1
|
Sutton MN, Glazer SE, Al Zaki A, Napoli A, Yang P, Bhosale P, Liu J, Gammon ST, Piwnica-Worms D. Statins inhibit onco-dimerization of the 4Ig isoform of B7-H3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.18.628944. [PMID: 39763965 PMCID: PMC11702627 DOI: 10.1101/2024.12.18.628944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
B7-H3 (CD276), a member of the B7-family of immune checkpoint proteins, has been shown to have immunological and non-immunological effects promoting tumorigenesis [1, 2] and expression correlates with poor prognosis for many solid tumors, including cervical, ovarian and breast cancers [3-6]. We recently identified a tumor-cell autochthonous tumorigenic role for dimerization of the 4Ig isoform of B7-H3 (4Ig-B7-H3) [7], where 4Ig-B7-H3 dimerization in cis activated tumor-intrinsic cellular proliferation and tumorigenesis pathways, providing a novel opportunity for therapeutic intervention. Herein, a live cell split-luciferase complementation strategy was used to visualize 4Ig-B7-H3 homodimerization in a high-throughput small molecule screen (HTS) to identify modulators of this protein-protein interaction (PPI). Notably, the HTS identified several compounds that converged on lipid metabolism (including HMG-CoA reductase inhibitors, also known as statins) as significant inhibitors of 4Ig-B7-H3 dimerization (p < 0.01). In vitro and in vivo murine studies provided evidence that statin-mediated disruption of 4Ig-B7-H3 dimerization was associated with anti-tumor effects. Statin-mediated anti-cancer efficacy was selective for B7-H3-expressing tumors and retrospective analysis of clinical tumor specimens supported the hypothesis that concurrent statin use enhanced clinical outcomes for patients in a B7-H3 restricted manner. Thus, disruption of 4Ig-B7-H3 dimerization provides an unanticipated molecular mechanism linking statin use in cancer therapy and prevention with immune checkpoint.
Collapse
Affiliation(s)
- Margie N. Sutton
- Department of Cancer Systems Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Sarah E. Glazer
- Department of Cancer Systems Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ajlan Al Zaki
- Department of Cancer Systems Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Arianna Napoli
- Department of Cancer Systems Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ping Yang
- Department of Cancer Systems Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Priya Bhosale
- Department of Abdominal Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jinsong Liu
- Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Seth T. Gammon
- Department of Cancer Systems Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
2
|
Tigabu A. Immunoregulatory protein B7-H3 upregulated in bacterial and viral infection and its diagnostic potential in clinical settings. Front Immunol 2024; 15:1472626. [PMID: 39497833 PMCID: PMC11532155 DOI: 10.3389/fimmu.2024.1472626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
Bacterial and viral infections cause a huge burden to healthcare settings worldwide, and mortality rates associated with infectious microorganisms have remained high in recent decades. Despite tremendous efforts and resources worldwide to explore diagnostic biomarkers, rapid and easily assayed indicators for the diagnosis of bacterial and viral infections remain a challenge. B7 homolog 3 (B7-H3), a member of the B7 family of immunoregulatory proteins, is overexpressed in patients with septicemia, meningitis, pneumonia, and hepatitis. Therefore, B7-H3 could be used as a potential clinical indicator and therapeutic target for bacterial and viral infections caused by H. pylori, S. pneumoniae, M. pneumoniae, hepatitis B virus (HBV), viral hemorrhagic septicemia virus (VHSV), respiratory syncytial virus (RSV), and human immunodeficiency virus (HIV). Moreover, the interplay between infectious microorganisms and B7-H3 and exploration of the functional roles of the B7-H3 molecule could aid in the development of novel strategies for disease diagnosis and immunotherapy.
Collapse
Affiliation(s)
- Abiye Tigabu
- Department of Medical Microbiology, University of Gondar,
Gondar, Ethiopia
| |
Collapse
|
3
|
Ranganathan S, Reddy A, Russo A, Malepelle U, Desai A. Double agents in immunotherapy: Unmasking the role of antibody drug conjugates in immune checkpoint targeting. Crit Rev Oncol Hematol 2024; 202:104472. [PMID: 39111458 DOI: 10.1016/j.critrevonc.2024.104472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024] Open
Abstract
Antibody-drug conjugates (ADCs) have high specificity with lesser off-target effects, thus providing improved efficacy over traditional chemotherapies. A total of 14 ADCs have been approved for use against cancer by the US Food and Drug Administration (FDA), with more than 100 ADCs currently in clinical trials. Of particular interest ADCs targeting immune antigens PD-L1, B7-H3, B7-H4 and integrins. Specifically, we describe ADCs in development along with the gene and protein expression of these immune checkpoints across a wide range of cancer types let url = window.clickTag || window.clickTag1 || window.clickTag2 || window.clickTag3 || window.clickTag4 || window.bsClickTAG || window.bsClickTAG1 || window.bsClickTAG2 || window.url || ''; if(typeof url == 'string'){ document.body.dataset['perxceptAdRedirectUrl'] = url;}.
Collapse
Affiliation(s)
| | | | | | - Umberto Malepelle
- Department of Public Health University Federico II of Naples, Naples, Italy
| | - Aakash Desai
- Division of Hematology and Oncology, Department of Medicine, University of Alabama, Birmingham, United States.
| |
Collapse
|
4
|
Giorgioni L, Ambrosone A, Cometa MF, Salvati AL, Nisticò R, Magrelli A. Revolutionizing CAR T-Cell Therapies: Innovations in Genetic Engineering and Manufacturing to Enhance Efficacy and Accessibility. Int J Mol Sci 2024; 25:10365. [PMID: 39408696 PMCID: PMC11476879 DOI: 10.3390/ijms251910365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has achieved notable success in treating hematological cancers but faces significant challenges in solid-tumor treatment and overall efficacy. Key limitations include T-cell exhaustion, tumor relapse, immunosuppressive tumor microenvironments (TME), immunogenicity, and antigen heterogeneity. To address these issues, various genetic engineering strategies have been proposed. Approaches such as overexpression of transcription factors or metabolic armoring and dynamic CAR regulation are being explored to improve CAR T-cell function and safety. Other efforts to improve CAR T-cell efficacy in solid tumors include targeting novel antigens or developing alternative strategies to address antigen diversity. Despite the promising preclinical results of these solutions, challenges remain in translating CAR T-cell therapies to the clinic to enable economically viable access to these transformative medicines. The efficiency and scalability of autologous CAR T-cell therapy production are hindered by traditional, manual processes which are costly, time-consuming, and prone to variability and contamination. These high-cost, time-intensive processes have complex quality-control requirements. Recent advancements suggest that smaller, decentralized solutions such as microbioreactors and automated point-of-care systems could improve production efficiency, reduce costs, and shorten manufacturing timelines, especially when coupled with innovative manufacturing methods such as transposons and lipid nanoparticles. Future advancements may include harmonized consumables and AI-enabled technologies, which promise to streamline manufacturing, reduce costs, and enhance production quality.
Collapse
Affiliation(s)
- Lorenzo Giorgioni
- Faculty of Physiology and Pharmacology “V. Erspamer”, Sapienza Università di Roma, 00185 Rome, Italy;
| | - Alessandra Ambrosone
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.A.); (M.F.C.)
| | - Maria Francesca Cometa
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.A.); (M.F.C.)
| | - Anna Laura Salvati
- Faculty of Pharmacy, Tor Vergata University of Rome, 00133 Rome, Italy (R.N.)
| | - Robert Nisticò
- Faculty of Pharmacy, Tor Vergata University of Rome, 00133 Rome, Italy (R.N.)
- Agenzia Italiana del Farmaco, Via del Tritone 181, 00187 Rome, Italy
| | - Armando Magrelli
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.A.); (M.F.C.)
| |
Collapse
|
5
|
Yaghoubi Naei V, Monkman J, Sadeghirad H, Mehdi A, Blick T, Mullally W, O'Byrne K, Warkiani ME, Kulasinghe A. Spatial proteomic profiling of tumor and stromal compartments in non-small-cell lung cancer identifies signatures associated with overall survival. Clin Transl Immunology 2024; 13:e1522. [PMID: 39026528 PMCID: PMC11257771 DOI: 10.1002/cti2.1522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
Objectives Non-small-cell lung carcinoma (NSCLC) is the most prevalent and lethal form of lung cancer. The need for biomarker-informed stratification of targeted therapies has underpinned the need to uncover the underlying properties of the tumor microenvironment (TME) through high-plex quantitative assays. Methods In this study, we profiled resected NSCLC tissues from 102 patients by targeted spatial proteomics of 78 proteins across tumor, immune activation, immune cell typing, immune-oncology, drug targets, cell death and PI3K/AKT modules to identify the tumor and stromal signatures associated with overall survival (OS). Results Survival analysis revealed that stromal CD56 (HR = 0.384, P = 0.06) and tumoral TIM3 (HR = 0.703, P = 0.05) were associated with better survival in univariate Cox models. In contrast, after adjusting for stage, BCLXL (HR = 2.093, P = 0.02) and cleaved caspase 9 (HR = 1.575, P = 0.1) negatively influenced survival. Delta testing indicated the protective effect of TIM-3 (HR = 0.614, P = 0.04) on OS. In multivariate analysis, CD56 (HR = 0.172, P = 0.001) was associated with better survival in the stroma, while B7.H3 (HR = 1.72, P = 0.008) was linked to poorer survival in the tumor. Conclusions Deciphering the TME using high-plex spatially resolved methods is giving us new insights into compartmentalised tumor and stromal protein signatures associated with clinical endpoints in NSCLC.
Collapse
Affiliation(s)
- Vahid Yaghoubi Naei
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNSWAustralia
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - James Monkman
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Habib Sadeghirad
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Ahmed Mehdi
- Queensland Cyber Infrastructure Foundation (QCIF) LtdThe University of QueenslandBrisbaneQLDAustralia
| | - Tony Blick
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | | | - Ken O'Byrne
- The Princess Alexandra HospitalBrisbaneQLDAustralia
| | | | - Arutha Kulasinghe
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
6
|
Pitts SC, Schlom J, Donahue RN. Soluble immune checkpoints: implications for cancer prognosis and response to immune checkpoint therapy and conventional therapies. J Exp Clin Cancer Res 2024; 43:155. [PMID: 38822401 PMCID: PMC11141022 DOI: 10.1186/s13046-024-03074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/19/2024] [Indexed: 06/03/2024] Open
Abstract
Longitudinal sampling of tumor tissue from patients with solid cancers, aside from melanoma and a few other cases, is often unfeasible, and thus may not capture the plasticity of interactions between the tumor and immune system under selective pressure of a given therapy. Peripheral blood analyses provide salient information about the human peripheral immunome while offering technical and practical advantages over traditional tumor biopsies, and should be utilized where possible alongside interrogation of the tumor. Some common blood-based biomarkers used to study the immune response include immune cell subsets, circulating tumor DNA, and protein analytes such as cytokines. With the recent explosion of immune checkpoint inhibitors (ICI) as a modality of treatment in multiple cancer types, soluble immune checkpoints have become a relevant area of investigation for peripheral immune-based biomarkers. However, the exact functions of soluble immune checkpoints and their roles in cancer for the most part remain unclear. This review discusses current literature on the production, function, and expression of nine soluble immune checkpoints - sPD-L1, sPD-1, sCTLA4, sCD80, sTIM3, sLAG3, sB7-H3, sBTLA, and sHVEM - in patients with solid tumors, and explores their role as biomarkers of response to ICI as well as to conventional therapies (chemotherapy, radiotherapy, targeted therapy, and surgery) in cancer patients.
Collapse
Affiliation(s)
- Stephanie C Pitts
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey Schlom
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Renee N Donahue
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
7
|
Cattaneo G, Ventin M, Arya S, Kontos F, Michelakos T, Sekigami Y, Cai L, Villani V, Sabbatino F, Chen F, Sadagopan A, Deshpande V, Moore PA, Ting DT, Bardeesy N, Wang X, Ferrone S, Ferrone CR. Interplay between B7-H3 and HLA class I in the clinical course of pancreatic ductal adenocarcinoma. Cancer Lett 2024; 587:216713. [PMID: 38364961 PMCID: PMC11146152 DOI: 10.1016/j.canlet.2024.216713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
Human leukocyte antigen (HLA) class I defects are associated with cancer progression. However, their prognostic significance is controversial and may be modulated by immune checkpoints. Here, we investigated whether the checkpoint B7-H3 modulates the relationship between HLA class I and pancreatic ductal adenocarcinoma (PDAC) prognosis. PDAC tumors were analyzed for the expression of B7-H3, HLA class I, HLA class II molecules, and for the presence of tumor-infiltrating immune cells. We observed defective HLA class I and HLA class II expressions in 75% and 59% of PDAC samples, respectively. HLA class I and B7-H3 expression were positively related at mRNA and protein level, potentially because of shared regulation by RELA, a sub-unit of NF-kB. High B7-H3 expression and low CD8+ T cell density were indicators of poor survival, while HLA class I was not. Defective HLA class I expression was associated with unfavorable survival only in patients with low B7-H3 expression. Favorable survival was observed only when HLA class I expression was high and B7-H3 expression low. Our results provide the rationale for targeting B7-H3 in patients with PDAC tumors displaying high HLA class I levels.
Collapse
Affiliation(s)
- Giulia Cattaneo
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States. https://twitter.com/GCattaneoPhD
| | - Marco Ventin
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Shahrzad Arya
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Filippos Kontos
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Theodoros Michelakos
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Yurie Sekigami
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Lei Cai
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Vincenzo Villani
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Francesco Sabbatino
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Ananthan Sadagopan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | | | - David T Ting
- MassGeneral Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Nabeel Bardeesy
- MassGeneral Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Xinhui Wang
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Soldano Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Cristina R Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
| |
Collapse
|
8
|
Joshi V, Beecher K, Lim M, Stacey A, Feng Y, Jat PS, Duijf PHG, Simpson PT, Lakhani SR, McCart Reed AE. B7-H3 Expression in Breast Cancer and Brain Metastasis. Int J Mol Sci 2024; 25:3976. [PMID: 38612786 PMCID: PMC11012592 DOI: 10.3390/ijms25073976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Brain metastasis is a significant challenge for some breast cancer patients, marked by its aggressive nature, limited treatment options, and poor clinical outcomes. Immunotherapies have emerged as a promising avenue for brain metastasis treatment. B7-H3 (CD276) is an immune checkpoint molecule involved in T cell suppression, which is associated with poor survival in cancer patients. Given the increasing number of clinical trials using B7-H3 targeting CAR T cell therapies, we examined B7-H3 expression across breast cancer subtypes and in breast cancer brain metastases to assess its potential as an interventional target. B7-H3 expression was investigated using immunohistochemistry on tissue microarrays of three clinical cohorts: (i) unselected primary breast cancers (n = 347); (ii) brain metastatic breast cancers (n = 61) and breast cancer brain metastases (n = 80, including a subset of 53 patient-matched breast and brain metastasis cases); and (iii) mixed brain metastases from a range of primary tumours (n = 137). In primary breast cancers, B7-H3 expression significantly correlated with higher tumour grades and aggressive breast cancer subtypes, as well as poorer 5-year survival outcomes. Subcellular localisation of B7-H3 impacted breast cancer-specific survival, with cytoplasmic staining also correlating with a poorer outcome. Its expression was frequently detected in brain metastases from breast cancers, with up to 90% expressing B7-H3. However, not all brain metastases showed high levels of expression, with those from colorectal and renal tumours showing a low frequency of B7-H3 expression (0/14 and 2/16, respectively). The prevalence of B7-H3 expression in breast cancers and breast cancer brain metastases indicates potential opportunities for B7-H3 targeted therapies in breast cancer management.
Collapse
Affiliation(s)
- Vaibhavi Joshi
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane 4029, Australia; (V.J.); (K.B.); (M.L.); (A.S.); (Y.F.); (P.T.S.)
| | - Kate Beecher
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane 4029, Australia; (V.J.); (K.B.); (M.L.); (A.S.); (Y.F.); (P.T.S.)
| | - Malcolm Lim
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane 4029, Australia; (V.J.); (K.B.); (M.L.); (A.S.); (Y.F.); (P.T.S.)
| | - Andrew Stacey
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane 4029, Australia; (V.J.); (K.B.); (M.L.); (A.S.); (Y.F.); (P.T.S.)
| | - Yufan Feng
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane 4029, Australia; (V.J.); (K.B.); (M.L.); (A.S.); (Y.F.); (P.T.S.)
| | - Parmjit S. Jat
- MRC Prion Unit at UCL, Institute of Prion Diseases, Courtauld Building, London W1W 7FF, UK;
| | - Pascal H. G. Duijf
- Centre for Cancer Biology, Clinical and Health Sciences, University of South Australia & SA Pathology, Adelaide 5001, Australia;
| | - Peter T. Simpson
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane 4029, Australia; (V.J.); (K.B.); (M.L.); (A.S.); (Y.F.); (P.T.S.)
| | - Sunil R. Lakhani
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane 4029, Australia; (V.J.); (K.B.); (M.L.); (A.S.); (Y.F.); (P.T.S.)
- Pathology Queensland, Royal Brisbane and Women’s Hospital, Brisbane 4029, Australia
| | - Amy E. McCart Reed
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane 4029, Australia; (V.J.); (K.B.); (M.L.); (A.S.); (Y.F.); (P.T.S.)
| |
Collapse
|
9
|
Nammor T, Frizzell J, Lavoie RR, Lucien F. The anti-B7-H3 blocking antibody MJ18 does not recognize B7-H3 in murine tumor models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567261. [PMID: 38014341 PMCID: PMC10680724 DOI: 10.1101/2023.11.15.567261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The immune checkpoint molecule B7-H3 is regarded as one of the most promising therapeutic targets for the treatment of human cancers. B7-H3 is highly expressed in many cancers and its expression has been associated to impaired antitumor immunity and poor patient prognosis. In immunocompetent mouse tumor models, genetic deletion of B7-H3 in tumor cells enhances antitumor immune response leading to tumor shrinkage. The underlying mechanisms of B7-H3 inhibitory function remain largely uncharacterized and the identity of potential cognate(s) receptor(s) of B7-H3 is still to be defined. To better understand B7-H3 function in vivo, several studies have employed MJ18, a monoclonal antibody reported to bind murine B7-H3 and blocks its immune-inhibitory function. In this brief research report, we show that 1) MJ18 does not bind B7-H3, 2) MJ18 binds the Fc receptor FcγRIIB on surface of murine splenocytes, and 3) MJ18 does not induce tumor regression in a mouse model responsive to B7-H3 knockout. Given the high profile of B7-H3 as therapeutic target for human cancers, our work emphasizes that murine B7-H3 studies using the MJ18 antibody should be interpreted with caution. Finally, we hope that our study will motivate the scientific community to establish much-needed validated research tools to study B7-H3 biology in mouse models.
Collapse
Affiliation(s)
- Talah Nammor
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Fabrice Lucien
- Department of Urology, Mayo Clinic, Rochester, MN, USA
- Department of Immunology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
10
|
Li D, Wang R, Liang T, Ren H, Park C, Tai CH, Ni W, Zhou J, Mackay S, Edmondson E, Khan J, Croix BS, Ho M. Camel nanobody-based B7-H3 CAR-T cells show high efficacy against large solid tumours. Nat Commun 2023; 14:5920. [PMID: 37739951 PMCID: PMC10517151 DOI: 10.1038/s41467-023-41631-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 09/11/2023] [Indexed: 09/24/2023] Open
Abstract
Rational design of chimeric antigen receptor T (CAR-T) cells based on the recognition of antigenic epitopes capable of evoking the most potent CAR activation is an important objective in optimizing immune therapy. In solid tumors, the B7-H3 transmembrane protein is an emerging target that harbours two distinct epitope motifs, IgC and IgV, in its ectodomain. Here, we generate dromedary camel nanobodies targeting B7-H3 and demonstrate that CAR-T cells, based on the nanobodies recognizing the IgC but not IgV domain, had potent antitumour activity against large tumors in female mice. These CAR-T cells are characterized by highly activated T cell signaling and significant tumor infiltration. Single-cell transcriptome RNA sequencing coupled with functional T-cell proteomics analysis uncovers the top-upregulated genes that might be critical for the persistence of polyfunctional CAR-T cells in mice. Our results highlight the importance of the specific target antigen epitope in governing optimal CAR-T activity and provide a nanobody-based B7-H3 CAR-T product for use in solid tumor therapy.
Collapse
Affiliation(s)
- Dan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Ruixue Wang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Tianyuzhou Liang
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Hua Ren
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Chaelee Park
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Chin-Hsien Tai
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Weiming Ni
- IsoPlexis Corporation, Branford, CT, 06405, USA
| | - Jing Zhou
- IsoPlexis Corporation, Branford, CT, 06405, USA
| | - Sean Mackay
- IsoPlexis Corporation, Branford, CT, 06405, USA
| | - Elijah Edmondson
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Javed Khan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Brad St Croix
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702, USA
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
11
|
Lee JH, Kim YJ, Ryu HW, Shin SW, Kim EJ, Shin SH, Park JY, Kim SY, Hwang CS, Na JY, Shin DH, Kim JY, Lee HJ. B7-H3 expression is associated with high PD-L1 expression in clear cell renal cell carcinoma and predicts poor prognosis. Diagn Pathol 2023; 18:36. [PMID: 36894965 PMCID: PMC9996938 DOI: 10.1186/s13000-023-01320-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/27/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Clear cell Renal cell carcinoma (ccRCC) is an immunogenic tumor. B7 family members, such as CTLA-4, PD-1, and PD-L1, are the main components of immune checkpoints that regulate various immune responses. Specifically, B7-H3 regulates T cell-mediated immune responses against cancer. This study aimed to analyze the association between B7-H3 and CTLA-4 expression and the prognostic factors of ccRCC to provide a basis for their potential use as predictive factors and in immunotherapy. METHODS Formalin-fixed paraffin-embedded specimens were obtained from 244 ccRCC patients, and B7-H3, CTLA-4, and PD-L1 expressions were evaluated using immunohistochemical staining. RESULTS B7-H3 and CTLA-4 were positive in 73 (29.9%) and 57 (23.4%) of the 244 patients, respectively. B7-H3 expression was significantly associated with PD-L1 expression (P < 0.0001); however, CTLA-4 expression was not (P = 0.842). Kaplan-Meier analysis showed that positive B7-H3 expression was associated with poor progression-free survival (PFS) (P < 0.0001), whereas CTLA-4 expression was not (P = 0.457). Multivariate analysis revealed that B7-H3 was correlated with poor PFS (P = 0.031), whereas CTLA-4 was not (P = 0.173). CONCLUSIONS To the best of our knowledge, this study is the first to investigate B7-H3 and PD-L1 expression and survival in ccRCC. B7-H3 expression is an independent prognostic factor for ccRCC. Furthermore, multiple immune cell inhibitory targets, such as B7-H3 and PD-L1, can be used for therapeutic tumor regression in a clinical setting.
Collapse
Affiliation(s)
- Jung Hee Lee
- Department of Pathology, Pusan National University Yangsan Hospital, Beomeo-ri, Mulgeum-eup, Yangsan, 50612, South Korea
| | - Yong Jun Kim
- School of Medicine, Pusan National University, Yangsan, South Korea
| | - Hyun Woo Ryu
- School of Medicine, Pusan National University, Yangsan, South Korea
| | - Seung Won Shin
- School of Medicine, Pusan National University, Yangsan, South Korea
| | - Eun Ji Kim
- School of Medicine, Pusan National University, Yangsan, South Korea
| | - So Hyun Shin
- Department of Pathology, Pusan National University Yangsan Hospital, Beomeo-ri, Mulgeum-eup, Yangsan, 50612, South Korea
| | - Joon Young Park
- Department of Pathology, Pusan National University Yangsan Hospital, Beomeo-ri, Mulgeum-eup, Yangsan, 50612, South Korea
| | - So Young Kim
- Department of Pathology, Pusan National University Yangsan Hospital, Beomeo-ri, Mulgeum-eup, Yangsan, 50612, South Korea
| | - Chung Su Hwang
- Department of Pathology, Pusan National University Yangsan Hospital, Beomeo-ri, Mulgeum-eup, Yangsan, 50612, South Korea
| | - Joo-Young Na
- Department of Pathology, Pusan National University Yangsan Hospital, Beomeo-ri, Mulgeum-eup, Yangsan, 50612, South Korea
| | - Dong Hoon Shin
- Department of Pathology, Pusan National University Yangsan Hospital, Beomeo-ri, Mulgeum-eup, Yangsan, 50612, South Korea
| | - Jee Yeon Kim
- Department of Pathology, Pusan National University Yangsan Hospital, Beomeo-ri, Mulgeum-eup, Yangsan, 50612, South Korea
| | - Hyun Jung Lee
- Department of Pathology, Pusan National University Yangsan Hospital, Beomeo-ri, Mulgeum-eup, Yangsan, 50612, South Korea. .,The Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yang San, South Korea.
| |
Collapse
|
12
|
Getu AA, Tigabu A, Zhou M, Lu J, Fodstad Ø, Tan M. New frontiers in immune checkpoint B7-H3 (CD276) research and drug development. Mol Cancer 2023; 22:43. [PMID: 36859240 PMCID: PMC9979440 DOI: 10.1186/s12943-023-01751-9] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
B7-H3 (CD276), a member of the B7 family of proteins, is a key player in cancer progression. This immune checkpoint molecule is selectively expressed in both tumor cells and immune cells within the tumor microenvironment. In addition to its immune checkpoint function, B7-H3 has been linked to tumor cell proliferation, metastasis, and therapeutic resistance. Furthermore, its drastic difference in protein expression levels between normal and tumor tissues suggests that targeting B7-H3 with drugs would lead to cancer-specific toxicity, minimizing harm to healthy cells. These properties make B7-H3 a promising target for cancer therapy.Recently, important advances in B7-H3 research and drug development have been reported, and these new findings, including its involvement in cellular metabolic reprograming, cancer stem cell enrichment, senescence and obesity, have expanded our knowledge and understanding of this molecule, which is important in guiding future strategies for targeting B7-H3. In this review, we briefly discuss the biology and function of B7-H3 in cancer development. We emphasize more on the latest findings and their underlying mechanisms to reflect the new advances in B7-H3 research. In addition, we discuss the new improvements of B-H3 inhibitors in cancer drug development.
Collapse
Affiliation(s)
- Ayechew Adera Getu
- Institute of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
- Department of Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Abiye Tigabu
- Institute of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan
| | - Ming Zhou
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, China
| | - Jianrong Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, USA
| | - Øystein Fodstad
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, Oslo, Norway
| | - Ming Tan
- Institute of Biochemistry and Molecular Biology, Institute of Biomedical Sciences, and Research Center for Cancer Biology, China Medical University, Taichung, Taiwan.
| |
Collapse
|
13
|
The Role of Mononuclear Phagocytes in the Testes and Epididymis. Int J Mol Sci 2022; 24:ijms24010053. [PMID: 36613494 PMCID: PMC9820352 DOI: 10.3390/ijms24010053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The mononuclear phagocytic system (MPS) is the primary innate immune cell group in male reproductive tissues, maintaining the balance of pro-inflammatory and immune tolerance. This article aims to outline the role of mononuclear macrophages in the immune balance of the testes and epididymis, and to understand the inner immune regulation mechanism. A review of pertinent publications was performed using the PubMed and Google Scholar databases on all articles published prior to January 2021. Search terms were based on the following keywords: 'MPS', 'mononuclear phagocytes', 'testes', 'epididymis', 'macrophage', 'Mφ', 'dendritic cell', 'DC', 'TLR', 'immune', 'inflammation', and 'polarization'. Additionally, reference lists of primary and review articles were reviewed for other publications of relevance. This review concluded that MPS exhibits a precise balance in the male reproductive system. In the testes, MPS cells are mainly suppressed subtypes (M2 and cDC2) under physiological conditions, which maintain the local immune tolerance. Under pathological conditions, MPS cells will transform into M1 and cDC1, producing various cytokines, and will activate T cell specific immunity as defense to foreign pathogens or self-antigens. In the epididymis, MPS cells vary in the different segments, which express immune tolerance in the caput and pro-inflammatory condition in the cauda. Collectively, MPS is the control point for maintaining the immune tolerance of the testes and epididymis as well as for eliminating pathogens.
Collapse
|
14
|
Chen X, Li J, Chen Y, Que Z, Du J, Zhang J. B7 Family Members in Pancreatic Ductal Adenocarcinoma: Attractive Targets for Cancer Immunotherapy. Int J Mol Sci 2022; 23:ijms232315005. [PMID: 36499340 PMCID: PMC9740860 DOI: 10.3390/ijms232315005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers, with a five-year survival rate of approximately 5-10%. The immune checkpoint blockade represented by PD-1/PD-L1 inhibitors has been effective in a variety of solid tumors but has had little clinical response in pancreatic cancer patients. The unique suppressive immune microenvironment is the primary reason for this outcome, and it is essential to identify key targets to remodel the immune microenvironment. Some B7 family immune checkpoints, particularly PD-L1, PD-L2, B7-H3, B7-H4, VISTA and HHLA2, have been identified as playing a significant role in the control of tumor immune responses. This paper provides a comprehensive overview of the recent research progress of some members of the B7 family in pancreatic cancer, which revealed that they can be involved in tumor progression through immune-dependent and non-immune-dependent pathways, highlighting the mechanisms of their involvement in tumor immune escape and assessing the prospects of their clinical application. Targeting B7 family immune checkpoints is expected to result in novel immunotherapeutic treatments for patients with pancreatic cancer.
Collapse
Affiliation(s)
- Xin Chen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular Imaging and Function Imaging, Medical School, Southeast University, Nanjing 210009, China
| | - Jie Li
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Yue Chen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Ziting Que
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing 210009, China
| | - Jiawei Du
- Jiangsu Key Laboratory of Molecular Imaging and Function Imaging, Medical School, Southeast University, Nanjing 210009, China
| | - Jianqiong Zhang
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing 210009, China
- Jiangsu Key Laboratory of Molecular Imaging and Function Imaging, Medical School, Southeast University, Nanjing 210009, China
- Correspondence: ; Tel.: +86-25-83272314
| |
Collapse
|
15
|
Zhang Q, Zhang Z, Liu G, Li D, Gu Z, Zhang L, Pan Y, Cui X, Wang L, Liu G, Tian X, Zhang Z. B7-H3 targeted CAR-T cells show highly efficient anti-tumor function against osteosarcoma both in vitro and in vivo. BMC Cancer 2022; 22:1124. [PMID: 36320072 PMCID: PMC9628043 DOI: 10.1186/s12885-022-10229-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND Osteosarcoma (OS) mainly happens in children and youths. Surgery, radiotherapy and chemotherapy are the common therapies for osteosarcoma treatment but all their anti-tumor effects are limited. In recent years, a new cellular therapy, CAR-T, a cellular immunotherapy with genetically engineered T cells bearing chimeric antigen receptor targeting specific tumor-associated antigen, has been proved to be an effective therapy against acute lymphoblastic leukemia. Thus, CAR-T is a potentially effective therapy for osteosarcoma treatment. METHODS A CAR gene targeting B7-H3 antigen was constructed into lentiviral vector through molecular biology techniques. Then, the CAR gene was transferred to T cells through lentiviral delivery system, and the CAR-T cells were largely expanded using in vitro culture technology. The in vitro anti-tumor effect of CAR-T cells was evaluated through Real Time Cell Analysis system (RTCA) and ELISA assay. The in vivo anti-tumor capabilities of CAR-T cells were evaluated using the patient-derived xenografts (PDX) model of osteosarcoma. RESULTS The third-generation CAR-T cells we constructed could target the B7-H3 antigen, and the phenotype of CAR-T cells was consistent with normal T cells; The CAR-T cells showed superior antitumor effects both in vitro and in vivo. CONCLUSION Our study showed that B7-H3 targeted CAR-T cells had high anti-tumor efficacy against osteosarcoma both in vitro and in vivo, which proved that B7-H3 targeted CAR-T therapy is potentially effective for osteosarcoma treatment.
Collapse
Affiliation(s)
- Qian Zhang
- Shanghai Yihao Biological Technology Co., Ltd, Shanghai, 200231 China
| | - Zhiqiang Zhang
- grid.411333.70000 0004 0407 2968Department of Pediatric Orthopedics, National Children’s Medical Center & Children’s Hospital of Fudan University, Shanghai, 201102 China
| | - Guodi Liu
- Shanghai Yihao Biological Technology Co., Ltd, Shanghai, 200231 China ,grid.28056.390000 0001 2163 4895State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237 China
| | - Dehua Li
- Shanghai Yihao Biological Technology Co., Ltd, Shanghai, 200231 China
| | - Zhangjie Gu
- Shanghai Yihao Biological Technology Co., Ltd, Shanghai, 200231 China
| | - Linsong Zhang
- Shanghai Yihao Biological Technology Co., Ltd, Shanghai, 200231 China
| | - Yingjiao Pan
- Shanghai Yihao Biological Technology Co., Ltd, Shanghai, 200231 China
| | - Xingbing Cui
- Shanghai Yihao Biological Technology Co., Ltd, Shanghai, 200231 China
| | - Lu Wang
- Shanghai Yihao Biological Technology Co., Ltd, Shanghai, 200231 China
| | - Guoping Liu
- grid.411525.60000 0004 0369 1599Department of General Surgery, Changhai Hospital, Shanghai, 200433 China
| | - Xiaoli Tian
- Shanghai Yihao Biological Technology Co., Ltd, Shanghai, 200231 China ,Shanghai Beautiful Life Medical Technology Co., Ltd., Shanghai, 200231 China
| | - Ziming Zhang
- grid.412987.10000 0004 0630 1330Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092 China ,grid.415625.10000 0004 0467 3069Department of Orthopaedics, Shanghai Children’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062 China
| |
Collapse
|
16
|
Hagelstein I, Engel M, Hinterleitner C, Manz T, Märklin M, Jung G, Salih HR, Zekri L. B7-H3-targeting Fc-optimized antibody for induction of NK cell reactivity against sarcoma. Front Immunol 2022; 13:1002898. [PMID: 36275693 PMCID: PMC9585277 DOI: 10.3389/fimmu.2022.1002898] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/23/2022] [Indexed: 06/24/2024] Open
Abstract
Natural killer (NK) cells largely contribute to antibody-dependent cellular cytotoxicity (ADCC), a central factor for success of monoclonal antibodies (mAbs) treatment of cancer. The B7 family member B7-H3 (CD276) recently receives intense interest as a novel promising target antigen for immunotherapy. B7-H3 is highly expressed in many tumor entities, whereas expression on healthy tissues is rather limited. We here studied expression of B7-H3 in sarcoma, and found substantial levels to be expressed in various bone and soft-tissue sarcoma subtypes. To date, only few immunotherapeutic options for treatment of sarcomas that are limited to a minority of patients are available. We here used a B7-H3 mAb to generate chimeric mAbs containing either a wildtype Fc-part (8H8_WT) or a variant Fc part with amino-acid substitutions (S239D/I332E) to increase affinity for CD16 expressing NK cells (8H8_SDIE). In comparative studies we found that 8H8_SDIE triggers profound NK cell functions such as activation, degranulation, secretion of IFNγ and release of NK effector molecules, resulting in potent lysis of different sarcoma cells and primary sarcoma cells derived from patients. Our findings emphasize the potential of 8H8_SDIE as novel compound for treatment of sarcomas, particularly since B7-H3 is expressed in bone and soft-tissue sarcoma independent of their subtype.
Collapse
Affiliation(s)
- Ilona Hagelstein
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
| | - Monika Engel
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
- Department for Immunology and German Cancer Consortium (DKTK), Eberhard Karls University, Tuebingen, Germany
| | - Clemens Hinterleitner
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
- Department of Medical Oncology and Pneumology (Internal Medicine VIII), University Hospital Tuebingen, Tuebingen, Germany
| | - Timo Manz
- Department for Immunology and German Cancer Consortium (DKTK), Eberhard Karls University, Tuebingen, Germany
| | - Melanie Märklin
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
| | - Gundram Jung
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
- Department for Immunology and German Cancer Consortium (DKTK), Eberhard Karls University, Tuebingen, Germany
| | - Helmut R. Salih
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
| | - Latifa Zekri
- Clinical Collaboration Unit Translational Immunology, Department of Internal Medicine, German Cancer Consortium (DKTK), University Hospital Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, Tuebingen, Germany
- Department for Immunology and German Cancer Consortium (DKTK), Eberhard Karls University, Tuebingen, Germany
| |
Collapse
|
17
|
To kill a cancer: Targeting the immune inhibitory checkpoint molecule, B7-H3. Biochim Biophys Acta Rev Cancer 2022; 1877:188783. [PMID: 36028149 DOI: 10.1016/j.bbcan.2022.188783] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/30/2022] [Accepted: 08/19/2022] [Indexed: 12/26/2022]
Abstract
Targeting the anti-tumor immune response via the B7 family of immune-regulatory checkpoint proteins has revolutionized cancer treatment and resulted in punctuated responses in patients. B7-H3 has gained recent attention given its prominent deregulation and immunomodulatory role in a multitude of cancers. Numerous cancer studies have firmly established a strong link between deregulated B7-H3 expression and poorer outcomes. B7-H3 has been shown to augment cancer cell survival, proliferation, metastasis, and drug resistance by inducing an immune evasive phenotype through its effects on tumor-infiltrating immune cells, cancer cells, cancer-associated vasculature, and the stroma. Given the complex interplay between each of these components of the tumor microenvironment, a deeper understanding of B7-H3 signaling properties is inherently crucial to developing efficacious therapies that can target and inhibit these cancer-promoting interactions. This review delves into the various ways B7-H3 acts as an immunomodulator to facilitate immune evasion and promote tumor growth and spread. With post-transcriptional and post-translational modifications giving rise to different active isoforms coupled with recent discoveries of its putative receptors, B7-H3 can perform diverse functions. Here, we first discuss the dual co-stimulatory/co-inhibitory functions of B7-H3 in the context of normal physiology and cancer. We then discuss the crosstalk facilitated by B7-H3 between stromal components and tumor cells that promote tumor growth and metastasis in different populations of tumor cells, associated vasculature, and the stroma. Concurrently, we highlight therapeutic strategies that can exploit these interactions and their associated limitations, concluding with a special focus on the promise of next-gen in silico-based approaches to small molecule inhibitor drug discovery for B7-H3 that may mitigate these limitations.
Collapse
|
18
|
Targeted Therapy of B7 Family Checkpoints as an Innovative Approach to Overcome Cancer Therapy Resistance: A Review from Chemotherapy to Immunotherapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113545. [PMID: 35684481 PMCID: PMC9182385 DOI: 10.3390/molecules27113545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022]
Abstract
It is estimated that there were 18.1 million cancer cases worldwide in 2018, with about 9 million deaths. Proper diagnosis of cancer is essential for its effective treatment because each type of cancer requires a specific treatment procedure. Cancer therapy includes one or more approaches such as surgery, radiotherapy, chemotherapy, and immunotherapy. In recent years, immunotherapy has received much attention and immune checkpoint molecules have been used to treat several cancers. These molecules are involved in regulating the activity of T lymphocytes. Accumulated evidence shows that targeting immune checkpoint regulators like PD-1/PD-L1 and CTLA-4 are significantly useful in treating cancers. According to studies, these molecules also have pivotal roles in the chemoresistance of cancer cells. Considering these findings, the combination of immunotherapy and chemotherapy can help to treat cancer with a more efficient approach. Among immune checkpoint molecules, the B7 family checkpoints have been studied in various cancer types such as breast cancer, myeloma, and lymphoma. In these cancers, they cause the cells to become resistant to the chemotherapeutic agents. Discovering the exact signaling pathways and selective targeting of these checkpoint molecules may provide a promising avenue to overcome cancer development and therapy resistance. Highlights: (1) The development of resistance to cancer chemotherapy or immunotherapy is the main obstacle to improving the outcome of these anti-cancer therapies. (2) Recent investigations have described the involvement of immune checkpoint molecules in the development of cancer therapy resistance. (3) In the present study, the molecular participation of the B7 immune checkpoint family in anticancer therapies has been highlighted. (4) Targeting these immune checkpoint molecules may be considered an efficient approach to overcoming this obstacle.
Collapse
|
19
|
Yamato M, Hasegawa J, Maejima T, Hattori C, Kumagai K, Watanabe A, Nishiya Y, Shibutani T, Aida T, Hayakawa I, Nakada T, Abe Y, Agatsuma T. DS-7300a, a DNA Topoisomerase I Inhibitor, DXd-Based Antibody-Drug Conjugate Targeting B7-H3, Exerts Potent Antitumor Activities in Preclinical Models. Mol Cancer Ther 2022; 21:635-646. [PMID: 35149548 PMCID: PMC9377751 DOI: 10.1158/1535-7163.mct-21-0554] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/12/2021] [Accepted: 02/07/2022] [Indexed: 01/07/2023]
Abstract
B7-H3 is overexpressed in various solid tumors and has been considered as an attractive target for cancer therapy. Here, we report the development of DS-7300a, a novel B7-H3-targeting antibody-drug conjugate with a potent DNA topoisomerase I inhibitor, and its in vitro profile, pharmacokinetic profiles, safety profiles, and in vivo antitumor activities in nonclinical species. The target specificity and species cross-reactivity of DS-7300a were assessed. Its pharmacologic activities were evaluated in several human cancer cell lines in vitro and xenograft mouse models, including patient-derived xenograft (PDX) mouse models in vivo. Pharmacokinetics was investigated in cynomolgus monkeys. Safety profiles in rats and cynomolgus monkeys were also assessed. DS-7300a specifically bound to B7-H3 and inhibited the growth of B7-H3-expressing cancer cells, but not that of B7-H3-negative cancer cells, in vitro. Additionally, treatment with DS-7300a and DXd induced phosphorylated checkpoint kinase 1, a DNA damage marker, and cleaved PARP, an apoptosis marker, in cancer cells. Moreover, DS-7300a demonstrated potent in vivo antitumor activities in high-B7-H3 tumor xenograft models, including various tumor types of high-B7-H3 PDX models. Furthermore, DS-7300a was stable in circulation with acceptable pharmacokinetic profiles in monkeys, and well tolerated in rats and monkeys. DS-7300a exerted potent antitumor activities against B7-H3-expressing tumors in in vitro and in vivo models, including PDX mouse models, and showed acceptable pharmacokinetic and safety profiles in nonclinical species. Therefore, DS-7300a may be effective in treating patients with B7-H3-expressing solid tumors in a clinical setting.
Collapse
Affiliation(s)
- Michiko Yamato
- Daiichi Sankyo Co., Ltd., Tokyo, Japan.,Corresponding Author: Michiko Yamato, Daiichi Sankyo Co., Ltd., 1-2-58, Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan. Phone: 81-3-3492-3131; E-mail:
| | | | | | | | | | | | | | | | | | | | | | - Yuki Abe
- Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | |
Collapse
|
20
|
A Novel Anti-B7-H3 × Anti-CD3 Bispecific Antibody with Potent Antitumor Activity. Life (Basel) 2022; 12:life12020157. [PMID: 35207448 PMCID: PMC8879513 DOI: 10.3390/life12020157] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 12/11/2022] Open
Abstract
B7-H3 plays an important role in tumor apoptosis, proliferation, adhesion, angiogenesis, invasion, migration, and evasion of immune surveillance. It is overexpressed in various human solid tumor tissues. In patients, B7-H3 overexpression correlates with advanced stages, poor clinical outcomes, and resistance to therapy. The roles of B7-H3 in tumor progression make it a potential candidate for targeted therapy. Here, we generated a mouse anti-human B7-H3 antibody and demonstrated its binding activity via Tongji University Suzhou Instituteprotein-based and cell-based assays. We then developed a novel format anti-B7-H3 × anti-CD3 bispecific antibody based on the antibody-binding fragment of the anti-B7-H3 antibody and single-chain variable fragment structure of anti-CD3 antibody (OKT3) and demonstrated that this bispecific antibody mediated potent cytotoxic activities against various B7-H3-positive tumor cell lines in vitro by improving T cell activation and proliferation. This bispecific antibody also demonstrated potent antitumor activity in humanized mice xenograft models. These results revealed that the novel anti-B7-H3 × anti-CD3 bispecific antibody has the potential to be employed in treatment of B7-H3-positive solid tumors.
Collapse
|
21
|
Liu C, Zhang G, Xiang K, Kim Y, Lavoie RR, Lucien F, Wen T. Targeting the immune checkpoint B7-H3 for next-generation cancer immunotherapy. Cancer Immunol Immunother 2021; 71:1549-1567. [PMID: 34739560 DOI: 10.1007/s00262-021-03097-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022]
Abstract
Immune checkpoint inhibitors (ICIs) for programmed death-1 (PD-1) and programmed cell death-ligand 1 (PD-L1) have become preferred treatment strategies for several advanced cancers. However, response rates for these treatments are limited, which encourages the search for new ICI candidates. Recent reports have underscored significant roles of B7 homolog 3 protein (B7-H3) in tumor immunity and disease progression. While its multifaceted roles are being elucidated, B7-H3 has already entered clinical trials as a therapeutic target. In this review, we overview the recent results of clinical trials evaluating the antitumor activity and safety of B7-H3 targeting drugs. On this basis, we also discuss the challenges and opportunities arising from the application of these drugs. Finally, we point out current gaps to address in the understanding of B7-H3 function and regulation in order to fully unleash the future clinical utility of B7-H3-based therapies for the treatment of cancer.
Collapse
Affiliation(s)
- Chuan Liu
- Department of Medical Oncology, Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Guangwei Zhang
- Smart Hospital Management Department, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Kanghui Xiang
- Department of Medical Oncology, Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China
| | - Yohan Kim
- Department of Urology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Ti Wen
- Department of Medical Oncology, Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.
- Liaoning Province Clinical Research Center for Cancer, Shenyang, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, Shenyang, China.
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
22
|
CD276 is an important player in macrophage recruitment into the tumor and an upstream regulator for PAI-1. Sci Rep 2021; 11:14849. [PMID: 34290311 PMCID: PMC8295264 DOI: 10.1038/s41598-021-94360-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
More than 70% of colorectal, prostate, ovarian, pancreatic and breast cancer specimens show expression of CD276 (B7–H3), a potential immune checkpoint family member. Several studies have shown that high CD276 expression in cancer cells correlates with a poor clinical prognosis. This has been associated with the presence of lower tumor infiltrating leukocytes. Among those, tumor-associated macrophages can comprise up to 50% of the tumor mass and are thought to support tumor growth through various mechanisms. However, a lack of information on CD276 function and interaction partner(s) impedes rigorous evaluation of CD276 as a therapeutic target in oncology. Therefore, we aimed to understand the relevance of CD276 in tumor-macrophage interaction by employing a 3D spheroid coculture system with human cells. Our data show a role for tumor-expressed CD276 on the macrophage recruitment into the tumor spheroid, and also in regulation of the extracellular matrix modulator PAI-1. Furthermore, our experiments focusing on macrophage-expressed CD276 suggest that the antibody-dependent CD276 engagement triggers predominantly inhibitory signaling networks in human macrophages.
Collapse
|
23
|
Tabana Y, Moon TC, Siraki A, Elahi S, Barakat K. Reversing T-cell exhaustion in immunotherapy: a review on current approaches and limitations. Expert Opin Ther Targets 2021; 25:347-363. [PMID: 34056985 DOI: 10.1080/14728222.2021.1937123] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Introduction:T cell functions are altered during chronic viral infections and tumor development. This is mainly manifested by significant changes in T cells' epigenetic and metabolic landscapes, pushing them into an 'exhausted' state. Reversing this T cell exhaustion has been emerging as a 'game-changing' therapeutic approach against cancer and chronic viral infection.Areas covered:This review discusses the cellular pathways related to T cell exhaustion, and the clinical development and possible cellular targets that can be exploited therapeutically to reverse this exhaustion. We searched various databases (e.g. Google Scholar, PubMed, Elsevier, and other scientific database sites) using the keywords T cell exhaustion, T cell activation, co-inhibitory receptors, and reversing T cell exhaustion.Expert opinion:The discovery of the immune checkpoints pathways represents a significant milestone toward understanding and reversing T cell exhaustion. Antibodies that target these pathways have already demonstrated promising activities in reversing T cell exhaustion. Nevertheless, there are still many associated limitations. In this context, next-generation alternatives are on the horizon. This includes the use of small molecules to block the immune checkpoints' receptors, combining them with other treatments, and identifying novel, safer and more effective immunotherapeutic targets.
Collapse
Affiliation(s)
- Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Tae Chul Moon
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Arno Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, University of Alberta, Edmonton, AB, Canada.,Department of Oncology, University of Alberta, Edmonton, AB, Canada.,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
24
|
Advances in immunotherapeutic targets for childhood cancers: A focus on glypican-2 and B7-H3. Pharmacol Ther 2021; 223:107892. [PMID: 33992682 DOI: 10.1016/j.pharmthera.2021.107892] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 12/16/2022]
Abstract
Cancer immunotherapies have revolutionized how we can treat adult malignancies and are being translated to pediatric oncology. Chimeric antigen receptor T-cell therapy and bispecific antibodies targeting CD19 have shown success for the treatment of pediatric patients with B-cell acute lymphoblastic leukemia. Anti-GD2 monoclonal antibody has demonstrated efficacy in neuroblastoma. In this review, we summarize the immunotherapeutic agents that have been approved for treating childhood cancers and provide an updated review of molecules expressed by pediatric cancers that are under study or are emerging candidates for future immunotherapies. Advances in our knowledge of tumor immunology and in genome profiling of cancers has led to the identification of new tumor-specific/associated antigens. While cell surface antigens are normally targeted in a major histocompatibility complex (MHC)-independent manner using antibody-based therapies, intracellular antigens are normally targeted with MHC-dependent T cell therapies. Glypican 2 (GPC2) and B7-H3 (CD276) are two cell surface antigens that are expressed by a variety of pediatric tumors such as neuroblastoma and potentially can have a positive impact on the treatment of pediatric cancers in the clinic.
Collapse
|
25
|
Kgatle MM, Boshomane TMG, Lawal IO, Mokoala KMG, Mokgoro NP, Lourens N, Kairemo K, Zeevaart JR, Vorster M, Sathekge MM. Immune Checkpoints, Inhibitors and Radionuclides in Prostate Cancer: Promising Combinatorial Therapy Approach. Int J Mol Sci 2021; 22:4109. [PMID: 33921181 PMCID: PMC8071559 DOI: 10.3390/ijms22084109] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 01/01/2023] Open
Abstract
Emerging research demonstrates that co-inhibitory immune checkpoints (ICs) remain the most promising immunotherapy targets in various malignancies. Nonetheless, ICIs have offered insignificant clinical benefits in the treatment of advanced prostate cancer (PCa) especially when they are used as monotherapies. Current existing PCa treatment initially offers an improved clinical outcome and overall survival (OS), however, after a while the treatment becomes resistant leading to aggressive and uncontrolled disease associated with increased mortality and morbidity. Concurrent combination of the ICIs with radionuclides therapy that has rapidly emerged as safe and effective targeted approach for treating PCa patients may shift the paradigm of PCa treatment. Here, we provide an overview of the contextual contribution of old and new emerging inhibitory ICs in PCa, preclinical and clinical studies supporting the use of these ICs in treating PCa patients. Furthermore, we will also describe the potential of using a combinatory approach of ICIs and radionuclides therapy in treating PCa patients to enhance efficacy, durable cancer control and OS. The inhibitory ICs considered in this review are cytotoxic T-lymphocyte antigen 4 (CTLA4), programmed cell death 1 (PD1), V-domain immunoglobulin suppressor of T cell activation (VISTA), indoleamine 2,3-dioxygenase (IDO), T cell Immunoglobulin Domain and Mucin Domain 3 (TIM-3), lymphocyte-activation gene 3 (LAG-3), T cell immunoreceptor with Ig and ITIM domains (TIGIT), B7 homolog 3 (B7-H3) and B7-H4.
Collapse
Affiliation(s)
- Mankgopo M. Kgatle
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Tebatso M. G. Boshomane
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Ismaheel O. Lawal
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Kgomotso M. G. Mokoala
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Neo P. Mokgoro
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Nico Lourens
- Department of Urology, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Kalevo Kairemo
- Departments of Molecular Radiotherapy & Nuclear Medicine, Docrates Cancer Center, 00180 Helsinki, Finland;
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jan Rijn Zeevaart
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Radiochemistry, South African Nuclear Energy Corporation SOC (Necsa), Pelindaba 0001, South Africa
| | - Mariza Vorster
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria 0001, South Africa
| | - Mike M. Sathekge
- Department of Nuclear Medicine, University of Pretoria & Steve Biko Academic Hospital, Pretoria 0001, South Africa; (T.M.G.B.); (I.O.L.); (K.M.G.M.); (N.P.M.); (M.V.)
- Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Department of Nuclear Medicine, Steve Biko Academic Hospital, Pretoria 0001, South Africa
| |
Collapse
|
26
|
The complexity of tumour angiogenesis based on recently described molecules. Contemp Oncol (Pozn) 2021; 25:33-44. [PMID: 33911980 PMCID: PMC8063899 DOI: 10.5114/wo.2021.105075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022] Open
Abstract
Tumour angiogenesis is a crucial factor associated with tumour growth, progression, and metastasis. The whole process is the result of an interaction between a wide range of different molecules, influencing each other. Herein we summarize novel discoveries related to the less known angiogenic molecules such as galectins, pentraxin-3, Ral-interacting protein of 76 kDa (RLIP76), long non-coding RNAs (lncRNAs), B7-H3, and delta-like ligand-4 (DLL-4) and their role in the process of tumour angiogenesis. These molecules influence the most important molecular pathways involved in the formation of blood vessels in cancer, including the vascular endothelial growth factor (VEGF)-vascular endothelial growth factor receptor interaction (VEGFR), HIF1-a activation, or PI3K/Akt/mTOR and JAK-STAT signalling pathways. Increased expression of galectins, RLIP76, and B7H3 has been proven in several malignancies. Pentraxin-3, which appears to inhibit tumour angiogenesis, shows reduced expression in tumour tissues. Anti-angiogenic treatment based mainly on VEGF inhibition has proved to be of limited effectiveness, leading to the development of drug resistance. The newly discovered molecules are of great interest as a potential source of new anti-cancer therapies. Their role as targets for new drugs and as prognostic markers in neoplasms is discussed in this review.
Collapse
|
27
|
The expression of B7-H3 isoforms in newly diagnosed glioblastoma and recurrence and their functional role. Acta Neuropathol Commun 2021; 9:59. [PMID: 33795013 PMCID: PMC8017683 DOI: 10.1186/s40478-021-01167-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/21/2021] [Indexed: 01/01/2023] Open
Abstract
Short survival of glioblastoma (GBM) patients is due to systematic tumor recurrence. Our laboratory identified a GBM cell subpopulation able to leave the tumor mass (TM) and invade the subventricular zone (SVZ-GBM cells). SVZ-GBM cells escape treatment and appear to contribute to GBM recurrence. This study aims to identify proteins specifically expressed by SVZ-GBM cells and to define their role(s) in GBM aggressiveness and recurrence. The proteome was compared between GBM cells located in the initial TM and SVZ-GBM cells using mass spectrometry. Among differentially expressed proteins, we confirmed B7-H3 by western blot (WB) and quantitative RT-PCR. B7-H3 expression was compared by immunohistochemistry and WB (including expression of its isoforms) between human GBM (N = 14) and non-cancerous brain tissue (N = 8), as well as newly diagnosed GBM and patient-matched recurrences (N = 11). Finally, the expression of B7-H3 was modulated with short hairpin RNA and/or over-expression vectors to determine its functional role in GBM using in vitro assays and a xenograft mouse model of GBM. B7-H3 was a marker for SVZ-GBM cells. It was also increased in human GBM pericytes, myeloid cells and neoplastic cells. B7-H3 inhibition in GBM cells reduced their tumorigenicity. Out of the two B7-H3 isoforms, only 2IgB7-H3 was detected in non-cancerous brain tissue, whereas 4IgB7-H3 was specific for GBM. 2IgB7-H3 expression was higher in GBM recurrences and increased resistance to temozolomide-mediated apoptosis. To conclude, 4IgB7-H3 is an interesting candidate for GBM targeted therapies, while 2IgB7-H3 could be involved in recurrence through resistance to chemotherapy.
Collapse
|
28
|
Hu X, Xu M, Hu Y, Li N, Zhou L. B7-H3, Negatively Regulated by miR-128, Promotes Colorectal Cancer Cell Proliferation and Migration. Cell Biochem Biophys 2021; 79:397-405. [PMID: 33743142 DOI: 10.1007/s12013-021-00975-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 03/05/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND B7 homolog 3 (B7-H3), a member of the immunoregulatory ligand B7 family, is pivotal in T-cell-mediated immune response. It is widely expressed in diverse human tumors and its high expression indicates the poor prognosis of the patients. Nonetheless, B7-H3's role in colorectal cancer (CRC) needs to be further explored. METHODS Western blot and immunohistochemistry were employed for detecting B7-H3 protein expression in CRC tissues and cell lines, respectively. Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized for detecting B7-H3 mRNA and miR-128 expression levels. CRC cell lines SW620 and HT29 were used to construct B7-H3 overexpression or knockdown cell models, respectively. Cell counting kit-8 (CCK-8), 5-bromo-2'-deoxyuridine (BrdU), and scratch wound healing assays were employed for evaluating the effects of B7-H3 on CRC cell multiplication and migration. Besides, the regulatory relationship between miR-128 and B7-H3 was validated through dual-luciferase reporter gene assay, qRT-PCR, and western blotting. RESULTS B7-H3 expression level was remarkably elevated in CRC tissues and cell lines, and its high expression level was associated with increased tumor size, positive lymph node metastasis, and increased T stage. In CRC cells, B7-H3 overexpression significantly facilitated the cell multiplication and migration, while B7-H3 knockdown worked oppositely. Moreover, B7-H3 was identified as a target of miR-128, and miR-128 negatively regulated B7-H3 expression in CRC cells. CONCLUSION B7-H3 expression is upregulated in CRC tissues and cell lines, and B7-H3 participates in promoting the proliferation and migration of CRC cells. Besides, B7-H3 expression is negatively regulated by miR-128 in CRC.
Collapse
Affiliation(s)
- Xiaomao Hu
- Department of Oncology, Affiliated Hospital of Xiangnan University, Chenzhou, 423000, Hunan, China.
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Minxian Xu
- Department of Oncology, Affiliated Hospital of Xiangnan University, Chenzhou, 423000, Hunan, China
| | - Yangzhi Hu
- Department of Gastroenterology Surgery, Affiliated Hospital of Xiangnan University, Chenzhou, 423000, Hunan, China
| | - Na Li
- Department of Oncology, Affiliated Hospital of Xiangnan University, Chenzhou, 423000, Hunan, China
| | - Lei Zhou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
29
|
Chen T, Yang P, Jia Y. Molecular mechanisms of astragaloside‑IV in cancer therapy (Review). Int J Mol Med 2021; 47:13. [PMID: 33448320 PMCID: PMC7834967 DOI: 10.3892/ijmm.2021.4846] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/23/2020] [Indexed: 12/26/2022] Open
Abstract
Radix Astragali (RA) is widely used in traditional Chinese medicine (TCM), and astragaloside IV (AS-IV) is the most critical component of RA. Previous studies have demonstrated that AS-IV exerts effects on the myocardium, nervous system and endocrine system, among others. In the present review article, data from studies conducted over the past 20 years were collated, which have evaluated the effects of AS-IV on tumors. The mechanisms of action of AS-IV on malignant cells both in vivo and in vitro were summarized and it was demonstrated that AS-IV plays a vital role, particularly in inhibiting tumor growth and metastasis, promoting the apoptosis of tumor cells, enhancing immune function and preventing drug resistance. Moreover, AS-IV controls several epithelial-mesenchymal transformation (EMT)-related and autophagy-related pathways, such as the phosphoinositide-3-kinase (PI3K)/protein kinase B (AKT), Wnt/β-catenin, mitogen-activated protein kinase (MAPK)/extracellular regulated protein kinase (ERK) and transforming growth factor-β (TGF-β)/SMAD signaling pathways, which are commonly affected in the majority of tumors. The present review provides new perspectives on the functions of AS-IV and its role as an adjuvant treatment in cancer chemotherapy.
Collapse
Affiliation(s)
- Tianqi Chen
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300380, P.R. China
| | - Peiying Yang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300380, P.R. China
| | - Yingjie Jia
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300380, P.R. China
| |
Collapse
|
30
|
B7-H3 Chimeric Antigen Receptor Redirected T Cells Target Anaplastic Lymphoma Kinase-Positive Anaplastic Large Cell Lymphoma. Cancers (Basel) 2020; 12:cancers12123815. [PMID: 33348781 PMCID: PMC7766167 DOI: 10.3390/cancers12123815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/27/2020] [Accepted: 12/14/2020] [Indexed: 12/30/2022] Open
Abstract
Simple Summary Although chemotherapy is associated with high relapse rates and numerous side effects, it is still used as the front line treatment of anaplastic large cell lymphoma (ALCL). Therefore, alternative treatment options for ALCL are needed. In this study, we show that B7-H3 is a novel and promising target in ALCLs, and demonstrate that B7-H3 directed chimeric antigen receptor (CAR) T cells have therapeutic potency in controlling ALCL tumor growth. Abstract Potent CAR-T therapies that target appropriate antigens can benefit the treatment of anaplastic lymphoma kinase-positive (ALK+) anaplastic large cell lymphoma (ALCL), which is the most common subtype of T cell lymphoma. In this study, we observed overexpression of B7-H3 in ALCL cell lines derived from clinical samples and differential expression of B7-H3 in an ALK-induced T cell transformation model. A B7-H3-redirected CAR based on scFv from mAb 376.96 was developed. B7-H3 CAR-T cells showed strong cytotoxicity and cytokine secretion against target ALCL cells (SUP-M2, SU-DHL-1, and Karpas 299) in vitro. Furthermore, the B7-H3 CAR-T cells exhibited proliferative capacity and a memory phenotype upon repeated antigen stimulation. We demonstrated that B7-H3 CAR-T cells could promptly eradicate ALCL in murine xenografts. Taken together, B7-H3 is a novel and promising target in ALCLs and B7-H3 CAR-T may be a viable treatment option for ALCL.
Collapse
|
31
|
Matsumura E, Kajino K, Abe M, Ohtsuji N, Saeki H, Hlaing MT, Hino O. Expression status of PD-L1 and B7-H3 in mesothelioma. Pathol Int 2020; 70:999-1008. [PMID: 33027549 DOI: 10.1111/pin.13028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/15/2020] [Indexed: 12/29/2022]
Abstract
Mesothelioma is a rare, aggressive malignancy with poor outcome, and has limited treatment options. The aim of this study was to perform a comprehensive analysis of programmed death ligand 1 (PD-L1) and B7 homolog 3 (B7-H3) expression in mesothelioma. We investigated the protein expression of PD-L1 and B7-H3 and their potential correlation with histological subtype, which might help to develop new therapies targeting these immune checkpoint molecules. Expression analysis of PD-L1 and B7-H3 was performed by immunohistochemistry using serial tissue sections of specimens obtained from 31 patients with mesothelioma. Tumors were classified into 22 epithelioid, 6 sarcomatoid, and 3 biphasic types. Of the 31 patients, 13 (41.9%) were positive for PD-L1 and 28 (90.3%) were B7-H3 positive. Twelve of the 13 PD-L1 positive patients were positive for B7-H3. PD-L1 and B7-H3 were widely co-expressed in biphasic and sarcomatoid type tumor cells. These findings might provide a rationale for the use of combination therapy for mesothelioma by targeting PD-L1 and B7-H3, as well as the development of anti-B7-H3 or anti-PD-L1 single agents.
Collapse
Affiliation(s)
- Eiji Matsumura
- Departments of Pathology and Oncology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Oncology Medical Science, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Kazunori Kajino
- Departments of Pathology and Oncology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masaaki Abe
- Departments of Pathology and Oncology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Naomi Ohtsuji
- Departments of Pathology and Oncology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Harumi Saeki
- Departments of Pathology and Oncology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - May Thinzar Hlaing
- Departments of Pathology and Oncology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Okio Hino
- Departments of Pathology and Oncology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
32
|
Scribner JA, Brown JG, Son T, Chiechi M, Li P, Sharma S, Li H, De Costa A, Li Y, Chen Y, Easton A, Yee-Toy NC, Chen FZ, Gorlatov S, Barat B, Huang L, Wolff CR, Hooley J, Hotaling TE, Gaynutdinov T, Ciccarone V, Tamura J, Koenig S, Moore PA, Bonvini E, Loo D. Preclinical Development of MGC018, a Duocarmycin-based Antibody-drug Conjugate Targeting B7-H3 for Solid Cancer. Mol Cancer Ther 2020; 19:2235-2244. [PMID: 32967924 DOI: 10.1158/1535-7163.mct-20-0116] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/02/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022]
Abstract
B7-H3, also referred to as CD276, is a member of the B7 family of immune regulatory proteins. B7-H3 is overexpressed on many solid cancers, including prostate cancer, renal cell carcinoma, melanoma, squamous cell carcinoma of the head and neck, non-small cell lung cancer, and breast cancer. Overexpression of B7-H3 is associated with disease severity, risk of recurrence and reduced survival. In this article, we report the preclinical development of MGC018, an antibody-drug conjugate targeted against B7-H3. MGC018 is comprised of the cleavable linker-duocarmycin payload, valine-citrulline-seco duocarmycin hydroxybenzamide azaindole (vc-seco-DUBA), conjugated to an anti-B7-H3 humanized IgG1/kappa mAb through reduced interchain disulfides, with an average drug-to-antibody ratio of approximately 2.7. MGC018 exhibited cytotoxicity toward B7-H3-positive human tumor cell lines, and exhibited bystander killing of target-negative tumor cells when cocultured with B7-H3-positive tumor cells. MGC018 displayed potent antitumor activity in preclinical tumor models of breast, ovarian, and lung cancer, as well as melanoma. In addition, antitumor activity was observed toward patient-derived xenograft models of breast, prostate, and head and neck cancer displaying heterogeneous expression of B7-H3. Importantly, MGC018 exhibited a favorable pharmacokinetic and safety profile in cynomolgus monkeys following repeat-dose administration. The antitumor activity observed preclinically with MGC018, together with the positive safety profile, provides evidence of a potentially favorable therapeutic index and supports the continued development of MGC018 for the treatment of solid cancers. GRAPHICAL ABSTRACT: http://mct.aacrjournals.org/content/molcanther/19/11/2235/F1.large.jpg.
Collapse
Affiliation(s)
| | | | | | | | - Pam Li
- MacroGenics, Inc., Brisbane, California
| | | | - Hua Li
- MacroGenics, Inc., Rockville, Maryland
| | | | - Ying Li
- MacroGenics, Inc., Brisbane, California
| | - Yan Chen
- MacroGenics, Inc., Brisbane, California
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Deryk Loo
- MacroGenics, Inc., Brisbane, California.
| |
Collapse
|
33
|
Wharton's Jelly Mesenchymal Stromal Cells from Human Umbilical Cord: a Close-up on Immunomodulatory Molecules Featured In Situ and In Vitro. Stem Cell Rev Rep 2020; 15:900-918. [PMID: 31741193 DOI: 10.1007/s12015-019-09907-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Therapeutic options for end-stage organ failure are often limited to whole organ transplantation. The tolerance or rejection of the transplanted organ is driven by both early non-specific innate and specific adaptive responses. The use of mesenchymal stromal cells (MSCs) is considered a promising tool in regenerative medicine. Human umbilical cord (HUC) is an easily available source of MSCs, without relevant ethical issues. Moreover, Wharton's jelly-derived MSCs (WJ-MSCs), showed consistent immunomodulatory features that may be useful to promote immune tolerance in the host after transplantation. Few data are available on the phenotype of WJ-MSCs in situ. We investigated the expression of immune-related molecules, such as HLAs, IDO, CD276/B7-H3, and others, both in situ (HUC) and in in vitro-cultured WJ-MSCs. Morphological and biochemical techniques were used to define the expression of such molecules. In addition, we focused on the possible role of CD276/B7-H3 on T cells proliferation inhibition. We assessed CD276/B7-H3 expression by WJ-MSCs both in situ and alongside cell culture. WJ-MSCs were able to suppress T cell proliferation in mixed lymphocyte reaction (MLR). Moreover, we describe for the first time a specific role for CD276/B7-H3, since the immunomodulatory ability of WJ-MSCs was abolished upon anti-CD276/B7-H3 antibody addition to the MLR. These results further detail the immune regulation properties and tolerance induction exerted by human WJ-MSCs, in particular pointing to CD276/B7-H3 as one of the main involved factors. These data further suggest WJ-MSCs as potent tools to modulate local immune response in "support-type" regenerative medicine approaches.
Collapse
|
34
|
Li F, Chen H, Wang D. Silencing of CD276 suppresses lung cancer progression by regulating integrin signaling. J Thorac Dis 2020; 12:2137-2145. [PMID: 32642118 PMCID: PMC7330387 DOI: 10.21037/jtd.2020.04.41] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Non-small cell lung cancer (NSCLC) is one of the cancers with the highest morbidity and mortality among the world. Studies have shown that the invasion and metastasis of tumor are biological characteristics of lung cancer, and also the main cause of treatment failure and patient death. In-depth study of lung cancer invasion related genes will help to explore the etiology of lung cancer, molecular typing and individualized treatment of lung cancer. Studies have shown that CD276 molecules are closely related to the prognosis of tumors, but the exact mechanism remains to be unclear. Methods We used the UALCAN and KM-plotter databases to investigate the expression of CD276 in human NSCLC and adjacent normal tissues, and its correlation with clinicopathology. In addition, we analyzed the function of CD276 in NSCLC cell by suppressing the expression of CD276 in A549 and H460 cells. Results In this study, we found that CD276 expression was significantly up-regulated in NSCLC tissues, and its expression was positively correlated with tumor stage in NSCLC. Silencing in CD276 inhibited cell invasion and migration by reducing integrin-associated protein expression. Conclusions Our results indicate functional role of CD276 in the progression of NSCLC.
Collapse
Affiliation(s)
- Fang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hengchi Chen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dali Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
35
|
Chen Y, Guan SY, Deng J, Yang H, Xu W, Xu S, Shao M, Gao X, Xu S, Shuai Z, Pan F. B7-H3: A promising therapeutic target for autoimmune diseases. Cell Immunol 2020; 352:104077. [PMID: 32113615 DOI: 10.1016/j.cellimm.2020.104077] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/02/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
B7-H3 as a newly identified costimulatory molecule that belongs to B7 ligand family, is broadly expressed in both lymphoid and non-lymphoid tissues. The overexpression of B7-H3 has been verified to be correlated with the poor prognosis and poor clinical outcome of several human cancers. In recent years, researchers reveal that B7-H3 is involved in the pathogenesis of various autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), Sjögren's syndrome (SS), ankylosing spondylitis (AS), etc. In this review, we will discuss the biological function of B7-H3 and summarize the progress made over past years regarding its role in the occurrence and development of autoimmune diseases. The insights gained from these findings could serve as the foundation for future therapies of these diseases.
Collapse
Affiliation(s)
- Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Shi-Yang Guan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Jixiang Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Hui Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; Department of Rheumatism and Immunity, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022,China
| | - Wei Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Shanshan Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Ming Shao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Xing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China
| | - Shengqian Xu
- Department of Rheumatism and Immunity, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022,China
| | - Zongwen Shuai
- Department of Rheumatism and Immunity, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022,China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China; The Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
36
|
Zhong C, Lang Q, Yu J, Wu S, Xu F, Tian Y. Phenotypical and potential functional characteristics of different immune cells expressing CD28H/B7-H5 and their relationship with cancer prognosis. Clin Exp Immunol 2020; 200:12-21. [PMID: 31901178 DOI: 10.1111/cei.13413] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2019] [Indexed: 02/06/2023] Open
Abstract
CD28H and B7-H5 have been identified as receptor-ligand pairs in the B7/CD28 family, and have co-stimulatory activity in immune cells. Here, we have systematically reviewed the research reports concerning the CD28H/B7-H5 pathway. It was found that CD28H is mainly expressed in T cells and natural killer (NK) cells with naive and poorly differentiated properties, and repeated antigen stimulation leads to permanent loss of CD28H. In tumors, CD28H is mainly expressed in tissue-resident memory (TRM ) lymphocyte T cells, which is associated with improved tumor prognosis. B7-H5 is a ligand for CD28H and is widely expressed in tumor cells. B7-H5 expression is closely related to the prognosis of the tumor. Studies have shown that high expression of B7-H5 in tumor is related to a worse prognosis for lung cancer, osteosarcoma, oral squamous cell carcinoma (OSCC), breast carcinoma, human clear cell renal cell carcinoma (ccRCC), intrahepatic cholangiocarcinoma (ICC), bladder urothelial carcinoma (BUC) and colorectal cancer (CRC), but is associated with a better prognosis for pancreatic ductal adenocarcinoma (PDAC) and glioma. Controversial views exist in studies on gastric cancer prognosis.
Collapse
Affiliation(s)
- C Zhong
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Q Lang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - J Yu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - S Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - F Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Y Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
37
|
Maachani UB, Tosi U, Pisapia DJ, Mukherjee S, Marnell CS, Voronina J, Martinez D, Santi M, Dahmane N, Zhou Z, Hawkins C, Souweidane MM. B7-H3 as a Prognostic Biomarker and Therapeutic Target in Pediatric central nervous system Tumors. Transl Oncol 2019; 13:365-371. [PMID: 31887631 PMCID: PMC6938869 DOI: 10.1016/j.tranon.2019.11.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
B7–H3 (CD276), a member of the B7 superfamily, is an important factor in downregulating immune responses against tumors. It is also aberrantly expressed in many human malignancies. Beyond immune regulatory roles, its overexpression has been linked to invasive metastatic potential and poor prognosis in patients with cancer. Antibody-dependent cell-mediated cytotoxicity strategies targeting B7–H3 are currently in development, and early-phase clinical trials have shown encouraging preliminary results. To understand the role of B7–H3 in pediatric central nervous system (CNS) malignancies, a comprehensive panel of primary CNS tumors of childhood was examined by immunohistochemistry for levels and extent of B7–H3 expression. In addition, B7–H3 m-RNA expression status and association with overall survival in various pediatric CNS tumor types was accessed by curating publicly available patient gene expression data sets derived from bioinformatics analysis and visualization platforms (GlioVis). We demonstrate that B7–H3 is broadly expressed in pediatric glial and nonglial CNS tumors, and its aberrant expression, as determined by immunohistochemical staining intensity, correlates with tumor grade. Moreover, high B7–H3 m-RNA expression is significantly associated with worse survival and could potentially improve prognostication in various brain tumor types of childhood. B7–H3 can be used as a therapeutic target, given its tumor selectivity and the availability of targeted therapeutic agents to this antigen.
Collapse
Affiliation(s)
- Uday B Maachani
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Umberto Tosi
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY, USA
| | - David J Pisapia
- Department of Pathology, Weill Cornell Medicine, New York, NY, USA
| | | | | | - Julia Voronina
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Daniel Martinez
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Mariarita Santi
- Department of Pathology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nadia Dahmane
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Zhiping Zhou
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cynthia Hawkins
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON Canada
| | - Mark M Souweidane
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY, USA; Department of Neurological Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
38
|
Chapoval AI, Chapoval SP, Shcherbakova NS, Shcherbakov DN. Immune Checkpoints of the B7 Family. Part 2. Representatives of the B7 Family B7-H3, B7-H4, B7-H5, B7-H6, B7-H7, and ILDR2 and Their Receptors. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019050091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Cai D, Li J, Liu D, Hong S, Qiao Q, Sun Q, Li P, Lyu N, Sun T, Xie S, Guo L, Ni L, Jin L, Dong C. Tumor-expressed B7-H3 mediates the inhibition of antitumor T-cell functions in ovarian cancer insensitive to PD-1 blockade therapy. Cell Mol Immunol 2019; 17:227-236. [PMID: 31611650 DOI: 10.1038/s41423-019-0305-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
Although PD-L1/PD-1 blockade therapy has been approved to treat many types of cancers, the majority of patients with solid tumors do not respond well, but the underlying reason remains unclear. Here, we studied ovarian cancer (OvCa), a tumor type generally resistant to current immunotherapies, to investigate PD-1-independent immunosuppression. We found that PD-L1 was not highly expressed in the tumor microenvironment (TME) of human OvCa. Instead, B7-H3, another checkpoint molecule, was highly expressed by both tumor cells and tumor-infiltrating antigen-presenting cells (APCs), which correlated with T-cell exhaustion in patients. Using ID8 OvCa mouse models, we found that B7-H3 expressed on tumor cells, but not host cells, had a dominant role in suppressing antitumor immunity. Therapeutically, B7-H3 blockade, but not PD-1 blockade, prolonged the survival of ID8 tumor-bearing mice. Collectively, our results demonstrate that tumor-expressed B7-H3 inhibits the function of CD8+ T cells and suggest that B7-H3 may be a target in patients who are not responsive to PD-L1/PD-1 inhibition, particularly OvCa patients.
Collapse
Affiliation(s)
- Dongli Cai
- Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China.,Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jiaming Li
- Suzhou Kanova Biopharmaceutical Co., Ltd, Suzhou, 215000, China
| | - Dingfeng Liu
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Shanjuan Hong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Qin Qiao
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Qinli Sun
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Pingping Li
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Nanan Lyu
- Department of Gynecologic Oncology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Tiantian Sun
- Suzhou Kanova Biopharmaceutical Co., Ltd, Suzhou, 215000, China
| | - Shan Xie
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Li Guo
- Suzhou Kanova Biopharmaceutical Co., Ltd, Suzhou, 215000, China
| | - Ling Ni
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China.
| | - Liping Jin
- Obstetrics & Gynecology Hospital, Fudan University, Shanghai, 200011, China. .,Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China.
| | - Chen Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing, 100084, China. .,Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing, 100084, China.
| |
Collapse
|
40
|
Lu KL, Wu MY, Wang CH, Wang CW, Hung SI, Chung WH, Chen CB. The Role of Immune Checkpoint Receptors in Regulating Immune Reactivity in Lupus. Cells 2019; 8:E1213. [PMID: 31597242 PMCID: PMC6829486 DOI: 10.3390/cells8101213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/29/2019] [Accepted: 10/03/2019] [Indexed: 12/26/2022] Open
Abstract
Immune checkpoint receptors with co-stimulatory and co-inhibitory signals are important modulators for the immune system. However, unrestricted co-stimulation and/or inadequate co-inhibition may cause breakdown of self-tolerance, leading to autoimmunity. Systemic lupus erythematosus (SLE) is a complex multi-organ disease with skewed and dysregulated immune responses interacting with genetics and the environment. The close connections between co-signaling pathways and SLE have gradually been established in past research. Also, the recent success of immune checkpoint blockade in cancer therapy illustrates the importance of the co-inhibitory receptors in cancer immunotherapy. Moreover, immune checkpoint blockade could result in substantial immune-related adverse events that mimic autoimmune diseases, including lupus. Together, immune checkpoint regulators represent viable immunotherapeutic targets for the treatment of both autoimmunity and cancer. Therefore, it appears reasonable to treat SLE by restoring the out-of-order co-signaling axis or by manipulating collateral pathways to control the pathogenic immune responses. Here, we review the current state of knowledge regarding the relationships between SLE and the co-signaling pathways of T cells, B cells, dendritic cells, and neutrophils, and highlight their potential clinical implications. Current clinical trials targeting the specific co-signaling axes involved in SLE help to advance such knowledge, but further in-depth exploration is still warranted.
Collapse
Affiliation(s)
- Kun-Lin Lu
- Chang Gung Memorial Hospital, Linkou 333, Taiwan; (K.-L.L.); (M.-Y.W.); , (C.-W.W.); (S.-I.H.)
- College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
| | - Ming-Ying Wu
- Chang Gung Memorial Hospital, Linkou 333, Taiwan; (K.-L.L.); (M.-Y.W.); , (C.-W.W.); (S.-I.H.)
- College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
| | - Chi-Hui Wang
- Chang Gung Memorial Hospital, Linkou 333, Taiwan; (K.-L.L.); (M.-Y.W.); , (C.-W.W.); (S.-I.H.)
- College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
| | - Chuang-Wei Wang
- Chang Gung Memorial Hospital, Linkou 333, Taiwan; (K.-L.L.); (M.-Y.W.); , (C.-W.W.); (S.-I.H.)
- College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou 333, Taiwan
| | - Shuen-Iu Hung
- Chang Gung Memorial Hospital, Linkou 333, Taiwan; (K.-L.L.); (M.-Y.W.); , (C.-W.W.); (S.-I.H.)
- College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou 333, Taiwan
| | - Wen-Hung Chung
- Chang Gung Memorial Hospital, Linkou 333, Taiwan; (K.-L.L.); (M.-Y.W.); , (C.-W.W.); (S.-I.H.)
- College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung 204, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen 361000, China
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
| | - Chun-Bing Chen
- Chang Gung Memorial Hospital, Linkou 333, Taiwan; (K.-L.L.); (M.-Y.W.); , (C.-W.W.); (S.-I.H.)
- College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei 105, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung 204, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou 333, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen 361000, China
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan 333, Taiwan
| |
Collapse
|
41
|
Chapoval AI, Chapoval SP, Shcherbakova NS, Shcherbakov DN. Immune Checkpoints of the B7 Family. Part 1. General Characteristics and First Representatives: B7-1, B7-2, B7-H1, B7-H2, and B7-DC. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019040101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Zhou X, Ouyang S, Li J, Huang X, Ai X, Zeng Y, Lv Y, Cai M. The novel non-immunological role and underlying mechanisms of B7-H3 in tumorigenesis. J Cell Physiol 2019; 234:21785-21795. [PMID: 31222741 DOI: 10.1002/jcp.28936] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022]
Abstract
B7 homolog 3 (B7-H3) has been proven to be involved in tumorigenesis. An elucidation of its role and underlying mechanisms is essential to an understanding of tumorigenesis and the development of effective clinical applications. B7-H3 is abnormally overexpressed in many types of cancer and is generally associated with a poor clinical prognosis. B7-H3 inhibits the initiation of the "caspase cascade" by the Janus kinase/signal transducers and activators of transcription pathway to resist tumor cell apoptosis. B7-H3 accelerates malignant proliferation by attacking the checkpoint mechanism of the tumor cell cycle through the phosphatidylinositol 3-kinase and protein kinase B pathway. B7-H3 reprograms the metabolism of glucose and lipids and transforms the metabolic flux of tumor cells to promote tumorigenesis. B7-H3 induces abnormal angiogenesis by recruiting vascular endothelial growth factor and matrix metalloproteinase to tumor lesions. B7-H3 strongly promotes tumorigenesis through antiapoptotic, pro-proliferation, metabolism reprogramming, and pro-angiogenesis.
Collapse
Affiliation(s)
- Xiangqi Zhou
- Department of Radiotherapy of the First Affiliated Hospital, University of South China, Hengyang, China.,Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Shuhui Ouyang
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Jianjun Li
- Department of Urology of the Second Affiliated Hospital, University of South China, Hengyang, China
| | - Xin Huang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Division of Gynecological Oncology, Magee-Womens Research Institute, Pittsburgh, Pennsylvania
| | - Xiaohong Ai
- Department of Radiotherapy of the First Affiliated Hospital, University of South China, Hengyang, China
| | - Yixin Zeng
- Department of Experimental Research, Sun Yat-Sen University Cancer Center, China
| | - Yuncheng Lv
- Clinical Anatomy & Reproductive Medicine Application Institute, University of South China, Hengyang, China
| | - Manbo Cai
- Department of Radiotherapy of the First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
43
|
Zhang S, Zhou C, Zhang D, Huang Z, Zhang G. The anti-apoptotic effect on cancer-associated fibroblasts of B7-H3 molecule enhancing the cell invasion and metastasis in renal cancer. Onco Targets Ther 2019; 12:4119-4127. [PMID: 31213832 PMCID: PMC6538013 DOI: 10.2147/ott.s201121] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 04/05/2019] [Indexed: 01/26/2023] Open
Abstract
Background: Renal cancer is one of the most common malignancies. However, the mechanisms underlying its development are still ambiguous. B7-H3 has been described as an important tumor antigen in various human tumors. An abnormal high expression of B7-H3 molecules is often observed in tumor cells and tumor stromal cells in the tumor microenvironment. On the basis of the above findings, we hypothesized that cancer-associated fibroblasts (CAFs) clustered in the renal cell microenvironment can survive for a long time with the anti-apoptotic effect of B7-H3, and then secrete cytokines to enhance the malignant behavior of renal cancer cells. Methods: The expression of B7-H3 protein in CAFs was detected in renal cancer tissues. Then, the CAFs cells were stably transfected with shRNA and their expression was silenced to determine the role of B7-H3 in CAFs. Western blot was used to detect the expression of apoptosis-related proteins, hepatocyte growth factor (HGF) protein and stromal cell-derived factor-1 (CXCL12) protein. CAF-NC cells and CAFs-shRNA cells were co-cultured with A498 cells to assess the biological function changes of A498. Results: A group of CAFs were found with B7-H3 expression in renal cancer. B7-H3 can stimulate CAFs to secrete HGF and Cxcl-12, and has strong anti-apoptotic effect on CAFs. We also found that CAFs-NC promotes the proliferation, invasion and migration of A498 cells in vitro and promotes the tumor formation of A498 in vivo. Conclusion: B7-H3+ CAFs promote the invasion and metastasis in renal cancer.
Collapse
Affiliation(s)
- Shuai Zhang
- Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University
- Jiangsu Institute of Jiangsu key Laboratory of Clinical Immunology, Soochow University
| | - Chenchao Zhou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou216007, People’s Republic of China
| | - Dongze Zhang
- Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University
- Jiangsu Institute of Jiangsu key Laboratory of Clinical Immunology, Soochow University
| | - Ziyi Huang
- Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University
- Jiangsu Institute of Jiangsu key Laboratory of Clinical Immunology, Soochow University
| | - Guangbo Zhang
- Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University
- Jiangsu Institute of Jiangsu key Laboratory of Clinical Immunology, Soochow University
| |
Collapse
|
44
|
He L, Li Z. B7-H3 and its role in bone cancers. Pathol Res Pract 2019; 215:152420. [PMID: 31060912 DOI: 10.1016/j.prp.2019.04.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 04/02/2019] [Accepted: 04/16/2019] [Indexed: 11/18/2022]
Abstract
Most bone cancers have a high risk of metastasis, recurrence, and poor prognosis. Although conventional treatments are still the most important therapy, disadvantages still exist. Therefore, there is an unmet need to develop effective strategies. Immunotherapy is a promising therapy. Immunotherapies targeting checkpoints have proven to be successful, but B7-H3 (CD276, clusters of differentiation protein 276), a member of the B7-family of co-stimulatory molecules, is not being widely studied in bone cancers. This review summarized the studies on B7-H3 in bone cancers. 4 studies investigated B7-H3 expression in osteosarcoma, but there is no study on B7-H3 expression in chondrosarcoma. Two studies investigated the possibility to treat Ewing`s sarcoma through targeting the B7-H3 CAR (chimeric antigen receptors) T-cells or using anti-B7-H3 antibody. A study observed the growth of myeloma in B7-H3-deficient mice and the therapeutic effect of B7-H3 antibody and a study invested B7-H3 expression in myeloma patients. One study reported B7-H3 expression in osteoclastomas and one study investigated B7-H3 expression in chordoma tumor tissues. Two clinical trials are conducting on the therapy of osteosarcoma and myeloma using B7-H3 as a target. In conclusion, B7-H3 could be a target of bone cancers.
Collapse
Affiliation(s)
- Lile He
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
45
|
TGF-β inducible epithelial-to-mesenchymal transition in renal cell carcinoma. Oncotarget 2019; 10:1507-1524. [PMID: 30863498 PMCID: PMC6407676 DOI: 10.18632/oncotarget.26682] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/01/2019] [Indexed: 12/21/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a crucial step in cancer progression and the number one reason for poor prognosis and worse overall survival of patients. Although this essential process has been widely studied in many solid tumors as e.g. melanoma and breast cancer, more detailed research in renal cell carcinoma (RCC) is required, especially for the major EMT-inducer transforming growth factor beta (TGF-β). Here, we provide a study of six different RCC cell lines of two different RCC subtypes and their response to recombinant TGF-β1 treatment. We established a model system shifting the cells to a mesenchymal cell type without losing their mesenchymal character even in the absence of the external stimulus. This model system forms a solid basis for future studies of the EMT process in RCCs to better understand the molecular basis of this process responsible for cancer progression.
Collapse
|
46
|
Abstract
Immune responses are controlled by the optimal balance between protective immunity and immune tolerance. T-cell receptor (TCR) signals are modulated by co-signaling molecules, which are divided into co-stimulatory and co-inhibitory molecules. By expression at the appropriate time and location, co-signaling molecules positively and negatively control T-cell differentiation and function. For example, ligation of the CD28 on T cells provides a critical secondary signal along with TCR ligation for naive T-cell activation. In contrast, co-inhibitory signaling by the CD28-B7 family is important to regulate immune homeostasis and host defense, as these signals limit the strength and duration of immune responses to prevent autoimmunity. At the same time, microorganisms or tumor cells can use these pathways to establish an immunosuppressive environment to inhibit the immune responses against themselves. Understanding these co-inhibitory pathways will support the development of new immunotherapy for the treatment of tumors and autoimmune and infectious diseases. Here, we introduce diverse molecules belonging to the members of the CD28-B7 family.
Collapse
|
47
|
Son Y, Kwon SM, Cho JY. CD276 (B7-H3) Maintains Proliferation and Regulates Differentiation in Angiogenic Function in Late Endothelial Progenitor Cells. Stem Cells 2018; 37:382-394. [PMID: 30379377 DOI: 10.1002/stem.2944] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/22/2018] [Accepted: 10/16/2018] [Indexed: 12/24/2022]
Abstract
Endothelial progenitor cells (EPCs) provide an important source of recovery from blood vessel dysfunction. Late EPCs (LEPCs) are circulating blood cells that are capable of promoting vascular repair. Using transcriptome analysis, we identified distinctive LEPC profiles and found that CD276 (B7-H3) mRNA is strongly expressed in LEPCs. CD276 protein is present abundantly on the cell surface of LEPC when analyzed by fluorescence-activated cell sorter and immunocytochemistry. CD276, a B7 family member, is a type I transmembrane glycoprotein. The role of CD276 in LEPCs remains unknown. CD276 knockdown by lentivirus transduction in LEPCs significantly decreased proliferation and increased apoptosis of LEPCs in vitro. After CD276 silencing, the cell cycle of LEPCs was prone to remain at the G0/G1 phase, and the cell migration rates as well as transwell and wound-healing migration were decreased. CD276 knockdown in LEPCs increased the G1 phase regulators cyclin D2/D3/E1-cyclin-dependent kinases (CDK2/4/6), but decreased the S-G2-M phase regulators cyclin A/B-CDK1. However, LEPCs with CD276 knockdown resulted in increased tube formation in vitro and angiogenesis in a Matrigel plug assay in vivo. FoxC1/C2, an upstream signal of Notch in arterial cell proliferation, and Hey1/2, which is known to promote arterial differentiation in the vasculature, were upregulated in CD276 knockdown LEPCs. In LEPCS, CD276 has a positive effect on proliferation and migration of endothelial cells, but negative effects on angiogenesis, particularly endothelial cell differentiation. Our data indicate, for therapeutic purpose, that CD276 can be used to acquire and maintain cell populations of LEPCs and blocking CD276 will promote angiogenetic differentiation. We found that CD276 (B7-H3) is enriched on the cell membrane of LEPCs. CD276 knockdown reduced proliferation and migration of LEPCs by increasing cell cycle inhibitors such as p21cip1 and pRb and decreasing pErk1/2 and pAkt but promoted angiogenesis and endothelial cell differentiation by elevating vascular endothelial growth factor-vascular endothelial growth factor receptor 1 and p-p38. Stem Cells 2019;37:382-394.
Collapse
Affiliation(s)
- YeonSung Son
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine & Stem Cell Biology, Medical Research Institute, Department of Physiology, School of Medicine, Pusan National University, Yangsan, Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
48
|
Xu Z, Wang L, Tian J, Man H, Li P, Shan B. High expression of B7-H3 and CD163 in cancer tissues indicates malignant clinicopathological status and poor prognosis of patients with urothelial cell carcinoma of the bladder. Oncol Lett 2018; 15:6519-6526. [PMID: 29725402 DOI: 10.3892/ol.2018.8173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 11/29/2017] [Indexed: 11/05/2022] Open
Abstract
The objective of the present study was to investigate the association of B7-H3 expression and cluster of differentiation (CD)163+ tumor-associated macrophage (TAM) infiltration with clinicopathological parameters in urothelial cell carcinoma of the bladder (UCB), and to investigate their potential conjoint effects on progression of UCB. B7-H3 expression and CD163+ TAM infiltration in tumor specimens from 134 consecutive patients that underwent radical cystectomy for UCB were tested using immunohistochemistry, followed by statistical analysis. In these 134 patients, B7-H3 expression and CD163+ TAM infiltration in the bladder carcinoma tissues were significantly associated with an increased ratio of vascular invasion (P=0.009; P=0.012) and distant metastasis (P=0.015; P=0.038); however, they were not associated with gender, age, pathologic grade, tumor stage, recurrence or lymphatic metastasis. The results of χ2 test analysis indicated that CD163+ TAM infiltration and B7-H3 expression were positively correlated (χ2=20.714; P<0.001). Overall survival (OS) and progression-free survival (PFS) rates were significantly worsened by high B7-H3 expression (P=0.002; P=0.020). However, CD163+ TAM infiltration was not associated with OS or PFS rate. Notably, the OS and PFS rates in patients with high B7-H3 expression or high CD163+ TAM infiltration were significantly poorer than the patients with low B7-H3 expression (P<0.001; P<0.001) or low CD163+ TAM infiltration (P=0.022; P=0.017) in the subgroup of 115 patients with muscle-invasive bladder cancer. The results of the present study indicate that B7-H3 expression level could be used as an independent prognostic indicator following radical cystectomy for UCB and patients with high B7-H3 expression and high CD163+ TAM infiltration experience a poorer prognosis.
Collapse
Affiliation(s)
- Zhili Xu
- Department of Immunology, Cancer Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Ling Wang
- Department of Immunology, Cancer Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Jianhua Tian
- Department of Urology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Hongwei Man
- Department of Immunology, Cancer Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Pengfei Li
- Department of Immunology, Cancer Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Baoen Shan
- Department of Immunology, Cancer Research Institute, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
49
|
Overexpression of B7-H3 correlates with aggressive clinicopathological characteristics in non-small cell lung cancer. Oncotarget 2018; 7:81750-81756. [PMID: 27835582 PMCID: PMC5348426 DOI: 10.18632/oncotarget.13177] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 10/19/2016] [Indexed: 12/20/2022] Open
Abstract
Previous studies have investigated the prognostic significance of B7 homolog 3 (B7-H3) in non-small cell lung cancer (NSCLC), however, the results remain controversial. This study was aimed to determine the correlation between B7-H3 and survival as well as clnicalpathological characteristics in NSCLC using meta-analysis. We searched the electronic databases of PubMed, Embase, Web of Science, and China National Knowledge Infrastructure (CNKI) for relevant studies up to October 9, 2016. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were used to estimate the impact of B7-H3 on overall survival (OS). Combined odds ratios (ORs) and 95%CIs were utilized to evaluate the correlations between B7-H3 and clinicalpathological features. This meta-analysis finally included 7 studies with 864 patients. The results showed that B7-H3 had no significant association with OS (HR=0.88, 95%CI: 0.36-2.13, p=0.776). High B7-H3 expression was a significant indicator of lymph node metastasis (OR=3.92, 95%CI: 2.65-5.81, p<0.001), and advanced TNM stage (OR=3.53, 95%CI: 2.45-5.09, p<0.001). B7-H3 has the potential to serve as a marker of tumor aggressiveness and lymph node metastasis in NSCLC. However, due to several limitations, further large-scale studies are needed to validate our results.
Collapse
|
50
|
Jiang B, Zhang T, Liu F, Sun Z, Shi H, Hua D, Yang C. The co-stimulatory molecule B7-H3 promotes the epithelial-mesenchymal transition in colorectal cancer. Oncotarget 2017; 7:31755-71. [PMID: 27145365 PMCID: PMC5077974 DOI: 10.18632/oncotarget.9035] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 03/31/2016] [Indexed: 12/17/2022] Open
Abstract
B7-H3, first recognized as a co-stimulatory molecule, is abnormally expressed in cancer tissues and is associated with cancer metastasis and a poor prognosis. However, as an initial event of metastasis, the relationship between the Epithelial-Mesenchymal Transition (EMT ) in cancer cells and B7-H3 has still not been investigated. In this study, we first analyzed B7-H3 expression by immunohistochemistry in colorectal cancer tissues. B7-H3 was expressed in the cancer cell membrane and was associated with the T stage of colorectal cancer; it also showed a positive correlation with MMP2 and MMP9 expression in cancer tissues. Over-expression of B7-H3 in SW480 cells allowed cancer cells to invade and metastasize more than the control cells, whereas invasion and metastasis capabilities were decreased after B7-H3 was knocked down in Caco-2 cells. We further showed that B7-H3 down-regulated the expression of E-cadherin and β-catenin and up-regulated N-cadherin and Vimentin expression, implying that B7-H3 promoted the EMT in colorectal cancer cells. We also checked another character of the EMT, the stemness of cancer cells. CD133, CD44 and Oct4 were significantly elevated after the SW480 cells were transfected with B7-H3 and reduced in Caco-2 cells after B7-H3 was inhibited. In subsequent studies, we proved that B7-H3 upregulated the expression of Smad1 via PI3K-Akt. In conclusion, B7-H3 promotes the EMT in colorectal cancer cells by activating the PI3K-Akt pathway and upregulating the expression of Smad1.
Collapse
Affiliation(s)
- Bo Jiang
- Department of Medical Oncology, Beijing Institute of Translational Medicine, Chinese Academy of Sciences/Cancer Center, Aviation General Hospital, Beijing, China
| | - Ting Zhang
- Institute of Cancer, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Fen Liu
- Institute of Cancer, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Zhangzhang Sun
- Department of Medical Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Hanping Shi
- Department of Medical Oncology, Beijing Institute of Translational Medicine, Chinese Academy of Sciences/Cancer Center, Aviation General Hospital, Beijing, China
| | - Dong Hua
- Department of Medical Oncology, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Chen Yang
- Department of Nuclear-Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu, China
| |
Collapse
|