1
|
Miwa T, Yumoto A, Tada S, Kim SW, Minagawa N, Matsuda T, Ohtake K, Shimizu Y, Sakamoto K, Aigaki T, Ito Y, Uzawa T. In Vitro Selection of Collagen-Binding Vascular Endothelial Growth Factor Containing Genetically Encoded Mussel-Inspired Adhesive Amino Acids. Chemistry 2025:e202404178. [PMID: 39789869 DOI: 10.1002/chem.202404178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/12/2025]
Abstract
Protein immobilization technology is important in medical and industrial applications. We previously reported all-in-one in vitro selection, wherein a collagen-binding vascular endothelial growth factor (CB-VEGF) was identified from a fusion library of random and VEGF sequences. However, its interaction chemistry is mainly limited to the interaction established by the 20 canonical amino acids. Herein, we incorporated an adhesive non-natural amino acid found in marine mussels, L-3,4-dihydroxyphenylalanine (DOPA), into the library for all-in-one in vitro selection. After selection, we identified DOPA-containing CB-VEGF. CB-VEGF binds to collagen with an apparent dissociation constant of 2 nM; naïve VEGF does not bind to collagen. The collagen-binding peptide domain of CB-VEGF (CB-peptide) exhibited stronger binding to collagen than a mutant peptide (substitution from DOPA to tyrosine), indicating the importance of DOPA to collagen binding. The collagen-binding affinity of CB-VEGF is 10-fold higher than that of CB-peptide, suggesting that the collagen-binding ability of CB-VEGF is not due to the additive function of CB-peptide to VEGF, but is synergistic. Furthermore, increased cell growth was observed on CB-VEGF-treated collagen surfaces, not VEGF-treated collagen surfaces. Thus, integrating all-in-one in vitro selection and DOPA incorporation shows promise in generating adhesive proteins on solid supports.
Collapse
Affiliation(s)
- Takuya Miwa
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Graduate School of Life Science, Tokyo Metropolitan University, Minami Osawa, Hachioji, Japan
- Present address: Department of Clinical Pharmacology, Graduate School of Medicine, Showa University, Shinagawa, Tokyo, 142-8555, Japan
- Translational Research Division, Chugai Pharmaceutical Co., Ltd., Chuo, Tokyo, 103-8324, Japan
| | - Akiko Yumoto
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Seiichi Tada
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Shin-Woong Kim
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Noriko Minagawa
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takayoshi Matsuda
- Expanded Genetic Code System Research Team, RIKEN Systems and Structural Biology Center, Yokohama, Japan
| | - Kazumasa Ohtake
- Expanded Genetic Code System Research Team, RIKEN Systems and Structural Biology Center, Yokohama, Japan
- Laboratory for Nonnatural Amino Acid Technology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
- Present address: Department of Electrical Engineering and Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku, Tokyo, 162-8480, Japan
| | - Yoshihiro Shimizu
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, 565-0874, Japan
| | - Kensaku Sakamoto
- Expanded Genetic Code System Research Team, RIKEN Systems and Structural Biology Center, Yokohama, Japan
- Laboratory for Nonnatural Amino Acid Technology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Toshiro Aigaki
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Graduate School of Life Science, Tokyo Metropolitan University, Minami Osawa, Hachioji, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Graduate School of Life Science, Tokyo Metropolitan University, Minami Osawa, Hachioji, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takanori Uzawa
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
2
|
Gordon EM, Hall FL. The advent of a pan-collagenous CLOVIS POINT for pathotropic targeting and cancer gene therapy, a retrospective. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1125928. [PMID: 39086682 PMCID: PMC11285703 DOI: 10.3389/fmmed.2023.1125928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/13/2023] [Indexed: 08/02/2024]
Abstract
The 'Clovis Point'-an enabling prehistoric gain-of-function in stone-age tool technologies which empowered the Paleoindian-Americans to hunt, to strike-deep, and to kill designated target megafauna more efficiently-was created biochemically by molecular-genetic bio-engineering. This Biomedical "Clovis Point" was crafted by adapting a broad-spectrum Pan-Collagen Binding Domain (Pan-Coll/CBD) found within the immature pre-pro-peptide segment of Von Willebrand Factor into a constructive series of advanced medical applications. Developed experimentally, preclinically, and clinically into a cutting-edge Biotechnology Platform, the Clovis Point is suitable for 1) solid-state binding of growth factors on collagenous scaffolds for improved orthopedic wound healing, 2) promoting regeneration of injured/diseased tissues; and 3) autologous stem cell capture, expansion, and gene-based therapies. Subsequent adaptations of the high-affinity Pan-Coll/CBD (exposed-collagen-seeking/surveillance function) for intravenous administration in humans, enabled the physiological delivery, aka Pathotropic Targeting to diseased tissues via the modified envelopes of gene vectors; enabling 4) precision tumor-targeting for cancer gene therapy and 5) adoptive/localized immunotherapies, demonstrating improved long-term survival value-thus pioneering a proximal and accessible cell cycle control point for cancer management-empowering modern medical oncologists to address persistent problems of chemotherapy resistance, recurrence, and occult progression of metastatic disease. Recent engineering adaptations have advanced the clinical utility to include the targeted delivery of small molecule APIs: including taxanes, mAbs, and RNA-based therapeutics.
Collapse
Affiliation(s)
- Erlinda M. Gordon
- Counterpoint Biomedica LLC, Santa Monica, CA, United States
- Delta Next-Gene, LLC, Santa Monica, CA, United States
| | - Frederick L. Hall
- Counterpoint Biomedica LLC, Santa Monica, CA, United States
- Delta Next-Gene, LLC, Santa Monica, CA, United States
| |
Collapse
|
3
|
Hoshi M, Taira M, Sawada T, Hachinohe Y, Hatakeyama W, Takafuji K, Tekemoto S, Kondo H. Preparation of Collagen/Hydroxyapatite Composites Using the Alternate Immersion Method and Evaluation of the Cranial Bone-Forming Capability of Composites Complexed with Acidic Gelatin and b-FGF. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8802. [PMID: 36556608 PMCID: PMC9787395 DOI: 10.3390/ma15248802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Bone-substitute materials are essential in dental implantology. We prepared collagen (Col)/hydroxyapatite (Hap)/acidic gelatin (AG)/basic fibroblast growth factor (b-FGF) constructs with enhanced bone-forming capability. The Col/Hap apatite composites were prepared by immersing Col sponges alternately in calcium and phosphate ion solutions five times, for 20 and 60 min, respectively. Then, the sponges were heated to 56 °C for 48 h. Scanning electron microscopy/energy-dispersive X-ray spectroscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction analyses showed that the Col/Hap composites contained poorly crystalline Hap precipitates on the Col matrix. Col/Hap composite granules were infiltrated by AG, freeze-dried, and immersed in b-FGF solution. The wet quaternary constructs were implanted in rat cranial bone defects for 8 weeks, followed by soft X-ray measurements and histological analysis. Animal studies have shown that the constructs moderately increase bone formation in cranial bone defects. We found that an alternate immersion time of 20 min led to the greatest bone formation (p < 0.05). Constructs placed inside defects slightly extend the preexisting bone from the defect edges and lead to the formation of small island-like bones inside the defect, followed by disappearance of the constructs. The combined use of Col, Hap, AG, and b-FGF might bring about novel bone-forming biomaterials.
Collapse
Affiliation(s)
- Miki Hoshi
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Japan
| | - Masayuki Taira
- Department of Biomedical Engineering, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho 028-3694, Japan
| | - Tomofumi Sawada
- Department of Biomedical Engineering, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho 028-3694, Japan
| | - Yuki Hachinohe
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Japan
| | - Wataru Hatakeyama
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Japan
| | - Kyoko Takafuji
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Japan
| | - Shinji Tekemoto
- Department of Biomedical Engineering, Iwate Medical University, 1-1-1 Idaidori, Yahaba-cho 028-3694, Japan
| | - Hisatomo Kondo
- Department of Prosthodontics and Oral Implantology, School of Dentistry, Iwate Medical University, 19-1 Uchimaru, Morioka 020-8505, Japan
| |
Collapse
|
4
|
Suvarnapathaki S, Wu X, Zhang T, Nguyen MA, Goulopoulos AA, Wu B, Camci-Unal G. Oxygen generating scaffolds regenerate critical size bone defects. Bioact Mater 2022; 13:64-81. [PMID: 35224292 PMCID: PMC8843972 DOI: 10.1016/j.bioactmat.2021.11.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Recent innovations in bone tissue engineering have introduced biomaterials that generate oxygen to substitute vasculature. This strategy provides the immediate oxygen required for tissue viability and graft maturation. Here we demonstrate a novel oxygen-generating tissue scaffold with predictable oxygen release kinetics and modular material properties. These hydrogel scaffolds were reinforced with microparticles comprised of emulsified calcium peroxide (CaO2) within polycaprolactone (PCL). The alterations of the assembled materials produced constructs within 5 ± 0.81 kPa to 34 ± 0.9 kPa in mechanical strength. The mass swelling ratios varied between 11% and 25%. Our in vitro and in vivo results revealed consistent tissue viability, metabolic activity, and osteogenic differentiation over two weeks. The optimized in vitro cell culture system remained stable at pH 8-9. The in vivo rodent models demonstrated that these scaffolds support a 70 mm3 bone volume that was comparable to the native bone and yielded over 90% regeneration in critical size cranial defects. Furthermore, the in vivo bone remodeling and vascularization results were validated by tartrate-resistant acid phosphatase (TRAP) and vascular endothelial growth factor (VEGF) staining. The promising results of this work are translatable to a repertoire of regenerative medicine applications including advancement and expansion of bone substitutes and disease models.
Collapse
Affiliation(s)
- Sanika Suvarnapathaki
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
| | - Xinchen Wu
- Biomedical Engineering and Biotechnology Program, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
| | - Tengfei Zhang
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medicine University, Beijing, 100069, China
| | - Michelle A. Nguyen
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
| | - Anastasia A. Goulopoulos
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
| | - Bin Wu
- Department of Neurosurgery, Sanbo Brain Hospital, Capital Medicine University, Beijing, 100069, China
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts Lowell, One University Avenue, Lowell, MA, 01854, USA
- Department of Surgery, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA, 01605, USA
| |
Collapse
|
5
|
Zeng HB, Dong LQ, Huang YL, Xu C, Zhao XH, Wu LG. USF2 reduces BMP3 expression via transcriptional activation of miR-34a, thus promoting osteogenic differentiation of BMSCs. J Bone Miner Metab 2021; 39:997-1008. [PMID: 34350522 DOI: 10.1007/s00774-021-01254-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/18/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Osteoporosis is the most susceptible disease for people over 60. The main cause of osteoporosis is the decreased osteogenic differentiation of mesenchymal stem cells (MSCs). Here we showed that upstream stimulatory factor 2 (USF2)/microRNA-34a (miR-34a)/bone morphogenetic protein 3 (BMP3) axis regulated osteogenic differentiation of BMSCs. MATERIALS AND METHODS USF2 and miR-34a expression were examined using qPCR. Protein levels of BMP3 and osteogenic markers expression were evaluated using both western blot and qPCR. Activity of ALP was determined by ALP assay kit. Mineralization capacity of hBMSCs was assessed using ARS. Besides, CHIP assay was employed to verify whether USF2 could bind to miR-34a promoter. Finally, RIP assay and dual-luciferase reporter assay were employed to verify whether miR-34a directly bound to BMP3. RESULTS Our results suggested that miR-34a was upregulated during osteogenic differentiation of BMSCs, and miR-34a overexpression could enhance osteogenic differentiation of BMSCs. USF2 could positively regulate miR-34a expression by interacting with its promoter. USF2 overexpression enhanced osteogenic differentiation of BMSCs, while miR-34a inhibition reversed the effect. Besides, BMP3 was the target of miR-34a. MiR-34a overexpression enhanced osteogenic differentiation of BMSCs, which was abolished by BMP3 overexpression. CONCLUSION Taken together, USF2 enhanced osteogenic differentiation of BMSCs via downregulating BMP3 by interacting with miR-34a promoter.
Collapse
Affiliation(s)
- Han-Bing Zeng
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, No.318, Chaowang Road, Gongshu District, Hangzhou, 310005, Zhejiang Province, China
| | - Li-Qiang Dong
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, No.318, Chaowang Road, Gongshu District, Hangzhou, 310005, Zhejiang Province, China
| | - Yu-Liang Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, No.318, Chaowang Road, Gongshu District, Hangzhou, 310005, Zhejiang Province, China
| | - Chao Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, No.318, Chaowang Road, Gongshu District, Hangzhou, 310005, Zhejiang Province, China
| | - Xu-Hui Zhao
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, No.318, Chaowang Road, Gongshu District, Hangzhou, 310005, Zhejiang Province, China
| | - Lian-Guo Wu
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang Chinese Medical University, No.318, Chaowang Road, Gongshu District, Hangzhou, 310005, Zhejiang Province, China.
| |
Collapse
|
6
|
Aza-Reversine Promotes Reprogramming of Lung (MRC-5) and Differentiation of Mesenchymal Cells into Osteoblasts. MATERIALS 2021; 14:ma14185385. [PMID: 34576609 PMCID: PMC8467999 DOI: 10.3390/ma14185385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022]
Abstract
Reversine or 2-(4-morpholinoanilino)-N6-cyclohexyladenine was originally identified as a small organic molecule that induces dedifferentiation of lineage-committed mouse myoblasts, C2C12, and redirects them into lipocytes or osteoblasts under lineage-specific conditions (LISCs). Further, it was proven that this small molecule can induce cell cycle arrest and apoptosis and thus selectively lead cancer cells to cell death. Further studies demonstrated that reversine, and more specifically the C2 position of the purine ring, can tolerate a wide range of substitutions without activity loss. In this study, a piperazine analog of reversine, also known as aza-reversine, and a biotinylated derivative of aza-reversine were synthesized, and their potential medical applications were investigated by transforming the endoderm originates fetal lung cells (MRC-5) into the mesoderm originated osteoblasts and by differentiating mesenchymal cells into osteoblasts. Moreover, the reprogramming capacity of aza-reversine and biotinylated aza-reversine was investigated against MRC-5 cells and mesenchymal cells after the immobilization on PMMA/HEMA polymeric surfaces. The results showed that both aza-reversine and the biofunctionalized, biotinylated analog induced the reprogramming of MRC-5 cells to a more primitive, pluripotent state and can further transform them into osteoblasts under osteogenic culture conditions. These molecules also induced the differentiation of dental and adipose mesenchymal cells to osteoblasts. Thus, the possibility to load a small molecule with useful “information” for delivering that into specific cell targets opens new therapeutic personalized applications.
Collapse
|
7
|
Yeeravalli R, Das A. Molecular mediators of breast cancer metastasis. Hematol Oncol Stem Cell Ther 2021; 14:275-289. [PMID: 33744312 DOI: 10.1016/j.hemonc.2021.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 12/09/2022] Open
Abstract
Breast cancer has the highest incidence rate of malignancy in women worldwide. A major clinical challenge faced by patients with breast cancer treated by conventional therapies is frequent relapse. This relapse has been attributed to the cancer stem cell (CSC) population that resides within the tumor and possess stemness properties. Breast CSCs are generated when breast cancer cells undergo epithelial-mesenchymal transition resulting in aggressive, highly metastatic, and invasive phenotypes that exhibit resistance towards chemotherapeutics. Metastasis, a phenomenon that aids in the migration of breast CSCs, occurs through any of three different routes: hematogenous, lymphatic, and transcoelomic. Hematogenous dissemination of breast CSCs leads to metastasis towards distant unrelated organs like lungs, liver, bone, and brain causing secondary tumor generation. Activation of metastasis genes or silencing of metastasis suppressor genes often leads to the advancement of metastasis. This review focuses on various genes and molecular factors that have been implicated to regulate organ-specific breast cancer metastasis by defying the available therapeutic interventions.
Collapse
Affiliation(s)
- Ragini Yeeravalli
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, India; Academy of Scientific and Innovative Research, Ghaziabad, India.
| |
Collapse
|
8
|
Wu X, Zhang T, Hoff B, Suvarnapathaki S, Lantigua D, McCarthy C, Wu B, Camci‐Unal G. Mineralized Hydrogels Induce Bone Regeneration in Critical Size Cranial Defects. Adv Healthc Mater 2021; 10:e2001101. [PMID: 32940013 DOI: 10.1002/adhm.202001101] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/07/2020] [Indexed: 01/28/2023]
Abstract
Sequential mineralization enables the integration of minerals within the 3D structure of hydrogels. Hydrolyzed collagen-based hydrogels are sequentially mineralized over 10 cycles. One cycle is defined as an incubation period in calcium chloride dihydrate followed by incubation in sodium phosphate dibasic dihydrate. Separate cycles are completed at 30-minute and 24-hour intervals. For the gels mineralized for 30 min and 24 h, the compressive moduli increases from 4.25 to 87.57 kPa and from 4.25 to 125.47 kPa, respectively, as the cycle number increases from 0 to 10. As indicated by X-ray diffraction (XRD) and Fourier transform infrared analysis (FTIR) analyses, the minerals in the scaffolds are mainly hydroxyapatite. In vitro experiments, which measure mechanical properties, porous structure, mineral content, and gene expression are performed to evaluate the physical properties and osteoinductivity of the scaffolds. Real time-quantitative polymerase chain reaction (RT-qPCR) demonstrates 4-10 fold increase in the expression of BMP-7 and osteocalcin. The in vivo subcutaneous implantation demonstrates that the scaffolds are biocompatible and 90% biodegradable. The critical size cranial defects in vivo exhibit nearly complete bone regeneration. Cycle 10 hydrogels mineralized for 24 h have a volume of 59.86 mm3 and a density of 1946.45 HU. These results demonstrate the suitability of sequentially mineralized hydrogel scaffolds for bone repair and regeneration.
Collapse
Affiliation(s)
- Xinchen Wu
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
- Biomedical Engineering and Biotechnology Program University of Massachusetts Lowell Lowell MA 01854 USA
| | - Tengfei Zhang
- Department of Neurosurgery Sanbo Brain Hospital Capital Medicine University Beijing 100069 China
| | - Brianna Hoff
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
| | - Sanika Suvarnapathaki
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
- Biomedical Engineering and Biotechnology Program University of Massachusetts Lowell Lowell MA 01854 USA
| | - Darlin Lantigua
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
- Biomedical Engineering and Biotechnology Program University of Massachusetts Lowell Lowell MA 01854 USA
| | - Colleen McCarthy
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
| | - Bin Wu
- Department of Neurosurgery Sanbo Brain Hospital Capital Medicine University Beijing 100069 China
| | - Gulden Camci‐Unal
- Department of Chemical Engineering University of Massachusetts Lowell Lowell MA 01854 USA
- Department of Surgery University of Massachusetts Medical School Worcester MA 01605 USA
| |
Collapse
|
9
|
Oliva N, Almquist BD. Spatiotemporal delivery of bioactive molecules for wound healing using stimuli-responsive biomaterials. Adv Drug Deliv Rev 2020; 161-162:22-41. [PMID: 32745497 DOI: 10.1016/j.addr.2020.07.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/03/2020] [Accepted: 07/23/2020] [Indexed: 12/28/2022]
Abstract
Wound repair is a fascinatingly complex process, with overlapping events in both space and time needed to pave a pathway to successful healing. This additional complexity presents challenges when developing methods for the controlled delivery of therapeutics for wound repair and tissue engineering. Unlike more traditional applications, where biomaterial-based depots increase drug solubility and stability in vivo, enhance circulation times, and improve retention in the target tissue, when aiming to modulate wound healing, there is a desire to enable localised, spatiotemporal control of multiple therapeutics. Furthermore, many therapeutics of interest in the context of wound repair are sensitive biologics (e.g. growth factors), which present unique challenges when designing biomaterial-based delivery systems. Here, we review the diverse approaches taken by the biomaterials community for creating stimuli-responsive materials that are beginning to enable spatiotemporal control over the delivery of therapeutics for applications in tissue engineering and regenerative medicine.
Collapse
|
10
|
Shih YV, Varghese S. Tissue engineered bone mimetics to study bone disorders ex vivo: Role of bioinspired materials. Biomaterials 2019; 198:107-121. [PMID: 29903640 PMCID: PMC6281816 DOI: 10.1016/j.biomaterials.2018.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/25/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022]
Abstract
Recent advances in materials development and tissue engineering has resulted in a substantial number of bioinspired materials that recapitulate cardinal features of bone extracellular matrix (ECM) such as dynamic inorganic and organic environment(s), hierarchical organization, and topographical features. Bone mimicking materials, as defined by its self-explanatory term, are developed based on the current understandings of the natural bone ECM during development, remodeling, and fracture repair. Compared to conventional plastic cultures, biomaterials that resemble some aspects of the native environment could elicit a more natural molecular and cellular response relevant to the bone tissue. Although current bioinspired materials are mainly developed to assist tissue repair or engineer bone tissues, such materials could nevertheless be applied to model various skeletal diseases in vitro. This review summarizes the use of bioinspired materials for bone tissue engineering, and their potential to model diseases of bone development and remodeling ex vivo. We largely focus on biomaterials, designed to re-create different aspects of the chemical and physical cues of native bone ECM. Employing these bone-inspired materials and tissue engineered bone surrogates to study bone diseases has tremendous potential and will provide a closer portrayal of disease progression and maintenance, both at the cellular and tissue level. We also briefly touch upon the application of patient-derived stem cells and introduce emerging technologies such as organ-on-chip in disease modeling. Faithful recapitulation of disease pathologies will not only offer novel insights into diseases, but also lead to enabling technologies for drug discovery and new approaches for cell-based therapies.
Collapse
Affiliation(s)
- Yuru Vernon Shih
- Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA.
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA; Department of Materials Science and Engineering, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
11
|
Park SH, Uzawa T, Hattori F, Ogino S, Morimoto N, Tsuneda S, Ito Y. “All-in-one” in vitro selection of collagen-binding vascular endothelial growth factor. Biomaterials 2018; 161:270-278. [DOI: 10.1016/j.biomaterials.2018.01.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 01/08/2023]
|
12
|
Addi C, Murschel F, De Crescenzo G. Design and Use of Chimeric Proteins Containing a Collagen-Binding Domain for Wound Healing and Bone Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2016; 23:163-182. [PMID: 27824290 DOI: 10.1089/ten.teb.2016.0280] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Collagen-based biomaterials are widely used in the field of tissue engineering; they can be loaded with biomolecules such as growth factors (GFs) to modulate the biological response of the host and thus improve its potential for regeneration. Recombinant chimeric GFs fused to a collagen-binding domain (CBD) have been reported to improve their bioavailability and the host response, especially when combined with an appropriate collagen-based biomaterial. This review first provides an extensive description of the various CBDs that have been fused to proteins, with a focus on the need for accurate characterization of their interaction with collagen. The second part of the review highlights the benefits of various CBD/GF fusion proteins that have been designed for wound healing and bone regeneration.
Collapse
Affiliation(s)
- Cyril Addi
- Biomedical Science and Technology Research Group, Bio-P2 Research Unit , Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Canada
| | - Frederic Murschel
- Biomedical Science and Technology Research Group, Bio-P2 Research Unit , Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Canada
| | - Gregory De Crescenzo
- Biomedical Science and Technology Research Group, Bio-P2 Research Unit , Department of Chemical Engineering, École Polytechnique de Montréal, Montréal, Canada
| |
Collapse
|
13
|
Curry AS, Pensa NW, Barlow AM, Bellis SL. Taking cues from the extracellular matrix to design bone-mimetic regenerative scaffolds. Matrix Biol 2016; 52-54:397-412. [PMID: 26940231 DOI: 10.1016/j.matbio.2016.02.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/30/2022]
Abstract
There is an ongoing need for effective materials that can replace autologous bone grafts in the clinical treatment of bone injuries and deficiencies. In recent years, research efforts have shifted away from a focus on inert biomaterials to favor scaffolds that mimic the biochemistry and structure of the native bone extracellular matrix (ECM). The expectation is that such scaffolds will integrate with host tissue and actively promote osseous healing. To further enhance the osteoinductivity of bone graft substitutes, ECM-mimetic scaffolds are being engineered with a range of growth factors (GFs). The technologies used to generate GF-modified scaffolds are often inspired by natural processes that regulate the association between endogenous ECMs and GFs. The purpose of this review is to summarize research centered on the development of regenerative scaffolds that replicate the fundamental collagen-hydroxyapatite structure of native bone ECM, and the functionalization of these scaffolds with GFs that stimulate critical events in osteogenesis.
Collapse
Affiliation(s)
- Andrew S Curry
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, United States
| | - Nicholas W Pensa
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, United States
| | - Abby M Barlow
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, United States
| | - Susan L Bellis
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, United States; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, United States.
| |
Collapse
|
14
|
Immobilization of bone morphogenetic protein on DOPA- or dopamine-treated titanium surfaces to enhance osseointegration. BIOMED RESEARCH INTERNATIONAL 2013; 2013:265980. [PMID: 24459666 PMCID: PMC3888698 DOI: 10.1155/2013/265980] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/16/2013] [Accepted: 11/25/2013] [Indexed: 01/31/2023]
Abstract
Titanium was treated with 3,4-dihydroxy-L-phenylalanine (DOPA) or dopamine to immobilize bone morphogenetic protein-2 (BMP2), a biomolecule. DOPA and dopamine solutions turned into suspensions, and precipitates were produced at high pH. Both treatments produced a brown surface on titanium that was thicker at high pH than low pH. Dopamine produced a thicker layer than DOPA. The hydrophobicity of the surfaces increased after treatment with dopamine independent of pH. Furthermore, there were more amino groups in the layers formed at pH 8.5 than pH 4.5 in both treatments. Dopamine treatment produced more amino groups in the layer than DOPA. BMP2 was immobilized on the treated surfaces via a coupling reaction using carbodiimide. More BMP2 was immobilized on surfaces treated at pH 8.5 than pH 4.5 in both treatments. The immobilized BMP induced specific signal transduction and alkali phosphatase, a differentiation marker. Thus, the present study demonstrates that titanium treated with DOPA or dopamine can become bioactive via the surface immobilization of BMP2, which induces specific signal transduction.
Collapse
|
15
|
Lu H, Kawazoe N, Kitajima T, Myoken Y, Tomita M, Umezawa A, Chen G, Ito Y. Spatial immobilization of bone morphogenetic protein-4 in a collagen-PLGA hybrid scaffold for enhanced osteoinductivity. Biomaterials 2012; 33:6140-6. [PMID: 22698726 DOI: 10.1016/j.biomaterials.2012.05.038] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 05/17/2012] [Indexed: 02/09/2023]
Abstract
The introduction of bioactive molecules into three-dimensional porous scaffolds to mimic the in vivo microenvironment is a promising strategy for tissue engineering and stem cell research. In this study, bone morphogenetic protein-4 (BMP4) was spatially immobilized in a collagen-PLGA hybrid scaffold with a fusion BMP4 composed of an additional collagen-binding domain derived from fibronectin (CBD-BMP4). CBD-BMP4 bound to the collagen-PLGA hybrid scaffold and the BMP4-immobilized hybrid scaffold supported cell adhesion and proliferation. The osteogenic induction effect of the immobilized CBD-BMP4 was investigated with three-dimensional culture of human bone marrow-derived mesenchymal stem cells in the BMP4-immobilized collagen-PLGA hybrid scaffold. The in vivo implantation experiment demonstrated that the immobilized CBD-BMP4 maintained its osteoinductive activity, being capable of up-regulating osteogenic gene expression and biomineralization. The strong osteoinductivity of the BMP4-immobilized scaffold suggests it should be useful for bone tissue engineering, stem cell function manipulation and bone substitutes.
Collapse
Affiliation(s)
- Hongxu Lu
- Tissue Regeneration Materials Unit, International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Tada S, Kitajima T, Ito Y. Design and synthesis of binding growth factors. Int J Mol Sci 2012; 13:6053-6072. [PMID: 22754349 PMCID: PMC3382770 DOI: 10.3390/ijms13056053] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/10/2012] [Accepted: 05/09/2012] [Indexed: 01/01/2023] Open
Abstract
Growth factors play important roles in tissue regeneration. However, because of their instability and diffusible nature, improvements in their performance would be desirable for therapeutic applications. Conferring binding affinities would be one way to improve their applicability. Here we review techniques for conjugating growth factors to polypeptides with particular affinities. Conjugation has been designed at the level of gene fusion and of polypeptide ligation. We summarize and discuss the designs and applications of binding growth factors prepared by such conjugation approaches.
Collapse
Affiliation(s)
- Seiichi Tada
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takashi Kitajima
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
17
|
Kuwahara K, Fang JY, Yang Z, Han B. Enzymatic Crosslinking and Degradation of Gelatin as a Switch for Bone Morphogenetic Protein-2 Activity. Tissue Eng Part A 2011; 17:2955-64. [DOI: 10.1089/ten.tea.2011.0290] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kenrick Kuwahara
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California
| | - Josephine Y. Fang
- Department of Surgery, University of Southern California, Los Angeles, California
| | - Zhi Yang
- Department of Surgery, University of Southern California, Los Angeles, California
| | - Bo Han
- Department of Surgery, University of Southern California, Los Angeles, California
| |
Collapse
|
18
|
Fávaro–Pípi E, Ribeiro DA, Ribeiro JU, Bossini P, Oliveira P, Parizotto NA, Tim C, de Araújo HSS, Renno ACM. Low-Level Laser Therapy Induces Differential Expression of Osteogenic Genes During Bone Repair in Rats. Photomed Laser Surg 2011; 29:311-7. [DOI: 10.1089/pho.2010.2841] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- Elaine Fávaro–Pípi
- Department of Physiotherapy, Federal University of São Carlos, São Carlos, SP–Brazil
| | - Daniel Araki Ribeiro
- Departamento de Biociências, Universidade Federal de São Paulo, Santos, SP–Brazil
| | - Juliana Uema Ribeiro
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, SP–Brazil
| | - Paulo Bossini
- Department of Physiotherapy, Federal University of São Carlos, São Carlos, SP–Brazil
| | - Poliani Oliveira
- Department of Physiotherapy, Federal University of São Carlos, São Carlos, SP–Brazil
| | - Nivaldo A. Parizotto
- Department of Physiotherapy, Federal University of São Carlos, São Carlos, SP–Brazil
| | - Carla Tim
- Department of Physiotherapy, Federal University of São Carlos, São Carlos, SP–Brazil
| | | | | |
Collapse
|
19
|
Repairing critical-sized rat calvarial defects with a periosteal cell-seeded small intestinal submucosal layer. Plast Reconstr Surg 2010; 122:400-409. [PMID: 18626355 DOI: 10.1097/prs.0b013e31817d6206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Small intestinal submucosa was evaluated as a bioscaffold candidate for periosteum-derived osteoblasts, and its suitability as a bone replacement material for cranial defects was investigated. METHODS In the in vitro phase, osteoblasts were expanded in osteogenic medium and were then seeded onto small intestinal submucosa. To confirm osteoblast phenotype, they were tested for alkaline phosphatase, collagen type 1, and calcium expression. In the in vivo phase, calvarial critical-sized defects were created in 35 rats. The defects were either left untreated for surgical control (group 1), treated with small intestinal submucosa alone (group 2), treated with an osteoblast-embedded construct (group 3), or treated with an autogenous bone graft (group 4). The results were evaluated 12 weeks after surgery with radiopacity measurements and with stereologic analysis. RESULTS Periosteal cells grew successfully in vitro. The percentage radiopaque area at the defect was measured to be 42, 74, 76, and 89 percent for groups 1, 2, 3, and 4, respectively. The pixel intensity of the same site was 36.4, 48.1, 47.5, and 54.5 for the same groups, respectively. Tissue-engineered constructs did not achieve enough bone formation and calcification to be effective as autogenous bone grafts and were not superior to the small intestinal submucosa alone. However, both small intestinal submucosa and cell-seeded small intestinal submucosa showed significantly more bone formation compared with the untreated group. CONCLUSIONS Although it was demonstrated that the small intestinal submucosa itself has osteogenic properties, it was not significantly increased by adding periosteum-derived osteoblasts to it. The osteogenic properties of small intestinal submucosa are promising, and its role as a scaffold should be investigated further.
Collapse
|
20
|
Shen H, Hu X, Yang F, Bei J, Wang S. The bioactivity of rhBMP-2 immobilized poly(lactide-co-glycolide) scaffolds. Biomaterials 2009; 30:3150-7. [DOI: 10.1016/j.biomaterials.2009.02.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Accepted: 02/02/2009] [Indexed: 10/21/2022]
|
21
|
Visser R, Arrabal PM, Becerra J, Rinas U, Cifuentes M. The effect of an rhBMP-2 absorbable collagen sponge-targeted system on bone formation in vivo. Biomaterials 2009; 30:2032-7. [DOI: 10.1016/j.biomaterials.2008.12.046] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 12/19/2008] [Indexed: 12/28/2022]
|
22
|
Bessa PC, Casal M, Reis RL. Bone morphogenetic proteins in tissue engineering: the road from the laboratory to the clinic, part I (basic concepts). J Tissue Eng Regen Med 2008; 2:1-13. [PMID: 18293427 DOI: 10.1002/term.63] [Citation(s) in RCA: 230] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Discovered in 1965, bone morphogenetic proteins (BMPs) are a group of cytokines from the transforming growth factor-beta (TGFbeta) superfamily with significant roles in bone and cartilage formation. BMPs are used as powerful osteoinductive components of diverse tissue-engineering products for the healing of bone. Several BMPs with different physiological roles have been identified in humans. The purpose of this review is to cover the biological function of the main members of BMP family, the latest research on BMPs signalling pathways and advances in the production of recombinant BMPs for tissue engineering purposes.
Collapse
Affiliation(s)
- P C Bessa
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Department of Polymer Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | |
Collapse
|
23
|
Lin H, Zhao Y, Sun W, Chen B, Zhang J, Zhao W, Xiao Z, Dai J. The effect of crosslinking heparin to demineralized bone matrix on mechanical strength and specific binding to human bone morphogenetic protein-2. Biomaterials 2008; 29:1189-97. [PMID: 18083224 DOI: 10.1016/j.biomaterials.2007.11.032] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2007] [Accepted: 11/04/2007] [Indexed: 11/29/2022]
Abstract
Demineralized bone matrix (DBM) is a collagen-based scaffold, but its low mechanical strength and limited BMP-2 binding ability restrict its application in bone repair. It is known that heparin could be immobilized onto scaffolds to enhance their binding of growth factors with the heparin-binding domain. Here, we crosslinked heparin to DBM to increase its BMP-2 binding ability. To our surprise, the mechanical strength of DBM was also dramatically increased. The compression modulus of heparin crosslinked DBM (HC-DBM) have improved (seven-fold increased) under wet condition, which would allow the scaffolds to keep specific shapes in vivo. As expected, HC-DBM showed specific binding ability to BMP-2. Additional studies showed the bound BMP-2 exerted its function to induce cell differentiation on the scaffold. Subcutaneous implantation of HC-DBM carrying BMP-2 showed higher alkaline phosphatase (ALP) activity (2 weeks), more calcium deposition (4 and 8 weeks) and more bone formation than that of control groups. It is concluded that HC-DBM has increased mechanical intensity as well as specific BMP-2 binding ability; HC-DBM/BMP-2 enhances the osteogenesis and therefore could be an effective medical device for bone repair.
Collapse
Affiliation(s)
- Hang Lin
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Chen B, Lin H, Zhao Y, Wang B, Zhao Y, Liu Y, Liu Z, Dai J. Activation of demineralized bone matrix by genetically engineered human bone morphogenetic protein-2 with a collagen binding domain derived from von Willebrand factor propolypeptide. J Biomed Mater Res A 2007; 80:428-34. [PMID: 17013862 DOI: 10.1002/jbm.a.30900] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
There is a large demand for new bone regeneration to restore the function during bone injuries. Bone filling materials are important in bone tissue restoration. In this study, the demineralized bone matrix (DBM) was activated with the engineering human bone morphogenetic protein-2 (BMP-2). To enhance the binding of BMP-2 to the DBM scaffolds, a collagen-binding peptide was fused to the N-terminal of BMP-2. The in vitro results showed that the engineered collagen-targeted BMP-2 (rhBMP2-v) bound to DBM scaffolds specifically and the rhBMP2-v had increased alkaline phosphatase activity in C2C12 cells. In vivo, the DBM scaffolds impregnated with rhBMP2-v showed greater effect on ectopic bone formation. Our data suggested that the collagen-based BMP-2 targeting bone repair system had greater bone inducing ability than DBM loaded with regular BMP-2.
Collapse
Affiliation(s)
- Bing Chen
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen B, Lin H, Wang J, Zhao Y, Wang B, Zhao W, Sun W, Dai J. Homogeneous osteogenesis and bone regeneration by demineralized bone matrix loading with collagen-targeting bone morphogenetic protein-2. Biomaterials 2007; 28:1027-35. [PMID: 17095085 DOI: 10.1016/j.biomaterials.2006.10.013] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 10/09/2006] [Indexed: 12/26/2022]
Abstract
Considerable research has been focused on the development of bone morphogenetic protein-2 (BMP-2) delivery system for homologous and efficient bone regeneration. The aim of the present study was to develop a collagen-based targeting bone repair system. A collagen-binding domain (CBD) was added to the N-terminal of native BMP-2 to allow it bind to collagen specifically. We showed that the collagen-binding bone morphogenetic protein-2 (named bone morphogenetic protein2-h, BMP2-h) had maintained the full biological activity as compared to rhBMP2 lacking the CBD. In vitro functional study also demonstrated that collagen matrix could maintain higher bioactivity of BMP2-h than native BMP-2. When demineralized bone matrix (DBM) impregnated with BMP2-h was implanted subcutaneously in rats, homogeneous bone formation was observed. Moreover, in a rabbit mandible defect model, surgical implantation of collagen matrix loaded with BMP2-h exhibited remarkable osteoinductive properties and excellent homogeneous bone formation. Our studies suggested that this novel collagen-based BMP-2 targeting bone repair system induced better bone formation not only in quantity but also in quality. Similar approaches may also be used for the repair of other tissue injuries.
Collapse
Affiliation(s)
- Bing Chen
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 3 Nanyitiao, Zhongguancun, Beijing 100080, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Poehling S, Pippig SD, Hellerbrand K, Siedler M, Schütz A, Dony C. Superior Effect of MD05, Beta-Tricalcium Phosphate Coated With Recombinant Human Growth/Differentiation Factor-5, Compared to Conventional Bone Substitutes in the Rat Calvarial Defect Model. J Periodontol 2006; 77:1582-90. [PMID: 16945037 DOI: 10.1902/jop.2006.050328] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND MD05 consists of beta-tricalcium phosphate (beta-TCP) coated with recombinant human growth/differentiation factor-5 (rhGDF-5) and is under evaluation as an osteoinductive and osteoconductive bone graft material for use in dental and maxillofacial applications. The objective of this study was to compare the bone regenerative properties of MD05 with those of conventional commercially available bone substitutes. METHODS Full-thickness, 6-mm diameter, calvarial critical-size defects (two per animal) were created in adult Sprague-Dawley rats. Groups of rats were implanted with the following: 1) MD05; 2) bovine bone mineral; 3) bovine bone mineral with collagen; 4) bovine bone mineral with synthetic peptide, 5) beta-TCP (from two different manufacturers); or 6) no filling material (sham controls). Blinded macroscopic analysis, histopathologic analysis, and histomorphometric analysis were carried out 6 weeks after implantation. RESULTS New bone formation assessed histomorphometrically was about five times greater with MD05 than with the other bone substitutes tested, and bone repair was well advanced in MD05-filled defects after 6 weeks. The extent of fibrous tissue and residual implant were significantly lower in the MD05 group. In contrast to the other materials, the use of MD05 was associated with the complete osseous bridging of the defect and with the presence of normal bone marrow. The osteoinductive effect of rhGDF-5 was apparent from the more pronounced bone ingrowth observed with MD05 compared to the beta-TCP carrier alone. All implants showed good biocompatibility. CONCLUSION MD05 achieved superior bone regeneration compared to conventional materials and is a promising new bone substitute for dental and maxillofacial applications.
Collapse
|
27
|
Becerra J, Guerado E, Claros S, Alonso M, Bertrand ML, González C, Andrades JA. Autologous human-derived bone marrow cells exposed to a novel TGF-β1 fusion protein for the treatment of critically sized tibial defect. Regen Med 2006; 1:267-78. [PMID: 17465809 DOI: 10.2217/17460751.1.2.267] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We report the first clinical case of transplantation of autologous bone marrow-derived cells in vitro exposed to a novel recombinant human transforming growth factor (rhTGF)-β1 fusion protein bearing a collagen-binding domain (rhTGF-β1-F2), dexamethasone (DEX) and β-glycerophosphate (β-GP). When such culture-expanded cells were loaded into porous ceramic scaffolds and transplanted into the bone defect of a 69-year-old man, they differentiated into bone tissue. Marrow cells were obtained from the iliac crest and cultured in collagen gels impregnated with rhTGF-β1-F2. Cells were selected under serum-restricted conditions in rhTGF-β1-F2-containing medium for 10 days, expanded in 20% serum for 22 days and osteoinduced for 3 additional days in DEX/β-GP-supplemented medium. We found that the cell number harvested from rhTGF-β1-F2-treated cultures was significantly higher (2.3- to 3-fold) than that from untreated cultures. rhTGF-β1-F2 treatment also significantly increased alkaline phosphatase activity (2.2- to 5-fold) and osteocalcin synthesis, while calcium was only detected in rhTGF-β1-F2-treated cells. Eight weeks after transplantation, most of the scaffold pores were filled with bone and marrow tissue. When we tested the same human cells treated in vitro in a rat model using diffusion chambers, there was subsequent development of cartilage and bone following the subcutaneous transplantation of rhTGF-β1-F2-treated cells. This supports the suggestion that such cells were marrow-derived cells, with chondrogenic and osteogenic potential, whereas the untreated cells were not under the same conditions. The ability for differentiation into cartilage and bone tissues, combined with an extensive proliferation capacity, makes such a marrow-derived stem cell population valuable to induce bone regeneration at skeletal defect sites.
Collapse
Affiliation(s)
- José Becerra
- University of Málaga, Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, Malaga, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
Onyia JE, Helvering LM, Gelbert L, Wei T, Huang S, Chen P, Dow ER, Maran A, Zhang M, Lotinun S, Lin X, Halladay DL, Miles RR, Kulkarni NH, Ambrose EM, Ma YL, Frolik CA, Sato M, Bryant HU, Turner RT. Molecular profile of catabolic versus anabolic treatment regimens of parathyroid hormone (PTH) in rat bone: an analysis by DNA microarray. J Cell Biochem 2005; 95:403-18. [PMID: 15779007 DOI: 10.1002/jcb.20438] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Teriparatide, human PTH (1-34), a new therapy for osteoporosis, elicits markedly different skeletal responses depending on the treatment regimen. In order to understand potential mechanisms for this dichotomy, the present investigation utilized microarrays to delineate the genes and pathways that are regulated by intermittent (subcutaneous injection of 80 microg/kg/day) and continuous (subcutaneous infusion of 40 microg/kg/day by osmotic mini pump) PTH (1-34) for 1 week in 6-month-old female rats. The effect of each PTH regimen was confirmed by histomorphometric analysis of the proximal tibial metaphysis, and mRNA from the distal femoral metaphysis was analyzed using an Affymetrix microarray. Both PTH paradigms co-regulated 22 genes including known bone formation genes (i.e., collagens, osteocalcin, decorin, and osteonectin) and also uniquely modulated additional genes. Intermittent PTH regulated 19 additional genes while continuous treatment regulated 173 additional genes. This investigation details for the first time the broad profiling of the gene and pathway changes that occur in vivo following treatment of intermittent versus continuous PTH (1-34). These results extend previous observations of gene expression changes and reveal the in vivo regulation of BMP3 and multiple neuronal genes by PTH treatment.
Collapse
Affiliation(s)
- Jude E Onyia
- Integrative Biology, Lilly Research Labs, Indianapolis, Indiana 46285, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Murphy WL, Simmons CA, Kaigler D, Mooney DJ. Bone regeneration via a mineral substrate and induced angiogenesis. J Dent Res 2004; 83:204-10. [PMID: 14981120 DOI: 10.1177/154405910408300304] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Angiogenesis and biomineral substrates play major roles in bone development and regeneration. We hypothesized that macroporous scaffolds of biomineralized 85:15 poly(lactide-co-glycolide), which locally release vascular endothelial growth factor-165 (VEGF), would direct simultaneous regeneration of bone and vascular tissue. The presence of a bone-like biomineral substrate significantly increased regeneration of osteoid matrix (32 +/- 7% of total tissue area; mean +/- SD; p < 0.05) and mineralized tissue (14 +/- 2%; P < 0.05) within a rat cranium critical defect compared with a non-mineralized polymer scaffold (19 +/- 8% osteoid and 10 +/- 2% mineralized tissue). Further, the addition of VEGF to a mineralized substrate significantly increased the generation of mineralized tissue (19 +/- 4%; P < 0.05) compared with mineralized substrate alone. This appeared to be due to a significant increase in vascularization throughout VEGF-releasing scaffolds (52 +/- 9 vessels/mm(2); P < 0.05) compared with mineralized scaffolds without VEGF (34 +/- 4 vessels/mm(2)). Surprisingly, there was no significant difference in total osteoid between the two samples, suggesting that increased vascularization enhances mineralized tissue generation, but not necessarily osteoid formation. These results indicate that induced angiogenesis can enhance tissue regeneration, supporting the concept of therapeutic angiogenesis in tissue-engineering strategies.
Collapse
Affiliation(s)
- W L Murphy
- Department of Biomedical Engineering, University of Michigan, 5213 Dental, 1011 North University Avenue, Ann Arbor, MI 48109-1078, USA
| | | | | | | |
Collapse
|
30
|
Yu Y, Harris RI, Yang JL, Anderson HC, Walsh WR. Differential expression of osteogenic factors associated with osteoinductivity of human osteosarcoma cell lines. ACTA ACUST UNITED AC 2004; 70:122-8. [PMID: 15174116 DOI: 10.1002/jbm.a.30072] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Differential expression of multiple osteogenic factors may be responsible for the different osteoinductivity of osteosarcoma cell lines. We compared in vivo osteoinductivity of human osteosarcoma cell lines (Saos-2 vs. U-2 OS) in nude mice, and their in vitro expression of various osteogenic factors of protein level by quantitative immunocytochemistry and mRNA level by RT-PCR and/or in situ hybridization. Saos-2 cells, but not U-2 OS, were osteoinductive in vivo. Significantly higher expression (independent t-test, all p < 0.005) of osteogenic factors were observed in Saos-2 cells compared with U-2 OS, which included bone morphogenetic proteins (particularly BMPs-2, 3, 4, and 7), transforming growth factor-beta (TGF-beta), BMP receptor (BMPR)-1A, receptor-regulated Smads (R-Smads), Smads 1, 2, and 5, and common-mediator Smad (Co-Smad), Smad 4. In contrast, U-2 OS cells expressed higher levels of inhibitory Smad 6 (I-Smad) protein than Saos-2 cells (p < 0.001). These results suggest that a combination of osteogenic factors (BMPs, TGF-beta, BMPRs, and R/Co-Smads) against I-Smad may play important roles in the Saos-2 cell osteoinductivity. This may have a clinical implication in selecting key osteogenic factors for combined therapy for bone defect diseases. The characterized cell lines can be used as positive and negative controls for the assessments of both in vitro and in vivo bone formation capabilities of designed tissues or biomaterials.
Collapse
Affiliation(s)
- Yan Yu
- Orthopaedic Research Laboratory, University of New South Wales, The Prince of Wales Hospital, Sydney, NSW 2031, Australia.
| | | | | | | | | |
Collapse
|
31
|
Jadlowiec JA, Celil AB, Hollinger JO. Bone tissue engineering: recent advances and promising therapeutic agents. Expert Opin Biol Ther 2003; 3:409-23. [PMID: 12783610 DOI: 10.1517/14712598.3.3.409] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Bone regeneration can be accomplished with growth factors, cells and delivery systems. This review is a summary of these components that may be used for tissue regeneration. Support for the potential therapeutic applications of transcription factors in bone tissue engineering will also be discussed.
Collapse
Affiliation(s)
- Julie A Jadlowiec
- Bone Tissue Engineering Center, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
32
|
Wang FS, Yang KD, Kuo YR, Wang CJ, Sheen-Chen SM, Huang HC, Chen YJ. Temporal and spatial expression of bone morphogenetic proteins in extracorporeal shock wave-promoted healing of segmental defect. Bone 2003; 32:387-96. [PMID: 12689682 DOI: 10.1016/s8756-3282(03)00029-2] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Extracorporeal shock wave (ESW) is a noninvasive acoustic wave, which has recently been demonstrated to promote bone repair. The actual healing mechanism triggered by ESW has not yet been identified. Bone morphogenetic proteins (BMP) have been implicated as playing an important role in bone development and fracture healing. In this study, we aimed to examine the involvement of BMP-2, BMP-3, BMP-4, and BMP-7 expression in ESW promotion of fracture healing. Rats with a 5-mm segmental femoral defect were given ESW treatment using 500 impulses at 0.16 mJ/mm(2). Femurs and calluses were subjected to immunohistochemistry and RT-PCR assay 1, 2, 4, and 8 weeks after treatment. Histological observation demonstrated that fractured femurs received ESW treatment underwent intensive mesenchymal cell aggregation, hypertrophic chondrogenesis, and endochondral/intramembrane ossification, resulting in the healing of segmental defect. Aggregated mesenchymal cells at the defect, chondrocytes at the hypertrophic cartilage, and osteoblasts adjunct to newly formed woven bone showed intensive proliferating cell nuclear antigen expression. ESW treatment significantly promoted BMP-2, BMP-3, BMP-4, and BMP-7 mRNA expression of callus as determined by RT-PCR, and BMP immunoreactivity appeared throughout the bone regeneration period. Mesenchymal cells and immature chondrocytes showed intensive BMP-2, BMP-3, and BMP-4 immunoreactivity. BMP-7 expression was evident on osteoblasts located at endochondral ossification junction. Our findings suggest that BMP play an important role in signaling ESW-activated cell proliferation and bone regeneration of segmental defect.
Collapse
Affiliation(s)
- F-S Wang
- Department of Medical Research, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | | | | | | | | | | | | |
Collapse
|