1
|
Li R, Song J, Zhao A, Diao X, Zhang T, Qi X, Guan Z, An Y, Ren L, Wang C, He Y. Association of APP gene polymorphisms and promoter methylation with essential hypertension in Guizhou: a case-control study. Hum Genomics 2023; 17:25. [PMID: 36941702 PMCID: PMC10026478 DOI: 10.1186/s40246-023-00462-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/16/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Single-nucleotide polymorphisms (SNPs) and DNA methylation are crucial regulators of essential hypertension (EH). Amyloid precursor protein (APP) mutations are implicated in hypertension development. Nonetheless, studies on the association of APP gene polymorphism and promoter methylation with hypertension are limited. Therefore, this case-control aims to evaluate the genetic association of APP gene polymorphism and promoter methylation with EH in Guizhou populations. OBJECTIVE AND METHODS We conducted a case-control study on 343 EH patients and 335 healthy controls (including Miao, Buyi, and Han populations) in the Guizhou province of China to analyze 11 single-nucleotide polymorphisms (rs2040273, rs63750921, rs2211772, rs2830077, rs467021, rs368196, rs466433, rs364048, rs364051, rs438031, rs463946) in the APP gene via MassARRAY SNP. The MassARRAY EpiTYPER was employed to detect the methylation levels of the promoters. RESULTS In the Han population, the rs2211772 genotype distribution was significantly different between disease and control groups (χ2 = 6.343, P = 0.039). The CC genotype reduced the risk of hypertension compared to the TT or TC genotype (OR 0.105, 95%CI 0.012-0.914, P = 0.041). For rs2040273 in the Miao population, AG or GG genotype reduced the hypertension risk compared with the AA genotype (OR 0.533, 95%CI 0.294-0.965, P = 0.038). Haplotype TCC (rs364051-rs438031-rs463946) increased the risk of EH in Guizhou (OR 1.427, 95%CI 1.020-1.996, P = 0.037). Each 1% increase in CpG_19 (- 613 bp) methylation level was associated with a 4.1% increase in hypertension risk (OR 1.041, 95%CI 1.002-1.081, P = 0.039). Each 1% increase in CpG_1 (- 296 bp) methylation level was associated with an 8% decrease in hypertension risk in women (OR 0.920, 95%CI 0.860-0.984, P = 0.015). CpG_19 significantly correlated with systolic blood pressure (r = 0.2, P = 0.03). The methylation levels of CpG_19 in hypertensive patients with rs466433, rs364048, and rs364051 minor alleles were lower than that with wild-type alleles (P < 0.05). Moreover, rs467021 and rs364051 showed strong synergistic interaction with EH (χ2 = 7.633, P = 0.006). CpG_11, CpG_19, and rs364051 showed weak synergistic interaction with EH (χ2 = 19.874, P < 0.001). CONCLUSION In summary, rs2211772 polymorphism and promoter methylation level of APP gene may be linked to EH in Guizhou populations. Our findings will provide novel insights for genetic research of hypertension and Alzheimer's disease.
Collapse
Affiliation(s)
- Ruichao Li
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Juhui Song
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Ansu Zhao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiaoyan Diao
- Department of Cardiovascular Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Ting Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yu An
- The Clinical Laboratory Center, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lingyan Ren
- Antenatal Diagnosis Centre, Guizhou Provincial People's Hospital, Guiyang, China.
| | - Chanjuan Wang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| | - Yan He
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & Key Laboratory of Medical Molecular Biology of Guizhou Province, & Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
2
|
Gao Q, Dai Z, Zhang S, Fang Y, Yung KKL, Lo PK, Lai KWC. Interaction of Sp1 and APP promoter elucidates a mechanism for Pb 2+ caused neurodegeneration. Arch Biochem Biophys 2020; 681:108265. [PMID: 31945313 DOI: 10.1016/j.abb.2020.108265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/10/2020] [Accepted: 01/12/2020] [Indexed: 12/31/2022]
Abstract
A ubiquitously expressed transcription factor, specificity protein 1 (Sp1), interacts with the amyloid precursor protein (APP) promoter and likely mediates APP expression. Promoter-interaction strengths variably regulate the level of APP expression. Here, we examined the interactions of finger 3 of Sp1 (Sp1-f3) with a DNA fragment containing the APP promoter in different ionic solutions using atomic force microscope (AFM) spectroscopy. Sp1-f3 molecules immobilized on an Si substrate were bound to the APP promoter, which was linked to the AFM tips via covalent bonds. The interactions were strongly influenced by Pb2+, considering that substituting Zn2+ with Pb2+ increased the binding affinity of Sp1 for the APP promoter. The results revealed that the enhanced interaction force facilitated APP expression and that APP overexpression could confer a high-risk for disease incidence. An increased interaction force between Sp1-f3 and the APP promoter in Pb2+ solutions was consistent with a lower binding free energy, as determined by computer-assisted analysis. The impact of Pb2+ on cell morphology and related mechanical properties were also detected by AFM. The overexpression of APP caused by the enhanced interaction force triggered actin reorganization and further resulted in an increased Young's modulus and viscosity. The correlation with single-force measurements revealed that altered cellular activities could result from alternation of Sp1-APP promoter interaction. Our AFM findings offer a new approach in understanding Pb2+ associated neurodegeneration.
Collapse
Affiliation(s)
- Qi Gao
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ziwen Dai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Shiqing Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Yuqiang Fang
- School of Mechanical Science and Engineering, Jilin University, Changchun, 130025, China
| | - Ken Kin Lam Yung
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China.
| | - Pik Kwan Lo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China; Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China.
| | - King Wai Chiu Lai
- Department of Biomedical Engineering, Centre for Robotics and Automation, City University of Hong Kong, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
3
|
Jin W, Qazi TJ, Quan Z, Li N, Qing H. Dysregulation of Transcription Factors: A Key Culprit Behind Neurodegenerative Disorders. Neuroscientist 2018; 25:548-565. [PMID: 30484370 DOI: 10.1177/1073858418811787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases (NDs) are considered heterogeneous disorders characterized by progressive pathological changes in neuronal systems. Transcription factors are protein molecules that are important in regulating the expression of genes. Although the clinical manifestations of NDs vary, the pathological processes appear similar with regard to neuroinflammation, oxidative stress, and proteostasis, to which, as numerous studies have discovered, transcription factors are closely linked. In this review, we summarized and reviewed the roles of transcription factors in NDs, and then we elucidated their functions during pathological processes, and finally we discussed their therapeutic values in NDs.
Collapse
Affiliation(s)
- Wei Jin
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Talal Jamil Qazi
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Zhenzhen Quan
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Nuomin Li
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Hong Qing
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| |
Collapse
|
4
|
Finding novel distinctions between the sAPPα-mediated anabolic biochemical pathways in Autism Spectrum Disorder and Fragile X Syndrome plasma and brain tissue. Sci Rep 2016; 6:26052. [PMID: 27212113 PMCID: PMC4876513 DOI: 10.1038/srep26052] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/25/2016] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorder (ASD) and Fragile X syndrome (FXS) are developmental disorders. No validated blood-based biomarkers exist for either, which impedes bench-to-bedside approaches. Amyloid-β (Aβ) precursor protein (APP) and metabolites are usually associated with Alzheimer’s disease (AD). APP cleavage by α-secretase produces potentially neurotrophic secreted APPα (sAPPα) and the P3 peptide fragment. β-site APP cleaving enzyme (BACE1) cleavage produces secreted APPβ (sAPPβ) and intact Aβ. Excess Aβ is potentially neurotoxic and can lead to atrophy of brain regions such as amygdala in AD. By contrast, amygdala is enlarged in ASD but not FXS. We previously reported elevated levels of sAPPα in ASD and FXS vs. controls. We now report elevated plasma Aβ and total APP levels in FXS compared to both ASD and typically developing controls, and elevated levels of sAPPα in ASD and FXS vs. controls. By contrast, plasma and brain sAPPβ and Aβ were lower in ASD vs. controls but elevated in FXS plasma vs. controls. We also detected age-dependent increase in an α-secretase in ASD brains. We report a novel mechanistic difference in APP pathways between ASD (processing) and FXS (expression) leading to distinct APP metabolite profiles in these two disorders. These novel, distinctive biochemical differences between ASD and FXS pave the way for blood-based biomarkers for ASD and FXS.
Collapse
|
5
|
Ordemann JM, Austin RN. Lead neurotoxicity: exploring the potential impact of lead substitution in zinc-finger proteins on mental health. Metallomics 2016; 8:579-88. [DOI: 10.1039/c5mt00300h] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This critical review focuses on one possible link between the cellular biology of lead and its neurotoxic effects: the link between Pb2+substitution for Zn2+in zinc-finger proteins and mental illness in adulthood.
Collapse
|
6
|
Hou X, Adeosun SO, Zhang Q, Barlow B, Brents M, Zheng B, Wang J. Differential contributions of ApoE4 and female sex to BACE1 activity and expression mediate Aβ deposition and learning and memory in mouse models of Alzheimer's disease. Front Aging Neurosci 2015; 7:207. [PMID: 26582141 PMCID: PMC4628114 DOI: 10.3389/fnagi.2015.00207] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/15/2015] [Indexed: 12/01/2022] Open
Abstract
Alzheimer’s disease (AD), the most common form of dementia, disproportionately affects women in both prevalence and severity. This increased vulnerability to AD in women is strongly associated with age-related ovarian hormone loss and apolipoprotein E 4 allele (ApoE4), the most important genetic risk factor for sporadic AD. Up to date, the mechanism involved in the interaction between ApoE4 and sex/gender in AD is still unclear. This study evaluated the sex-dependent ApoE4 effects on learning and memory, Aβ deposition and potential mechanisms, using mice bearing both sporadic (ApoE4) and familial (APPSwe, PS1M146V, tauP301L; 3xTg) AD risk factors and compared with sex- and age-matched 3xTg or nonTg mice. Compared to nonTg mice, transgenic mice of both sexes showed spatial learning and memory deficits in the radial arm water maze and novel arm discrimination tests at 20 months of age. However, at 10 months, only ApoE4/3xTg mice showed significant learning and memory impairment. Moreover, molecular studies of hippocampal tissue revealed significantly higher protein levels of Aβ species, β-site APP cleavage enzyme (BACE1) and Sp1, a transcription factor of BACE1, in female ApoE4/3xTg when compared with female nonTg, female 3xTg, and male ApoE4/3xTg mice. Significantly increased BACE1 enzymatic activities were observed in both male and female mice carrying ApoE4; however, only the females showed significant higher BACE1 expressions. Together, these data suggest that ApoE4 allele is associated with increased BACE1 enzymatic activity, while female sex plays an important role in increasing BACE1 expression. The combination of both provides a molecular basis for high Aβ pathology and the resultant hippocampus-dependent learning and memory deficits in female ApoE4 carriers.
Collapse
Affiliation(s)
- Xu Hou
- Program in Neuroscience, University of Mississippi Medical Center, Jackson MS, USA
| | - Samuel O Adeosun
- Department of Pathology, University of Mississippi Medical Center, Jackson MS, USA
| | - Qinli Zhang
- Department of Pathology, University of Mississippi Medical Center, Jackson MS, USA
| | - Brett Barlow
- Department of Pathology, University of Mississippi Medical Center, Jackson MS, USA
| | - Melissa Brents
- Department of Pathology, University of Mississippi Medical Center, Jackson MS, USA
| | - Baoying Zheng
- Department of Pathology, University of Mississippi Medical Center, Jackson MS, USA
| | - Junming Wang
- Program in Neuroscience, University of Mississippi Medical Center, Jackson MS, USA ; Department of Pathology, University of Mississippi Medical Center, Jackson MS, USA ; Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson MS, USA ; Center of Memory Impairment and Neurodegenerative Dementia, University of Mississippi Medical Center, Jackson MS, USA
| |
Collapse
|
7
|
Gu X, Sun J, Li S, Wu X, Li L. Oxidative stress induces DNA demethylation and histone acetylation in SH-SY5Y cells: potential epigenetic mechanisms in gene transcription in Aβ production. Neurobiol Aging 2012; 34:1069-79. [PMID: 23141413 DOI: 10.1016/j.neurobiolaging.2012.10.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/10/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
Abstract
Overwhelming evidence has suggested that enhanced oxidative stress is involved in the pathogenesis and/or progression of Alzheimer's disease (AD). Amyloid-β (Aβ) that composes senile plaques plays a causal role in AD, and its abnormal deposition in brains is the typical neuropathologic hallmark of AD. Recent studies have suggested that epigenetic mechanisms play an important role in the initiation and development of AD. In the present study, we investigated the epigenetic mechanisms, such as DNA methylation and histone acetylation, involved in the transcription of AD-related genes with Aβ production under oxidative stress. Human neuroblastoma SH-SY5Y cells were treated with hydrogen peroxide (H(2)O(2)) and used as the cell model. The intracellular Aβ level was significantly increased in H(2)O(2)-treated SH-SY5Y cells. The expression of amyloid-β precursor protein and β-site amyloid-β precursor protein-cleaving enzyme 1 was upregulated by demethylation in the gene promoters associated with the reduction of methyltransferases. Meanwhile, H(2)O(2) induced the upregulation of histone acetyltransferases p300/cAMP-response element binding protein (p300/CBP) and downregulation of histone deacetylases. DNA hypomethylation induced by DNA methyltransferase inhibitor could activate the DNA binding activity of transcription factor nuclear factor-κB, whereas no significant effect was observed on specific protein 1. DNA binding activities of nuclear factor-κB and specific protein 1 were activated by histone hyperacetylation induced by histone deacetylase inhibitor. These findings suggested that oxidative stress resulted in an imbalance between DNA methylation and demethylation and histone acetylation and deacetylation associated with the activation of transcription factors, leading to the AD-related gene transcription in the Aβ overproduction. This could be a potential mechanism for oxidative stress response, which might contribute to the pathogenesis and development of AD.
Collapse
Affiliation(s)
- Xinling Gu
- Department of Pathology, Key Laboratory for Neurodegenerative Disease of Education Ministry, Capital Medical University, Beijing, China
| | | | | | | | | |
Collapse
|
8
|
Abstract
Alpha-secretase-mediated cleavage of the amyloid precursor protein (APP) releases the neuroprotective APP fragment sαAPP and prevents amyloid β peptide (Aβ) generation. Moreover, α-secretase-like cleavage of the Aβ transporter 'receptor for advanced glycation end products' counteracts the import of blood Aβ into the brain. Assuming that Aβ is responsible for the development of Alzheimer's disease (AD), activation of α-secretase should be preventive. α-Secretase-mediated APP cleavage can be activated via several G protein-coupled receptors and receptor tyrosine kinases. Protein kinase C, mitogen-activated protein kinases, phosphatidylinositol 3-kinase, cAMP and calcium are activators of receptor-induced α-secretase cleavage. Selective targeting of receptor subtypes expressed in brain regions affected by AD appears reasonable. Therefore, the PACAP receptor PAC1 and possibly the serotonin 5-HT(6) receptor subtype are promising targets. Activation of APP α-secretase cleavage also occurs upon blockade of cholesterol synthesis by statins or zaragozic acid A. Under physiological statin concentrations, the brain cholesterol content is not influenced. Statins likely inhibit Aβ production in the blood by α-secretase activation which is possibly sufficient to inhibit AD development. A disintegrin and metalloproteinase 10 (ADAM10) acts as α-secretase on APP. By targeting the nuclear retinoic acid receptor β, the expression of ADAM10 and non-amyloidogenic APP processing can be enhanced. Excessive activation of ADAM10 should be avoided because ADAM10 and also ADAM17 are not APP-specific. Both ADAM proteins cleave various substrates, and therefore have been associated with tumorigenesis and tumor progression.
Collapse
Affiliation(s)
- Rolf Postina
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Johann-Joachim-Becherweg 30, Mainz, Germany
| |
Collapse
|
9
|
Davis W. The ATP-binding cassette transporter-2 (ABCA2) increases endogenous amyloid precursor protein expression and Aβ fragment generation. Curr Alzheimer Res 2011; 7:566-77. [PMID: 20704561 DOI: 10.2174/156720510793499002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 06/02/2010] [Indexed: 11/22/2022]
Abstract
The ATP binding cassette transporter-2 (ABCA2) has been genetically linked to Alzheimer's disease but the molecular mechanisms are unknown. In this study, the effects of expression of human ABCA2 on endogenous amyloid precursor protein (APP) expression, trafficking and processing were examined in mouse N2a neuronal cells. ABCA2 expression increased the steady-state APP mRNA levels through transcription. ABCA2 also induced increased synthesis of APP holoprotein and altered APP processing and metabolite generation. ABCA2 expression promoted b-secretase (BACE1) cleavage of APP not at the common Asp1 amino acid site (β-site) of Aβ in APP but at the Glu11 site (β'-site) to increase C89 carboxyl-terminal fragment levels (β'-CTF/C89). The levels of N-terminally truncated Aβ11-40 peptides were also increased by ABCA2 expression. The delivery of newly synthesized APP to the cell surface through the secretary pathway was not perturbed by ABCA2 expression; however, ABCA2 expression increased the amount of APP in early-endosomal compartments, which also contained the highest levels of β'-CTF/C89 and is likely the site of increased BACE1 processing of APP. This report identifies ABCA2 as a key regulator of endogenous APP expression and processing and suggests a possible biochemical mechanism linking ABCA2 expression, APP processing and Alzheimer's disease.
Collapse
Affiliation(s)
- W Davis
- Department of Biological Sciences/Pharmacology, Medical University of South Carolina, Charleston, SC 29403, USA.
| |
Collapse
|
10
|
Guo X, Wu X, Ren L, Liu G, Li L. Epigenetic mechanisms of amyloid-β production in anisomycin-treated SH-SY5Y cells. Neuroscience 2011; 194:272-81. [DOI: 10.1016/j.neuroscience.2011.07.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/29/2011] [Accepted: 07/06/2011] [Indexed: 11/25/2022]
|
11
|
Zawia NH, Lahiri DK, Cardozo-Pelaez F. Epigenetics, oxidative stress, and Alzheimer disease. Free Radic Biol Med 2009; 46:1241-9. [PMID: 19245828 PMCID: PMC2673453 DOI: 10.1016/j.freeradbiomed.2009.02.006] [Citation(s) in RCA: 240] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 01/28/2009] [Accepted: 02/09/2009] [Indexed: 11/20/2022]
Abstract
Alzheimer disease (AD) is a progressive neurodegenerative disorder whose clinical manifestations appear in old age. The sporadic nature of 90% of AD cases, the differential susceptibility to and course of the illness, as well as the late age onset of the disease suggest that epigenetic and environmental components play a role in the etiology of late-onset AD. Animal exposure studies demonstrated that AD may begin early in life and may involve an interplay between the environment, epigenetics, and oxidative stress. Early life exposure of rodents and primates to the xenobiotic metal lead (Pb) enhanced the expression of genes associated with AD, repressed the expression of others, and increased the burden of oxidative DNA damage in the aged brain. Epigenetic mechanisms that control gene expression and promote the accumulation of oxidative DNA damage are mediated through alterations in the methylation or oxidation of CpG dinucleotides. We found that environmental influences occurring during brain development inhibit DNA-methyltransferases, thus hypomethylating promoters of genes associated with AD such as the beta-amyloid precursor protein (APP). This early life imprint was sustained and triggered later in life to increase the levels of APP and amyloid-beta (Abeta). Increased Abeta levels promoted the production of reactive oxygen species, which damage DNA and accelerate neurodegenerative events. Whereas AD-associated genes were overexpressed late in life, others were repressed, suggesting that these early life perturbations result in hypomethylation as well as hypermethylation of genes. The hypermethylated genes are rendered susceptible to Abeta-enhanced oxidative DNA damage because methylcytosines restrict repair of adjacent hydroxyguanosines. Although the conditions leading to early life hypo- or hypermethylation of specific genes are not known, these changes can have an impact on gene expression and imprint susceptibility to oxidative DNA damage in the aged brain.
Collapse
Affiliation(s)
- Nasser H Zawia
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA.
| | | | | |
Collapse
|
12
|
Citron BA, Dennis JS, Zeitlin RS, Echeverria V. Transcription factor Sp1 dysregulation in Alzheimer's disease. J Neurosci Res 2008; 86:2499-504. [PMID: 18449948 DOI: 10.1002/jnr.21695] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Altered gene expression occurs in central nervous system disorders, including Alzheimer's disease (AD). Transcription factor Sp1 may be involved insofar as it can regulate the expression of several AD-related proteins, including amyloid precursor protein (APP) and tau. Sp1 could itself be regulated by inflammatory and other factors associated with AD, such as interleukin-1beta. We measured an almost threefold elevation in the number of mRNA molecules of this cytokine in the AD frontal cortex. Sp1 mRNA was found to be up-regulated in these AD brains (along with Sp1-regulated COX-2), and the Sp1 increase was also seen at the protein level by Western immunoblotting. To determine whether this would also occur in transgenic mice developing AD pathology, we examined the expression of Sp1 in the cortex and hippocampus and observed higher levels of Sp1 mRNA and protein. These results indicate that elements of regulatory pathways involving transcription factor Sp1 may be useful targets for therapeutic intervention to prevent or reverse AD.
Collapse
Affiliation(s)
- Bruce A Citron
- Laboratory of Molecular Biology, Research and Development 151, Bay Pines VA Healthcare System, Bay Pines, Florida 33744-4125, USA.
| | | | | | | |
Collapse
|
13
|
Brock B, Basha MR, DiPalma K, Anderson A, Harry GJ, Rice DC, Maloney B, Lahiri DK, Zawia NH. Co-localization and distribution of cerebral APP and SP1 and its relationship to amyloidogenesis. J Alzheimers Dis 2008; 13:71-80. [PMID: 18334759 PMCID: PMC5862394 DOI: 10.3233/jad-2008-13108] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease is characterized by amyloid-beta peptide (Abeta)-loaded plaques in the brain. Abeta is a cleavage fragment of amyloid-beta protein precursor (APP) and over production of APP may lead to amyloidogenesis. The regulatory region of the APP gene contains consensus sites recognized by the transcription factor, specificity protein 1 (SP1), which has been shown to be required for the regulation of APP and Abeta. To understand the role of SP1 in APP biogenesis, herein we have characterized the relative distribution and localization of SP1, APP, and Abeta in various brain regions of rodent and primate models using immunohistochemistry. We observed that overall distribution and cellular localization of SP1, APP, and Abeta are similar and neuronal in origin. Their distribution is abundant in various layers of neocortex, but restricted to the Purkinje cell layer of the cerebellum, and the pyramidal cell layer of hippocampus. These findings suggest that overproduction of Abeta in vivo may be associated with transcriptional pathways involving SP1 and the APP gene.
Collapse
Affiliation(s)
- Brian Brock
- Neurotoxicology and Epigenomics Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881
| | - Md. Riyaz Basha
- Neurotoxicology and Epigenomics Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881
| | - Katie DiPalma
- Neurotoxicology and Epigenomics Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881
| | - Amy Anderson
- Neurotoxicology and Epigenomics Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881
| | - G. Jean Harry
- National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Deborah C. Rice
- Maine Department of Health and Human Services, 11 State House Station, Augusta, ME 04333
| | - Bryan. Maloney
- Laboratory for Molecular Neurogenetics, Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Debomoy K. Lahiri
- Laboratory for Molecular Neurogenetics, Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Nasser H. Zawia
- Neurotoxicology and Epigenomics Laboratory, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881
| |
Collapse
|
14
|
Wang CC, Tsai MF, Dai TH, Hong TM, Chan WK, Chen JJW, Yang PC. Synergistic activation of the tumor suppressor, HLJ1, by the transcription factors YY1 and activator protein 1. Cancer Res 2007; 67:4816-26. [PMID: 17510411 DOI: 10.1158/0008-5472.can-07-0504] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
HLJ1 is a novel tumor and invasion suppressor that inhibits tumorigenesis and cancer metastasis. However, the mechanism of HLJ1 activation is currently unclear. Here, we identify an enhancer segment in the HLJ1 gene at -2,125 to -1,039 bp upstream of the transcription start site. A 50-bp element between -1,492 and -1,443 bp is the minimal enhancer segment, which includes the activator protein 1 (AP-1) site (-1,457 to -1,451 bp), an essential regulatory domain that binds the transcriptional factors FosB, JunB, and JunD. Chromatin immunoprecipitation assays confirm that these AP-1 family members bind to a specific site in the HLJ1 enhancer segment in vivo. Overexpression of either YY1 at promoter or AP-1 at enhancer results in a 3-fold increase in the transcriptional activity of HLJ1. We propose a novel mechanism whereby expression of the tumor suppressor, HLJ1, is up-regulated via enhancer AP-1 binding to promoter YY1 and the coactivator, p300, through DNA bending and multiprotein complex formation. The combined expression of AP-1 and YY1 enhances HLJ1 expression by more than five times and inhibits in vitro cancer cell invasion. Elucidation of the regulatory mechanism of HLJ1 expression may facilitate the development of personalized therapy by inhibiting cancer cell proliferation, angiogenesis, and metastasis.
Collapse
Affiliation(s)
- Chi-Chung Wang
- NTU Center for Genomic Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Alzheimer's Disease (AD) is a progressive, irreversible neurodegenerative disease. Despite several genetic mutations (Haass et al., J. Biol. Chem. 269:17741-17748, 1994; Ancolio et al., Proc. Natl. Acad. Sci. USA 96:4119-4124, 1999; Munoz and Feldman, CMAJ 162:65-72, 2000; Gatz et al., Neurobiol. Aging 26:439-447, 2005) found in AD patients, more than 90% of AD cases are sporadic (Bertram and Tanzi, Hum. Mol. Genet. 13:R135-R141, 2004). Therefore, it is plausible that environmental exposure may be an etiologic factor in the pathogenesis of AD. The AD brain is characterized by extracellular beta-amyloid (Abeta) deposition and intracellular hyperphosphorylated tau protein. Our lab has demonstrated that developmental exposure of rodents to the heavy metal lead (Pb) increases APP (amyloid precursor protein) and Abeta production later in the aging brain (Basha et al., J. Neurosci. 25:823-829, 2005a). We also found elevations in the oxidative marker 8-oxo-dG in older animals that had been developmentally exposed to Pb (Bolin et al., FASEB J. 20:788-790, 2006) as well as promotion of amyloidogenic histopathology in primates. These findings indicate that early life experiences contribute to amyloidogenesis in old age perhaps through epigenetic pathways. Here we explore the role of epigenetics as the underlying mechanism that mediates this early exposure-latent pathogenesis with a special emphasis on alterations in the methylation profiles of CpG dinucleotides in the promoters of genes and their influence on both gene transcription and oxidative DNA damage.
Collapse
Affiliation(s)
- Jinfang Wu
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | | | | |
Collapse
|
16
|
Lv H, Jia L, Jia J. Promoter polymorphisms which modulate APP expression may increase susceptibility to Alzheimer's disease. Neurobiol Aging 2006; 29:194-202. [PMID: 17112637 DOI: 10.1016/j.neurobiolaging.2006.10.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 09/17/2006] [Accepted: 10/02/2006] [Indexed: 10/23/2022]
Abstract
Increasing evidence indicates that variants in promoter of the beta-amyloid precursor protein (APP) gene could up-regulate the APP gene expression and aggravate the amyloid beta protein (A beta) accumulation, thus contributing to the development of Alzheimer's disease (AD). In Chinese Han populations we found three polymorphisms in APP promoter: -877T/C(rs466433), -955A/G(rs364048) and -9G/C. The -877T and -955A alleles were over-represented in 209 sporadic AD (SAD) patients when compared to those in 437 healthy individuals. Furthermore, -877T/C and -955A/G were in strong linkage disequilibrium and they constructed a relatively risky -877T/-955A and a relatively protective -877C/-955G. Luciferase reporter assay indicated -877T/-955A had four times higher transcriptional activity than -877C/-955G. A more marked increase in -877T/-955A transcriptional activity was seen when under A beta(25-35) treatment. As for the -9G/C polymorphism, significant differences between the two alleles were not observed either in genetic evaluation or in functional assay. The present study provides strong evidence that APP promoter polymorphisms that significantly increase APP expression levels are associated with development of SAD.
Collapse
Affiliation(s)
- Haiyan Lv
- Department of Neurology, Xuanwu Hospital of the Capital University of Medical Sciences, Beijing 100053, PR China
| | | | | |
Collapse
|
17
|
Theuns J, Brouwers N, Engelborghs S, Sleegers K, Bogaerts V, Corsmit E, De Pooter T, van Duijn CM, De Deyn PP, Van Broeckhoven C. Promoter mutations that increase amyloid precursor-protein expression are associated with Alzheimer disease. Am J Hum Genet 2006; 78:936-46. [PMID: 16685645 PMCID: PMC1474091 DOI: 10.1086/504044] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Accepted: 03/08/2006] [Indexed: 11/03/2022] Open
Abstract
Genetic variations in promoter sequences that alter gene expression play a prominent role in increasing susceptibility to complex diseases. Also, expression levels of APP are essentially regulated by its core promoter and 5' upstream regulatory region and correlate with amyloid beta levels in Alzheimer disease (AD) brains. Here, we systematically sequenced the proximal promoter (-766/+204) and two functional distal regions (-2634/-2159 and -2096/-1563) of APP in two independent AD series with onset ages < or =70 years (Belgian sample, n=180; Dutch sample, n=111) and identified eight novel sequence variants. Three mutations (-118C-->A, -369C-->G, and -534G-->A) identified only in patients with AD showed, in vitro, a nearly twofold neuron-specific increase in APP transcriptional activity, similar to what is expected from triplication of APP in Down syndrome. These mutations either abolished (AP-2 and HES-1) or created (Oct1) transcription-factor binding sites involved in the development and differentiation of neuronal systems. Also, two of these clustered in the 200-bp region (-540/-340) of the APP promoter that showed the highest degree of species conservation. The present study provides evidence that APP-promoter mutations that significantly increase APP expression levels are associated with AD.
Collapse
Affiliation(s)
- Jessie Theuns
- Neurodegenerative Brain Diseases Group, Department of Molecular Genetics, University of Antwerp, Antwerpen, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Basha MR, Wei W, Bakheet SA, Benitez N, Siddiqi HK, Ge YW, Lahiri DK, Zawia NH. The fetal basis of amyloidogenesis: exposure to lead and latent overexpression of amyloid precursor protein and beta-amyloid in the aging brain. J Neurosci 2005; 25:823-9. [PMID: 15673661 PMCID: PMC6725614 DOI: 10.1523/jneurosci.4335-04.2005] [Citation(s) in RCA: 246] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The fetal basis of adult disease (FeBAD) hypothesis states that many adult diseases have a fetal origin. According to FeBAD, injury or environmental influences occurring at critical periods of organ development could result in "programmatic" changes via alterations in gene expression or gene imprinting that may result in functional deficits that become apparent later in life. Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by excessive deposits of aggregated beta-amyloid (Abeta) peptides, which are snippets of the beta-amyloid precursor protein (APP). The predominantly sporadic nature of AD suggests that the environment must play a role in neurodegeneration. To examine latent responses to an environmental agent, we exposed rodents to lead and monitored the lifetime expression of the APP gene. We observed that APP mRNA expression was transiently induced in neonates, but exhibited a delayed overexpression 20 months after exposure to Pb had ceased. This upregulation in APP mRNA expression was commensurate with a rise in activity of the transcription factor Sp1, one of the regulators of the APP gene. Furthermore, the increase in APP gene expression in old age was accompanied by an elevation in APP and its amyloidogenic Abeta product. In contrast, APP expression, Sp1 activity, as well as APP and Abeta protein levels were unresponsive to Pb exposure during old age. These data suggested that environmental influences occurring during brain development predetermined the expression and regulation of APP later in life, potentially altering the course of amyloidogenesis.
Collapse
Affiliation(s)
- M Riyaz Basha
- Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Nguyen HN, Lee SY, Hwang DY, Kim YK, Yuk DY, Lee JS, Hong JT. Decrease in NF-kappaB, AP-1 and SP-1 activities in neuronal cells expressing presenilin 2. Neuroreport 2005; 16:731-5. [PMID: 15858415 DOI: 10.1097/00001756-200505120-00015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Decreases in activities of the NF-kappaB, AP-1 and SP-1 transcription factors, which could act as antiapoptotic factors, in the presenilin 2 transfected PC12 cells, either in nontreatment conditions or under apoptotic stimulation, were found in this study. Similar results were also found in mice brain cells carrying presenilin 2, especially in the mutant gene expressed ones. These findings suggested that presenilin 2 may be implicated in neuronal cell death by altering the antiapoptotic activity of the transcription factors.
Collapse
Affiliation(s)
- Hong Nga Nguyen
- College of Pharmacy, Chungbuk National University, Chungbuk 361-763, Korea
| | | | | | | | | | | | | |
Collapse
|
20
|
Wolvetang EW, Bradfield OM, Tymms M, Zavarsek S, Hatzistavrou T, Kola I, Hertzog PJ. The chromosome 21 transcription factor ETS2 transactivates the beta-APP promoter: implications for Down syndrome. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1628:105-10. [PMID: 12890557 DOI: 10.1016/s0167-4781(03)00121-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The gene that codes for beta-amyloid precursor protein (beta-APP), a protein centrally involved in senile plaque formation in Down syndrome (DS) and Alzheimer's disease (AD), is located on chromosome 21. In DS beta-APP expression is three- to fourfold higher than what is expected from the 1.5-fold increased gene load, suggesting that other genes on chromosome 21 directly or indirectly can further up-regulate beta-APP. Here we show that the chromosome 21 transcription factor ETS2 transactivates the beta-APP gene via specific Ets binding sites in the beta-APP promoter and, in this respect, cooperates with the transcription factor complex AP1. We further show that brains and primary neuronal cultures from Ets2 transgenic mice, as well as 3T3 fibroblasts that overexpress ETS2, display molecular abnormalities also seen in DS, such as elevated expression of beta-APP protein, an increase in presenilin-1 and increased beta-amyloid production. We conclude that ETS2 is a transcriptional regulator of beta-APP and that overexpression of ETS2 in DS may play a role in the pathogenesis of the brain abnormalities in DS and possibly AD.
Collapse
Affiliation(s)
- E W Wolvetang
- Centre for Functional Genomics and Human Disease, Monash Institute of Reproduction and Development, Monash University, Monash Medical Center, 246 Clayton Road, 3168, Clayton, Australia.
| | | | | | | | | | | | | |
Collapse
|
21
|
Lange-Dohna C, Zeitschel U, Gaunitz F, Perez-Polo JR, Bigl V, Rossner S. Cloning and expression of the rat BACE1 promoter. J Neurosci Res 2003; 73:73-80. [PMID: 12815710 DOI: 10.1002/jnr.10639] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The pathogenic processing of the amyloid precursor protein (APP) into beta-amyloid peptides, which give rise to beta-amyloid plaques in the brains of Alzheimer's disease patients, requires the enzymatic activity of the beta-site APP-cleaving enzyme 1 (BACE1). We report the cloning and sequence of a 1.5-kb DNA fragment upstream of the coding sequence of the rat BACE1 gene and the construction of a BACE1 promoter/luciferase reporter construct. The basal activity of this promoter construct was highest in neuronal cell lines such as BE(2)-C and PC12 and in the pancreatic cell line AR42J, somewhat lower in rat primary neurons, and astrocytic and microglial cultures, very low in hepatocytes, and almost absent in fibroblasts and in the monocyte-macrophage cell line RAW264.7. The first 600 bp of this promoter are highly conserved among rat, mouse, and human, suggesting that this region contains regulatory elements that modulate BACE1 transcription. Indeed, this fragment contains several putative transcription factor binding sites such as MZF1, Sp1, four GATA-1 sites, and one YY1 site. Directed mutagenesis of GATA-1 elements led to altered luciferase expression, indicating that these sites are involved in the regulation of BACE1 transcription. Additionally, the analysis of promoter activities of deletion mutants suggests the presence of activators of BACE1 transcription between bases -514 to -753 and of suppressor elements between bases -754 and -1541. The BACE1 promoter sequence data and the constructs described here will be useful to identify factors that influence the expression of BACE1 in experimental paradigms in vitro.
Collapse
|
22
|
Ishii K, Lippa C, Tomiyama T, Miyatake F, Ozawa K, Tamaoka A, Hasegawa T, Fraser PE, Shoji S, Nee LE, Pollen DA, St George-Hyslop PH, Ii K, Ohtake T, Kalaria RN, Rossor MN, Lantos PL, Cairns NJ, Farrer LA, Mori H. Distinguishable effects of presenilin-1 and APP717 mutations on amyloid plaque deposition. Neurobiol Aging 2001; 22:367-76. [PMID: 11378241 DOI: 10.1016/s0197-4580(01)00216-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Both APP and PS-1 are causal genes for early-onset familial Alzheimer's disease (AD) and their mutation effects on cerebral Abeta deposition in the senile plaques were examined in human brains of 29 familial AD (23 PS-1, 6 APP) cases and 14 sporadic AD cases in terms of Abeta40 and Abeta42. Abeta isoform data were evaluated using repeated measures analysis of variance which adjusted for within-subject measurement variation and confounding effects of individual APP and PS-1 mutations, age at onset, duration of illness and APOE genotype. We observed that mutations in both APP and PS-1 were associated with a significant increase of Abeta42 in plaques as been documented previously. In comparison to sporadic AD cases, both APP717 and PS-1 mutation cases had an increased density (measured as the number of plaques/mm(2)) and area (%) of Abeta42 plaques. However, we found an unexpected differential effect of PS-1 but not APP717 mutation cases. At least some of PS-1 but not APP717 mutation cases had the significant increase of density and area of Abeta40-plaques as compared to sporadic AD independently of APOE genotype. Our results suggest that PS-1 mutations affect cerebral accumulation of Abeta burden in a different fashion from APP717 mutations in their familial AD brains.
Collapse
Affiliation(s)
- K Ishii
- Department of Molecular Biology, Tokyo Institute of Psychiatry, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Villa A, Latasa MJ, Pascual A. Nerve growth factor modulates the expression and secretion of beta-amyloid precursor protein through different mechanisms in PC12 cells. J Neurochem 2001; 77:1077-84. [PMID: 11359873 DOI: 10.1046/j.1471-4159.2001.00315.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The beta-amyloid protein, component of the senile plaques found in Alzheimer brains is proteolytically derived from the beta-amyloid precursor protein (APP), a larger membrane-associated protein that is expressed in both neural and non-neural cells. Overexpression of APP might be one of the mechanisms that more directly contributes to the development of Alzheimer's disease. The APP gene expression is regulated by a number of cellular mediators including nerve growth factor (NGF) and other ligands of tyrosine kinase receptors. We have previously described that NGF increases APP mRNA levels in PC12 cells. However, the molecular mechanisms and the precise signalling pathways that mediate its regulation are not yet well understood. In the present study we present evidence that NGF, and to a lesser extent fibroblast growth factor and epidermal growth factor, stimulate APP promoter activity in PC12 cells. This induction is mediated by DNA sequences located between the nucleotides - 307 and - 15, and involves activation of the Ras-MAP kinase signalling pathway. In contrast, we have also found that NGF-induced secretion of soluble fragments of APP into the culture medium is mediated by a Ras independent mechanism.
Collapse
Affiliation(s)
- A Villa
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | | |
Collapse
|
24
|
Carrasco-Serrano C, Viniegra S, Ballesta JJ, Criado M. Phorbol ester activation of the neuronal nicotinic acetylcholine receptor alpha7 subunit gene: involvement of transcription factor Egr-1. J Neurochem 2000; 74:932-9. [PMID: 10693923 DOI: 10.1046/j.1471-4159.2000.0740932.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
alpha-Bungarotoxin-sensitive neuronal nicotinic acetylcholine receptors from bovine adrenomedullary chromaffin cells are up-regulated by long-term exposure to phorbol esters. The rise in receptor density is paralleled by an increase in transcripts corresponding to the alpha7 subunit, which is a component of this receptor subtype. Transcriptional activation of the alpha7 subunit gene is evidenced in reporter gene transfection experiments, in which phorbol esters increase alpha7 promoter activity by up to 14-fold. About 80% of this activation is abolished when at least two of the three sites for the immediate-early transcription factor Egr-1, present in the proximal promoter region of the alpha7 subunit gene, are mutated simultaneously. In addition, phorbol esters elevate both Egr-1 mRNA and Egr-1 protein levels in chromaffin cells, whereas electrophoretic mobility shift assays show that the Egr-1 component of the complexes that originate at the alpha7 promoter increases in cells treated with phorbol esters. These results suggest that the transcription factor Egr-1 is involved in triggering expression of alpha-bungarotoxin-sensitive nicotinic receptors in response to external stimuli, such as the ones resulting from phorbol ester treatment, and support our previous hypothesis that the alpha7 subunit gene is one of the specific targets for Egr-1.
Collapse
Affiliation(s)
- C Carrasco-Serrano
- Department of Neurochemistry, Centro Mixto CSIC-Universidad Miguel, Hernández, San Juan, Alicante, Spain
| | | | | | | |
Collapse
|