1
|
Wang Y, Li S, He J, Peng L, Wang Q, Zou X, Tudorascu DL, Schaeffer DJ, Schaeffer L, Szczupak D, Park JE, Sukoff Rizzo SJ, Carter GW, Silva AC, Zhang T. Analysis of functional connectivity changes from childhood to old age: A study using HCP-D, HCP-YA, and HCP-A datasets. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2025; 3:imag_a_00503. [PMID: 40078534 PMCID: PMC11894817 DOI: 10.1162/imag_a_00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025]
Abstract
We present a new clustering-enabled regression approach to investigate how functional connectivity (FC) of the entire brain changes from childhood to old age. By applying this method to resting-state functional magnetic resonance imaging data aggregated from three Human Connectome Project studies, we cluster brain regions that undergo identical age-related changes in FC and reveal diverse patterns of these changes for different region clusters. While most brain connections between pairs of regions show minimal yet statistically significant FC changes with age, only a tiny proportion of connections exhibit practically significant age-related changes in FC. Among these connections, FC between region clusters from the same functional network tends to decrease over time, whereas FC between region clusters from different networks demonstrates various patterns of age-related changes. Moreover, our research uncovers sex-specific trends in FC changes. Females show much higher FC mainly within the default mode network, whereas males display higher FC across several more brain networks. These findings underscore the complexity and heterogeneity of FC changes in the brain throughout the lifespan.
Collapse
Affiliation(s)
- Yaotian Wang
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, United States
| | - Shuoran Li
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jie He
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lingyi Peng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Qiaochu Wang
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xu Zou
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dana L. Tudorascu
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - David J. Schaeffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lauren Schaeffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Diego Szczupak
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Jung Eun Park
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | | | | | - Afonso C. Silva
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tingting Zhang
- Department of Statistics, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
2
|
Tahir MJ, Xie Y, Nasrallah IM, Elbejjani M, Wellons MF, Bryan RN, Dolui S, Erus G, Launer LJ, Schreiner PJ. The menopausal transition and multiple physiologic measures of early brain health in the Coronary Artery Risk Development in Young Adults study. Menopause 2025; 32:45-53. [PMID: 39626180 DOI: 10.1097/gme.0000000000002450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
OBJECTIVE This study proposed to investigate the cross-sectional and longitudinal associations of menopausal status with physiologic brain magnetic resonance imaging measures. METHODS The sample included women from the Coronary Artery Risk Development in Young Adults study who self-reported their reproductive histories and participated in the brain magnetic resonance imaging substudies at the year 25 (n = 292) and year 30 (n = 258) follow-up examinations. Menopausal status was classified based on natural menstrual cycle regularity/cessation at both time points. Gray matter cerebrovascular reactivity (CVR) was calculated as mean percent change in blood oxygen level-dependent signals in activated voxels following a breath-hold challenge. Gray matter cerebral blood flow (CBF) was assessed using pseudo-continuous arterial spin labeling. Linear regression models were used to examine cross-sectional and longitudinal associations of menopausal status with gray matter CVR and CBF after adjustment for potential age-related covariates. RESULTS Women were mean age 50 years at year 25; 37% were Black; and 46% were postmenopausal. Relative to premenopause or perimenopause, postmenopause was associated with lower gray matter CVR at year 30 cross-sectionally (1.86% vs 1.69%, P = 0.03, respectively) and longitudinally for women who were postmenopausal at both time points (-0.32% [95% CI, -0.63% to -0.02%]) after covariate adjustment. Mean CVR values were also lower for these women when compared with women who remained premenopausal or perimenopausal (1.71% compared with 2.04%, respectively). Menopausal status was unrelated to either concurrent or longitudinal gray matter CBF. CONCLUSIONS These findings suggest that the ability of vessels to adapt in response to hypercapnia may be impaired during menopause, even within a relatively short time window.
Collapse
Affiliation(s)
- Muna J Tahir
- From the Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Yang Xie
- Division of Biostatistics and Health Data Science, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Ilya M Nasrallah
- Department of Radiology, University of Pennsylvania Health System, Philadelphia, PA
| | - Martine Elbejjani
- Clinical Research Institute and Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Melissa F Wellons
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - R Nick Bryan
- Department of Diagnostic Medicine, Dell Medical School, The University of Texas at Austin, Austin, TX
| | - Sudipto Dolui
- Department of Radiology, University of Pennsylvania Health System, Philadelphia, PA
| | - Guray Erus
- Department of Radiology, University of Pennsylvania Health System, Philadelphia, PA
| | - Lenore J Launer
- Intramural Research Program, National Institute of Aging, National Institutes of Health, Bethesda, MD
| | - Pamela J Schreiner
- From the Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| |
Collapse
|
3
|
Moon DU, Kim H, Jung JH, Han K, Jeon HJ. Association of age at menopause and suicide risk in postmenopausal women: a nationwide cohort study. Front Psychiatry 2024; 15:1442991. [PMID: 39742331 PMCID: PMC11686360 DOI: 10.3389/fpsyt.2024.1442991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/25/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Early age at menopause has been linked to various adverse health outcomes, but its association with suicide risk remains underexplored. This study aims to assess the relationship between age at menopause and suicide risk among postmenopausal women. Methods This retrospective cohort study analyzed data from the Korean National Health Insurance System (NHIS), covering 1,315,795 postmenopausal women aged 30 years and above, from 2009 to 2021. Menopausal age was classified as primary ovarian insufficiency (under 40 years), early menopause (40-44 years), average menopause (45-49 and 50-54 years), and late menopause (55 years and older). Suicide incidence was identified using ICD-10 codes for primary cause of death. Multivariable Cox proportional hazards models were utilized to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Results Across the 12-year follow-up, there were 2,986 suicides. Women with primary ovarian insufficiency exhibited the highest suicide risk (HR, 1.43; 95% CI, 1.14-1.78, p < 0.001), followed by those with early menopause (HR, 1.31; 95% CI, 1.15-1.50, p < 0.001), and those with menopause between 45 and 49 (HR, 1.13; 95% CI, 1.04-1.23, p < 0.001) compared to the reference group undergoing menopause at age of 50-54. Discussion Early onset of menopause, particularly primary ovarian insufficiency, is associated with a significantly elevated risk of suicide. These findings underscore the need for targeted interventions and support for women experiencing early menopause. This study highlights the importance of monitoring mental health in postmenopausal women and suggests further research to explore the underlying mechanisms linking early menopause to increased suicide risk.
Collapse
Affiliation(s)
- Daa Un Moon
- Department of Psychiatry and Neurosciences, Charité Campus Mitte (CCM), Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Psychiatric University Hospital Charité at St. Hedwig Hospital, Berlin, Germany
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyewon Kim
- Department of Psychiatry, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Jin-Hyung Jung
- Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul, Republic of Korea
| | - Hong Jin Jeon
- Department of Psychiatry, Depression Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Department of Medical Device Management and Research, and Department of Clinical Research Design and Evaluation, Samsung Advanced Institute for Health Sciences and Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Edelstein R, Gutterman S, Newman B, Van Horn JD. Assessment of Sports Concussion in Female Athletes: A Role for Neuroinformatics? Neuroinformatics 2024; 22:607-618. [PMID: 39078562 PMCID: PMC11579174 DOI: 10.1007/s12021-024-09680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2024] [Indexed: 07/31/2024]
Abstract
Over the past decade, the intricacies of sports-related concussions among female athletes have become readily apparent. Traditional clinical methods for diagnosing concussions suffer limitations when applied to female athletes, often failing to capture subtle changes in brain structure and function. Advanced neuroinformatics techniques and machine learning models have become invaluable assets in this endeavor. While these technologies have been extensively employed in understanding concussion in male athletes, there remains a significant gap in our comprehension of their effectiveness for female athletes. With its remarkable data analysis capacity, machine learning offers a promising avenue to bridge this deficit. By harnessing the power of machine learning, researchers can link observed phenotypic neuroimaging data to sex-specific biological mechanisms, unraveling the mysteries of concussions in female athletes. Furthermore, embedding methods within machine learning enable examining brain architecture and its alterations beyond the conventional anatomical reference frame. In turn, allows researchers to gain deeper insights into the dynamics of concussions, treatment responses, and recovery processes. This paper endeavors to address the crucial issue of sex differences in multimodal neuroimaging experimental design and machine learning approaches within female athlete populations, ultimately ensuring that they receive the tailored care they require when facing the challenges of concussions. Through better data integration, feature identification, knowledge representation, validation, etc., neuroinformaticists, are ideally suited to bring clarity, context, and explainabilty to the study of sports-related head injuries in males and in females, and helping to define recovery.
Collapse
Affiliation(s)
- Rachel Edelstein
- Department of Psychology, University of Virginia, 409 McCormick Road Gilmer Hall Room 304, Charlottesville, VA, 22904, USA.
| | - Sterling Gutterman
- Department of Psychology, University of Virginia, 409 McCormick Road Gilmer Hall Room 304, Charlottesville, VA, 22904, USA
| | - Benjamin Newman
- Department of Psychology, University of Virginia, 409 McCormick Road Gilmer Hall Room 304, Charlottesville, VA, 22904, USA
| | - John Darrell Van Horn
- Department of Psychology, University of Virginia, 409 McCormick Road Gilmer Hall Room 304, Charlottesville, VA, 22904, USA
| |
Collapse
|
5
|
Zhang YN, Chen XL, Guo LY, Jiang PR, Lu H, Pan K, Guo L, Hu YT, Bao AM. Downregulation of peripheral luteinizing hormone rescues ovariectomy-associated cognitive deficits in APP/PS1 mice. Neurobiol Aging 2024; 135:60-69. [PMID: 38185053 DOI: 10.1016/j.neurobiolaging.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/26/2023] [Accepted: 12/27/2023] [Indexed: 01/09/2024]
Abstract
Alzheimer's disease (AD) is more prevalent in women than men, supposing due to the decline of estrogens in menopause, accompanied by increased gonadotropins such as luteinizing hormone (LH). We and others found that the transcription factor early growth response-1 (EGR1) regulates cholinergic function including the expression of acetylcholinesterase (AChE) and plays a significant role in cognitive decline of AD. Here we investigated in APP/PS1 mice by ovariectomy (OVX) and estradiol (E2) supplementation or inhibition of LH the effect on hippocampus-related cognition and related molecular changes. We found that OVX-associated cognitive impairment was accompanied by increased dorsal hippocampal EGR1 expression, which was rescued by downregulating peripheral LH rather than by supplementing E2. We also found in postmortem AD brains a higher expression of pituitary LH-mRNA and higher EGR1 expression in the posterior hippocampus. Both, in human and mice, there was a significant positive correlation between respectively posterior/dorsal hippocampal EGR1 and peripheral LH expression. We conclude that peripheral increased LH and increased posterior hippocampal EGR1 plays a significant role in AD pathology.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Xin-Lu Chen
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, East Qingchun Road 3#, Hangzhou, Zhejiang 310016, China
| | - Ling-Yu Guo
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Pei-Ran Jiang
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; National Brain Bank for Health and Disease, Hangzhou, China
| | - Hui Lu
- National Brain Bank for Health and Disease, Hangzhou, China
| | - Kai Pan
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Lei Guo
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Yu-Ting Hu
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| | - Ai-Min Bao
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China; Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, East Qingchun Road 3#, Hangzhou, Zhejiang 310016, China.
| |
Collapse
|
6
|
Zhang F, Chang H, Schaefer SM, Gou J. Biological age and brain age in midlife: relationship to multimorbidity and mental health. Neurobiol Aging 2023; 132:145-153. [PMID: 37804610 PMCID: PMC10803130 DOI: 10.1016/j.neurobiolaging.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 10/09/2023]
Abstract
Biological age and brain age estimated using biological and neuroimaging measures have recently emerged as surrogate aging biomarkers shown to be predictive of diverse health outcomes. As aging underlies the development of many chronic conditions, surrogate aging biomarkers capture health at the whole person level, having the potential to improve our understanding of multimorbidity. Our study investigates whether elevated biological age and brain age are associated with an increased risk of multimorbidity using a large dataset from the Midlife in the United States Refresher study. Ensemble learning is utilized to combine multiple machine learning models to estimate biological age using a comprehensive set of biological markers. Brain age is obtained using Gaussian processes regression and neuroimaging data. Our study is the first to examine the relationship between accelerated brain age and multimorbidity. Furthermore, it is the first attempt to explore how biological age and brain age are related to multimorbidity in mental health. Our findings hold the potential to advance the understanding of disease accumulation and their relationship with aging.
Collapse
Affiliation(s)
- Fengqing Zhang
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA.
| | - Hansoo Chang
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Stacey M Schaefer
- Institute on Aging, University of Wisconsin-Madison, Madison, WI, USA
| | - Jiangtao Gou
- Department of Mathematics and Statistics, Villanova University, Villanova, PA, USA
| |
Collapse
|
7
|
Lee J, Peesh P, Quaicoe V, Tan C, Banerjee A, Mooz P, Ganesh BP, Petrosino J, Bryan RM, McCullough LD, Venna VR. Estradiol mediates colonic epithelial protection in aged mice after stroke and is associated with shifts in the gut microbiome. Gut Microbes 2023; 15:2271629. [PMID: 37910478 PMCID: PMC10730206 DOI: 10.1080/19490976.2023.2271629] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023] Open
Abstract
The gut is a major source of bacteria and antigens that contribute to neuroinflammation after brain injury. Colonic epithelial cells (ECs) are responsible for secreting major cellular components of the innate defense system, including antimicrobial proteins (AMP) and mucins. These cells serve as a critical regulator of gut barrier function and maintain host-microbe homeostasis. In this study, we determined post-stroke host defense responses at the colonic epithelial surface in mice. We then tested if the enhancement of these epithelial protective mechanisms is beneficial in young and aged mice after stroke. AMPs were significantly increased in the colonic ECs of young males, but not in young females after experimental stroke. In contrast, mucin-related genes were enhanced in young females and contributed to mucus formation that maintains the distance between the host and gut bacteria. Bacterial community profiling was done using universal amplification of 16S rRNA gene sequences. The sex-specific colonic epithelial defense responses after stroke in young females were reversed with ovariectomy and led to a shift from a predominately mucin response to the enhanced AMP expression seen in males after stroke. Estradiol (E2) replacement prior to stroke in aged females increased mucin gene expression in the colonic ECs. Interestingly, we found that E2 treatment reduced stroke-associated neuronal hyperactivity in the insular cortex, a brain region that interacts with visceral organs such as the gut, in parallel to an increase in the composition of Lactobacillus and Bifidobacterium in the gut microbiota. This is the first study demonstrating sex differences in host defense mechanisms in the gut after brain injury.
Collapse
Affiliation(s)
- Juneyoung Lee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pedram Peesh
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Victoria Quaicoe
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Chunfeng Tan
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anik Banerjee
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Patrick Mooz
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bhanu P. Ganesh
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Joseph Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Robert M. Bryan
- Department of Anesthesiology, Baylor College of Medicine, Houston, TX, USA
| | - Louise D. McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Neurology, Memorial Hermann Hospital-Texas Medical Center, Houston, TX, USA
| | - Venugopal Reddy Venna
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|
8
|
Branigan GL, Torrandell-Haro G, Chen S, Shang Y, Perez-Miller S, Mao Z, Padilla-Rodriguez M, Cortes-Flores H, Vitali F, Brinton RD. Breast cancer therapies reduce risk of Alzheimer's disease and promote estrogenic pathways and action in brain. iScience 2023; 26:108316. [PMID: 38026173 PMCID: PMC10663748 DOI: 10.1016/j.isci.2023.108316] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/08/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Worldwide, an ever-increasing number of women are prescribed estrogen-modulating therapies (EMTs) for the treatment of breast cancer. In parallel, aging of the global population of women will contribute to risk of both breast cancer and Alzheimer's disease. To address the impact of anti-estrogen therapies on risk of Alzheimer's and neural function, we conducted medical informatic and molecular pharmacology analyses to determine the impact of EMTs on risk of Alzheimer's followed by determination of EMT estrogenic mechanisms of action in neurons. Collectively, these data provide both clinical and mechanistic data indicating that select EMTs exert estrogenic agonist action in neural tissue that are associated with reduced risk of Alzheimer's disease while simultaneously acting as effective estrogen receptor antagonists in breast.
Collapse
Affiliation(s)
- Gregory L. Branigan
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
- Department of Pharmacology, University of Arizona College of Medicine; Tucson AZ, USA
- Medical Scientist Training Program, University of Arizona College of Medicine; Tucson AZ, USA
| | - Georgina Torrandell-Haro
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
- Department of Pharmacology, University of Arizona College of Medicine; Tucson AZ, USA
| | - Shuhua Chen
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
| | - Yuan Shang
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
| | | | - Zisu Mao
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
| | | | | | - Francesca Vitali
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
- Center of Bioinformatics and Biostatistics, University of Arizona College of Medicine; Tucson AZ, USA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona; Tucson AZ, USA
- Department of Pharmacology, University of Arizona College of Medicine; Tucson AZ, USA
- Department of Neurology, University of Arizona College of Medicine; Tucson AZ, USA
| |
Collapse
|
9
|
Qu H, He C, Xu H, Sun X. Investigating the association of breast cancer and stroke: A two-sample Mendelian randomization study. Medicine (Baltimore) 2023; 102:e35037. [PMID: 37747009 PMCID: PMC10519452 DOI: 10.1097/md.0000000000035037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 09/26/2023] Open
Abstract
We conducted a two-sample Mendelian randomization (MR) design to evaluate the causal relation between breast cancer and stroke. Genetic variants associated with breast cancer and stroke were both obtained from genome-wide association study summary data. The single nucleotide polymorphisms were selected as instrumental variables. Effect estimates were primarily evaluated using standard inverse variance weighted. Finally, sensitivity analyses were performed for the detection of potential pleiotropy and heterogeneity in the cause-effect evaluation. There was a causal association of ER-positive breast cancer (odds ratio = 0.11, 95% confidence interval: 0.08-0.16, P < .001), and ER-negative breast cancer (odds ratio = 1.04, 95% confidence interval: 1.00-1.07, P = .045) with stroke. MR-egger regression revealed that the cause-effect of ER-positive breast cancer (P < .001) is drove by the directional horizontal pleiotropy, while there was no directional pleiotropy in the cause-effect of ER-negative breast cancer (P = .82). Cochran Q-derived P-value from inverse variance weighted (P = .27) shown that the cause-effect of ER-negative breast cancer on stroke do not need to consider the effect of heterogeneity. In addition, the leave-one-out analysis showed no influential instruments driving the associations, suggesting robust results for all outcomes. The present MR study reveals that ER negative breast cancer increase the risk of stroke.
Collapse
Affiliation(s)
- Huiling Qu
- Department of Neurology, The General Hospital of Northern Theater Command, Shenyang, China
| | - Chao He
- Department of Neurology, The General Hospital of Northern Theater Command, Shenyang, China
| | - Haichun Xu
- Department of Psychiatry, Shenyang Jing'an Mental Health Hospital, Shenyang, Liaoning, P.R. China
| | - Xiaoyu Sun
- Department of Neurology, The General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
10
|
An L, Lu Q, Wang K, Wang Y. Urolithins: A Prospective Alternative against Brain Aging. Nutrients 2023; 15:3884. [PMID: 37764668 PMCID: PMC10534540 DOI: 10.3390/nu15183884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The impact of host-microbiome interactions on cognitive health and disease has received increasing attention. Microbial-derived metabolites produced in the gut are one of crucial mechanisms of the gut-brain axis interaction, showing attractive perspectives. Urolithins (Uros) are gut microbial-derived metabolites of ellagitannins and ellagic acid, whose biotransformation varies considerably between individuals and decreases greatly with age. Recently, accumulating evidence has suggested that Uros may have specific advantages in preventing brain aging including favorable blood-brain barrier permeability, selective brain distribution, and increasingly supporting data from preclinical and clinical studies. However, the usability of Uros in diagnosis, prevention, and treatment of neurodegenerative diseases remains elusive. In this review, we aim to present the comprehensive achievements of Uros in age-related brain dysfunctions and neurodegenerative diseases and discuss their prospects and knowledge gaps as functional food, drugs, or biomarkers against brain aging.
Collapse
Affiliation(s)
- Lei An
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (L.A.); (Q.L.); (K.W.)
| | - Qiu Lu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (L.A.); (Q.L.); (K.W.)
| | - Ke Wang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; (L.A.); (Q.L.); (K.W.)
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Rizhao Huawei Institute of Comprehensive Health Industries, Shandong Keepfit Biotech. Co., Ltd., Rizhao 276800, China
| | - Yousheng Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
11
|
Cumplido-Mayoral I, García-Prat M, Operto G, Falcon C, Shekari M, Cacciaglia R, Milà-Alomà M, Lorenzini L, Ingala S, Meije Wink A, Mutsaerts HJMM, Minguillón C, Fauria K, Molinuevo JL, Haller S, Chetelat G, Waldman A, Schwarz AJ, Barkhof F, Suridjan I, Kollmorgen G, Bayfield A, Zetterberg H, Blennow K, Suárez-Calvet M, Vilaplana V, Gispert JD. Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer's disease and neurodegeneration stratified by sex. eLife 2023; 12:e81067. [PMID: 37067031 PMCID: PMC10181824 DOI: 10.7554/elife.81067] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 04/10/2023] [Indexed: 04/18/2023] Open
Abstract
Brain-age can be inferred from structural neuroimaging and compared to chronological age (brain-age delta) as a marker of biological brain aging. Accelerated aging has been found in neurodegenerative disorders like Alzheimer's disease (AD), but its validation against markers of neurodegeneration and AD is lacking. Here, imaging-derived measures from the UK Biobank dataset (N=22,661) were used to predict brain-age in 2,314 cognitively unimpaired (CU) individuals at higher risk of AD and mild cognitive impaired (MCI) patients from four independent cohorts with available biomarker data: ALFA+, ADNI, EPAD, and OASIS. Brain-age delta was associated with abnormal amyloid-β, more advanced stages (AT) of AD pathology and APOE-ε4 status. Brain-age delta was positively associated with plasma neurofilament light, a marker of neurodegeneration, and sex differences in the brain effects of this marker were found. These results validate brain-age delta as a non-invasive marker of biological brain aging in non-demented individuals with abnormal levels of biomarkers of AD and axonal injury.
Collapse
Affiliation(s)
- Irene Cumplido-Mayoral
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
| | - Marina García-Prat
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
| | - Grégory Operto
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridFrance
| | - Carles Falcon
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)MadridSpain
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
| | - Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridFrance
| | - Marta Milà-Alomà
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridFrance
| | - Luigi Lorenzini
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Silvia Ingala
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Alle Meije Wink
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Henk JMM Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Carolina Minguillón
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridFrance
| | - Karine Fauria
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridFrance
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
| | - Sven Haller
- CIRD Centre d'Imagerie Rive DroiteGenevaSwitzerland
| | - Gael Chetelat
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and BrainCyceronFrance
| | - Adam Waldman
- Centre for Dementia Prevention, Edinburgh Imaging, and UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| | | | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamNetherlands
- Institutes of Neurology and Healthcare Engineering, University College LondonLondonUnited Kingdom
| | | | | | | | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, University of GothenburgMölndalSweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of NeurologyLondonUnited Kingdom
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, University of GothenburgMölndalSweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University HospitalMölndalSweden
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridFrance
- Servei de Neurologia, Hospital del MarBarcelonaSpain
| | - Verónica Vilaplana
- Department of Signal Theory and Communications, Universitat Politècnica de CatalunyaBarcelonaSpain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)MadridSpain
| | | | | | | | | |
Collapse
|
12
|
Lee C, Han KD, Yoo J, Park KA, Oh SY. Hormone Replacement Therapy and the Incidence of Nonarteritic Anterior Ischemic Optic Neuropathy: a Nationwide Population-Based Study (2009-2018). Graefes Arch Clin Exp Ophthalmol 2023:10.1007/s00417-023-05976-8. [PMID: 36680611 DOI: 10.1007/s00417-023-05976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/24/2022] [Accepted: 01/09/2023] [Indexed: 01/22/2023] Open
Abstract
PURPOSE This study aimed to assess the association between hormone replacement therapy (HRT) and the prevalence of nonarteritic anterior ischemic optic neuropathy (NAION) in menopausal women using national data from the entire Korean population. METHODS The health screening data of 1,381,605 women between 40 and 90 years of age collected by the National Health Insurance Service (NHIS) of Korea between January 1, 2009, and December 31, 2018, were retrospectively reviewed. Before data analysis, the potential cofounders were adjusted for among all participants. Based on HRT use and its duration (classified into four groups), the hazard ratio (HR) and 95% confidence interval (CI) of NAION development were calculated via a Cox proportional hazards regression analysis using the nonuser group as a reference. RESULTS Overall, 7824 NAION diagnoses were made during the mean follow-up of 8.22 years (standard deviation: 1.09 years) in 1,381,605 post-menopausal women. NAION was more common in the HRT group than in the non-HRT group (HR [95% CI]: 1.268 [1.197-1.344]). Furthermore, the risk of NAION increased along with increased HRT duration (p < 0.0001). In the multivariate analysis, the adjusted HRs of the < 2-year HRT group, the 2-5-year HRT group, and the ≥ 5-year HRT group were 1.19 (95% CI: 1.10-1.28), 1.3 (95% CI: 1.17-1.45), and 1.473 (95% CI: 1.31-1.65), respectively. Compared to women younger than 65 years, the HR of HRT for NAION was significantly higher than that of women older than 65 years (p < 0.0001). CONCLUSION Our population-based cohort study found that HRT was significantly associated with increased incidence of NAION. The incidence of NAION also increased with the duration of HRT.
Collapse
Affiliation(s)
- Chaeyeon Lee
- Department of Ophthalmology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, Korea
| | - Kyung-Do Han
- Department of Medical Statistics, Catholic University College of Medicine, Seoul, Korea
| | - Juhwan Yoo
- Department of Biomedicine and Health Science, The Catholic University of Korea, Seoul, Korea
| | - Kyung-Ah Park
- Department of Ophthalmology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, Korea.
| | - Sei Yeul Oh
- Department of Ophthalmology, Samsung Medical Centre, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, Korea.
| |
Collapse
|
13
|
Ibrahim IM, Alsieni M, Almalki SG, Alqurashi YE, Kumar V. Comparative evaluation of natural neuroprotectives and their combinations on chronic immobilization stress-induced depression in experimental mice. 3 Biotech 2023; 13:22. [PMID: 36568496 PMCID: PMC9780413 DOI: 10.1007/s13205-022-03438-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The present study evaluates the potential of neuroprotective phytochemicals-rutin (R), resveratrol (Res), 17β-estradiol (17β-E2), and their different combinations against chronic immobilization stress (CIS)-induced depression-like behaviour in male albino mice. Here, the mice were exposed to stress via immobilization of their four limbs under a restrainer for 6 h daily until 7 days of the induction after 30 min of respective drug treatment in different mice groups. The result found the protective effect of these phytoconstituents and their combinations against CIS-induced depression due to their ability to suppress oxidative stress, restore mitochondria, HPA-axis modulation, neurotransmitter level, stress hormones, and inflammatory markers. Also, the combination drug regimens of these phytoconstituents showed synergistic results in managing the physiological and biochemical features of depression. Thus, these neuroprotective could be utilized well in combination to manage depression-like symptoms during episodic stress. Furthermore, such results could be well justified when administered in polyherbal formulation with these neuroprotective as major components. In addition, an advanced study can be designed at the molecular and epigenetics level using a formulation based on these neuroprotective.
Collapse
Affiliation(s)
- Ibrahim M. Ibrahim
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Mohammed Alsieni
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Sami G. Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952 Saudi Arabia
| | - Yaser E. Alqurashi
- Department of Biology, College of Science Al-Zulfi, Majmaah University, Al-Majmaah, 11952 Saudi Arabia
| | - Vinay Kumar
- Department of Pharmacology, KIET Group of Institutions (KIET School of Pharmacy), Delhi-NCR, Ghaziabad, Uttar Pradesh 201206 India
| |
Collapse
|
14
|
Araujo-Menendez CE, Saelzler UG, Stickel AM, Sundermann EE, Banks SJ, Paipilla A, Barnes ML, Panizzon MS. Associations Between Parity and Cognition: Race/Ethnic Differences. J Alzheimers Dis 2023; 94:1157-1168. [PMID: 37393496 PMCID: PMC10473123 DOI: 10.3233/jad-221210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 07/03/2023]
Abstract
BACKGROUND Race/ethnicity is associated with differences in reproductive history and cognition individually, yet it remains an understudied factor in the relationship between parity and later-life cognition. OBJECTIVE To evaluate if the association between parity and cognition differs between racial/ethnic groups. METHODS Participants included 778 older, postmenopausal women from the Health and Nutrition Examination Survey (Latina: n = 178, Non-Latino Black [NLB]: n = 169, Non-Latino White [NLW]: n = 431) who self-reported at least one birth. Cognitive outcomes included working memory, learning memory, and verbal fluency. Covariates included age, education, cardiovascular and other reproductive health factors, adult socioeconomic status (SES) and depressive symptoms. We fit a series of linear models to examine a) whether parity was associated with cognitive functioning, b) if this association varied by race/ethnicity through parity by race/ethnicity interactions, and c) individual parity with cognition associations stratified by race/ethnicity. RESULTS In the full sample, parity was significantly negatively associated with Digit Symbol Substitution Test (DSST) performance (b = -0.70, p = 0.024) but not Animal Fluency or word-list learning and memory. Tests of race/ethnicity-by-parity interactions were not statistically significant (ps > 0.05). However, stratified analyses by race/ethnicity showed a differential effect of parity on DSST performance, such that parity was significantly negatively associated with DSST performance (b = -1.66, p = 0.007) among Latinas but not in NLWs (b = -0.16, p = 0.74) or NLBs (b = -0.81, p = 0.191). CONCLUSION Among Latina, but not NLB or NLW women, greater parity was associated with worse processing speed/executive functioning later in life. Further research is needed to understand the mechanisms driving racial/ethnic differences.
Collapse
Affiliation(s)
| | - Ursula G. Saelzler
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Ariana M. Stickel
- Department of Psychology, San Diego State University, La Jolla, CA, USA
| | - Erin E. Sundermann
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Sarah J. Banks
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Andrea Paipilla
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - McKinna L. Barnes
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Matthew S. Panizzon
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center for Behavior Genetics of Aging, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
15
|
Burns S, Selman A, Sehar U, Rawat P, Reddy AP, Reddy PH. Therapeutics of Alzheimer's Disease: Recent Developments. Antioxidants (Basel) 2022; 11:2402. [PMID: 36552610 PMCID: PMC9774459 DOI: 10.3390/antiox11122402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
With increasing aging, dementia is a growing public health concern globally. Patients with dementia have multiple psychological and behavioral changes, including depression, anxiety, inappropriate behavior, paranoia, agitation, and hallucinations. The major types of dementia are Alzheimer's disease (AD), vascular dementia (VCID), Lewy body dementia (LBD), frontotemporal dementia (FTD), and mixed dementia (MiAD). Among these, AD is the most common form of dementia in the elderly population. In the last three decades, tremendous progress has been made in understanding AD's biology and disease progression, particularly its molecular basis, biomarker development, and drug discovery. Multiple cellular changes have been implicated in the progression of AD, including amyloid beta, phosphorylated tau, synaptic damage, mitochondrial dysfunction, deregulated microRNAs, inflammatory changes, hormonal deregulation, and others; based on these changes, therapeutic strategies have been developed, which are currently being tested in animal models and human clinical trials. The purpose of our article is to highlight recent therapeutic strategies' developments, critically discuss current strategies' failures, and propose new strategies to combat this devasting mental illness.
Collapse
Affiliation(s)
- Scott Burns
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ashley Selman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Priyanka Rawat
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P. Reddy
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
16
|
Christiansen DM, McCarthy MM, Seeman MV. Where Sex Meets Gender: How Sex and Gender Come Together to Cause Sex Differences in Mental Illness. Front Psychiatry 2022; 13:856436. [PMID: 35836659 PMCID: PMC9273892 DOI: 10.3389/fpsyt.2022.856436] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/02/2022] [Indexed: 12/25/2022] Open
Abstract
Sex differences are prevalent in multiple mental disorders. Internalizing disorders are more commonly diagnosed in women, whereas externalizing and neurodevelopmental disorders are more often diagnosed in men. Significant sex/gender differences are reported in prevalence, symptom profile, age of onset, comorbidities, functional impairment, prognosis, as well as in responses to various treatments. In this conceptual article, we discuss theories and empirical studies of sex- and gender-related influences in mental health, by focusing on three examples: autism spectrum disorder (ASD), acknowledged as a disorder whose roots are mainly biological; eating disorders, whose origins are considered to be mainly psychosocial, and posttraumatic stress disorder (PTSD), an environmentally caused disorder with both psychosocial and biological underpinnings. We examine the ways in which sex differences emerge, from conception through adulthood. We also examine how gender dichotomies in exposures, expectations, role assumptions, and cultural traditions impact the expression of our three selected mental illnesses. We are especially interested in how sex-based influences and gender-based influences interact with one another to affect mental illness. We suggest that sex and gender are multi-faceted and complex phenomena that result in variations, not only between men and women, but also within each sex and gender through alterations in genes, hormone levels, self-perceptions, trauma experiences, and interpersonal relationships. Finally, we propose a conceptual diatheses-stress model, depicting how sex and gender come together to result in multiple sex/gender differences across mental disorders. In our model, we categorize diatheses into several categories: biological, intrapersonal, interpersonal, and environmental. These diatheses interact with exposure to stressors, ranging from relatively minor to traumatic, which allows for the sometimes bidirectional influences of acute and long-term stress responses. Sex and gender are discussed at every level of the model, thereby providing a framework for understanding and predicting sex/gender differences in expression, prevalence and treatment response of mental disorders. We encourage more research into this important field of study.
Collapse
Affiliation(s)
- Dorte M. Christiansen
- Department of Psychology, National Centre for Psychotraumatology, University of Southern Denmark, Odense, Denmark
| | - Margaret M. McCarthy
- Department of Pharmacology, University of Maryland, Baltimore, MD, United States
| | - Mary V. Seeman
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Pandey R, Garg A, Gupta K, Shukla P, Mandrah K, Roy S, Chattopadhyay N, Bandyopadhyay S. Arsenic Induces Differential Neurotoxicity in Male, Female, and E2-Deficient Females: Comparative Effects on Hippocampal Neurons and Cognition in Adult Rats. Mol Neurobiol 2022; 59:2729-2744. [PMID: 35175559 DOI: 10.1007/s12035-022-02770-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/03/2022] [Indexed: 02/06/2023]
Abstract
We earlier reported that arsenic induced hippocampal neuronal loss, causing cognitive dysfunctions in male rats. This neuronal damage mechanism involved an altered bone morphogenetic protein (BMP2)/Smad and brain-derived neurotrophic factor (BDNF)/TrkB signaling. Susceptibility to toxicants is often sex-dependent, and hence we studied the comparative effects of arsenic in adult male and female rats. We observed that a lower dose of arsenic reduced learning-memory ability, examined through passive avoidance and Y-maze tests, in male but not female rats. Again, male rats exhibited greater learning-memory loss at a higher dose of arsenic. Supporting this, arsenic-treated male rats demonstrated larger reduction in the hippocampal NeuN and %-surviving neurons, together with increased apoptosis and altered BMP2/Smad and BDNF/TrkB pathways compared to their female counterparts. Since the primary female hormone, estrogen (E2), regulates normal brain functions, we next probed whether endogenous E2 levels in females offered resistance against arsenic-induced neurotoxicity. We used ovariectomized (OVX) rat as the model for E2 deficiency. We primarily identified that OVX itself induced hippocampal neuronal damage and cognitive decline, involving an increased BMP2/Smad and reduced BDNF/TrkB. Further, these effects appeared greater in arsenic + OVX compared to arsenic + sham (ovary intact) or OVX rats alone. The OVX-induced adverse effects were significantly reduced by E2 treatment. Overall, our study suggests that adult males could be more susceptible than females to arsenic-induced neurotoxicity. It also indicates that endogenous E2 regulates hippocampal BMP and BDNF signaling and restrains arsenic-induced neuronal dysfunctions in females, which may be inhibited in E2-deficient conditions, such as menopause or ovarian failure.
Collapse
Affiliation(s)
- Rukmani Pandey
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York City, USA
| | - Asmita Garg
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Keerti Gupta
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pallavi Shukla
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
- Division of Microbial Technology, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Kapil Mandrah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Somendu Roy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Analytical Chemistry Laboratory, Regulatory Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India
| | - Naibedya Chattopadhyay
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Division of Endocrinology, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, Uttar Pradesh, India
| | - Sanghamitra Bandyopadhyay
- Developmental Toxicology Laboratory, Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow, 226001, Uttar Pradesh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
18
|
Pons V, Rivest S. Targeting Systemic Innate Immune Cells as a Therapeutic Avenue for Alzheimer Disease. Pharmacol Rev 2022; 74:1-17. [PMID: 34987086 DOI: 10.1124/pharmrev.121.000400] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer disease (AD) is the first progressive neurodegenerative disease worldwide, and the disease is characterized by an accumulation of amyloid in the brain and neurovasculature that triggers cognitive decline and neuroinflammation. The innate immune system has a preponderant role in AD. The last decade, scientists focused their efforts on therapies aiming to modulate innate immunity. The latter is of great interest, since they participate to the inflammation and phagocytose the amyloid in the brain and blood vessels. We and others have developed pharmacological approaches to stimulate these cells using various ligands. These include toll-like receptor 4, macrophage colony stimulating factor, and more recently nucleotide-binding oligomerization domain-containing 2 receptors. This review will discuss the great potential to take advantage of the innate immune system to fight naturally against amyloid β accumulation and prevent its detrimental consequence on brain functions and its vascular system. SIGNIFICANCE STATEMENT: The focus on amyloid β removal from the perivascular space rather than targeting CNS plaque formation and clearance represents a new direction with a great potential. Small molecules able to act at the level of peripheral immunity would constitute a novel approach for tackling aberrant central nervous system biology, one of which we believe would have the potential of generating a lot of interest.
Collapse
Affiliation(s)
- Vincent Pons
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Québec City, QC G1V 4G2, Canada
| | - Serge Rivest
- Neuroscience Laboratory, CHU de Québec Research Center and Department of Molecular Medicine, Faculty of Medicine, Laval University, 2705 Laurier Boul., Québec City, QC G1V 4G2, Canada
| |
Collapse
|
19
|
Pettemeridou E, Kallousia E, Constantinidou F. Regional Brain Volume, Brain Reserve and MMSE Performance in Healthy Aging From the NEUROAGE Cohort: Contributions of Sex, Education, and Depression Symptoms. Front Aging Neurosci 2021; 13:711301. [PMID: 34867265 PMCID: PMC8633314 DOI: 10.3389/fnagi.2021.711301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/08/2021] [Indexed: 11/27/2022] Open
Abstract
Objective: The aim of this study was twofold. First, to investigate the relationship between age, gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) volumes, brain reserve (BR), and specific regions of interest (ROIs) with global cognitive function in healthy older adults participating in a longitudinal study on aging in the island country of Cyprus. Second, to assess the contribution of important demographic and psychosocial factors on brain volume. Specifically, the effects of sex and years of education and the association between depression symptoms on brain volume were also explored in this Mediterranean cohort. Methods: Eighty-seven healthy older adults (males = 37, females = 50) scoring ≥24 on the Mini-Mental State Examination (MMSE) were included, with a mean age of 72.75 years and a mean educational level of 10.48 years. The Geriatric Depression Scale was used to assess depression. T1-weighted magnetic resonance images were used to calculate global and regional volumes. Results: Age was negatively correlated with GM, WM, BR, MMSE scores, and ROIs, including the hippocampus, amygdala, entorhinal cortex, prefrontal cortex, anterior cingulate gyrus, and positively with CSF. Higher MMSE scores positively correlated with GM volume. Women exhibited greater levels of depression than men. Depression was also negatively correlated with GM volume and MMSE scores. Men had greater ventricular size than women and participants with higher education had greater ventricular expansion than those with fewer years in education. Conclusions: The reported structural changes provide evidence on the overlap between age-related brain changes and healthy cognitive aging and suggest that these age changes affect certain regions. Furthermore, sex, depressive symptomatology, and education are significant predictors of the aging brain. Brain reserve and higher education accommodate these changes and works against the development of clinical symptoms.
Collapse
Affiliation(s)
- Eva Pettemeridou
- Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus.,KIOS Innovation and Research Center of Excellence, University of Cyprus, Nicosia, Cyprus.,Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Eleni Kallousia
- Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus
| | - Fofi Constantinidou
- Center for Applied Neuroscience, University of Cyprus, Nicosia, Cyprus.,Department of Psychology, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
20
|
Jayatunga DPW, Hone E, Khaira H, Lunelli T, Singh H, Guillemin GJ, Fernando B, Garg ML, Verdile G, Martins RN. Therapeutic Potential of Mitophagy-Inducing Microflora Metabolite, Urolithin A for Alzheimer's Disease. Nutrients 2021; 13:nu13113744. [PMID: 34836000 PMCID: PMC8617978 DOI: 10.3390/nu13113744] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/28/2021] [Accepted: 10/12/2021] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction including deficits of mitophagy is seen in aging and neurodegenerative disorders including Alzheimer’s disease (AD). Apart from traditionally targeting amyloid beta (Aβ), the main culprit in AD brains, other approaches include investigating impaired mitochondrial pathways for potential therapeutic benefits against AD. Thus, a future therapy for AD may focus on novel candidates that enhance optimal mitochondrial integrity and turnover. Bioactive food components, known as nutraceuticals, may serve as such agents to combat AD. Urolithin A is an intestinal microbe-derived metabolite of a class of polyphenols, ellagitannins (ETs). Urolithin A is known to exert many health benefits. Its antioxidant, anti-inflammatory, anti-atherogenic, anti-Aβ, and pro-mitophagy properties are increasingly recognized. However, the underlying mechanisms of urolithin A in inducing mitophagy is poorly understood. This review discusses the mitophagy deficits in AD and examines potential molecular mechanisms of its activation. Moreover, the current knowledge of urolithin A is discussed, focusing on its neuroprotective properties and its potential to induce mitophagy. Specifically, this review proposes potential mechanisms by which urolithin A may activate and promote mitophagy.
Collapse
Affiliation(s)
- Dona Pamoda W. Jayatunga
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia; (D.P.W.J.); (E.H.); (B.F.); (G.V.)
| | - Eugene Hone
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia; (D.P.W.J.); (E.H.); (B.F.); (G.V.)
- Cooperative Research Centre for Mental Health, Carlton, VIC 3053, Australia
| | - Harjot Khaira
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand; (H.K.); (T.L.); (H.S.); (M.L.G.)
| | - Taciana Lunelli
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand; (H.K.); (T.L.); (H.S.); (M.L.G.)
| | - Harjinder Singh
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand; (H.K.); (T.L.); (H.S.); (M.L.G.)
| | - Gilles J. Guillemin
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia;
- St. Vincent’s Centre for Applied Medical Research, Sydney, NSW 2011, Australia
| | - Binosha Fernando
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia; (D.P.W.J.); (E.H.); (B.F.); (G.V.)
| | - Manohar L. Garg
- Riddet Institute, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand; (H.K.); (T.L.); (H.S.); (M.L.G.)
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Giuseppe Verdile
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia; (D.P.W.J.); (E.H.); (B.F.); (G.V.)
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Ralph N. Martins
- Centre of Excellence for Alzheimer’s Disease Research & Care, School of Medical and Health Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia; (D.P.W.J.); (E.H.); (B.F.); (G.V.)
- Australian Alzheimer’s Research Foundation, Ralph and Patricia Sarich Neuroscience Research Institute, 8 Verdun Street., Nedlands, WA 6009, Australia
- Department of Biomedical Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Correspondence: ; Tel.: +61-8-9347-4200
| |
Collapse
|
21
|
Sikes-Keilp C, Rubinow DR. In search of sex-related mediators of affective illness. Biol Sex Differ 2021; 12:55. [PMID: 34663459 PMCID: PMC8524875 DOI: 10.1186/s13293-021-00400-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/08/2021] [Indexed: 12/25/2022] Open
Abstract
Sex differences in the rates of affective disorders have been recognized for decades. Studies of physiologic sex-related differences in animals and humans, however, have generally yielded little in terms of explaining these differences. Furthermore, the significance of these findings is difficult to interpret given the dynamic, integrative, and highly context-dependent nature of human physiology. In this article, we provide an overview of the current literature on sex differences as they relate to mood disorders, organizing existing findings into five levels at which sex differences conceivably influence physiology relevant to affective states. These levels include the following: brain structure, network connectivity, signal transduction, transcription/translation, and epigenesis. We then evaluate the importance and limitations of this body of work, as well as offer perspectives on the future of research into sex differences. In creating this overview, we attempt to bring perspective to a body of research that is complex, poorly synthesized, and far from complete, as well as provide a theoretical framework for thinking about the role that sex differences ultimately play in affective regulation. Despite the overall gaps regarding both the underlying pathogenesis of affective illness and the role of sex-related factors in the development of affective disorders, it is evident that sex should be considered as an important contributor to alterations in neural function giving rise to susceptibility to and expression of depression.
Collapse
Affiliation(s)
| | - David R Rubinow
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
22
|
Anti-Apoptotic and Antioxidant Activities of the Mitochondrial Estrogen Receptor Beta in N2A Neuroblastoma Cells. Int J Mol Sci 2021; 22:ijms22147620. [PMID: 34299239 PMCID: PMC8306648 DOI: 10.3390/ijms22147620] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/05/2021] [Accepted: 07/13/2021] [Indexed: 12/11/2022] Open
Abstract
Estrogens are steroid hormones that play a crucial role in the regulation of the reproductive and non-reproductive system physiology. Among non-reproductive systems, the nervous system is mainly affected by estrogens due to their antioxidant, anti-apoptotic, and anti-inflammatory activities, which are mediated by membranous and nuclear estrogen receptors, and also by non-estrogen receptor-associated estrogen actions. Neuronal viability and functionality are also associated with the maintenance of mitochondrial functions. Recently, the localization of estrogen receptors, especially estrogen receptor beta, in the mitochondria of many types of neuronal cells is documented, indicating the direct involvement of the mitochondrial estrogen receptor beta (mtERβ) in the maintenance of neuronal physiology. In this study, cell lines of N2A cells stably overexpressing a mitochondrial-targeted estrogen receptor beta were generated and further analyzed to study the direct involvement of mtERβ in estrogen neuroprotective antioxidant and anti-apoptotic actions. Results from this study revealed that the presence of estrogen receptor beta in mitochondria render N2A cells more resistant to staurosporine- and H2O2-induced apoptotic stimuli, as indicated by the reduced activation of caspase-9 and -3, the increased cell viability, the increased ATP production, and the increased resistance to mitochondrial impairment in the presence or absence of 17-β estradiol (E2). Thus, the direct involvement of mtERβ in antioxidant and anti-apoptotic activities is documented, rendering mtERβ a promising therapeutic target for mitochondrial dysfunction-associated degenerative diseases.
Collapse
|
23
|
17-β Estradiol Rescued Immature Rat Brain against Glutamate-Induced Oxidative Stress and Neurodegeneration via Regulating Nrf2/HO-1 and MAP-Kinase Signaling Pathway. Antioxidants (Basel) 2021; 10:antiox10060892. [PMID: 34206065 PMCID: PMC8229583 DOI: 10.3390/antiox10060892] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 12/14/2022] Open
Abstract
Dysregulated glutamate signaling, leading to neuronal excitotoxicity and death, has been associated with neurodegenerative pathologies. 17β-estradiol (E2) is a human steroid hormone having a role in reproduction, sexual maturation, brain health and biological activities. The study aimed to explain the neuroprotective role of E2 against glutamate-induced ROS production, MAP kinase-dependent neuroinflammation, synaptic dysfunction and neurodegeneration in the cortex and hippocampus of postnatal day 7 rat brain. Biochemical and immunofluorescence analyses were applied. Our results showed that a single subcutaneous injection of glutamate (10 mg/kg) induced brain oxidative stress after 4 h by disturbing the homeostasis of glutathione (GSH) and revealed an upsurge in ROS and LPO levels and downregulated the expression of Nrf2 and HO-1 antioxidant protein. The glutamate-exposed P7 pups illustrated increased phosphorylation of stress-activated c-Jun N-terminal kinase (JNK) and p38 kinase (p38) and downregulated expression of P-Erk1/2. This was accompanied by pathological neuroinflammation as revealed by enhanced gliosis with upregulated expression of GFAP and Iba-1, and the activation of proinflammatory cytokines (TNF-α) in glutamate-injected P7 pups. Moreover, exogenous glutamate also reduced the expression of synaptic markers (PSD-95, SYP) and induced apoptotic neurodegeneration in the cortical and hippocampal regions by dysregulating the expression of Bax, Bcl-2 and caspase-3 in the developing rat brain. On the contrary, co-treatment of E2 (10 mg/kg) with glutamate significantly abrogated brain neuroinflammation, neurodegeneration and synapse loss by alleviating brain oxidative stress by upregulating the Nrf2/HO-1 antioxidant pathway and by deactivating pro-apoptotic P-JNK/P-p38 and activation of pro-survival P-Erk1/2 MAP kinase pathways. In brief, the data demonstrate the neuroprotective role of E2 against glutamate excitotoxicity-induced neurodegeneration. The study also encourages future studies investigating if E2 may be a potent neuroprotective and neurotherapeutic agent in different neurodegenerative diseases.
Collapse
|
24
|
Liu C, Liu S, Xiong L, Zhang L, Li X, Cao X, Xue J, Li L, Huang C, Huang Z. Genistein-3'-sodium sulfonate Attenuates Neuroinflammation in Stroke Rats by Down-Regulating Microglial M1 Polarization through α7nAChR-NF-κB Signaling Pathway. Int J Biol Sci 2021; 17:1088-1100. [PMID: 33867831 PMCID: PMC8040300 DOI: 10.7150/ijbs.56800] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/22/2021] [Indexed: 12/22/2022] Open
Abstract
Microglial M1 depolarization mediated prolonged inflammation contributing to brain injury in ischemic stroke. Our previous study revealed that Genistein-3'-sodium sulfonate (GSS) exerted neuroprotective effects in ischemic stroke. This study aimed to explore whether GSS protected against brain injury in ischemic stroke by regulating microglial M1 depolarization and its underlying mechanisms. We established transient middle cerebral artery occlusion and reperfusion (tMCAO) model in rats and used lipopolysaccharide (LPS)-stimulated BV2 microglial cells as in vitro model. Our results showed that GSS treatment significantly reduced the brain infarcted volume and improved the neurological function in tMCAO rats. Meanwhile, GSS treatment also dramatically reduced microglia M1 depolarization and IL-1β level, reversed α7nAChR expression, and inhibited the activation of NF-κB signaling in the ischemic penumbra brain regions. These effects of GSS were further verified in LPS-induced M1 depolarization of BV2 cells. Furthermore, pretreatment of α7nAChR inhibitor (α-BTX) significantly restrained the neuroprotective effect of GSS treatment in tMCAO rats. α-BTX also blunted the regulating effects of GSS on neuroinflammation, M1 depolarization and NF-κB signaling activation. This study demonstrates that GSS protects against brain injury in ischemic stroke by reducing microglia M1 depolarization to suppress neuroinflammation in peri-infarcted brain regions through upregulating α7nAChR and thereby inhibition of NF-κB signaling. Our findings uncover a potential molecular mechanism for GSS treatment in ischemic stroke.
Collapse
Affiliation(s)
- Chaoming Liu
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Department of Pathobiology, JiangXi College of Traditional Chinese Medicine, Fuzhou, 344000, China
| | - Song Liu
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Lijiao Xiong
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Limei Zhang
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Xiao Li
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Xingling Cao
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Jinhua Xue
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Liangdong Li
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Cheng Huang
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Zhihua Huang
- Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Department of Physiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
25
|
Chou HT, Wu PY, Huang JC, Chen SC, Ho WY. Late Menarche, Not Reproductive Period, Is Associated with Poor Cognitive Function in Postmenopausal Women in Taiwan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2345. [PMID: 33673620 PMCID: PMC7967768 DOI: 10.3390/ijerph18052345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/17/2021] [Accepted: 02/23/2021] [Indexed: 01/09/2023]
Abstract
Female sex hormones such as estrogen and progesterone play an important role in the regulation of a woman's body, including cognition and neurogenesis. However, the effects of age at menarche and reproductive period on cognitive function are still controversial. The aim of this study was to investigate the relationships between age at menarche and reproductive period with cognitive impairment. Data were obtained from the Taiwan Biobank. Cognitive function was assessed using the Mini Mental State Examination (MMSE) and its five subdomains. Multivariable linear regression analysis revealed that an old age at menarche (per one year; coefficient β, -0.189; p = 0.020) was significantly associated with a low total MMSE score, whereas reproductive period (p = 0.733) was not significantly associated with total MMSE score. Furthermore, an old age at menarche was significantly associated with low MMSE G2 (registration) (per one year; coefficient β, -0.022; p = 0.035) and G5 (language, construction and obey) scores (per one year; coefficient β, -0.054; p = 0.047). However, age at menarche was not significantly associated with MMSE G1 (orientation), G3 (attention and calculation) and G4 (recall) scores. In addition, reproductive period was not significantly associated with any MMSE subscores. Late menarche was associated with poor cognitive function, including low total MMSE score and low MMSE G2 and G5 scores. However, reproductive period was not associated with cognitive function in postmenopausal women.
Collapse
Affiliation(s)
- Hung-Tse Chou
- Department of General Medicine, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
| | - Pei-Yu Wu
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan; (P.-Y.W.); (J.-C.H.); (S.-C.C.)
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Jiun-Chi Huang
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan; (P.-Y.W.); (J.-C.H.); (S.-C.C.)
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Szu-Chia Chen
- Department of Internal Medicine, Kaohsiung Municipal Siaogang Hospital, Kaohsiung Medical University, Kaohsiung 812, Taiwan; (P.-Y.W.); (J.-C.H.); (S.-C.C.)
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Wan-Yi Ho
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
26
|
Safi R, El-Sabban M, Najjar F. Ferula hermonis: A Review of Current Use and Pharmacological Studies of its Sesquiterpene Ester Ferutinin. Curr Drug Targets 2021; 21:499-508. [PMID: 31663476 DOI: 10.2174/1389450120666191029155053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/27/2019] [Accepted: 10/08/2019] [Indexed: 11/22/2022]
Abstract
Ferula hermonis Boiss, is an endemic plant of Lebanon, locally known as "shilsh Elzallouh". It has been extensively used in the traditional medicine as an aphrodisiac and for the treatment of sexual impotence. Crude extracts and isolated compounds of ferula hermonis contain phytoestrogenic substances having a wide spectrum of in vitro and in vivo pharmacological properties including anti-osteoporosis, anti-inflammatory, anti-microbial and anti-fungal, anti-cancer and as sexual activity enhancer. The aim of this mini-review is to highlight the traditional and novel applications of this plant's extracts and its major sesquiterpene ester, ferutinin. The phytochemical constituents and the pharmacological uses of ferula hermonis crude extract and ferutinin specifically will be discussed.
Collapse
Affiliation(s)
- Rémi Safi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Chemistry and Biochemistry, Laboratoire d'Innovation Thérapeutique, Faculty of Sciences II, Lebanese University, Beirut, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Fadia Najjar
- Department of Chemistry and Biochemistry, Laboratoire d'Innovation Thérapeutique, Faculty of Sciences II, Lebanese University, Beirut, Lebanon
| |
Collapse
|
27
|
Sparaco M, Bonavita S. The role of sex hormones in women with multiple sclerosis: From puberty to assisted reproductive techniques. Front Neuroendocrinol 2021; 60:100889. [PMID: 33189769 DOI: 10.1016/j.yfrne.2020.100889] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/02/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Multiple Sclerosis is a multifactorial chronic autoimmune disease, affecting predominantly females in the fertile age. Sex hormones changes during a woman's life, from puberty to menopause, including pregnancy and puerperium, may influence the onset and course of Multiple Sclerosis. The effect of estrogen levels on immune, clinical and radiological aspects of Multiple Sclerosis, also stimulated investigation on the effect of sexual hormones therapies, such as oral contraceptives and assisted reproductive technique, on the Multiple Sclerosis course. SEARCH STRATEGY AND SELECTION CRITERIA A literature search for original articles and reviews was conducted in the databases, including PubMed, Scopus, and ClinicalTrials.gov of the U.S. National Library of Medicine site from 1988 to 2020. RESULTS AND CONCLUSION This review reports the effects of the physiological and iatrogenic hormonal changes either on immune or clinical or paraclinical features in the different life stages of women affected by Multiple Sclerosis.
Collapse
Affiliation(s)
- Maddalena Sparaco
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Miraglia, 2, 80138 Naples, Italy
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Miraglia, 2, 80138 Naples, Italy.
| |
Collapse
|
28
|
Boyle CP, Raji CA, Erickson KI, Lopez OL, Becker JT, Gach HM, Kuller LH, Longstreth W, Carmichael OT, Riedel BC, Thompson PM. Estrogen, brain structure, and cognition in postmenopausal women. Hum Brain Mapp 2021; 42:24-35. [PMID: 32910516 PMCID: PMC7721237 DOI: 10.1002/hbm.25200] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/28/2020] [Accepted: 08/02/2020] [Indexed: 12/17/2022] Open
Abstract
Declining estrogen levels before, during, and after menopause can affect memory and risk for Alzheimer's disease. Undesirable side effects of hormone variations emphasize a role for hormone therapy (HT) where possible benefits include a delay in the onset of dementia-yet findings are inconsistent. Effects of HT may be mediated by estrogen receptors found throughout the brain. Effects may also depend on lifestyle factors, timing of use, and genetic risk. We studied the impact of self-reported HT use on brain volume in 562 elderly women (71-94 years) with mixed cognitive status while adjusting for aforementioned factors. Covariate-adjusted voxelwise linear regression analyses using a model with 16 predictors showed HT use as positively associated with regional brain volumes, regardless of cognitive status. Examinations of other factors related to menopause, oophorectomy and hysterectomy status independently yielded positive effects on brain volume when added to our model. One interaction term, HTxBMI, out of several examined, revealed significant negative association with overall brain volume, suggesting a greater reduction in brain volume than BMI alone. Our main findings relating HT to regional brain volume were as hypothesized, but some exploratory analyses were not in line with existing hypotheses. Studies suggest lower levels of estrogen resulting from oophorectomy and hysterectomy affect brain volume negatively, and the addition of HT modifies the relation between BMI and brain volume positively. Effects of HT may depend on the age range assessed, motivating studies with a wider age range as well as a randomized design.
Collapse
Affiliation(s)
- Christina P. Boyle
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - Cyrus A. Raji
- Mallinckrodt Institute of RadiologyWashington UniversitySt. LouisMissouriUSA
| | - Kirk I. Erickson
- Department of PsychologyUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - Oscar L. Lopez
- Department of NeurologyUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - James T. Becker
- Department of PsychologyUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
- Department of NeurologyUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
- Department of PsychiatryUniversity of Pittsburgh Medical CenterPittsburghPennsylvaniaUSA
| | - H. Michael Gach
- Departments of Radiation Oncology, Radiology, and Biomedical EngineeringWashington UniversitySt. LouisMissouriUSA
| | - Lewis H. Kuller
- Department of EpidemiologyUniversity of Pittsburgh, Graduate School of Public HealthPittsburghPennsylvaniaUSA
| | - William Longstreth
- Departments of Neurology and EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
| | | | - Brandalyn C. Riedel
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
- Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisIndianaUSA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| |
Collapse
|
29
|
Moraes AB, Giacomini ACVV, Genario R, Marcon L, Scolari N, Bueno BW, Demin KA, Amstislavskaya TG, Strekalova T, Soares MC, de Abreu MS, Kalueff AV. Pro-social and anxiolytic-like behavior following a single 24-h exposure to 17β-estradiol in adult male zebrafish. Neurosci Lett 2020; 747:135591. [PMID: 33359732 DOI: 10.1016/j.neulet.2020.135591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/30/2020] [Accepted: 12/18/2020] [Indexed: 01/06/2023]
Abstract
Estradiol (17β-estradiol, E2) is a crucial estrogen hormone that regulates sexual, cognitive, social and affective behaviors in various species. However, complex central nervous system (CNS) effects of E2, including its activity in males, remain poorly understood. The zebrafish (Danio rerio) is rapidly becoming a powerful novel model system in translational neuroscience research. Here, we evaluate the effects of a single 24-h exposure to 20 μg/L of E2 on behavioral and endocrine (cortisol) responses in adult male zebrafish. Overall, E2 exerted pro-social effect in the social preference test, reduced whole-body cortisol levels, elevated exploration in the novel tank test and increased the shoal size in the shoaling test, indicative of an anxiolytic-like profile of this hormone in male zebrafish. Supporting mounting human and rodent evidence on the role of E2 in behavioral regulation, the observed pro-social and anxiolytic-like effects of E2 in male zebrafish reinforce the use of this aquatic organism in studying steroid-mediated CNS mechanisms of complex affective and social behaviors.
Collapse
Affiliation(s)
- Andréia B Moraes
- Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Ana C V V Giacomini
- Postgraduate Program in Environmental Sciences, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Rafael Genario
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Leticia Marcon
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Naiara Scolari
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Barbara W Bueno
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medcial Research Center, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Granov Russian Scientific Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Neuroscience Program, Sirius University, Sochi, Russia
| | - Tamara G Amstislavskaya
- Scientific Research Institute of Neurosciences and Medicine, Novosibirsk, Russia; Zelman Institute of Medicine and Psychology, Novosibirsk State University, Novosibirsk, Russia
| | - Tatyana Strekalova
- Department of Psychiatry and Neuropsychology, Maastricht University, Netherlands; Laboratory of Psychiatric Neurobiology, Sechenov 1st Moscow State Medical University, Moscow, Russia; Research Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Marta C Soares
- CIBIO, Research Centre in Biodiversity and Genetic Resources, University of Porto, Vairão, Portugal
| | - Murilo S de Abreu
- The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA; Laboratory of Cell and Molecular Biology and Neurobiology, Moscow Institute of Physics and Technology, Moscow, Russia; Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil.
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
30
|
Sui Y, Hong CT, Chien LN, Liu HY, Chiou HY, Hsieh YC. Association between Anemia and Stroke in Females: A Nationwide, Population-Based Cohort Study in Taiwan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E7440. [PMID: 33066053 PMCID: PMC7600941 DOI: 10.3390/ijerph17207440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/31/2022]
Abstract
Optimal stroke prevention strategies for women should take into account specific sex-related stroke risk factors. Anemia is a common medical condition in females, particularly in women of reproductive age. This study investigated whether anemia is an independent risk factor for stroke in females in a population-based cohort study. We investigated newly diagnosed anemic female patients with no history of central nervous system disease, psychiatric disorders, traumatic brain injury, major operations or hemorrhagic diseases identified from the Taiwan National Health Insurance Research Database. Non-anemic matched controls (1:1) were selected based on a propensity score estimated using a logistic regression model that included demographic characteristics and comorbidities. A competing risk analysis was applied to estimate the stroke risk in anemic patients compared to that of their matched controls. In our study, the adjusted sub-distribution hazard ratios (aSHRs) of overall, hemorrhagic and ischemic stroke in anemic female patients aged <50 years were 1.35 (95% confidence interval (CI): 1.19-1.52, p < 0.001), 1.31 (95% CI, 1.09-1.56, p < 0.003), and 1.35 (95% CI, 1.15-1.58, p < 0.001), respectively, compared to non-anemic female controls. However, a positive association between anemia and stroke was not found for those aged ≥50 years. Similar results were observed when the follow-up age was limited to 50 years to reduce the potential effects of menopause on stroke. In conclusion, the present population-based cohort study found that anemia is a potential risk factor for overall, hemorrhagic and ischemic stroke in females of reproductive age.
Collapse
Affiliation(s)
- Yuan Sui
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Taipei 11031, Taiwan; (Y.S.); (C.-T.H.)
| | - Chien-Tai Hong
- Department of Neurology, Shuang Ho Hospital, Taipei Medical University, Taipei 11031, Taiwan; (Y.S.); (C.-T.H.)
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Li-Nien Chien
- School of Health Care Administration, College of Management, Taipei Medical University, Taipei 11031, Taiwan; (L.-N.C.); (H.-Y.L.)
- Health and Clinical Research Data Center, Office of Data, Taipei Medical University, Taipei 11031, Taiwan
| | - Hung-Yi Liu
- Health and Clinical Research Data Center, Office of Data, Taipei Medical University, Taipei 11031, Taiwan
| | - Hung-Yi Chiou
- School of Public Health, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan;
- Master Program in Applied Molecular Epidemiology, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan
| | - Yi-Chen Hsieh
- Master Program in Applied Molecular Epidemiology, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan
- PhD Program of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- PhD Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
31
|
De Miranda BR, Fazzari M, Rocha EM, Castro S, Greenamyre JT. Sex Differences in Rotenone Sensitivity Reflect the Male-to-Female Ratio in Human Parkinson's Disease Incidence. Toxicol Sci 2020; 170:133-143. [PMID: 30907971 DOI: 10.1093/toxsci/kfz082] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
There is a critical need to include female subjects in disease research; however, in Parkinson's disease, where the male-to-female incidence is about 1.5-to-1, the majority of preclinical research is conducted in male animals. The mitochondrial complex I inhibitor, rotenone, is selectively toxic to dopaminergic neurons, and reproduces several neuropathological features of Parkinson's disease, including α-synuclein pathology. Rotenone has been primarily utilized in male Lewis rats; however, pilot studies in age-matched female Lewis rats revealed that our usual dose (2.8 mg/kg/day intraperitoneal [i.p.]) did not cause dopaminergic neurodegeneration. Therefore, we compared rotenone-treated males (2.8 mg/kg/day, i.p.) to females at increasing doses (2.8 mg/kg/day, 3.2 mg/kg/day, 3.6 mg/kg/day, and 1.6 mg/kg bis in die, i.p.). Female rats receiving 3.2 mg/kg, and 3.6 mg/kg rotenone displayed significant loss of dopaminergic neurons in the substantia nigra as assessed by stereology, which was accompanied by a loss of striatal dopaminergic terminals. Even at these higher doses, however, females showed less inflammation, and less accumulation of α-synuclein and transferrin, possibly as a result of preserved autophagy. Thus, the bias toward increased male incidence of human Parkinson's disease is reflected in the rotenone model. Whether such sex differences will translate into differences in responses to mechanism-driven therapeutic interventions remains to be determined.
Collapse
Affiliation(s)
- Briana R De Miranda
- Pittsburgh Institute for Neurodegenerative Diseases.,Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Marco Fazzari
- Geriatric Research, Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, 15261.,Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261.,Fondazione Ri.MED, Via Bandiera 11, Palermo 90133, Italy
| | - Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases.,Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Sandra Castro
- Pittsburgh Institute for Neurodegenerative Diseases.,Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases.,Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| |
Collapse
|
32
|
4-Hydroxyestrone, an Endogenous Estrogen Metabolite, Can Strongly Protect Neuronal Cells Against Oxidative Damage. Sci Rep 2020; 10:7283. [PMID: 32350290 PMCID: PMC7190733 DOI: 10.1038/s41598-020-62984-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 03/18/2020] [Indexed: 11/08/2022] Open
Abstract
Earlier studies showed that endogenous estrogens have neuroprotective effect against oxidative damage. The present study seeks to investigate the protective effect of various endogenous estrogen metabolites against oxidative neurotoxicity in vitro and in vivo. Using immortalized mouse hippocampal neuronal cells as an in vitro model, 4-hydroxyestrone, an estrone metabolite with little estrogenic activity, is found to have the strongest neuroprotective effect against oxidative neurotoxicity among 25 endogenous estrogen metabolites tested, and its protective effect is stronger than 17β-estradiol. Similarly, 4-Hydroxyestrone also exerts a stronger protective effect than 17β-estradiol against kanic acid-induced hippocampal oxidative damage in rats. Neuroprotection by 4-hydroxyestrone involves increased cytoplasmic translocation of p53 resulting from SIRT1-mediated deacetylation of p53. Analysis of brain microsomal enzymes shows that estrogen 4-hydroxylation is the main metabolic pathway in the central nervous system. Together, these results show that 4-hydroxyestrone is an endogenous neuroestrogen that can strongly protect against oxidative neuronal damage.
Collapse
|
33
|
Lee JY, Kim JM, Lee KY, Kim B, Lee MY, Park KH. Relationships between Obesity, Nutrient Supply and Primary Open Angle Glaucoma in Koreans. Nutrients 2020; 12:nu12030878. [PMID: 32214001 PMCID: PMC7146578 DOI: 10.3390/nu12030878] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 11/25/2022] Open
Abstract
To investigate the association between nutrient intake and primary open angle glaucoma (POAG) in Koreans, a population-based, cross-sectional survey, the Korean National Health and Nutrition Examination Survey, was analyzed. Glaucoma diagnosis was based on criteria established by the International Society of Geographic and Epidemiologic Ophthalmology. Multivariate regression analysis was used to assess the correlation between dietary intake and the prevalence of POAG in all enrolled subjects. In the low Body mass index(BMI) group (BMI <18.5), females with POAG had significantly lower intakes of energy, protein, fat, carbohydrate, ash, calcium, phosphorus, sodium, potassium, vitamin A, B-carotene, thiamin, riboflavin, and vitamin C than their non-glaucoma counterparts, based on a multivariate logistic regression analysis (all p < 0.05). In females with a medium BMI (18.5 ≤ BMI < 23), POAG showed a significant association with lower food intake, energy, protein, calcium, phosphorus, potassium, thiamin and niacin. (all p < 0.05). Lower protein thiamine intake in medium BMI males was related to POAG. Low dietary intake of several nutrients showed an association with glaucoma in low BMI female subjects. An insufficient intake of certain nutrients may be associated with an increased risk of glaucoma in Koreans. Further large-scale cohort studies are needed to determine how specific nutrients alter the risk of glaucoma.
Collapse
Affiliation(s)
- Jae Yeun Lee
- Department of Ophthalmology, Sahmyook Medical Center, Seoul 02500, Korea; (J.Y.L.); (K.Y.L.)
| | - Joon Mo Kim
- Department of Ophthalmology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea;
- Correspondence: ; Tel.: +82-2-2001-2257; Fax: +82-2-2001-2262
| | - Kyoung Yong Lee
- Department of Ophthalmology, Sahmyook Medical Center, Seoul 02500, Korea; (J.Y.L.); (K.Y.L.)
| | - Bokyung Kim
- Department of Ophthalmology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea;
| | - Mi Yeon Lee
- Division of Biostatistics, Department of R&D Management, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul 03181, Korea;
| | - Ki Ho Park
- Department of Ophthalmology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Korea;
| |
Collapse
|
34
|
Associations Among Pregnancy, Parturition, and Open-angle Glaucoma: Korea National Health and Nutrition Examination Survey 2010 to 2011. J Glaucoma 2020; 28:14-19. [PMID: 30300305 DOI: 10.1097/ijg.0000000000001101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE The purpose of this study was to investigate the association between factors associated with parturition and open-angle glaucoma (OAG) in Korean females. METHODS A population-based, cross-sectional survey was performed from the Korean National Health and Nutrition Examination Survey from 2010 to 2011 and enrolled postmenopausal female participants (n=1798). We obtained information on demographics, comorbidities, and health-related behaviors and performed comprehensive ophthalmic examinations. Multivariate regression analysis was used to assess the correlation between pregnancy and delivery and the prevalence of OAG in all enrolled subjects. RESULTS The prevalence of OAG among study participants was 6.42%. There was a significant difference in the number of deliveries and age at first delivery between the OAG group and the nonglaucoma group. In multiple linear regression models adjusted for age, hypertension, and intraocular pressure only pregnancy 1 was associated with higher risk of OAG compared with pregnancy 2 (P=0.023). Subjects who had 3 or 4 deliveries were at higher risk of OAG compared with subjects with 2 deliveries (P=0.027). An age at first delivery of 16 to 20 years or 21 to 23 years was associated with increased OAG risk compared with the reference group (P<0.05). CONCLUSIONS A history of three or more deliveries and an age at first delivery younger than 23 years were associated with increased risk of OAG. These results suggest that changes or events during the period from pregnancy to delivery affect the development of glaucoma.
Collapse
|
35
|
Abstract
Neuroinflammation is implicated in contributing to a variety of neurologic and somatic illnesses including Alzheimer's disease (AD), Parkinson's disease (PD), and depression. In this chapter, we focus on the role of neuroinflammation in mediating these three illnesses and portray interactions between the immune response and the central nervous system in the context of sex differences in disease progression. The majority of this chapter is supported by clinical findings; however, we occasionally utilize preclinical models where human studies are currently lacking. We begin by detailing the pathology of neuroinflammation, distinguishing between acute and chronic inflammation, and examining contributions from the innate and adaptive immune systems. Next, we summarize potential mechanisms of immune cell mediators including interleukin-1 beta (IL-1β), tumor necrosis factor α, and IL-6 in AD, PD, and depression development. Given the strong sex bias seen in these illnesses, we additionally examine the role of sex hormones, e.g., estrogen and testosterone in mediating neuroinflammation at the cellular level. Systematically, we detail how sex hormones may contribute to distinct behavioral and clinical symptoms and prognosis between males and females with AD, PD, or depression. Finally, we highlight the possible role of exercise in alleviating neuroinflammation, as well as evidence that antiinflammatory drug therapies improve cognitive symptoms observed in brain-related diseases.
Collapse
Affiliation(s)
- Deepika Mukhara
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Unsong Oh
- Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States
| | - Gretchen N Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
36
|
Welsbie DS, Ziogas NK, Xu L, Kim BJ, Ge Y, Patel AK, Ryu J, Lehar M, Alexandris AS, Stewart N, Zack DJ, Koliatsos VE. Targeted disruption of dual leucine zipper kinase and leucine zipper kinase promotes neuronal survival in a model of diffuse traumatic brain injury. Mol Neurodegener 2019; 14:44. [PMID: 31775817 PMCID: PMC6882250 DOI: 10.1186/s13024-019-0345-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 11/08/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a major cause of CNS neurodegeneration and has no disease-altering therapies. It is commonly associated with a specific type of biomechanical disruption of the axon called traumatic axonal injury (TAI), which often leads to axonal and sometimes perikaryal degeneration of CNS neurons. We have previously used genome-scale, arrayed RNA interference-based screens in primary mouse retinal ganglion cells (RGCs) to identify a pair of related kinases, dual leucine zipper kinase (DLK) and leucine zipper kinase (LZK) that are key mediators of cell death in response to simple axotomy. Moreover, we showed that DLK and LZK are the major upstream triggers for JUN N-terminal kinase (JNK) signaling following total axonal transection. However, the degree to which DLK/LZK are involved in TAI/TBI is unknown. METHODS Here we used the impact acceleration (IA) model of diffuse TBI, which produces TAI in the visual system, and complementary genetic and pharmacologic approaches to disrupt DLK and LZK, and explored whether DLK and LZK play a role in RGC perikaryal and axonal degeneration in response to TAI. RESULTS Our findings show that the IA model activates DLK/JNK/JUN signaling but, in contrast to axotomy, many RGCs are able to recover from the injury and terminate the activation of the pathway. Moreover, while DLK disruption is sufficient to suppress JUN phosphorylation, combined DLK and LZK inhibition is required to prevent RGC cell death. Finally, we show that the FDA-approved protein kinase inhibitor, sunitinib, which has activity against DLK and LZK, is able to produce similar increases in RGC survival. CONCLUSION The mitogen-activated kinase kinase kinases (MAP3Ks), DLK and LZK, participate in cell death signaling of CNS neurons in response to TBI. Moreover, sustained pharmacologic inhibition of DLK is neuroprotective, an effect creating an opportunity to potentially translate these findings to patients with TBI.
Collapse
Affiliation(s)
- Derek S Welsbie
- Department of Ophthalmology, University of California, San Diego, La Jolla, 92037, USA. .,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Nikolaos K Ziogas
- Division of Neuropathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Leyan Xu
- Division of Neuropathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Byung-Jin Kim
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yusong Ge
- Division of Neuropathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Amit K Patel
- Department of Ophthalmology, University of California, San Diego, La Jolla, 92037, USA
| | - Jiwon Ryu
- Division of Neuropathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Mohamed Lehar
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Athanasios S Alexandris
- Division of Neuropathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Nicholas Stewart
- Division of Neuropathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Donald J Zack
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,The Solomon H. Snyder Department of Neuroscienc, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Institute of Genetic Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Vassilis E Koliatsos
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Division of Neuropathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
37
|
Sasa Quelpaertensis Nakai Induced Antidepressant-Like Effect in Ovariectomized Rats. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5815604. [PMID: 31380432 PMCID: PMC6657632 DOI: 10.1155/2019/5815604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/25/2019] [Accepted: 06/25/2019] [Indexed: 01/26/2023]
Abstract
Background Sasa quelpaertensis Nakai extract (SQE) or dwarf bamboo has been extensively investigated for its antioxidant and anti-inflammatory effects; however, no previous study assessed its effect as an antidepressant agent. Therefore, this study was designed to examine the effect of oral SQE administration in ameliorating menopausal depressive symptoms and to evaluate its mechanisms in ovariectomized rats with repeated stress. Methods All experimental groups except normal group underwent ovariectomy and then immobilization for 14 consecutive days. During these 2 weeks, two rat groups received SQE (100 and 300 mg/kg orally) and their cutaneous body temperature was measured. The tail suspension test (TST) and forced swim test (FST) were performed in order to evaluate depression-like behavior. Additionally, enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry were carried out to evaluate the central monoaminergic neurotransmitter levels and activity. Results Oral SQE (100 mg/kg) administration had reduced immobility time in TST and FST. Additionally, the SQE 100 and 300 mg/kg administration had decreased the cutaneous body temperature in the rats compared to those without treatment. In ELISA analysis, the SQE 100 group expressed elevated levels of serotonin and dopamine in the hypothalamus, prefrontal cortex, and hippocampus. Antityrosine hydroxylase (anti-TH) antibodies showed a tremendous increase in the density of TH positive cells in the locus coeruleus (LC) region of the SQE 100 group. Likewise, the SQE 100 elevated the number of tryptophan hydroxylase (TPH) and protein kinase C (PKC) immunoreactive cell counts and density in the hypothalamic region. Conclusion These results suggested that the oral SQE administration induced the antidepressant-like effect in the ovariectomized rats with repeated stress via upregulating the levels of serotonin and dopamine through enhancing the expression of TH, TPH, and PKC in many brain areas.
Collapse
|
38
|
Tsitkanou S, Della Gatta P, Foletta V, Russell A. The Role of Exercise as a Non-pharmacological Therapeutic Approach for Amyotrophic Lateral Sclerosis: Beneficial or Detrimental? Front Neurol 2019; 10:783. [PMID: 31379732 PMCID: PMC6652799 DOI: 10.3389/fneur.2019.00783] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease, involves the rapid deterioration of motor neurons resulting in severe muscle atrophy and respiratory insufficiency. It is considered a "multisystemic" disease with many potential mechanisms responsible for its pathology. Currently, there is no cure for ALS. Exercise training is suggested as a potential approach to reduce ALS pathology, but its beneficial role remains controversial. This review provides an overview of the effects of exercise training in ALS-affected mice and patients. It will compare the intensity, duration, and type of exercise on the health of SOD1G93A mice, a mouse model of familial ALS, and review clinical studies involving ALS patients undergoing both endurance and resistance training. In summary, mild-to-moderate swimming-based endurance training appears the most advantageous mode of exercise in SOD1G93A mice, improving animal survival, and delaying the onset and progression of disease. Furthermore, clinical studies show that both endurance and resistance training have an advantageous impact on the quality of life of ALS patients without extending life expectancy. However, small sample sizes, non-representative control populations, heterogeneous disease stage of patients, and the presence of confounders often exist in the exercise studies conducted with ALS patients. This raises concerns about the interpretation of these findings and, therefore, these results should be considered with caution. While promising, more pre-clinical and clinical studies with improved experimental design and fewer limitations are still necessary to confirm the impact of exercise training on the health of ALS patients.
Collapse
Affiliation(s)
- Stavroula Tsitkanou
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Paul Della Gatta
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Victoria Foletta
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| | - Aaron Russell
- School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
39
|
Seo SY, Kang SY, Kwon OS, Bang SK, Kim SP, Choi KH, Moon JY, Ryu Y. A mechanical acupuncture instrument mitigates the endoplasmic reticulum stress and oxidative stress of ovariectomized rats. Integr Med Res 2019; 8:187-194. [PMID: 31463191 PMCID: PMC6708984 DOI: 10.1016/j.imr.2019.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 06/10/2019] [Accepted: 07/02/2019] [Indexed: 12/02/2022] Open
Abstract
Background Acupuncture has become a common complementary and alternative treatment approach for anxiety and depression. However, there is little research on the detailed mechanism of acupuncture therapy relieving depression. Previously, 17β-estradiol (E2) was shown to prevent oxidative stress and endoplasmic reticulum (ER) stress in ovariectomized (OVX) rats. This study investigated whether stimulation of Sanyinjiao (SP6) using a mechanical acupuncture instrument can alleviate depression-like behavior caused by estrogen deficiency in OVX rats. Furthermore, we found that acupuncture reduced ER stress and oxidative stress-related proteins expression. Methods The OVX operation was performed on female SD rats that were separated into four groups: The E2 (2.5 μg/kg, i.p.) injection group (OVX + E2), the OVX group (OVX), and the OVX with acupuncture stimulation group (OVX + SP6). Non-acupoint stimulation group (OVX + NonAcu). The acupuncture point stimulation began three weeks after surgery. The depressive behavior was analyzed by the forced swim test and open field test. The 8-OHDG, BiP, Sigma receptor 1, pJNK, PDI, Ero1-Iα and Calnexin protein levels were evaluated by immunoreactivity in the amygdala. Results Acupuncture stimulation reduced depressive behavior and altered depression-related proteins. Stimulation of SP6 decreased the immobility time of the FST and altered the ER stress and oxidative stress marker proteins, such as 8-OHDG, BiP, pJNK, PDI, Ero1-Ia and Calnexin. Conclusion Our results indicated that acupuncture at SP6 showed a significant antidepressant-like effect on an OVX-induced depression rat model by mitigation of ER stress and oxidative stress in amygdala.
Collapse
Affiliation(s)
- Su Yeon Seo
- Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Suk Yun Kang
- Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - O Sang Kwon
- Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Se Kyun Bang
- Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Soo Phil Kim
- Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Kwang-Ho Choi
- Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Ji Young Moon
- Animal and Plant Quarantine AgencyGimcheon, Republic of Korea
| | - Yeonhee Ryu
- Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| |
Collapse
|
40
|
La Fountaine MF, Hill-Lombardi V, Hohn AN, Leahy CL, Testa AJ. Preliminary Evidence for a Window of Increased Vulnerability to Sustain a Concussion in Females: A Brief Report. Front Neurol 2019; 10:691. [PMID: 31338057 PMCID: PMC6629886 DOI: 10.3389/fneur.2019.00691] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/13/2019] [Indexed: 01/18/2023] Open
Abstract
A difference exists between sexes for the incidence of concussion injuries and severity of post-injury outcomes with females having a higher incidence rate (in comparable sports) and experience more robust symptoms than males. The basis for this disparity has remained largely unresolved. Recent findings point to a potential biological mechanism that may be related to the menstrual cycle as an arbiter of post-injury outcomes. What has not been addressed, is whether the phase of menstrual cycle (inferred fluctuations of ovarian hormones) contributes to an increased vulnerability to sustain a concussion injury. This prospective, observational study sought to determine if concussions occurred at different frequencies throughout the phase of the menstrual cycle. Female athletes who sustained a concussion injury were queried three times over the 7-day study (e.g., within 48 h of injury, and 4 and 7 days after injury) to recall the number of days that have elapsed since the beginning of their most recent menstruation. Twenty female athletes enrolled after sustaining a concussion; 18 were eumenorrheic and 2 amenorrheic. Among eumenorrheic participants at the time of injury, 2 were in the follicular phase, 4 were in the early luteal phase and 9 were in the late luteal phase. Two athletes were injured on the first and 1 was injured on the second day of menstruation. The greatest number of concussions were sustained during the late luteal phase and during the first 2 days of menstruation. This 9-day window accounted for 2/3rd of the sustained concussions in our study.
Collapse
Affiliation(s)
- Michael F La Fountaine
- Department of Physical Therapy, School of Health and Medical Sciences, Seton Hall University, Nutley, NJ, United States.,The Institute for Advanced Study of Rehabilitation and Sports Science, Seton Hall University, Nutley, NJ, United States.,Department of Medical Sciences, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, NJ, United States.,Department of Neurology, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, NJ, United States
| | - Vicci Hill-Lombardi
- Department of Physical Therapy, School of Health and Medical Sciences, Seton Hall University, Nutley, NJ, United States.,The Institute for Advanced Study of Rehabilitation and Sports Science, Seton Hall University, Nutley, NJ, United States.,Department of Medical Sciences, Hackensack Meridian School of Medicine at Seton Hall University, Nutley, NJ, United States.,Department of Athletic Training, School of Health and Medical Sciences, Seton Hall University, Nutley, NJ, United States
| | - Asante N Hohn
- Department of Physical Therapy, School of Health and Medical Sciences, Seton Hall University, Nutley, NJ, United States
| | - Caroline L Leahy
- Department of Physical Therapy, School of Health and Medical Sciences, Seton Hall University, Nutley, NJ, United States
| | - Anthony J Testa
- Center for Sports Medicine, Seton Hall University, South Orange, NJ, United States
| |
Collapse
|
41
|
Armstrong NM, An Y, Beason-Held L, Doshi J, Erus G, Ferrucci L, Davatzikos C, Resnick SM. Sex differences in brain aging and predictors of neurodegeneration in cognitively healthy older adults. Neurobiol Aging 2019; 81:146-156. [PMID: 31280118 DOI: 10.1016/j.neurobiolaging.2019.05.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 05/04/2019] [Accepted: 05/30/2019] [Indexed: 01/15/2023]
Abstract
We evaluated sex differences in MRI-based volume loss and differences in predictors of this neurodegeneration in cognitively healthy older adults. Mixed-effects regression was used to compare regional brain volume trajectories of 295 male and 328 female cognitively healthy Baltimore Longitudinal Study of Aging participants, aged 55-92 years, with up to 20 years of follow-up and to assess sex differences in the associations of age, hypertension, obesity, APOE e4 carrier status, and high-density lipoprotein cholesterol with regional brain volume trajectories. For both sexes, older age was associated with steeper volumetric declines in many brain regions, with sex differences in volume loss observed in frontal, temporal, and parietal regions. In males, hypertension and higher high-density lipoprotein cholesterol were protective against volume loss in the hippocampus, entorhinal cortex, and parahippocampal gyrus. In females, hypertension was associated with steeper volumetric decline in gray matter, and obesity was protective against volume loss in temporal gray matter. Predictors of volume change may affect annual rates of volume change differently between men and women.
Collapse
Affiliation(s)
- Nicole M Armstrong
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Lori Beason-Held
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jimit Doshi
- Department of Radiology, Section of Biomedical Image Analysis, University of Pennsylvania, Philadelphia, PA, USA
| | - Guray Erus
- Department of Radiology, Section of Biomedical Image Analysis, University of Pennsylvania, Philadelphia, PA, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, Longitudinal Studies Section, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Christos Davatzikos
- Department of Radiology, Section of Biomedical Image Analysis, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
42
|
Eid A, Mhatre I, Richardson JR. Gene-environment interactions in Alzheimer's disease: A potential path to precision medicine. Pharmacol Ther 2019; 199:173-187. [PMID: 30877021 DOI: 10.1016/j.pharmthera.2019.03.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/01/2019] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia in the United States and afflicts >5.7 million Americans in 2018. Therapeutic options remain extremely limited to those that are symptom targeting, while no drugs have been approved for the modification or reversal of the disease itself. Risk factors for AD including aging, the female sex, as well as carrying an APOE4 genotype. These risk factors have been extensively examined in the literature, while less attention has been paid to modifiable risk factors, including lifestyle, and environmental risk factors such as exposures to air pollution and pesticides. This review highlights the most recent data on risk factors in AD and identifies gene by environment interactions that have been investigated. It also provides a suggested framework for a personalized therapeutic approach to AD, by combining genetic, environmental and lifestyle risk factors. Understanding modifiable risk factors and their interaction with non-modifiable factors (age, susceptibility alleles, and sex) is paramount for designing personalized therapeutic interventions.
Collapse
Affiliation(s)
- Aseel Eid
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, United States of America
| | - Isha Mhatre
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, United States of America; Department of Neurosciences, School of Biomedical Sciences, Kent State University, Kent, OH
| | - Jason R Richardson
- Department of Environmental Health, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, FL, United States of America.
| |
Collapse
|
43
|
Vail G, Roepke TA. Membrane-initiated estrogen signaling via Gq-coupled GPCR in the central nervous system. Steroids 2019; 142:77-83. [PMID: 29378226 PMCID: PMC6064680 DOI: 10.1016/j.steroids.2018.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 12/08/2017] [Accepted: 01/19/2018] [Indexed: 01/21/2023]
Abstract
The last few decades have revealed increasing complexity and depth to our knowledge of receptor-mediated estrogen signaling. Nuclear estrogen receptors (ERs) ERα and ERβ remain the fundamental dogma, but recent research targeting membrane-bound ERs urges for a more expanded view on ER signaling. ERα and ERβ are also involved in membrane-delineated signaling alongside membrane-specific G protein-coupled estrogen receptor 1 (GPER1), ER-X, and the Gq-coupled membrane ER (Gq-mER). Membrane ERs are responsible for eliciting rapid responses to estrogen signaling, and their importance has been increasingly indicated in central nervous system (CNS) regulation of such functions as reproduction, energy homeostasis, and stress. While the Gq-mER signaling pathway is well characterized, the receptor structure and gene remains uncharacterized, although it is not similar to the nuclear ERα/β. This review will describe the current knowledge of this putative membrane ER and its selective ligand, STX, from its initial characterization in hypothalamic melanocortin circuitry to recent research exploring its role in the CNS outside of the hypothalamus.
Collapse
Affiliation(s)
- Gwyndolin Vail
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States; Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States; Joint Graduate Program in Toxicology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States.
| |
Collapse
|
44
|
Martin-Jiménez C, Gaitán-Vaca DM, Areiza N, Echeverria V, Ashraf GM, González J, Sahebkar A, Garcia-Segura LM, Barreto GE. Astrocytes Mediate Protective Actions of Estrogenic Compounds after Traumatic Brain Injury. Neuroendocrinology 2019; 108:142-160. [PMID: 30391959 DOI: 10.1159/000495078] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/02/2018] [Indexed: 11/19/2022]
Abstract
Traumatic brain injury (TBI) is a serious public health problem. It may result in severe neurological disabilities and in a variety of cellular metabolic alterations for which available therapeutic strategies are limited. In the last decade, the use of estrogenic compounds, which activate protective mechanisms in astrocytes, has been explored as a potential experimental therapeutic approach. Previous works have suggested estradiol (E2) as a neuroprotective hormone that acts in the brain by binding to estrogen receptors (ERs). Several steroidal and nonsteroidal estrogenic compounds can imitate the effects of estradiol on ERs. These include hormonal estrogens, phytoestrogens and synthetic estrogens, such as selective ER modulators or tibolone. Current evidence of the role of astrocytes in mediating protective actions of estrogenic compounds after TBI is reviewed in this paper. We conclude that the use of estrogenic compounds to modulate astrocytic properties is a promising therapeutic approach for the treatment of TBI.
Collapse
Affiliation(s)
- Cynthia Martin-Jiménez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Diana Milena Gaitán-Vaca
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Natalia Areiza
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Valentina Echeverria
- Universidad San Sebastián, Fac. Cs de la Salud, Concepción, Chile
- Research and Development Service, Bay Pines VA Healthcare System, Bay Pines, Florida, USA
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Luis Miguel Garcia-Segura
- Instituto Cajal, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias Pontificia Universidad Javeriana, Bogotá, Colombia,
| |
Collapse
|
45
|
Mollayeva T, Mollayeva S, Colantonio A. Traumatic brain injury: sex, gender and intersecting vulnerabilities. Nat Rev Neurol 2018; 14:711-722. [PMID: 30397256 DOI: 10.1038/s41582-018-0091-y] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Over the past decade, traumatic brain injury (TBI) has emerged as a major public health concern, attracting considerable interest from the scientific community, clinical and behavioural services and policymakers, owing to its rising prevalence, wide-ranging risk factors and substantial lifelong familial and societal impact. This increased attention to TBI has resulted in increased funding and advances in legislation. However, many questions surrounding TBI remain unanswered, including questions on sex and gender trends with respect to vulnerability to injury, presentation of injury, response to treatment, and outcomes. Here, we review recent research efforts aimed at advancing knowledge on the constructs of sex and gender and their respective influences in the context of TBI, and discuss methodological challenges in disentangling the differential impacts of these two constructs, particularly in marginalized populations.
Collapse
Affiliation(s)
- Tatyana Mollayeva
- Toronto Rehabilitation Institute-University Health Network, Toronto, Ontario, Canada.
| | - Shirin Mollayeva
- Acquired Brain Injury Research Lab, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Angela Colantonio
- Rehabilitation Sciences Institute, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
46
|
Sun LL, Yang SL, Sun H, Li WD, Duan SR. Molecular differences in Alzheimer's disease between male and female patients determined by integrative network analysis. J Cell Mol Med 2018; 23:47-58. [PMID: 30394676 PMCID: PMC6307813 DOI: 10.1111/jcmm.13852] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/28/2018] [Accepted: 07/20/2018] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease and the most common cause of dementia among the elderly. There has been increasing recognition of sex differences in AD prevalence, clinical manifestation, disease course and prognosis. However, there have been few studies on the molecular mechanism underlying these differences. To address this issue, we carried out global gene expression and integrative network analyses based on expression profiles (GSE84422) across 17 cortical regions of 125 individuals with AD. There were few genes that were differentially expressed across the 17 regions between the two sexes, with only four (encoding glutamate metabotropic receptor 2, oestrogen‐related receptor beta, kinesin family member 26B, and aspartoacylase) that were differentially expressed in three regions. A pan‐cortical brain region co‐expression network analysis identified pathways and genes (eg, glycogen synthase kinase 3β) that were significantly associated with clinical characteristics of AD (such as neurofibrillary score) in males only. Similarity analyses between region‐specific networks indicated that male patients exhibited greater variability, especially in the superior parietal lobule, dorsolateral prefrontal cortex and occipital visual cortex. A network module analysis revealed an association between clinical traits and crosstalk of sex‐specific modules. An examination of temporal and spatial patterns of sex differences in AD showed that molecular networks were more conserved in females than in males in different cortical regions and at different AD stages. These findings provide insight into critical molecular pathways governing sex differences in AD pathology.
Collapse
Affiliation(s)
- Lin-Lin Sun
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Song-Lin Yang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Sun
- Pharmaceutical Experiment Teaching Center, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Wei-Da Li
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shu-Rong Duan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
47
|
Medina-Aguiñaga D, Munoz A, Luna M, Martinez-Moreno CG, Quintanar-Stephano A, Quintanar JL. Administration of leuprolide acetate, a GnRH agonist, improves urodynamic parameters in ovariectomized rats. Neurourol Urodyn 2018; 37:1574-1582. [PMID: 30133853 DOI: 10.1002/nau.23505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/08/2017] [Indexed: 12/24/2022]
Abstract
AIM To evaluate the effects of a treatment with leuprolide acetate (LA) on bladder overactivity as well as the expression of gonadotropin releasing hormone receptor (GnRH-R), and neurofilaments NF68 and NF200 in female rats with overactive bladder induced by castration. METHODS Changes in the urodynamic parameters were determined in SHAM, ovariectomized (OVX) and ovariectomized rats treated with LA (OVX-LA). A semi-quantitative analysis for the expression pattern of GnRH-R and neurofilaments NF68 and NF200 were determined. RESULTS Forty-three days after ovariectomy, rats from the OVX group have significant lower values for intercontractile interval (ICI) and compliance (C); as well as higher values for basal bladder pressure (BP) and frequency of non-voiding contractions (NVC). The systemic application of LA increased voiding volume (Vv) and pressure threshold (ThP) in the OVX-LA animals. The application of LA reduced the high frequency of NVC in the OVX rats. No significant differences were found for Vv and NVCs between the OVX-LA vs SHAM groups. At the mid part of the bladder, the presence of GnRH-R was evidenced in the urothelium of the SHAM group. The OVX animals showed different pattern of immunolabeling for GnRH-R as well as for neurofilaments NF200 and NF68, whereas in the OVX-LA group the immunofluorescence pattern was similar to the one seen in SHAM bladders (P < 0.05 for OVX vs OVX + LA). CONCLUSIONS the results suggest that systemic application of LA can improve bladder dysfunction in castrated rats, and perhaps considered as a treatment for overactive bladder conditions secondary to menopause.
Collapse
Affiliation(s)
- Daniel Medina-Aguiñaga
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Autonomous University of Aguascalientes, Aguascalientes, México
| | - Alvaro Munoz
- Regenerative Medicine Program-Urology, Houston Methodist Research Institute, Houston, Texas
| | - Maricela Luna
- Laboratory of Hormones, Department Cellular and Molecular Neurobiology, Institute of Neurobiology, Juriquilla Campus, National Autonomous University of México, Querétaro, México
| | - Carlos G Martinez-Moreno
- Laboratory of Hormones, Department Cellular and Molecular Neurobiology, Institute of Neurobiology, Juriquilla Campus, National Autonomous University of México, Querétaro, México
| | - Andrés Quintanar-Stephano
- Laboratory of Neuroimmunoendocrinology, Department of Physiology and Pharmacology, Autonomous University of Aguascalientes, Aguascalientes, México
| | - J Luis Quintanar
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Autonomous University of Aguascalientes, Aguascalientes, México
| |
Collapse
|
48
|
|
49
|
Siebert C, dos Santos TM, Bertó CG, Parisi MM, Coelho RP, Manfredini V, Barbé-Tuana FM, Wyse ATS. Vitamin D Supplementation Reverses DNA Damage and Telomeres Shortening Caused by Ovariectomy in Hippocampus of Wistar Rats. Neurotox Res 2018; 34:538-546. [DOI: 10.1007/s12640-018-9909-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 12/15/2022]
|
50
|
Rajizadeh MA, Esmaeilpour K, Masoumi-Ardakani Y, Bejeshk MA, Shabani M, Nakhaee N, Ranjbar MP, Borzadaran FM, Sheibani V. Voluntary exercise impact on cognitive impairments in sleep-deprived intact female rats. Physiol Behav 2018; 188:58-66. [DOI: 10.1016/j.physbeh.2017.12.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/06/2017] [Accepted: 12/23/2017] [Indexed: 10/18/2022]
|