1
|
Bortel P, Hagn G, Skos L, Bileck A, Paulitschke V, Paulitschke P, Gleiter L, Mohr T, Gerner C, Meier-Menches SM. Memory effects of prior subculture may impact the quality of multiomic perturbation profiles. Proc Natl Acad Sci U S A 2024; 121:e2313851121. [PMID: 38976734 PMCID: PMC11260104 DOI: 10.1073/pnas.2313851121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Mass spectrometry-based omics technologies are increasingly used in perturbation studies to map drug effects to biological pathways by identifying significant molecular events. Significance is influenced by fold change and variation of each molecular parameter, but also by multiple testing corrections. While the fold change is largely determined by the biological system, the variation is determined by experimental workflows. Here, it is shown that memory effects of prior subculture can influence the variation of perturbation profiles using the two colon carcinoma cell lines SW480 and HCT116. These memory effects are largely driven by differences in growth states that persist into the perturbation experiment. In SW480 cells, memory effects combined with moderate treatment effects amplify the variation in multiple omics levels, including eicosadomics, proteomics, and phosphoproteomics. With stronger treatment effects, the memory effect was less pronounced, as demonstrated in HCT116 cells. Subculture homogeneity was controlled by real-time monitoring of cell growth. Controlled homogeneous subculture resulted in a perturbation network of 321 causal conjectures based on combined proteomic and phosphoproteomic data, compared to only 58 causal conjectures without controlling subculture homogeneity in SW480 cells. Some cellular responses and regulatory events were identified that extend the mode of action of arsenic trioxide (ATO) only when accounting for these memory effects. Controlled prior subculture led to the finding of a synergistic combination treatment of ATO with the thioredoxin reductase 1 inhibitor auranofin, which may prove useful in the management of NRF2-mediated resistance mechanisms.
Collapse
Affiliation(s)
- Patricia Bortel
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna1090, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Vienna1090, Austria
| | - Gerhard Hagn
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna1090, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Vienna1090, Austria
| | - Lukas Skos
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna1090, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Vienna1090, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna1090, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna1090, Austria
| | - Verena Paulitschke
- Department of Dermatology, Medical University of Vienna, Vienna1090, Austria
| | - Philipp Paulitschke
- PHIO scientific GmbH, Munich81371, Germany
- Faculty of Physics, Ludwig-Maximilians University of Munich, Munich80539, Germany
| | | | - Thomas Mohr
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna1090, Austria
- Center of Cancer Research, Department of Medicine I, Medical University of Vienna and Comprehensive Cancer Center, Vienna1090, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna1090, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna1090, Austria
| | - Samuel M. Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna1090, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna1090, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna1090, Austria
| |
Collapse
|
2
|
Khandayataray P, Samal D, Murthy MK. Arsenic and adipose tissue: an unexplored pathway for toxicity and metabolic dysfunction. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8291-8311. [PMID: 38165541 DOI: 10.1007/s11356-023-31683-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Arsenic-contaminated drinking water can induce various disorders by disrupting lipid and glucose metabolism in adipose tissue, leading to insulin resistance. It inhibits adipocyte development and exacerbates insulin resistance, though the precise impact on lipid synthesis and lipolysis remains unclear. This review aims to explore the processes and pathways involved in adipogenesis and lipolysis within adipose tissue concerning arsenic-induced diabetes. Although arsenic exposure is linked to type 2 diabetes, the specific role of adipose tissue in its pathogenesis remains uncertain. The review delves into arsenic's effects on adipose tissue and related signaling pathways, such as SIRT3-FOXO3a, Ras-MAP-AP-1, PI(3)-K-Akt, endoplasmic reticulum stress proteins, CHOP10, and GPCR pathways, emphasizing the role of adipokines. This analysis relies on existing literature, striving to offer a comprehensive understanding of different adipokine categories contributing to arsenic-induced diabetes. The findings reveal that arsenic detrimentally impacts white adipose tissue (WAT) by reducing adipogenesis and promoting lipolysis. Epidemiological studies have hinted at a potential link between arsenic exposure and obesity development, with limited research suggesting a connection to lipodystrophy. Further investigations are needed to elucidate the mechanistic association between arsenic exposure and impaired adipose tissue function, ultimately leading to insulin resistance.
Collapse
Affiliation(s)
- Pratima Khandayataray
- Department of Biotechnology, Academy of Management and Information Technology, Utkal University, Bhubaneswar, Odisha, 752057, India
| | - Dibyaranjan Samal
- Department of Biotechnology, Sri Satya Sai University of Technical and Medical Sciences, Sehore, Madhya Pradesh, 466001, India
| | - Meesala Krishna Murthy
- Department of Allied Health Sciences, Chitkara School of Health Sciences, Chitkara University, Punjab, 140401, India.
| |
Collapse
|
3
|
Yu S, Wang X, Zhang R, Chen R, Ma L. A review on the potential risks and mechanisms of heavy metal exposure to Chronic Obstructive Pulmonary Disease. Biochem Biophys Res Commun 2023; 684:149124. [PMID: 37897914 DOI: 10.1016/j.bbrc.2023.149124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023]
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a chronic disease that affects patients as well as the health and economic stability of society as a whole. At the same time, heavy metal pollution is widely recognized as having a possible impact on the environment and human health. Therefore, these diseases have become important global public health issues. In recent years, researchers have shown great interest in the potential association between heavy metal exposure and the development of COPD, and there has been a substantial increase in the number of related studies. However, we still face the challenge of developing a comprehensive and integrated understanding of this complex association. Therefore, this review aimed to evaluate the existing epidemiological studies to clarify the association between heavy metal exposure and COPD. In addition, we will discuss the biological mechanisms between the two to better understand the multiple molecular pathways and possible mechanisms of action involved, and provide additional insights for the subsequent identification of potential strategies to prevent and control the effects of heavy metal exposure on the development of COPD in individuals and populations.
Collapse
Affiliation(s)
- Shuxia Yu
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Xiaoxia Wang
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Rongxuan Zhang
- Department of Respiratory, The Second People's Hospital of Lanzhou City, 730030, China
| | - Rentong Chen
- School of Public Health, Lanzhou University, Lanzhou, 730000, China
| | - Li Ma
- School of Public Health, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
4
|
Ogra Y, Roldán N, Verdugo M, González AA, Suzuki N, Quiroz W. Distribution, Metabolism, and Toxicity of Antimony Species in Wistar Rats. A Bio-Analytical Approach. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104160. [PMID: 37236494 DOI: 10.1016/j.etap.2023.104160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
This work studied the distribution, reactivity, and biological effects of pentavalent or trivalent antimony (Sb(V), Sb(III)) and N-methylglucamine antimonate (NMG-Sb(V)) in Wistar Rats. The expression of fibrosis genes such as α-SMA, PAI-1, and CTGF were determined in Liver, and Kidney tissues. Wistar rats were treated with different concentrations of Sb(V), Sb(III), As(V) and As(III), and MA via intra-peritoneal injections. The results indicated a noteworthy elevation in mRNA levels of plasminogen activator 1 (PAI-1) in the kidneys of rats that were injected. The main accumulation site for Sb(V) was observed to be the liver, from which it is primarily excreted in its reduced form (Sb(III)) through the urine. The generation of Sb(III) in the kidneys has been found to induce damage through the expression of α-SMA and CTGF, and also lead to a higher creatinine clearance compared to As(III).
Collapse
Affiliation(s)
- Yasumitsu Ogra
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Japan.
| | - Nicole Roldán
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Japan; Laboratorio de Química Analítica y Ambiental, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Chile; Laboratorio de Química Biológica, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Chile
| | - Marcelo Verdugo
- Laboratorio de Química Analítica y Ambiental, Departamento de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Alexis A González
- Laboratorio de Química Biológica, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Chile
| | - Noriyuki Suzuki
- Laboratory of Toxicology and Environmental Health, Graduate School of Pharmaceutical Sciences, Chiba University, Japan
| | - Waldo Quiroz
- Laboratorio de Química Analítica y Ambiental, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Chile
| |
Collapse
|
5
|
Shakya A, Dodson M, Artiola JF, Ramirez-Andreotta M, Root RA, Ding X, Chorover J, Maier RM. Arsenic in Drinking Water and Diabetes. WATER 2023; 15:1751. [PMID: 37886432 PMCID: PMC10601382 DOI: 10.3390/w15091751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Arsenic is ubiquitous in soil and water environments and is consistently at the top of the Agency for Toxic Substances Disease Registry (ATSDR) substance priority list. It has been shown to induce toxicity even at low levels of exposure. One of the major routes of exposure to arsenic is through drinking water. This review presents current information related to the distribution of arsenic in the environment, the resultant impacts on human health, especially related to diabetes, which is one of the most prevalent chronic diseases, regulation of arsenic in drinking water, and approaches for treatment of arsenic in drinking water for both public utilities and private wells. Taken together, this information points out the existing challenges to understanding both the complex health impacts of arsenic and to implementing the treatment strategies needed to effectively reduce arsenic exposure at different scales.
Collapse
Affiliation(s)
- Aryatara Shakya
- Department Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Matthew Dodson
- Department Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Janick F. Artiola
- Department Environmental Science, University of Arizona, Tucson, AZ 85721, USA
| | | | - Robert A. Root
- Department Environmental Science, University of Arizona, Tucson, AZ 85721, USA
| | - Xinxin Ding
- Department Pharmacology & Toxicology, University of Arizona, Tucson, AZ 85721, USA
| | - Jon Chorover
- Department Environmental Science, University of Arizona, Tucson, AZ 85721, USA
| | - Raina M. Maier
- Department Environmental Science, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
6
|
Wright GM, Black JC. Genomic Redistribution of Metal-Response Transcription Factor-1 (MTF-1) in Cadmium Resistant Cells. Cells 2023; 12:cells12060953. [PMID: 36980293 PMCID: PMC10047149 DOI: 10.3390/cells12060953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
(1) Background: Metal homeostasis is an important part of cellular programs and is disrupted when cells are exposed to carcinogenic heavy metals. Metal response is mediated by the metal response element transcription factor MTF-1. However, where MTF-1 binds and how that binding changes in response to heavy metals, such as cadmium, remains unknown. (2) Methods: To investigate the effects of prolonged cadmium exposure on the genomic distribution of MTF-1, we performed MTF-1 CUT&RUN, RNA-seq and ATAC-seq on control and cadmium-resistant cells. (3) Results: Changes in MTF-1 binding primarily occur distal to the transcription start sight. Newly occupied MTF-1 sites are enriched for FOS/JUN DNA binding motifs, while regions that lose MTF-1 binding in cadmium are enriched for the FOX transcription factor family member DNA binding sites. (4) Conclusions: Relocalization of MTF-1 to new genomic loci does not alter the accessibility of these locations. Our results support a model whereby MTF-1 is relocalized to accessible FOS/JUN-bound genomic locations in response to cadmium.
Collapse
Affiliation(s)
- Gregory M Wright
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joshua C Black
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Bae S, Lim HK, Jeong Y, Kim SG, Park SM, Shon YM, Suh M. Deep brain stimulation of the anterior nuclei of the thalamus can alleviate seizure severity and induce hippocampal GABAergic neuronal changes in a pilocarpine-induced epileptic mouse brain. Cereb Cortex 2022; 32:5530-5543. [PMID: 35258078 DOI: 10.1093/cercor/bhac033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 01/25/2023] Open
Abstract
Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) has been widely used as an effective treatment for refractory temporal lobe epilepsy. Despite its promising clinical outcome, the exact mechanism of how ANT-DBS alleviates seizure severity has not been fully understood, especially at the cellular level. To assess effects of DBS, the present study examined electroencephalography (EEG) signals and locomotor behavior changes and conducted immunohistochemical analyses to examine changes in neuronal activity, number of neurons, and neurogenesis of inhibitory neurons in different hippocampal subregions. ANT-DBS alleviated seizure activity, abnormal locomotor behaviors, reduced theta-band, increased gamma-band EEG power in the interictal state, and increased the number of neurons in the dentate gyrus (DG). The number of parvalbumin- and somatostatin-expressing inhibitory neurons was recovered to the level in DG and CA1 of naïve mice. Notably, BrdU-positive inhibitory neurons were increased. In conclusion, ANT-DBS not only could reduce the number of seizures, but also could induce neuronal changes in the hippocampus, which is a key region involved in chronic epileptogenesis. Importantly, our results suggest that ANT-DBS may lead to hippocampal subregion-specific cellular recovery of GABAergic inhibitory neurons.
Collapse
Affiliation(s)
- Sungjun Bae
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.,IMNEWRUN Inc., N Center Bldg. A 5F, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyun-Kyoung Lim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, South Korea
| | - Yoonyi Jeong
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea
| | - Sung-Min Park
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Young-Min Shon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea.,Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Suwon 16419, South Korea
| | - Minah Suh
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 16419, South Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, South Korea.,IMNEWRUN Inc., N Center Bldg. A 5F, Sungkyunkwan University, Suwon 16419, South Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, South Korea.,Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
8
|
Jin P, Zhou Q, Xi S. Low-dose arsenite causes overexpression of EGF, TGFα, and HSP90 through Trx1-TXNIP-NLRP3 axis mediated signaling pathways in the human bladder epithelial cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114263. [PMID: 36343453 DOI: 10.1016/j.ecoenv.2022.114263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Epidemiological studies have demonstrated an increased incidence of bladder cancer in arseniasis- endemic areas; however, the precise molecular mechanisms remain unknown. Our previous results have shown that the protein levels of EGF, TGFα, and HSP90 in arsenite-treated bladder uroepithelial cells increased markedly and contributed to hyperactivation of EGF receptors. The aim of this study was to further explore the regulatory ways underlying overexpression of EGF, TGFα, and HSP90 in these cells. The present results showed that both Trx and GSH systems were stimulated in arsenite-treated cells, and ROS levels in 2 μM arsenite-treated cells did not changed obviously; however, ROS levels in 4 μM arsenite-treated cells increased significantly. By using the antioxidant and specific inhibitors, we found that in 2 μM arsenite-treated cells, JNK/NF-κB signaling pathway was involved in overexpression of EGF and TGFα, and ERK/NF-κB signaling pathway contributed to HSP90 overexpression, however in 4 μM arsenite-treated cells, both ERK/ and JNK/NF-κB signaling pathways were involved in overexpression of EGF, TGFα, and HSP90, and PI3K/AKT/NF-κB signaling pathway contributed to overexpression of EGF and TGFα. Furthermore, our results also showed that the Trx1-TXNIP-NLRP3 axis was activated in arsenite-treated cells, and played a pivotal role in activation of the signaling pathways involved in overexpression of EGF, TGFα, and HSP90. In conclusion, the Trx1-TXNIP-NLRP3 axis might be activated by arsenite-induced redox imbalance in bladder uroepithelial cells, and mediate the activation of signaling pathways involved in overexpression of EGF, TGFα, and HSP90.
Collapse
Affiliation(s)
- Peiyu Jin
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, No 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning 110122, PR China
| | - Qing Zhou
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, PR China
| | - Shuhua Xi
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, PR China.
| |
Collapse
|
9
|
Shang B, Venkatratnam A, Hartwell H, Douillet C, Cable P, Liu T, Zou F, Ideraabdullah FY, Fry RC, Stýblo M. Ex vivo exposures to arsenite and its methylated trivalent metabolites alter gene transcription in mouse sperm cells. Toxicol Appl Pharmacol 2022; 455:116266. [PMID: 36209798 PMCID: PMC9753555 DOI: 10.1016/j.taap.2022.116266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/18/2022] [Accepted: 10/01/2022] [Indexed: 11/21/2022]
Abstract
We have previously reported that preconception exposure to iAs may contribute to the development of diabetes in mouse offspring by altering gene expressions in paternal sperm. However, the individual contributions of iAs and its methylated metabolites, monomethylated arsenic (MAs) and dimethylated arsenic (DMAs), to changes in the sperm transcriptome could not be determined because all three As species are present in sperm after in vivo iAs exposure. The goal of the present study was to assess As species-specific effects using an ex vivo model. We exposed freshly isolated mouse sperm to either 0.1 or 1 μM arsenite (iAsIII) or the methylated trivalent arsenicals, MAsIII and DMAsIII, and used RNA-sequencing to identify differentially expressed genes, enriched pathways, and associated protein networks. For all arsenicals tested, the exposures to 0.1 μM concentrations had greater effects on gene expression than 1 μM exposures. Transcription factor AP-1 and B cell receptor complexes were the most significantly enriched pathways in sperm exposed to 0.1 μM iAsIII. The Mre11 complex and Antigen processing were top pathways targeted by exposure to 0.1 μM MAsIII and DMAsIII, respectively. While there was no overlap between gene transcripts altered by ex vivo exposures in the present study and those altered by in vivo exposure in our prior work, several pathways were shared, including PI3K-Akt signaling, Focal adhesion, and Extracellular matrix receptor interaction pathways. Notably, the protein networks associated with these pathways included those with known roles in diabetes. This study is the first to assess the As species-specific effects on sperm transcriptome, linking these effects to the diabetogenic effects of iAs exposure.
Collapse
Affiliation(s)
- Bingzhen Shang
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA
| | - Abhishek Venkatratnam
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA; Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA
| | - Hadley Hartwell
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA
| | - Christelle Douillet
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA
| | - Peter Cable
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA
| | - Tianyi Liu
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA
| | - Fei Zou
- Department of Biostatistics, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA
| | - Folami Y Ideraabdullah
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA; Department of Genetics, School of Medicine, The University of North Carolina at Chapel Hill, USA
| | - Rebecca C Fry
- Department of Environmental Science and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA.
| | - Miroslav Stýblo
- Department of Nutrition, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, USA.
| |
Collapse
|
10
|
Domingo-Relloso A, Makhani K, Riffo-Campos AL, Tellez-Plaza M, Klein KO, Subedi P, Zhao J, Moon KA, Bozack AK, Haack K, Goessler W, Umans JG, Best LG, Zhang Y, Herreros-Martinez M, Glabonjat RA, Schilling K, Galvez-Fernandez M, Kent JW, Sanchez TR, Taylor KD, Craig Johnson W, Durda P, Tracy RP, Rotter JI, Rich SS, Berg DVD, Kasela S, Lappalainen T, Vasan RS, Joehanes R, Howard BV, Levy D, Lohman K, Liu Y, Daniele Fallin M, Cole SA, Mann KK, Navas-Acien A. Arsenic Exposure, Blood DNA Methylation, and Cardiovascular Disease. Circ Res 2022; 131:e51-e69. [PMID: 35658476 PMCID: PMC10203287 DOI: 10.1161/circresaha.122.320991] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/18/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Epigenetic dysregulation has been proposed as a key mechanism for arsenic-related cardiovascular disease (CVD). We evaluated differentially methylated positions (DMPs) as potential mediators on the association between arsenic and CVD. METHODS Blood DNA methylation was measured in 2321 participants (mean age 56.2, 58.6% women) of the Strong Heart Study, a prospective cohort of American Indians. Urinary arsenic species were measured using high-performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. We identified DMPs that are potential mediators between arsenic and CVD. In a cross-species analysis, we compared those DMPs with differential liver DNA methylation following early-life arsenic exposure in the apoE knockout (apoE-/-) mouse model of atherosclerosis. RESULTS A total of 20 and 13 DMPs were potential mediators for CVD incidence and mortality, respectively, several of them annotated to genes related to diabetes. Eleven of these DMPs were similarly associated with incident CVD in 3 diverse prospective cohorts (Framingham Heart Study, Women's Health Initiative, and Multi-Ethnic Study of Atherosclerosis). In the mouse model, differentially methylated regions in 20 of those genes and DMPs in 10 genes were associated with arsenic. CONCLUSIONS Differential DNA methylation might be part of the biological link between arsenic and CVD. The gene functions suggest that diabetes might represent a relevant mechanism for arsenic-related cardiovascular risk in populations with a high burden of diabetes.
Collapse
Affiliation(s)
- Arce Domingo-Relloso
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
- Department of Statistics and Operations Research, University of Valencia, Spain
| | - Kiran Makhani
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Angela L. Riffo-Campos
- Millennium Nucleus on Sociomedicine (SocioMed) and Vicerrectoría Académica, Universidad de La Frontera, Temuco, Chile
- Department of Computer Science, ETSE, University of Valencia, Valencia, Spain
| | - Maria Tellez-Plaza
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
| | - Kathleen Oros Klein
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Pooja Subedi
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Katherine A. Moon
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Anne K. Bozack
- Department of Environmental Health Sciences, School of Public Health, University of California, Berkeley, USA
| | - Karin Haack
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Walter Goessler
- Institute of Chemistry - Analytical Chemistry for Health and Environment, University of Graz, Austria
| | | | - Lyle G. Best
- Missouri Breaks Industries and Research Inc., Eagle Butte, SD, USA
| | - Ying Zhang
- Department of Biostatistics and Epidemiology, The University of Oklahoma Health Sciences Center, OK, USA
| | | | - Ronald A. Glabonjat
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Kathrin Schilling
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Marta Galvez-Fernandez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
- Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Carlos III Health Institute, Madrid, Spain
| | - Jack W. Kent
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Tiffany R Sanchez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Kent D. Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - W. Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Peter Durda
- Department of Pathology Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Russell P. Tracy
- Department of Pathology Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Stephen S. Rich
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - David Van Den Berg
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Silva Kasela
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Ramachandran S Vasan
- National Heart, Lung, and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, MA; Sections of Preventive Medicine and Epidemiology and Cardiovascular Medicine, Department of Medicine, department of Epidemiology, Boston University Schools of medicine and Public health, Boston, MA, USA
| | - Roby Joehanes
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
- Framingham Heart Study, Framingham, MA
| | | | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD
- Framingham Heart Study, Framingham, MA
| | - Kurt Lohman
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - Yongmei Liu
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - M Daniele Fallin
- Departments of Mental Health and Epidemiology, Johns Hopkins University, Baltimore, MD, USA
| | - Shelley A. Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Koren K. Mann
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
11
|
Renu K, Panda A, Vellingiri B, George A, Valsala Gopalakrishnan A. Arsenic: an emerging role in adipose tissue dysfunction and muscle toxicity. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1992443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Kaviyarasi Renu
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Aditi Panda
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, 680005, Kerala, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| |
Collapse
|
12
|
Iqbal S, Jabeen F, Chaudhry AS, Shah MA, Batiha GES. Toxicity assessment of metallic nickel nanoparticles in various biological models: An interplay of reactive oxygen species, oxidative stress, and apoptosis. Toxicol Ind Health 2021; 37:635-651. [PMID: 34491146 DOI: 10.1177/07482337211011008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Nickel nanoparticles (Ni-NPs) are widely used for multiple purposes in industries. Ni-NPs exposure is detrimental to ecosystems owing to widespread use, and so their toxicity is important to consider for real-world applications. This review mainly focuses on the notable pathophysiological activities of Ni-NPs in various research models. Ni-NPs are stated to be more toxic than bulk forms because of their larger surface area to volume ratio and are reported to provoke toxicity through reactive oxygen species generation, which leads to the upregulation of nuclear factor-κB and promotes further signaling cascades. Ni-NPs may contribute to provoking oxidative stress and apoptosis. Hypoxia-inducible factor 1α and mitogen-activated protein kinases pathways are involved in Ni-NPs associated toxicity. Ni-NPs trigger the transcription factors p-p38, p-JNK, p-ERK1/2, interleukin (IL)-3, TNF-α, IL-13, Fas, Cyt c, Bax, Bid protein, caspase-3, caspase-8, and caspase-9. Moreover, Ni-NPs have an occupational vulnerability and were reported to induce lung-related disorders owing to inhalation. Ni-NPs may cause serious effects on reproduction as Ni-NPs induced deleterious effects on reproductive cells (sperm and eggs) in animal models and provoked hormonal alteration. However, recent studies have provided limited knowledge regarding the important checkpoints of signaling pathways and less focused on the toxic limitation of Ni-NPs in humans, which therefore needs to be further investigated.
Collapse
Affiliation(s)
- Shabnoor Iqbal
- Department of Zoology, Government College University Faisalabad, Pakistan
| | - Farhat Jabeen
- Department of Zoology, Government College University Faisalabad, Pakistan
| | - Abdul Shakoor Chaudhry
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Muhammad Ajmal Shah
- Department of Pharmacognosy, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Al-Beheira, Egypt
| |
Collapse
|
13
|
Efremenko A, Balbuena P, Clewell RA, Black M, Pluta L, Andersen ME, Gentry PR, Yager JW, Clewell HJ. Time-dependent genomic response in primary human uroepithelial cells exposed to arsenite for up to 60 days. Toxicology 2021; 461:152893. [PMID: 34425169 DOI: 10.1016/j.tox.2021.152893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/02/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022]
Abstract
Evidence from both in vivo and in vitro studies suggests that gene expression changes from long-term exposure to arsenite evolve markedly over time, including reversals in the direction of expression change in key regulatory genes. In this study, human uroepithelial cells from the ureter segments of 4 kidney-donors were continuously treated in culture with arsenite at concentrations of 0.1 or 1 μM for 60 days. Gene expression at 10, 20, 30, 40, and 60 days was determined using Affymetrix human genome microarrays and signal pathway analysis was performed using GeneGo Metacore. Arsenic treated cells continued to proliferate for the full 60-day period, whereas untreated cells ceased proliferating after approximately 30 days. A peak in the number of gene changes in the treated cells compared to untreated controls was observed between 30 and 40 days of exposure, with substantially fewer changes at 10 and 60 days, suggesting remodeling of the cells over time. Consistent with this possibility, the direction of expression change for a number of key genes was reversed between 20 and 30 days, including CFOS and MDM2. While the progression of gene changes was different for each subject, a common pattern was observed in arsenic treated cells over time, with early upregulation of oxidative stress responses (HMOX1, NQ01, TXN, TXNRD1) and down-regulation of immune/inflammatory responses (IKKα). At around 30 days, there was a transition to increased inflammatory and proliferative signaling (AKT, CFOS), evidence of epithelial-to-mesenchymal transition (EMT), and alterations in DNA damage responses (MDM2, ATM). A common element in the changing response of cells to arsenite over time appears to involve up-regulation of MDM2 by inflammatory signaling (through AP-1 and NF-κB), leading to inhibition of P53 function.
Collapse
Affiliation(s)
- Alina Efremenko
- The Hamner Institutes for Health Sciences, RTP, NC, United States
| | | | | | - Michael Black
- The Hamner Institutes for Health Sciences, RTP, NC, United States
| | - Linda Pluta
- The Hamner Institutes for Health Sciences, RTP, NC, United States
| | | | | | - Janice W Yager
- Ramboll US Corporation, Emeryville, CA, United States(1)
| | - Harvey J Clewell
- The Hamner Institutes for Health Sciences, RTP, NC, United States.
| |
Collapse
|
14
|
Kim C, Ceresa BP. Using In Vitro Models to Dissect the Molecular Effects of Arsenic Exposure in Skin and Lung Cell Lines. APPLIED IN VITRO TOXICOLOGY 2021; 7:71-88. [DOI: 10.1089/aivt.2020.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Affiliation(s)
- Christine Kim
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| | - Brian P. Ceresa
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
15
|
Medda N, De SK, Maiti S. Different mechanisms of arsenic related signaling in cellular proliferation, apoptosis and neo-plastic transformation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111752. [PMID: 33396077 DOI: 10.1016/j.ecoenv.2020.111752] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/12/2020] [Accepted: 11/29/2020] [Indexed: 06/12/2023]
Abstract
Arsenic is a toxic heavy metal vastly dispersed all over the earth crust. It manifests several major adverse health issues to millions of arsenic exposed populations. Arsenic is associated with different types of cancer, cardiovascular disorders, diabetes, hypertension and many other diseases. On the contrary, arsenic (arsenic trioxide, As2O3) is used as a chemotherapeutic agent in the treatment of acute promyelocytic leukemia. Balance between arsenic induced cellular proliferations and apoptosis finally decide the outcome of its transformation rate. Arsenic propagates signals via cellular and nuclear pathways depending upon the chemical nature, and metabolic-fates of the arsenical compounds. Arsenic toxicity is propagated via ROS induced stress to DNA-repair mechanism and mitochondrial stability in the cell. ROS induced alteration in p53 regulation and some mitogen/ oncogenic functions determine the transformation outcome influencing cyclin-cdk complexes. Growth factor regulator proteins such as c-Jun, c-fos and c-myc are influenced by chronic arsenic exposure. In this review we have delineated arsenic induced ROS regulations of epidermal growth factor receptor (EGFR), NF-ĸβ, MAP kinase, matrix-metalloproteinases (MMPs). The role of these signaling molecules has been discussed in relation to cellular apoptosis, cellular proliferation and neoplastic transformation. The arsenic stimulated pathways which help in proliferation and neoplastic transformation ultimately resulted in cancer manifestation whereas apoptotic pathways inhibited carcinogenesis. Therapeutic strategies against arsenic should be designed taking into account all these factors.
Collapse
Affiliation(s)
- Nandita Medda
- Center for Life Sciences, Vidyasagar University, Midnapore-721102, West Bengal, India; Post Graduate Department of Biochemistry and Biotechnology Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Midnapore-721102, West Bengal, India
| | - Subrata Kumar De
- Professor, Dept. of Zoology, Vidyasagar University, Midnapore, 721102, West Bengal, India; (on lien) Vice Chancellor, Mahatma Gandhi University, Purba Medinipur, 721628, West Bengal, India.
| | - Smarajit Maiti
- Post Graduate Department of Biochemistry and Biotechnology Cell and Molecular Therapeutics Laboratory, Oriental Institute of Science and Technology, Midnapore-721102, West Bengal, India.
| |
Collapse
|
16
|
The Role of Reactive Oxygen Species in Arsenic Toxicity. Biomolecules 2020; 10:biom10020240. [PMID: 32033297 PMCID: PMC7072296 DOI: 10.3390/biom10020240] [Citation(s) in RCA: 214] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Arsenic poisoning is a global health problem. Chronic exposure to arsenic has been associated with the development of a wide range of diseases and health problems in humans. Arsenic exposure induces the generation of intracellular reactive oxygen species (ROS), which mediate multiple changes to cell behavior by altering signaling pathways and epigenetic modifications, or cause direct oxidative damage to molecules. Antioxidants with the potential to reduce ROS levels have been shown to ameliorate arsenic-induced lesions. However, emerging evidence suggests that constructive activation of antioxidative pathways and decreased ROS levels contribute to chronic arsenic toxicity in some cases. This review details the pathways involved in arsenic-induced redox imbalance, as well as current studies on prophylaxis and treatment strategies using antioxidants.
Collapse
|
17
|
Castriota F, Rieswijk L, Dahlberg S, La Merrill MA, Steinmaus C, Smith MT, Wang JC. A State-of-the-Science Review of Arsenic's Effects on Glucose Homeostasis in Experimental Models. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:16001. [PMID: 31898917 PMCID: PMC7015542 DOI: 10.1289/ehp4517] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 05/04/2023]
Abstract
BACKGROUND The prevalence of type 2 diabetes (T2D) has more than doubled since 1980. Poor nutrition, sedentary lifestyle, and obesity are among the primary risk factors. While an estimated 70% of cases are attributed to excess adiposity, there is an increased interest in understanding the contribution of environmental agents to diabetes causation and severity. Arsenic is one of these environmental chemicals, with multiple epidemiology studies supporting its association with T2D. Despite extensive research, the molecular mechanism by which arsenic exerts its diabetogenic effects remains unclear. OBJECTIVES We conducted a literature search focused on arsenite exposure in vivo and in vitro, using relevant end points to elucidate potential mechanisms of oral arsenic exposure and diabetes development. METHODS We explored experimental results for potential mechanisms and elucidated the distinct effects that occur at high vs. low exposure. We also performed network analyses relying on publicly available data, which supported our key findings. RESULTS While several mechanisms may be involved, our findings support that arsenite has effects on whole-body glucose homeostasis, insulin-stimulated glucose uptake, glucose-stimulated insulin secretion, hepatic glucose metabolism, and both adipose and pancreatic β -cell dysfunction. DISCUSSION This review applies state-of-the-science approaches to identify the current knowledge gaps in our understanding of arsenite on diabetes development. https://doi.org/10.1289/EHP4517.
Collapse
Affiliation(s)
- Felicia Castriota
- Superfund Research Program, University of California, Berkeley, California, USA
| | - Linda Rieswijk
- Superfund Research Program, University of California, Berkeley, California, USA
| | - Sarah Dahlberg
- Superfund Research Program, University of California, Berkeley, California, USA
| | - Michele A. La Merrill
- Department of Environmental Toxicology, University of California, Davis, California, USA
| | - Craig Steinmaus
- Superfund Research Program, University of California, Berkeley, California, USA
| | - Martyn T. Smith
- Superfund Research Program, University of California, Berkeley, California, USA
| | - Jen-Chywan Wang
- Superfund Research Program, University of California, Berkeley, California, USA
- Department of Nutritional Sciences & Toxicology, University of California, Berkeley, California, USA
| |
Collapse
|
18
|
Hasegawa H, Papry RI, Ikeda E, Omori Y, Mashio AS, Maki T, Rahman MA. Freshwater phytoplankton: biotransformation of inorganic arsenic to methylarsenic and organoarsenic. Sci Rep 2019; 9:12074. [PMID: 31427705 PMCID: PMC6700110 DOI: 10.1038/s41598-019-48477-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/29/2019] [Indexed: 11/09/2022] Open
Abstract
The biotransformation and detoxification mechanisms of arsenic (As) species have been active research topics because of their significance to environmental and human health. Biotransformation of As in phytoplankton has been extensively studied. However, how different growth phases of phytoplankton impact As biotransformation in them remains uncertain. This study investigated the biotransformation of As species in freshwater phytoplankton at different growth phases to ascertain at which growth phase different types of biotransformation occur. At the logarithmic growth phase, arsenate (AsV) (>90%) and arsenite (AsIII) (>80%) predominated in culture media when phytoplankton were exposed to 20 nmol L−1 and 1.0 µmol L−1 of AsV, respectively, and methylarsenic (methylAs) species were not detected in them at all. Intracellular As was mainly present in inorganic forms (iAs) at the logarithmic phase, while substantial amounts of organoarsenic (orgAs) species were detected at the stationary phase. At the stationary phase, AsV comprised the majority of the total As in culture media, followed by AsIII and methylAs, although the methylation of AsV occurred slowly at the stationary phase. Biotransformation of AsV into AsIII and As methylation inside phytoplankton cells occurred mainly at the logarithmic phase, while the biotransformation of As into complex orgAs compounds occurred at the stationary phase. Phytoplankton rapidly released iAs and methylAs species out of their cells at the logarithmic phase, while orgAs mostly remained inside their cells.
Collapse
Affiliation(s)
- Hiroshi Hasegawa
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan.
| | - Rimana Islam Papry
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan.
| | - Eri Ikeda
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Yoshiki Omori
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Asami S Mashio
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - Teruya Maki
- Institute of Science and Engineering, Kanazawa University, Kakuma, Kanazawa, 920-1192, Japan
| | - M Azizur Rahman
- Faculty of Science and Technology, Federation University, Gippsland, Churchill, VIC, Australia. .,Centre for Environmental Sustainability, School of the Environment, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
19
|
Arsenic biotransformation potential of six marine diatom species: effect of temperature and salinity. Sci Rep 2019; 9:10226. [PMID: 31308398 PMCID: PMC6629621 DOI: 10.1038/s41598-019-46551-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/26/2019] [Indexed: 11/16/2022] Open
Abstract
Temperature and salinity effects on marine diatom species growth has been studied extensively; however, their effect on arsenic (As) biotransformation has been imprecise. This study reports the growth, and As biotransformation and speciation patterns at various temperatures and salinities of six marine diatom species: Asteroplanus karianus, Thalassionema nitzschioides, Nitzschia longissima, Skeletonema sp., Ditylum brightwellii, and Chaetoceros didymus. The growth rate and As biotransformation potentials of these species during three weeks of culture in f/2 based medium were significantly affected by wide temperature (0–35 °C) and salinity (0.3–50‰) ranges. Growth and As biotransformation were higher at optimum temperatures of 10–25 °C, and salinity of 10–35‰, whereas growth and arsenic biotransformation were lower at <5 °C and 5‰ and >25 °C and 35‰, respectively. The results showed that As(V) to As(III) biotransformation differed significantly (p < 0.05) between day 10 and 17. At optimum temperature and salinity levels, the cell size and As biotransformation were higher for all the species. A conceptual model on temperature and salinity effects on growth and As uptake and biotransformation mechanisms by these species has been proposed based on the findings of this study.
Collapse
|
20
|
Tchounwou PB, Yedjou CG, Udensi UK, Pacurari M, Stevens JJ, Patlolla AK, Noubissi F, Kumar S. State of the science review of the health effects of inorganic arsenic: Perspectives for future research. ENVIRONMENTAL TOXICOLOGY 2019; 34:188-202. [PMID: 30511785 PMCID: PMC6328315 DOI: 10.1002/tox.22673] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 05/06/2023]
Abstract
Human exposure to inorganic arsenic (iAs) is a global health issue. Although there is strong evidence for iAs-induced toxicity at higher levels of exposure, many epidemiological studies evaluating its effects at low exposure levels have reported mixed results. We comprehensively reviewed the literature and evaluated the scientific knowledge on human exposure to arsenic, mechanisms of action, systemic and carcinogenic effects, risk characterization, and regulatory guidelines. We identified areas where additional research is needed. These priority areas include: (1) further development of animal models of iAs carcinogenicity to identify molecular events involved in iAs carcinogenicity; (2) characterization of underlying mechanisms of iAs toxicity; (3) assessment of gender-specific susceptibilities and other factors that modulate arsenic metabolism; (4) sufficiently powered epidemiological studies to ascertain relationship between iAs exposure and reproductive/developmental effects; (5) evaluation of genetic/epigenetic determinants of iAs effects in children; and (6) epidemiological studies of people chronically exposed to low iAs concentrations.
Collapse
Affiliation(s)
- Paul B. Tchounwou
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD-RCMI Center for Environmental Health.Jackson State University, 1400 Lynch Street, Box18750, Jackson, Mississippi, MS 39217, USA
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box18750, Jackson, Mississippi, MS 39217, USA
| | - Clement G. Yedjou
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box18750, Jackson, Mississippi, MS 39217, USA
| | - Udensi K. Udensi
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD-RCMI Center for Environmental Health.Jackson State University, 1400 Lynch Street, Box18750, Jackson, Mississippi, MS 39217, USA
| | - Maricica Pacurari
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box18750, Jackson, Mississippi, MS 39217, USA
| | - Jacqueline J. Stevens
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box18750, Jackson, Mississippi, MS 39217, USA
| | - Anita K. Patlolla
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box18750, Jackson, Mississippi, MS 39217, USA
| | - Felicite Noubissi
- Department of Biology, College of Science, Engineering and Technology, Jackson State University, 1400 Lynch Street, Box18750, Jackson, Mississippi, MS 39217, USA
| | - Sanjay Kumar
- Cellomics and Toxicogenomics Research Laboratory, NIH/NIMHD-RCMI Center for Environmental Health.Jackson State University, 1400 Lynch Street, Box18750, Jackson, Mississippi, MS 39217, USA
| |
Collapse
|
21
|
Sanchez-Marinas M, Gimenez-Zaragoza D, Martin-Ramos E, Llanes J, Cansado J, Pujol MJ, Bachs O, Aligue R. Cmk2 kinase is essential for survival in arsenite by modulating translation together with RACK1 orthologue Cpc2 in Schizosaccharomyces pombe. Free Radic Biol Med 2018; 129:116-126. [PMID: 30236788 DOI: 10.1016/j.freeradbiomed.2018.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 08/24/2018] [Accepted: 09/16/2018] [Indexed: 10/28/2022]
Abstract
Different studies have demonstrated multiple effects of arsenite on human physiology. However, there are many open questions concerning the mechanism of response to arsenite. Schizosaccharomyces pombe activates the Sty1 MAPK pathway as a common response to several stress conditions. The specificity of the response is due to the activation of different transcription factors and specific targets such the Cmk2 MAPKAP kinase. We have previously shown that Cmk2 is phosphorylated and activated by the MAPK Sty1 in response to oxidative stress. Here, we report that Cmk2 kinase is specifically necessary to overcome the stress caused by metalloid agents, in particular arsenite. Deletion of cmk2 increases the protein level of various components of the MAPK pathway. Moreover, Cmk2 negatively regulates translation through the Cpc2 kinase: the RACK1 orthologue in fission yeast. RACK1 is a receptor for activated C-kinase. Interestingly, RACK1 is a constituent of the eukaryotic ribosome specifically localized in the head region of the 40 S subunit. Cmk2 controls arsenite response through Cpc2 and it does so through Cpc2 ribosomal function, as observed in genetic analysis using a Cpc2 mutant unable to bind to ribosome. These findings suggest a role for Cmk2 in regulating translation and facilitating adaptation to arsenite stress in the ribosome.
Collapse
Affiliation(s)
- Marta Sanchez-Marinas
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - David Gimenez-Zaragoza
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - Edgar Martin-Ramos
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - Julia Llanes
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - José Cansado
- Yeast Physiology Group, Department of Genetics and Microbiology, Facultad de Biología, Universidad de Murcia, Murcia 30071, Spain
| | - Maria Jesús Pujol
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - Oriol Bachs
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain
| | - Rosa Aligue
- Department of Biomedical Sciences, Facultat de Medicina, University of Barcelona, Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), CIBERONC, Barcelona 08036, Catalunya, Spain.
| |
Collapse
|
22
|
Liu S, Chen Y, Ren Y, Zhou J, Ren J, Lee I, Bao X. A tRNA-derived RNA Fragment Plays an Important Role in the Mechanism of Arsenite -induced Cellular Responses. Sci Rep 2018; 8:16838. [PMID: 30442959 PMCID: PMC6237853 DOI: 10.1038/s41598-018-34899-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022] Open
Abstract
Chronic exposure to environmental heavy metals is a worldwide health concern. It is acknowledged to be an important cause of lower respiratory tract damage in children. However, the molecular mechanisms underlying the heavy metal-induced cellular stress/toxicity are not completely understood. Small non-coding RNAs (sncRNAs), such as microRNAs (miRNA) and more recently identified tRNA-derived RNA fragments (tRFs), are critical to the posttranscriptional control of genes. We used deep sequencing to investigate whether cellular sncRNA profiles are changed by environmental heavy metals. We found that the treatment of arsenite, an important groundwater heavy metal, leads to abundant production of tRFs, that are ~30 nucleotides (nts) long and most of which correspond to the 5'-end of mature tRNAs. It is unlikely for these tRFs to be random degradation by-products, as the type of induced tRFs is heavy metal-dependent. Three most inducible tRFs and their roles in arsenite-induced cellular responses were then investigated. We identified that p65, an important transcription factor belonging to NF-κB family and also a key factor controlling inflammatory gene expression, is a regulated target of a tRF derived from 5'-end of mature tRNA encoding AlaCGC (tRF5-AlaCGC). tRF5-AlaCGC activates p65, subsequently leading to enhanced secretion of IL-8 in arsenite response. In this study, we also identified that endonuclease Dicer and angiogenin temporally control the induction of tRF5-AlaCGC, providing an insight into the control of tRF biogenesis and subsequently the prevention of cellular damage.
Collapse
Affiliation(s)
- Shengxuan Liu
- Department of Pediatrics, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, Huazhong, China
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Yu Chen
- Department of Pediatrics, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, Huazhong, China
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Yuping Ren
- Department of Pediatrics, TongJi Hospital, TongJi Medical College, Huazhong University of Science and Technology, Huazhong, China
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Jiehua Zhou
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Junping Ren
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Xiaoyong Bao
- Department of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Center for Environmental Toxicology, University of Texas Medical Branch, Galveston, TX, USA.
- Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
23
|
Renu K, Madhyastha H, Madhyastha R, Maruyama M, Arunachlam S, V.G. A. Role of arsenic exposure in adipose tissue dysfunction and its possible implication in diabetes pathophysiology. Toxicol Lett 2018; 284:86-95. [DOI: 10.1016/j.toxlet.2017.11.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 02/08/2023]
|
24
|
Sharma A, Flora SJS. Nutritional management can assist a significant role in alleviation of arsenicosis. J Trace Elem Med Biol 2018; 45:11-20. [PMID: 29173466 DOI: 10.1016/j.jtemb.2017.09.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/01/2017] [Accepted: 09/13/2017] [Indexed: 01/24/2023]
Abstract
Consumption of arsenic contaminated water causes serious skin disease and cancer in a significant number of exposed people. Chelating agents, consider an expensive therapy, are employed in the treatment of arsenic intoxication. There are reports which suggest that the poorest suffer the most from arsenicosis. This may be due to improper diet intake, consist of low protein and micronutrients which increase the vulnerability to arsenic-related disorders. Several human studies demonstrated the associations between malnourishment and the development of arsenic-caused skin lesions, skin cancer and cardiovascular effects. Thus, there is an urgent need of implementation of mitigation strategies for improving the health of exposed populations. Nutrition enhances the detoxification process so food rich in vitamins, protein, antioxidants help in its detoxification process. Methylation is the detoxification process which takes place via S-adenosylmethionine (SAM). It is a methyl group donor and it derived its methyl group from diet. Nutritional intervention thus may appear as a practical and inexpensive approach. Nutrition provides protection from toxic effect of arsenic by two ways (i) methylation of As (ii) antioxidants which provides protection against free radical species. The governments and NGOs may run awareness programmes in arsenic affected area regarding prevention and alternate therapy which can decrease the susceptibility of the exposed population. They could also help in distributing cheaper, high protein diets particularly to the masses who cannot afford such foods. Thus, to prevent arsenicosis alternate therapy and proper nutrition could be the important strategy for alleviating its toxic effects. This mini review provides an insight on the importance of nutrition in preventing adverse effect cause by arsenic to suffer population.
Collapse
Affiliation(s)
- Abha Sharma
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India
| | - S J S Flora
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Raebareli, India.
| |
Collapse
|
25
|
Curcumin administration suppress acetylcholinesterase gene expression in cadmium treated rats. Neurotoxicology 2017; 62:75-79. [DOI: 10.1016/j.neuro.2017.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/03/2017] [Accepted: 05/11/2017] [Indexed: 11/23/2022]
|
26
|
Epigenetic mechanisms underlying the toxic effects associated with arsenic exposure and the development of diabetes. Food Chem Toxicol 2017; 107:406-417. [PMID: 28709971 DOI: 10.1016/j.fct.2017.07.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/07/2017] [Accepted: 07/08/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Exposure to inorganic arsenic (iAs) is a major threat to the human health worldwide. The consumption of arsenic in drinking water and other food products is associated with the risk of development of type-2 diabetes mellitus (T2DM). The available experimental evidence indicates that epigenetic alterations may play an important role in the development of diseases that are linked with exposure to environmental toxicants. iAs seems to be associated with the epigenetic modifications such as alterations in DNA methylation, histone modifications, and micro RNA (miRNA) abundance. OBJECTIVE This article reviewed epigenetic mechanisms underlying the toxic effects associated with arsenic exposure and the development of diabetes. METHOD Electronic databases such as PubMed, Scopus and Google scholar were searched for published literature from 1980 to 2017. Searched MESH terms were "Arsenic", "Epigenetic mechanism", "DNA methylation", "Histone modifications" and "Diabetes". RESULTS There are various factors involved in the pathogenesis of T2DM but it is assumed that arsenic consumption causes the epigenetic alterations both at the gene-specific level and generalized genome level. CONCLUSION The research indicates that exposure from low to moderate concentrations of iAs is linked with the epigenetic effects. In addition, it is evident that, arsenic can change the components of the epigenome and hence induces diabetes through epigenetic mechanisms, such as alterations in glucose transport and/or metabolism and insulin expression/secretion.
Collapse
|
27
|
Chen C, Gu S, Jiang X, Zhang Z. Nuclear translocation of nuclear factor kappa B is regulated by G protein signaling pathway in arsenite-induced apoptosis in HBE cell line. ENVIRONMENTAL TOXICOLOGY 2016; 31:1819-1833. [PMID: 26306706 DOI: 10.1002/tox.22183] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 08/04/2015] [Accepted: 08/05/2015] [Indexed: 06/04/2023]
Abstract
Arsenite is a certainly apoptosis inducer in various cell types. However, the detailed mechanism underlying how arsenite trigger apoptosis remains elusive. In this study, using human bronchial epithelial cell as a culture system, we demonstrated that arsenite-induced nuclear translocation of nuclear factor kappa B (NF-κB) resulted in the release of cytochrome c, the modulation of Fas and FasL, caspase activation, and ultimately leading to cell apoptosis. Importantly, we showed for the first time that the NF-κB-mediated apoptosis induced by arsenite was regulated by G protein-adenylate cyclase (AC)-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) pathway. Inhibition of this classical G protein signaling pathway by a typical PKA inhibitor, H-89, caused the inactivation of NF-κB, the depletion of caspase-3, 8 and 9 activities, and thus reducing the level of cell apoptosis. Taken together, our results indicate that arsenite is able to trigger cell apoptosis in human bronchial epithelial cells through the nuclear translocation of NF-κB, which can be modulated by G protein signaling pathway. These findings further suggest that inhibition of G protein-mediated pathway by specific inhibitors may be a potential strategy for the prevention of arsenite toxicity. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1819-1833, 2016.
Collapse
Affiliation(s)
- Chengzhi Chen
- Department of Occupational and Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shiyan Gu
- Department of Occupational and Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xuejun Jiang
- Department of Occupational and Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Occupational and Environmental Health, School of Public Health and Management, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zunzhen Zhang
- Department of Occupational and Environmental Health, West China School of Public Health, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
28
|
Wei M, Liu J, Xu M, Rui D, Xu S, Feng G, Ding Y, Li S, Guo S. Divergent Effects of Arsenic on NF-κB Signaling in Different Cells or Tissues: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:163. [PMID: 26821040 PMCID: PMC4772183 DOI: 10.3390/ijerph13020163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 01/02/2023]
Abstract
Arsenic is ubiquitously present in human lives, including in the environment and organisms, and has divergent effects between different cells and tissues and between different exposure times and doses. These observed effects have been attributed to the nuclear transcription factor kappa B(NF-κB) signaling pathway. Herein, a meta-analysis was performed by independently searching databases including the Cochrane Library, PubMed, Springer, Embase, and China National Knowledge Infrastructure, to analyze effects of arsenic exposure on NF-κB signaling. Compared to controls, in the exposed group, p-IκB levels were found to be 8.13-fold higher (95% CI, 2.40-13.85; Z = 2.78; p = 0.005), IκB levels were 16.19-fold lower (95% CI, -27.44--4.94; Z = 2.78; p = 0.005), and NF-κBp65 levels were 0.77-fold higher (95% CI, 0.13-1.42; Z = 2.34; p = 0.02) for normal cells and tissue, while NF-κBp65 levels were 4.90-fold lower (95% CI, -8.49-1.31; Z = 2.62; p = 0.009), NF-κB activity was 2.45-fold lower (95% CI, -3.66-1.25; Z = 4.00; p < 0.0001), and DNA-binding activity of NF-κB was 9.75-fold lower (95% CI, -18.66-4.54; Z = 2.15; p = 0.03) for abnormal cells and tissue. Short exposure to high arsenic doses activated the NF-κB signaling pathway, while long exposure to low arsenic doses suppressed NF-κB signaling pathway activation. These findings may provide a theoretical basis for injurious and therapeutic mechanisms of divergent effects of arsenic.
Collapse
Affiliation(s)
- Meng Wei
- Department of Public Health, Shihezi University School of Medicine, Shihezi 832000, Xinjiang, China.
| | - Jiaming Liu
- Department of Public Health, Shihezi University School of Medicine, Shihezi 832000, Xinjiang, China.
| | - Mengchuan Xu
- Department of Public Health, Shihezi University School of Medicine, Shihezi 832000, Xinjiang, China.
| | - Dongsheng Rui
- Department of Public Health, Shihezi University School of Medicine, Shihezi 832000, Xinjiang, China.
| | - Shangzhi Xu
- Department of Public Health, Shihezi University School of Medicine, Shihezi 832000, Xinjiang, China.
| | - Gangling Feng
- Department of Public Health, Shihezi University School of Medicine, Shihezi 832000, Xinjiang, China.
| | - Yusong Ding
- Department of Public Health, Shihezi University School of Medicine, Shihezi 832000, Xinjiang, China.
| | - Shugang Li
- Department of Public Health, Shihezi University School of Medicine, Shihezi 832000, Xinjiang, China.
| | - Shuxia Guo
- Department of Public Health, Shihezi University School of Medicine, Shihezi 832000, Xinjiang, China.
| |
Collapse
|
29
|
Valko M, Jomova K, Rhodes CJ, Kuča K, Musílek K. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease. Arch Toxicol 2015; 90:1-37. [DOI: 10.1007/s00204-015-1579-5] [Citation(s) in RCA: 535] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 08/11/2015] [Indexed: 02/07/2023]
|
30
|
Qiu LQ, Abey S, Harris S, Shah R, Gerrish KE, Blackshear PJ. Global analysis of posttranscriptional gene expression in response to sodium arsenite. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:324-30. [PMID: 25493608 PMCID: PMC4383576 DOI: 10.1289/ehp.1408626] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/19/2014] [Indexed: 05/26/2023]
Abstract
BACKGROUND Inorganic arsenic species are potent environmental toxins and causes of numerous health problems. Most studies have assumed that arsenic-induced changes in mRNA levels result from effects on gene transcription. OBJECTIVES We evaluated the prevalence of changes in mRNA stability in response to sodium arsenite in human fibroblasts. METHODS We used microarray analyses to determine changes in steady-state mRNA levels and mRNA decay rates following 24-hr exposure to noncytotoxic concentrations of sodium arsenite, and we confirmed some of these changes using real-time reverse-transcription polymerase chain reaction (RT-PCR). RESULTS In arsenite-exposed cells, 186 probe set-identified transcripts were significantly increased and 167 were significantly decreased. When decay rates were analyzed after actinomycin D treatment, only 4,992 (9.1%) of probe set-identified transcripts decayed by > 25% after 4 hr. Of these, 70 were among the 353 whose steady-state levels were altered by arsenite, and of these, only 4 exhibited significantly different decay rates between arsenite and control treatment. Real-time RT-PCR confirmed a major, significant arsenite-induced stabilization of the mRNA encoding δ aminolevulinate synthase 1 (ALAS1), the rate-limiting enzyme in heme biosynthesis. This change presumably accounted for at least part of the 2.7-fold increase in steady-state ALAS1 mRNA levels seen after arsenite treatment. This could reflect decreases in cellular heme caused by the massive induction by arsenite of heme oxygenase mRNA (HMOX1; 68-fold increase), the rate-limiting enzyme in heme catabolism. CONCLUSIONS We conclude that arsenite modification of mRNA stability is relatively uncommon, but in some instances can result in significant changes in gene expression.
Collapse
Affiliation(s)
- Lian-Qun Qiu
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA
| | | | | | | | | | | |
Collapse
|
31
|
Chen X, Shen J, Wang Y, Chen X, Yu S, Shi H, Huo K. Up-regulation of c-Fos associated with neuronal apoptosis following intracerebral hemorrhage. Cell Mol Neurobiol 2015; 35:363-376. [PMID: 25354492 PMCID: PMC11486182 DOI: 10.1007/s10571-014-0132-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/24/2014] [Indexed: 02/03/2023]
Abstract
The proto-oncogene c-Fos is an important member of the activating protein 1 (AP-1) transcription complex involved in major cellular functions such as transformation, proliferation, differentiation, and apoptosis. The expression of c-Fos is very tightly regulated and responses rapidly and transiently to a plethora of apoptotic stimuli. However, it is still unclear how c-Fos functions on neuronal activities following intracerebral hemorrhage (ICH). In the present studies, we uncovered that the up-regulation of c-Fos is related to neuronal apoptosis following ICH probably via FasL/Fas apoptotic pathway. From the results of Western blot and immunohistochemistry, we obtained that c-Fos is significantly up-regulated surrounding the hematoma following ICH and co-locates with active caspase-3 in the neurons. Besides, electrophoretic mobility shift assay exhibits high AP-1 DNA-binding activities in ICH groups due to the increase of c-Fos expression. In addition, there are concomitant up-regulation of Fas ligand (FasL), which is the target protein of AP-1, Fas, active caspase-8, and active caspase-3 in vivo and in vitro studies. What is more, our in vitro study showed that using c-Fos-specific RNA interference in primary cortical neurons, the expression of FasL and active caspase-3 are suppressed. Thus, our results indicated that c-Fos might exert its pro-apoptotic function on neuronal apoptosis following ICH.
Collapse
Affiliation(s)
- Xiaomei Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 220 Handan Rd, Shanghai, 200433, China
| | - Jiabing Shen
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yang Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 220 Handan Rd, Shanghai, 200433, China
| | - Xiaojing Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 220 Handan Rd, Shanghai, 200433, China
| | - Shi Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 220 Handan Rd, Shanghai, 200433, China
| | - Huili Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 220 Handan Rd, Shanghai, 200433, China
| | - Keke Huo
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, 220 Handan Rd, Shanghai, 200433, China.
| |
Collapse
|
32
|
Hunt KM, Srivastava RK, Elmets CA, Athar M. The mechanistic basis of arsenicosis: pathogenesis of skin cancer. Cancer Lett 2014; 354:211-9. [PMID: 25173797 PMCID: PMC4193806 DOI: 10.1016/j.canlet.2014.08.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/12/2014] [Accepted: 08/12/2014] [Indexed: 12/25/2022]
Abstract
Significant amounts of arsenic have been found in the groundwater of many countries including Argentina, Bangladesh, Chile, China, India, Mexico, and the United States with an estimated 200 million people at risk of toxic exposure. Although chronic arsenic poisoning damages many organ systems, it usually first presents in the skin with manifestations including hyperpigmentation, hyperkeratoses, Bowen's disease, squamous cell carcinoma, and basal cell carcinoma. Arsenic promotes oxidative stress by upregulating nicotinamide adenine dinucleotide phosphate oxidase, uncoupling nitric oxide synthase, and by depleting natural antioxidants such as nitric oxide and glutathione in addition to targeting other proteins responsible for the maintenance of redox homeostasis. It causes immune dysfunction and tissue inflammatory responses, which may involve activation of the unfolded protein response signaling pathway. In addition, the dysregulation of other molecular targets such as nuclear factor kappa B, Hippo signaling protein Yap, and the mineral dust-induced proto-oncogene may orchestrate the pathogenesis of arsenic-mediated health effects. The metalloid decreases expression of tumor suppressor molecules and increases expression of pro-inflammatory mitogen-activated protein kinase pathways leading to a tumor-promoting tissue microenvironment. Cooperation of upregulated signal transduction molecules with DNA damage may abrogate apoptosis, promote proliferation, and enhance cell survival. Genomic instability via direct DNA damage and weakening of several cellular DNA repair mechanisms could also be important cancer development mechanisms in arsenic-exposed populations. Thus, arsenic mediates its toxicity by generating oxidative stress, causing immune dysfunction, promoting genotoxicity, hampering DNA repair, and disrupting signal transduction, which may explain the complex disease manifestations seen in arsenicosis.
Collapse
Affiliation(s)
- Katherine M Hunt
- University of Alabama at Birmingham, University of Alabama School of Medicine, 1670 University Blvd., Birmingham, Alabama 35233, USA
| | - Ritesh K Srivastava
- Department of Dermatology and Skin Disease Research Center, University of Alabama at Birmingham, VH 509, 1530 3rd Ave. S., Birmingham, Alabama 35294, USA
| | - Craig A Elmets
- Department of Dermatology and Skin Disease Research Center, University of Alabama at Birmingham, VH 509, 1530 3rd Ave. S., Birmingham, Alabama 35294, USA
| | - Mohammad Athar
- Department of Dermatology and Skin Disease Research Center, University of Alabama at Birmingham, VH 509, 1530 3rd Ave. S., Birmingham, Alabama 35294, USA.
| |
Collapse
|
33
|
Zhou H, Rigoutsos I. The emerging roles of GPRC5A in diseases. Oncoscience 2014; 1:765-76. [PMID: 25621293 PMCID: PMC4303886 DOI: 10.18632/oncoscience.104] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 11/24/2014] [Indexed: 12/14/2022] Open
Abstract
The ‘Retinoic Acid-Inducible G-protein-coupled receptors’ or RAIG are a group comprising the four orphan receptors GPRC5A, GPRC5B, GPRC5C and GPRC5D. As the name implies, their expression is induced by retinoic acid but beyond that very little is known about their function. In recent years, one member, GPRC5A, has been receiving increasing attention as it was shown to play important roles in human cancers. As a matter of fact, dysregulation of GPRC5A has been associated with several cancers including lung cancer, breast cancer, colorectal cancer, and pancreatic cancer. Here we review the current state of knowledge about the heterogeneity and evolution of GPRC5A, its regulation, its molecular functions, and its involvement in human disease.
Collapse
Affiliation(s)
- Honglei Zhou
- Computational Medicine Center, Jefferson Alumni Hall, Thomas Jefferson University, Philadelphia, PA
| | - Isidore Rigoutsos
- Computational Medicine Center, Jefferson Alumni Hall, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
34
|
Human AP endonuclease 1: a potential marker for the prediction of environmental carcinogenesis risk. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:730301. [PMID: 25243052 PMCID: PMC4158471 DOI: 10.1155/2014/730301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/30/2014] [Indexed: 12/15/2022]
Abstract
Human apurinic/apyrimidinic endonuclease 1 (APE1) functions mainly in DNA repair as an enzyme removing AP sites and in redox signaling as a coactivator of various transcription factors. Based on these multifunctions of APE1 within cells, numerous studies have reported that the alteration of APE1 could be a crucial factor in development of human diseases such as cancer and neurodegeneration. In fact, the study on the combination of an individual's genetic make-up with environmental factors (gene-environment interaction) is of great importance to understand the development of diseases, especially lethal diseases including cancer. Recent reports have suggested that the human carcinogenic risk following exposure to environmental toxicants is affected by APE1 alterations in terms of gene-environment interactions. In this review, we initially outline the critical APE1 functions in the various intracellular mechanisms including DNA repair and redox regulation and its roles in human diseases. Several findings demonstrate that the change in expression and activity as well as genetic variability of APE1 caused by environmental chemical (e.g., heavy metals and cigarette smoke) and physical carcinogens (ultraviolet and ionizing radiation) is likely associated with various cancers. These enable us to ultimately suggest APE1 as a vital marker for the prediction of environmental carcinogenesis risk.
Collapse
|
35
|
Kulshrestha A, Jarouliya U, Prasad GBKS, Flora SJS, Bisen PS. Arsenic-induced abnormalities in glucose metabolism: Biochemical basis and potential therapeutic and nutritional interventions. World J Transl Med 2014; 3:96-111. [DOI: 10.5528/wjtm.v3.i2.96] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 06/21/2014] [Accepted: 07/17/2014] [Indexed: 02/05/2023] Open
Abstract
Health hazards due to the consumption of heavy metals such as arsenic have become a worldwide problem. Metabolism of arsenic produces various intermediates which are more toxic and cause toxicity. Arsenic exposure results in impairment of glucose metabolism, insulin secretion in pancreatic β-cells, altered gene expressions and signal transduction, and affects insulin-stimulated glucose uptake in adipocytes or skeletal muscle cells. Arsenic toxicity causes abnormalities in glucose metabolism through an increase in oxidative stress. Arsenic interferes with the sulfhydryl groups and phosphate groups present in various enzymes involved in glucose metabolism including pyruvate dehydrogenase and α-ketoglutarate dehydrogenase, and contributes to their impairment. Arsenic inhibits glucose transporters present in the cell membrane, alters expression of genes involved in glucose metabolism, transcription factors and inflammatory cytokines which stimulate oxidative stress. Some theories suggest that arsenic exposure under diabetic conditions inhibits hyperglycemia. However, the exact mechanism behind the behavior of arsenic as an antagonist or synergist on glucose homeostasis and insulin secretion is not yet fully understood. The present review delineates the relationship between arsenic and the biochemical basis of its relationship to glucose metabolism. This review also addresses potential therapeutic and nutritional interventions for attenuating arsenic toxicity. Several other potential nutritional supplements are highlighted in the review that could be used to combat arsenic toxicity.
Collapse
|
36
|
The impact of recent advances in research on arsenic cancer risk assessment. Regul Toxicol Pharmacol 2014; 69:91-104. [DOI: 10.1016/j.yrtph.2014.02.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/05/2014] [Accepted: 02/07/2014] [Indexed: 11/23/2022]
|
37
|
Abstract
None of the current agents can safely and effectively eliminate latent HIV-1 reservoirs, meaning that there is a major barrier to the final cure of AIDS. Arsenic trioxide (As2O3), a drug used to treat acute promyelocytic leukemia (APL), was reported to affect the transcription factors and pathways involved in modulating HIV-1 expression. However, little is known about the effect and molecular basis of As2O3 in inducing HIV-1 expression in latently infected cells. Using the Jurkat T cell model of HIV-1 latency, we found that As2O3 activated latent HIV-1 replication with a similar potency to valproic acid (VPA) and did so in a dose- and time-dependent manner. We also found that As2O3 synergistically reactivated latent HIV-1 transcription with prostratin, tumor necrosis factor alpha (TNF-α) or VPA. Moreover, we provide evidence indicating that As2O3-induced HIV-1 activation involves the nuclear factor kappa B (NF-κB) signaling pathway. In conclusion, we have found that As2O3 can synergistically reactivate latent HIV-1 with other activators, which may provide a new tool to unravel the mechanisms of virus latency and reactivation.
Collapse
|
38
|
Affiliation(s)
- Shengwen Shen
- Department
of Laboratory Medicine
and Pathology, 10-102 Clinical Sciences Building, University
of Alberta, Edmonton, Alberta, Canada, T6G 2G3
| | - Xing-Fang Li
- Department
of Laboratory Medicine
and Pathology, 10-102 Clinical Sciences Building, University
of Alberta, Edmonton, Alberta, Canada, T6G 2G3
| | - William R. Cullen
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver,
British Columbia, Canada, V6T 1Z1
| | - Michael Weinfeld
- Department of Oncology, Cross
Cancer Institute, University of Alberta, 11560 University Avenue, Edmonton, Alberta, Canada, T6G 1Z2
| | - X. Chris Le
- Department
of Laboratory Medicine
and Pathology, 10-102 Clinical Sciences Building, University
of Alberta, Edmonton, Alberta, Canada, T6G 2G3
| |
Collapse
|
39
|
O'Brien CJ, Nixon ZS, Holohan AJ, Kunkel SR, Tellez JL, Doonan BJ, Coyle EE, Lavigne F, Kang LJ, Przeworski KC. Part I: the development of the catalytic Wittig reaction. Chemistry 2013; 19:15281-9. [PMID: 24115040 DOI: 10.1002/chem.201301444] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Indexed: 11/12/2022]
Abstract
We have developed the first catalytic (in phosphane) Wittig reaction (CWR). The utilization of an organosilane was pivotal for success as it allowed for the chemoselective reduction of a phosphane oxide. Protocol optimization evaluated the phosphane oxide precatalyst structure, loading, organosilane, temperature, solvent, and base. These studies demonstrated that to maintain viable catalytic performance it was necessary to employ cyclic phosphane oxide precatalysts of type 1. Initial substrate studies utilized sodium carbonate as a base, and further experimentation identified N,N-diisopropylethylamine (DIPEA) as a soluble alternative. The use of DIPEA improved the ease of use, broadened the substrate scope, and decreased the precatalyst loading. The optimized protocols were compatible with alkyl, aryl, and heterocyclic (furyl, indolyl, pyridyl, pyrrolyl, and thienyl) aldehydes to produce both di- and trisubstituted olefins in moderate-to-high yields (60-96%) by using a precatalyst loading of 4-10 mol%. Kinetic E/Z selectivity was generally 66:34; complete E selectivity for disubstituted α,β-unsaturated products was achieved through a phosphane-mediated isomerization event. The CWR was applied to the synthesis of 54, a known precursor to the anti-Alzheimer drug donepezil hydrochloride, on a multigram scale (12.2 g, 74% yield). In addition, to our knowledge, the described CWR is the only transition-/heavy-metal-free catalytic olefination process, excluding proton-catalyzed elimination reactions.
Collapse
Affiliation(s)
- Christopher J O'Brien
- School of Chemical Sciences, Dublin City University, Glasnevin, Dublin 9 (Ireland) http://webpages.dcu.ie/∼obrienc/OBrien_Group/Home.html.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Yang HC, Fu HL, Lin YF, Rosen BP. Pathways of arsenic uptake and efflux. CURRENT TOPICS IN MEMBRANES 2013; 69:325-58. [PMID: 23046656 DOI: 10.1016/b978-0-12-394390-3.00012-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Arsenic is the most prevalent environmental toxic substance and ranks first on the U.S. Environmental Protection Agency's Superfund List. Arsenic is a carcinogen and a causative agent of numerous human diseases. Paradoxically arsenic is used as a chemotherapeutic agent for treatment of acute promyelocytic leukemia. Inorganic arsenic has two biological important oxidation states: As(V) (arsenate) and As(III) (arsenite). Arsenic uptake is adventitious because the arsenate and arsenite are chemically similar to required nutrients. Arsenate resembles phosphate and is a competitive inhibitor of many phosphate-utilizing enzymes. Arsenate is taken up by phosphate transport systems. In contrast, at physiological pH, the form of arsenite is As(OH)(3), which resembles organic molecules such as glycerol. Consequently, arsenite is taken into cells by aquaglyceroporin channels. Arsenic efflux systems are found in nearly every organism and evolved to rid cells of this toxic metalloid. These efflux systems include members of the multidrug resistance protein family and the bacterial exchangers Acr3 and ArsB. ArsB can also be a subunit of the ArsAB As(III)-translocating ATPase, an ATP-driven efflux pump. The ArsD metallochaperone binds cytosolic As(III) and transfers it to the ArsA subunit of the efflux pump. Knowledge of the pathways and transporters for arsenic uptake and efflux is essential for understanding its toxicity and carcinogenicity and for rational design of cancer chemotherapeutic drugs.
Collapse
Affiliation(s)
- Hung-Chi Yang
- Department of Medical Biotechnology and Laboratory Sciences, Chang-Gung University, Tao-Yuan, Taiwan
| | | | | | | |
Collapse
|
41
|
Burgess JL, Kurzius-Spencer M, O'Rourke MK, Littau SR, Roberge J, Meza-Montenegro MM, Gutiérrez-Millán LE, Harris RB. Environmental arsenic exposure and serum matrix metalloproteinase-9. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2013; 23:163-9. [PMID: 23232971 PMCID: PMC4030392 DOI: 10.1038/jes.2012.107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 08/29/2012] [Accepted: 09/04/2012] [Indexed: 05/19/2023]
Abstract
The objective of this study was to evaluate the relationship between environmental arsenic exposure and serum matrix metalloproteinase (MMP)-9, a biomarker associated with cardiovascular disease and cancer. In a cross-sectional study of residents of Arizona, USA (n=215) and Sonora, Mexico (n=163), drinking water was assayed for total arsenic, and daily drinking water arsenic intake was estimated. Urine was speciated for arsenic, and concentrations were adjusted for specific gravity. Serum was analyzed for MMP-9 using ELISA. Mixed model linear regression was used to assess the relation among drinking water arsenic concentration, drinking water arsenic intake, urinary arsenic sum of species (the sum of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid), and MMP-9, controlling for autocorrelation within households. Drinking water arsenic concentration and intake were positively associated with MMP-9, both in crude analysis and after adjustment for gender, country/ethnicity, age, body mass index, current smoking, and diabetes. Urinary arsenic sum of species was positively associated with MMP-9 in multivariable analysis only. Using Akaike's Information Criterion, arsenic concentration in drinking water provided a better fitting model of MMP-9 than either urinary arsenic or drinking water arsenic intake. In conclusion, arsenic exposure evaluated using all three exposure metrics was positively associated with MMP-9.
Collapse
Affiliation(s)
- Jefferey L Burgess
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ 85724, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Wang CK, Lee HL, Chang H, Tsai MH, Kuo YC, Lin P. Enhancement between environmental tobacco smoke and arsenic on emphysema-like lesions in mice. JOURNAL OF HAZARDOUS MATERIALS 2012; 221-222:256-263. [PMID: 22572560 DOI: 10.1016/j.jhazmat.2012.04.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 04/13/2012] [Accepted: 04/17/2012] [Indexed: 05/31/2023]
Abstract
Chronic obstructive pulmonary diseases (COPD) have been the major cause of mortality worldwide. Early identification of populations at risk allows us to prevent the occurrence and to reduce the cost of health care. In human studies, exposure to environmental tobacco smoke (ETS) and arsenic respectively increased the risk of chronic lung diseases, including COPD. We suspected that ETS and arsenic might enhance the risk of COPD. In our present study, we evaluated this hypothesis in mice and tried to identify early biomarkers for chemicals-induced lung lesions. Mice inhaled ETS and/or administrated arsenite via gavage for 4 weeks. At the end of experiment, exposure to ETS or arsenite alone failed to cause lung lesions or inflammation. However, co-exposure to ETS and arsenite significantly induced emphysema-like lesions, characterized with enlarged alveolar spaces and destruction of alveolar structure, although inflammation was not observed. Furthermore, co-exposure to ETS and arsenite significantly increased plasma 8-oxodeoxyguanosine (8-OHdG) levels. Our results indicated that co-exposure to ETS and arsenite induced emphysematous lesions, and plasma 8-OHdG might serve as an early biomarker for co-exposure of ETS and arsenite. With information about ETS and arsenic exposure in human populations, plasma 8-OHdG will help us to identify individuals at risk.
Collapse
Affiliation(s)
- Chien-Kai Wang
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Taiwan, ROC
| | | | | | | | | | | |
Collapse
|
43
|
Stueckle TA, Lu Y, Davis ME, Wang L, Jiang BH, Holaskova I, Schafer R, Barnett JB, Rojanasakul Y. Chronic occupational exposure to arsenic induces carcinogenic gene signaling networks and neoplastic transformation in human lung epithelial cells. Toxicol Appl Pharmacol 2012; 261:204-16. [PMID: 22521957 PMCID: PMC3358533 DOI: 10.1016/j.taap.2012.04.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/21/2012] [Accepted: 04/04/2012] [Indexed: 01/06/2023]
Abstract
Chronic arsenic exposure remains a human health risk; however a clear mode of action to understand gene signaling-driven arsenic carcinogenesis is currently lacking. This study chronically exposed human lung epithelial BEAS-2B cells to low-dose arsenic trioxide to elucidate cancer promoting gene signaling networks associated with arsenic-transformed (B-As) cells. Following a 6month exposure, exposed cells were assessed for enhanced cell proliferation, colony formation, invasion ability and in vivo tumor formation compared to control cell lines. Collected mRNA was subjected to whole genome expression microarray profiling followed by in silico Ingenuity Pathway Analysis (IPA) to identify lung carcinogenesis modes of action. B-As cells displayed significant increases in proliferation, colony formation and invasion ability compared to BEAS-2B cells. B-As injections into nude mice resulted in development of primary and secondary metastatic tumors. Arsenic exposure resulted in widespread up-regulation of genes associated with mitochondrial metabolism and increased reactive oxygen species protection suggesting mitochondrial dysfunction. Carcinogenic initiation via reactive oxygen species and epigenetic mechanisms was further supported by altered DNA repair, histone, and ROS-sensitive signaling. NF-κB, MAPK and NCOR1 signaling disrupted PPARα/δ-mediated lipid homeostasis. A 'pro-cancer' gene signaling network identified increased survival, proliferation, inflammation, metabolism, anti-apoptosis and mobility signaling. IPA-ranked signaling networks identified altered p21, EF1α, Akt, MAPK, and NF-κB signaling networks promoting genetic disorder, altered cell cycle, cancer and changes in nucleic acid and energy metabolism. In conclusion, transformed B-As cells with their whole genome expression profile provide an in vitro arsenic model for future lung cancer signaling research and data for chronic arsenic exposure risk assessment.
Collapse
Affiliation(s)
- Todd A. Stueckle
- Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| | - Yongju Lu
- Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506
| | - Mary E. Davis
- Department of Physiology, West Virginia University, Morgantown, WV 26506
| | - Liying Wang
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505
| | - Bing-Hua Jiang
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Ida Holaskova
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506
| | - Rosana Schafer
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506
| | - John B. Barnett
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV 26506
| | - Yon Rojanasakul
- Department of Basic Pharmaceutical Sciences, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
44
|
Li G, Lee LS, Li M, Tsao SW, Chiu JF. Molecular changes during arsenic-induced cell transformation. J Cell Physiol 2011; 226:3225-32. [PMID: 21344382 DOI: 10.1002/jcp.22683] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Arsenic and its derivatives are naturally occurring metalloid compounds widely distributed in the environment. Arsenics are known to cause cancers of the skin, liver, lung, kidney, and bladder. Although numerous carcinogenic pathways have been proposed, the exact molecular mechanisms remain to be delineated. To further characterize the role of oxidative stress in arsenite-induced cell transformation via the reactive oxygen species (ROS)-mediated Ras/Erk pathway, here we demonstrated arsenite-induced rat lung epithelial cell (LEC) transformation, epithelial-mesenchymal transition, stimulation of the extracellular signal-regulated kinase signaling pathway, and enhancement of cell proliferation. However, there was no evidence of activation of the phosphoinositide 3-kinase/protein kinase B pathway in arsenite-induced transformed LECs. Since ROS is involved in arsenite-induced LEC cell transformation, Redox-status regulatory proteins (Cu/Zn SOD and thioredoxin) and arsenite-induced LEC cell transformation were significantly inhibited by concurrent treatment with the antioxidants. Our experimental results clearly demonstrated that induction of p-ERK and cell proliferation by arsenite is mediated via oxidative stress, since antioxidants can inhibit arsenite-induced cell transformation.
Collapse
Affiliation(s)
- Guanwu Li
- Department of Biochemistry/Open Laboratory for Tumor Molecular Biology, Shantou University Medical College, Shantou, China
| | | | | | | | | |
Collapse
|
45
|
Hughes MF, Beck BD, Chen Y, Lewis AS, Thomas DJ. Arsenic exposure and toxicology: a historical perspective. Toxicol Sci 2011; 123:305-32. [PMID: 21750349 PMCID: PMC3179678 DOI: 10.1093/toxsci/kfr184] [Citation(s) in RCA: 750] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 06/30/2011] [Indexed: 12/23/2022] Open
Abstract
The metalloid arsenic is a natural environmental contaminant to which humans are routinely exposed in food, water, air, and soil. Arsenic has a long history of use as a homicidal agent, but in the past 100 years arsenic, has been used as a pesticide, a chemotherapeutic agent and a constituent of consumer products. In some areas of the world, high levels of arsenic are naturally present in drinking water and are a toxicological concern. There are several structural forms and oxidation states of arsenic because it forms alloys with metals and covalent bonds with hydrogen, oxygen, carbon, and other elements. Environmentally relevant forms of arsenic are inorganic and organic existing in the trivalent or pentavalent state. Metabolism of arsenic, catalyzed by arsenic (+3 oxidation state) methyltransferase, is a sequential process of reduction from pentavalency to trivalency followed by oxidative methylation back to pentavalency. Trivalent arsenic is generally more toxicologically potent than pentavalent arsenic. Acute effects of arsenic range from gastrointestinal distress to death. Depending on the dose, chronic arsenic exposure may affect several major organ systems. A major concern of ingested arsenic is cancer, primarily of skin, bladder, and lung. The mode of action of arsenic for its disease endpoints is currently under study. Two key areas are the interaction of trivalent arsenicals with sulfur in proteins and the ability of arsenic to generate oxidative stress. With advances in technology and the recent development of animal models for arsenic carcinogenicity, understanding of the toxicology of arsenic will continue to improve.
Collapse
Affiliation(s)
- Michael F Hughes
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | | | | | | | |
Collapse
|
46
|
Liesveld JL, Rosell KE, Bechelli J, Lu C, Messina P, Mulford D, Ifthikharuddin JJ, Jordan CT, Phillips Ii GL. Proteasome inhibition in myelodysplastic syndromes and acute myelogenous leukemia cell lines. Cancer Invest 2011; 29:439-50. [PMID: 21740082 PMCID: PMC4557209 DOI: 10.3109/07357907.2011.590567] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this work, effects of bortezomib on apoptosis, clonal progenitor growth, cytokine production, and NF-κB expression in patients with MDS with cytopenias requiring transfusion support are examined. Bortezomib increased apoptosis in marrow mononuclear cells but had no effects on CFU-GM, BFU-E, or CFU-L content. No consistent effects on NF-κB activation in vivo were noted. To further define the role of bortezomib in AML and MDS, we examined it in combination with several targeted agents and chemotherapeutic agents in vitro. Combinations with arsenic trioxide, sorafenib, and cytarabine demonstrated synergistic in vitro effects in AML cell lines.
Collapse
Affiliation(s)
- Jane L Liesveld
- Department of Medicine, Hematology/Oncology, University of Rochester Medical Center, Rochester, NY 14642, USA. jane
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Clewell HJ, Thomas RS, Kenyon EM, Hughes MF, Adair BM, Gentry PR, Yager JW. Concentration- and Time-dependent Genomic Changes in the Mouse Urinary Bladder Following Exposure to Arsenate in Drinking Water for up to 12 Weeks. Toxicol Sci 2011; 123:421-32. [DOI: 10.1093/toxsci/kfr199] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Flora SJS. Arsenic-induced oxidative stress and its reversibility. Free Radic Biol Med 2011; 51:257-281. [PMID: 21554949 DOI: 10.1016/j.freeradbiomed.2011.04.008] [Citation(s) in RCA: 551] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 03/18/2011] [Accepted: 04/04/2011] [Indexed: 12/12/2022]
Abstract
This review summarizes the literature describing the molecular mechanisms of arsenic-induced oxidative stress, its relevant biomarkers, and its relation to various diseases, including preventive and therapeutic strategies. Arsenic alters multiple cellular pathways including expression of growth factors, suppression of cell cycle checkpoint proteins, promotion of and resistance to apoptosis, inhibition of DNA repair, alterations in DNA methylation, decreased immunosurveillance, and increased oxidative stress, by disturbing the pro/antioxidant balance. These alterations play prominent roles in disease manifestation, such as carcinogenicity, genotoxicity, diabetes, cardiovascular and nervous systems disorders. The exact molecular and cellular mechanisms involved in arsenic toxicity are rather unrevealed. Arsenic alters cellular glutathione levels either by utilizing this electron donor for the conversion of pentavalent to trivalent arsenicals or directly binding with it or by oxidizing glutathione via arsenic-induced free radical generation. Arsenic forms oxygen-based radicals (OH(•), O(2)(•-)) under physiological conditions by directly binding with critical thiols. As a carcinogen, it acts through epigenetic mechanisms rather than as a classical mutagen. The carcinogenic potential of arsenic may be attributed to activation of redox-sensitive transcription factors and other signaling pathways involving nuclear factor κB, activator protein-1, and p53. Modulation of cellular thiols for protection against reactive oxygen species has been used as a therapeutic strategy against arsenic. N-acetylcysteine, α-lipoic acid, vitamin E, quercetin, and a few herbal extracts show prophylactic activity against the majority of arsenic-mediated injuries in both in vitro and in vivo models. This review also updates the reader on recent advances in chelation therapy and newer therapeutic strategies suggested to treat arsenic-induced oxidative damage.
Collapse
Affiliation(s)
- Swaran J S Flora
- Division of Pharmacology & Toxicology, Defence Research and Development Establishment, Jhansi Road, Gwalior 474002, India.
| |
Collapse
|
49
|
Mo J, Xia Y, Wade TJ, DeMarini DM, Davidson M, Mumford J. Altered gene expression by low-dose arsenic exposure in humans and cultured cardiomyocytes: assessment by real-time PCR arrays. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:2090-108. [PMID: 21776218 PMCID: PMC3138013 DOI: 10.3390/ijerph8062090] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 05/21/2011] [Accepted: 05/27/2011] [Indexed: 11/16/2022]
Abstract
Chronic arsenic exposure results in higher risk of skin, lung, and bladder cancer, as well as cardiovascular disease and diabetes. The purpose of this study was to investigate the effects on expression of selected genes in the blood lymphocytes from 159 people exposed chronically to arsenic in their drinking water using a novel RT-PCR TaqMan low-density array (TLDA). We found that expression of tumor necrosis factor-α (TNF-α), which activates both inflammation and NF-κB-dependent survival pathways, was strongly associated with water and urinary arsenic levels. Expression of KCNA5, which encodes a potassium ion channel protein, was positively associated with water and toe nail arsenic levels. Expression of 2 and 11 genes were positively associated with nail and urinary arsenic, respectively. Because arsenic exposure has been reported to be associated with long QT intervals and vascular disease in humans, we also used this TLDA for analysis of gene expression in human cardiomyocytes exposed to arsenic in vitro. Expression of the ion-channel genes CACNA1, KCNH2, KCNQ1 and KCNE1 were down-regulated by 1-μM arsenic. Alteration of some common pathways, including those involved in oxidative stress, inflammatory signaling, and ion-channel function, may underlay the seemingly disparate array of arsenic-associated diseases, such as cancer, cardiovascular disease, and diabetes.
Collapse
Affiliation(s)
- Jinyao Mo
- Center for Environmental Medicine, Asthma and Lung Biology, University of North Carolina, Chapel Hill, NC 27599, USA; E-Mail:
| | - Yajuan Xia
- Inner Mongolia Center for Endemic Disease Control and Research, Huhhot 010031, Inner Mongolia, China; E-Mail:
| | - Timothy J. Wade
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; E-Mails: (D.M.D.); (J.M.)
| | - David M. DeMarini
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; E-Mails: (D.M.D.); (J.M.)
| | - Mercy Davidson
- Department of Radiation Oncology, Columbia University, New York, NY 10032, USA; E-Mail:
| | - Judy Mumford
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; E-Mails: (D.M.D.); (J.M.)
| |
Collapse
|
50
|
Benton MA, Rager JE, Smeester L, Fry RC. Comparative genomic analyses identify common molecular pathways modulated upon exposure to low doses of arsenic and cadmium. BMC Genomics 2011; 12:173. [PMID: 21457566 PMCID: PMC3082247 DOI: 10.1186/1471-2164-12-173] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 04/01/2011] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Exposure to the toxic metals arsenic and cadmium is associated with detrimental health effects including cancers of various organs. While arsenic and cadmium are well known to cause adverse health effects at high doses, the molecular impact resulting from exposure to environmentally relevant doses of these metals remains largely unexplored. RESULTS In this study, we examined the effects of in vitro exposure to either arsenic or cadmium in human TK6 lymphoblastoid cells using genomics and systems level pathway mapping approaches. A total of 167 genes with differential expression were identified following exposure to either metal with surprisingly no overlap between the two. Real-time PCR was used to confirm target gene expression changes. The gene sets were overlaid onto protein-protein interaction maps to identify metal-induced transcriptional networks. Interestingly, both metal-induced networks were significantly enriched for proteins involved in common biological processes such as tumorigenesis, inflammation, and cell signaling. These findings were further supported by gene set enrichment analysis. CONCLUSIONS This study is the first to compare the transcriptional responses induced by low dose exposure to cadmium and arsenic in human lymphoblastoid cells. These results highlight that even at low levels of exposure both metals can dramatically influence the expression of important cellular pathways.
Collapse
Affiliation(s)
- Margaret Ann Benton
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Julia E Rager
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|