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Andrea A Cronican
- Department of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Nicholas F Fitz
- Department of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Faith A Davenport
- Department of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Alexis Carter
- Department of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Emilie L Castranio
- Department of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Iliya Lefterov
- Department of Environmental & Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| |
Collapse
|
25
|
Chen XF, Zhang YW, Xu H, Bu G. Transcriptional regulation and its misregulation in Alzheimer's disease. Mol Brain 2013; 6:44. [PMID: 24144318 PMCID: PMC3854070 DOI: 10.1186/1756-6606-6-44] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 10/15/2013] [Indexed: 11/25/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder characterized by loss of memory and cognitive function. A key neuropathological event in AD is the accumulation of amyloid-β (Aβ) peptide. The production and clearance of Aβ in the brain are regulated by a large group of genes. The expression levels of these genes must be fine-tuned in the brain to keep Aβ at a balanced amount under physiological condition. Misregulation of AD genes has been found to either increase AD risk or accelerate the disease progression. In recent years, important progress has been made in uncovering the regulatory elements and transcriptional factors that guide the expression of these genes. In this review, we describe the mechanisms of transcriptional regulation for the known AD genes and the misregualtion that leads to AD susceptibility.
Collapse
Affiliation(s)
- Xiao-Fen Chen
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, College of Medicine, Xiamen University, 361102 Xiamen, Fujian, People's Republic of China.
| | | | | | | |
Collapse
|
26
|
Epigenetic induction of EGR-1 expression by the amyloid precursor protein during exposure to novelty. PLoS One 2013; 8:e74305. [PMID: 24066134 PMCID: PMC3774615 DOI: 10.1371/journal.pone.0074305] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/30/2013] [Indexed: 11/19/2022] Open
Abstract
Following transcriptome comparison of primary cultures isolated from brain of mice expressing or not the amyloid precursor protein APP, we found transcription of the EGR-1 gene to be regulated by APP. In primary cultures of cortical neurons, APP significantly down regulated EGR-1 expression at both mRNA and protein levels in a γ-secretase independent manner. The intracellular domain of APP did not interact with EGR-1 gene promoter, but enrichment of acetylated histone H4 at the EGR-1 promoter region was measured in APP-/- neurons, as well as in brain of APP-/- mice, in which increase in EGR-1 expression was also measured. These results argue for an important function of APP in the epigenetic regulation of EGR-1 gene transcription both in vitro and in vivo. In APP-/- mice, constitutive overexpression of EGR-1 in brain impaired epigenetic induction of this early transcriptional regulator during exposure to novelty. Altogether, these results indicate an important function of APP in the epigenetic regulation of the transcription of EGR-1, known to be important for memory formation.
Collapse
|
27
|
Bhattacharyya M, Bandyopadhyay S. Studying the differential co-expression of microRNAs reveals significant role of white matter in early Alzheimer's progression. MOLECULAR BIOSYSTEMS 2013; 9:457-66. [PMID: 23344858 DOI: 10.1039/c2mb25434d] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MicroRNAs (miRNAs) are a class of short non-coding RNAs, which show tissue-specific regulatory activity on genes. Expression profiling of miRNAs is an important step for understanding the pathology of Alzheimer's disease (AD), a neurodegenerative disorder originating in the brain. Recent studies highlight that miRNAs enriched in gray matter (GM) and white matter (WM) of AD brains show differential expression. However, no in-depth study has yet been conducted on analysing the differential co-expression of pairs of miRNAs over GM and WM. Two genes (or miRNAs) are said to be co-expressed if their expression profiles change similarly over a number of samples. A pair of co-expressed genes under a condition type (or phenotype) may not remain co-expressed, or get contra-expressed, under another condition. Such pairs of genes are referred to as differentially co-expressed. Such an investigation in the early stage of AD is reported in this article. A network of differentially co-expressed miRNAs in GM and WM is first built. Analysis of the differential co-expression property reveals that such a network can not have any cycle. We use the notion of switching to distinguish two distinct types of differential co-expression patterns - a pair of miRNAs that are highly co-expressed in GM but does not remain so in WM, and vice versa. Based on this, we find the substructures, referred to as differentially co-expressed switching tree (DCST), that throughout have similar pattern of switching. The miR-423-5p emerges as a hub of the network. We extract subtrees of these DCSTs that have similar switching pattern throughout. These substructures are found to be both statistically and biologically significant. A large number of miRNAs obtained from the DCSTs are found to have association with AD, most of which are enriched in WM. This computational study therefore indicates a significant role of WM in early AD progression, a hitherto less acknowledged fact.
Collapse
Affiliation(s)
- Malay Bhattacharyya
- Machine Intelligence Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata - 700108, India
| | | |
Collapse
|
28
|
Zhao Y, Xin J, Sun C, Zhao B, Zhao J, Su L. Safrole oxide induced neuronal differentiation of rat bone-marrow mesenchymal stem cells by elevating Hsp70. Gene 2012; 509:85-92. [DOI: 10.1016/j.gene.2012.07.088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 07/10/2012] [Accepted: 07/30/2012] [Indexed: 01/19/2023]
|
29
|
Andreoli V, Trecroci F, La Russa A, Cittadella R, Liguori M, Spadafora P, Caracciolo M, Di Palma G, Colica C, Gambardella A, Quattrone A. Presenilin enhancer-2 gene: identification of a novel promoter mutation in a patient with early-onset familial Alzheimer's disease. Alzheimers Dement 2012; 7:574-8. [PMID: 22055974 DOI: 10.1016/j.jalz.2011.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 01/28/2011] [Accepted: 02/08/2011] [Indexed: 10/15/2022]
Abstract
UNLABELLED γ-Secretase proteins complex cleaves the amyloid precursor protein (APP) to generate amyloid-β (Aβ) peptides. Considerable evidence suggests that alterations in genes encoding these proteins exert their influence on the pathogenesis of familial Alzheimer's disease (FAD). Presenilin enhancer-2 gene (PEN-2) is a necessary component of the γ-Secretase complex. Recently, it has been shown that PEN-2 mutations could be involved in Alzheimer's disease (AD). We performed a mutational screening of all PEN-2 coding and promoter regions in a FAD cohort derived from Southern Italy. Four hundred and fifty-two subjects (FAD: 97; CONTROLS 355) were recruited for this study. We identified for the first time in a key region necessary for the promoter activity a novel 3 bp deletion in a subject with early-FAD. Our genetic data demonstrate that the mutant allele may influence the transcriptional activity of the PEN-2 gene. Although the effective role of the PEN-2 promoter deletion in AD is not entirely clear, these findings might lead to more studies on its functional and genetic role.
Collapse
Affiliation(s)
- Virginia Andreoli
- Institute of Neurological Sciences, National Research Council, Pianolago di Mangone, Cosenza, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bossers K, Wirz KTS, Meerhoff GF, Essing AHW, van Dongen JW, Houba P, Kruse CG, Verhaagen J, Swaab DF. Concerted changes in transcripts in the prefrontal cortex precede neuropathology in Alzheimer's disease. ACTA ACUST UNITED AC 2010; 133:3699-723. [PMID: 20889584 DOI: 10.1093/brain/awq258] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Using the Braak staging for neurofibrillary changes as an objective indicator of the progression of Alzheimer's disease, we have performed a systematic search for global gene expression changes in the prefrontal cortex during the course of Alzheimer's disease. In the prefrontal cortex, senile plaques and neurofibrillary changes start to appear around Braak stage III, allowing for the detection of changes in gene expression before, during and after the onset of Alzheimer's disease neuropathology. Two distinct patterns of tightly co-regulated groups of genes were observed: (i) an increase in expression in early Braak stages, followed by a decline in expression in later stages (the UPDOWN clusters; containing 865 genes) and (ii) a decrease in expression in early Braak stages, followed by an increase in expression in later stages (the DOWNUP clusters; containing 983 genes). The most profound changes in gene expression were detected between Braak stages II and III, just before or at the onset of plaque pathology and neurofibrillary changes in the prefrontal cortex. We also observed an increase in intracellular beta amyloid staining from Braak stages I to III and a clear decrease in Braak stages IV to VI. These data suggest a link between specific gene expression clusters and Alzheimer's disease-associated neuropathology in the prefrontal cortex. Gene ontology over-representation and functional gene network analyses indicate an increase in synaptic activity and changes in plasticity during the very early pre-symptomatic stage of the disease. In later Braak stages, the decreased expression of these genes suggests a reduction in synaptic activity that coincides with the appearance of plaque pathology and neurofibrillary changes and the clinical diagnosis of mild cognitive impairment. The interaction of the ApoE genotype with the expression levels of the genes in the UPDOWN and DOWNUP clusters demonstrates that the accelerating role of ApoE-ε4 in the progression of Alzheimer's disease is reflected in the temporal changes in gene expression presented here. Since the UPDOWN cluster contains several genes involved in amyloid precursor protein processing and beta amyloid clearance that increase in expression in parallel with increased intracellular beta amyloid load, just before the onset of plaque pathology in the prefrontal cortex, we hypothesize that the temporally orchestrated increase in genes involved in synaptic activity represents a coping mechanism against increased soluble beta amyloid levels. As these gene expression changes occur before the appearance of Alzheimer's disease-associated neuropathology, they provide an excellent starting point for the identification of new targets for the development of therapeutic strategies aimed at the prevention of Alzheimer's disease.
Collapse
Affiliation(s)
- Koen Bossers
- Neuroregeneration Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dunys J, Sevalle J, Giaime E, Pardossi-Piquard R, Vitek MP, Renbaum P, Levy-Lahad E, Zhang YW, Xu H, Checler F, da Costa CA. p53-dependent control of transactivation of the Pen2 promoter by presenilins. J Cell Sci 2010; 122:4003-8. [PMID: 19889971 DOI: 10.1242/jcs.051169] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The senile plaques found in the brains of patients with Alzheimer's disease are mainly due to the accumulation of amyloid beta-peptides (A beta) that are liberated by gamma-secretase, a high molecular weight complex including presenilins, PEN-2, APH-1 and nicastrin. The depletion of each of these proteins disrupts the complex assembly into a functional protease. Here, we describe another level of regulation of this multimeric protease. The depletion of both presenilins drastically reduces Pen2 mRNA levels and its promoter transactivation. Furthermore, overexpression of presenilin-1 lowers Pen2 promoter transactivation, a phenotype abolished by a double mutation known to prevent presenilin-dependent gamma-secretase activity. PEN-2 expression is decreased by depletion of beta-amyloid precursor protein (APP) and increased by the APP intracellular domain (AICD). We show that AICD and APP complement for Pen2 mRNA levels in APP/APLP1-2 knockout fibroblasts. Interestingly, overexpression of presenilin-2 greatly increases Pen2 promoter transactivation. The opposite effect triggered by both presenilins was reminiscent of our previous study, which showed that these two proteins elicit antagonistic effects on p53. Therefore, we examined the contribution of p53 on Pen2 transcription. Pen2 promoter transactivation, and Pen2 mRNA and protein levels were drastically reduced in p53(-/-) fibroblasts. Furthermore, PEN-2 expression could be rescued by p53 complementation in p53- and APP-deficient cells. Interestingly, PEN-2 expression was also reduced in p53-deficient mouse brain. Overall, our study describes a p53-dependent regulation of PEN-2 expression by other members of the gamma-secretase complex, namely presenilins.
Collapse
Affiliation(s)
- Julie Dunys
- Institut de Pharmacologie Moléculaire et Cellulaire of Centre National de la Recherche Scientifique and Institut de NeuroMédecine Moléculaire, Equipe labellisée Fondation pour la Recherche Médicale, Valbonne, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Transcriptional regulation of the murine Presenilin-2 gene reveals similarities and differences to its human orthologue. Gene 2009; 446:81-9. [PMID: 19573580 DOI: 10.1016/j.gene.2009.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 06/15/2009] [Accepted: 06/17/2009] [Indexed: 01/29/2023]
Abstract
Inherited Presenilin-2 mutations cause familial Alzheimer's disease, and its regulation may play a role in sporadic cases. The human Presenilin-2 (PSEN2) regulatory region includes two separate promoters modulated by Egr-1, a transcription factor involved in learning and memory. To enable in-vivo analysis of Presenilin-2 regulation, we characterized the murine Presenilin-2 (Psen2) promoter. We identified novel Psen2 Transcription start sites (TSSs) 10 kb upstream of previously reported sites, along with two new alternatively transcribed exons (1A, and 1BC) in the 5' untranslated region. Transcripts initiating in Exon 1A are ubiquitous, whereas exon 1BC-initiated transcripts are non-neuronal. Only the sequence surrounding exon 1A, which includes homologous sequences to the human PSEN2 promoter, harbored significant promoter activity. Sequences upstream of exon 1A and a downstream enhancer were specifically important in neuronal cells, but similar to the human promoter, the murine promoter was characteristic of a housekeeping gene, and its activity depended on Sp1 binding. Egr-1 did not bind the murine promoter. Egr-1 over-expression and down-regulation, as well as in-vivo examination of Egr-1 and Psen2 expression during fear conditioning in mice, showed that Egr-1 does not regulate the murine Psen2 promoter. Differential Psen2 regulation in human and mouse has implications for Alzheimer disease mouse models.
Collapse
|
33
|
Induction of Early Growth Response-1 Mediates Microglia Activation In Vitro But is Dispensable In Vivo. Neuromolecular Med 2009; 11:87-96. [DOI: 10.1007/s12017-009-8061-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 04/01/2009] [Indexed: 12/13/2022]
|
34
|
Citron BA, Dennis JS, Zeitlin RS, Echeverria V. Transcription factor Sp1 dysregulation in Alzheimer's disease. J Neurosci Res 2008; 86:2499-504. [PMID: 18449948 DOI: 10.1002/jnr.21695] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Altered gene expression occurs in central nervous system disorders, including Alzheimer's disease (AD). Transcription factor Sp1 may be involved insofar as it can regulate the expression of several AD-related proteins, including amyloid precursor protein (APP) and tau. Sp1 could itself be regulated by inflammatory and other factors associated with AD, such as interleukin-1beta. We measured an almost threefold elevation in the number of mRNA molecules of this cytokine in the AD frontal cortex. Sp1 mRNA was found to be up-regulated in these AD brains (along with Sp1-regulated COX-2), and the Sp1 increase was also seen at the protein level by Western immunoblotting. To determine whether this would also occur in transgenic mice developing AD pathology, we examined the expression of Sp1 in the cortex and hippocampus and observed higher levels of Sp1 mRNA and protein. These results indicate that elements of regulatory pathways involving transcription factor Sp1 may be useful targets for therapeutic intervention to prevent or reverse AD.
Collapse
Affiliation(s)
- Bruce A Citron
- Laboratory of Molecular Biology, Research and Development 151, Bay Pines VA Healthcare System, Bay Pines, Florida 33744-4125, USA.
| | | | | | | |
Collapse
|
35
|
Thakur MK, Ghosh S. Age and sex dependent alteration in presenilin expression in mouse cerebral cortex. Cell Mol Neurobiol 2007; 27:1059-67. [PMID: 17874292 PMCID: PMC11517233 DOI: 10.1007/s10571-007-9214-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 08/31/2007] [Indexed: 01/18/2023]
Abstract
(1) Presenilin (PS) expression is regulated by several cellular and extracellular factors which change with age and sex. Both age and sex are key risk factors for Alzheimer's disease (AD), which is linked to mutations in PS genes. (2) We have analyzed the effect of age and sex on PS expression by northern hybridization and western blot analysis using the cerebral cortex of adult (24 +/- 2 weeks) and old (65 +/- 5 weeks) mice. (3) Our results demonstrate that PS1 was downregulated and PS 2 was upregulated in old mice of both sexes. The level of PS 1 was relatively higher and that of PS 2 was lower in female than male mice of same age group. Taken together, these findings show age and sex dependent alteration in PS expression, which in turn may influence the signal transduction pathways and consequently brain functions.
Collapse
Affiliation(s)
- Mahendra Kumar Thakur
- Department of Zoology, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | | |
Collapse
|
36
|
Wang R, Zhang YW, Sun P, Liu R, Zhang X, Zhang X, Xia K, Xia J, Xu H, Zhang Z. Transcriptional regulation of PEN-2, a key component of the gamma-secretase complex, by CREB. Mol Cell Biol 2006; 26:1347-54. [PMID: 16449647 PMCID: PMC1367199 DOI: 10.1128/mcb.26.4.1347-1354.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gamma-secretase, which is responsible for the intramembranous cleavage of Alzheimer's beta-amyloid precursor protein (APP), the signaling receptor Notch, and many other substrates, is a multiprotein complex consisting of at least four components: presenilin (PS), nicastrin, APH-1, and PEN-2. Despite the fact that PEN-2 is known to mediate endoproteolytic cleavage of full-length PS and APH-1 and nicastrin are required for maintaining the stability of the complex, the detailed physiological function of each component remain elusive. Unlike that of PS, the transcriptional regulation of PEN-2, APH-1, and nicastrin has not been investigated. Here, we characterized the upstream regions of the human PEN-2 gene and identified a 238-bp fragment located 353 bp upstream of the translational start codon as the key region necessary for the promoter activity. Further analysis revealed a CREB binding site located in the 238-bp region that is essential for the transcriptional activity of the PEN-2 promoter. Mutation of the CREB site abolished the transcriptional activity of the PEN-2 promoter. Electrophoretic mobility shift assays and chromatin immunoprecipitation analysis showed the binding of CREB to the PEN-2 promoter region both in vitro and in vivo. Activation of the CREB transcriptional factor by forskolin dramatically promoted the expression of PEN-2 mRNA and protein, whereas the other components of the gamma-secretase complex remained unaffected. Forskolin treatment slightly increases the secretion of soluble APPalpha and Abeta without affecting Notch cleavage. These results demonstrate that expression of PEN-2 is regulated by CREB and suggest that the specific control of PEN-2 expression may imply additional physiological functions uniquely assigned to PEN-2.
Collapse
Affiliation(s)
- Ruishan Wang
- National Laboratory of Medical Genetics of China, Xiang-Ya Hospital, Central South University, 410078 Changsha, Hunan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Thakur MK, Mani ST. Estradiol regulates APP mRNA alternative splicing in the mice brain cortex. Neurosci Lett 2005; 381:154-7. [PMID: 15882808 DOI: 10.1016/j.neulet.2005.02.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 11/30/2004] [Accepted: 02/08/2005] [Indexed: 11/24/2022]
Abstract
Alternative splicing of amyloid precursor protein (APP), one of the candidate genes for Alzheimer's disease, yields three major mRNAs, which give rise to APP770, APP751 and APP695 protein isoforms. Out of these three isoforms, APP695 is expressed most predominantly in the brain. The splicing and processing of APP are shown to be influenced by several factors including hormones. In this study, we report the effect of withdrawal and administration of sex steroid hormones on the alternative splicing of APP mRNA during aging in the brain cortex of mice of both sexes. The level of APP695 mRNA isoform was higher in intact adult as compared to old mice of both sexes. Gonadectomy upregulated the APP695 mRNA isoform levels in all groups except in adult female where the level was downregulated. Estradiol supplementation upregulated the level of APP695 mRNA isoform in all groups except in old male where the level was downregulated. Thus these results show that the level of APP695 mRNA changes with age and estradiol may play a key role in the development of Alzheimer's disease by modulating the level of APP mRNA isoforms.
Collapse
Affiliation(s)
- M K Thakur
- Biochemistry & Molecular Biology Laboratory, Department of Zoology, Banaras Hindu University, Varanasi 221005, India.
| | | |
Collapse
|