1
|
Namikawa Y, Kato Y, Hokura A, Homma-Takeda S, Suzuki M. Extensive iron accumulation in the digestive gland of Turbo sazae and characterization of iron distribution and chemical structure. Food Chem 2025; 485:144552. [PMID: 40318333 DOI: 10.1016/j.foodchem.2025.144552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 04/09/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Metal accumulation in marine invertebrates has attracted significant attention owing to its toxicity to human health. Although T. sazae is a major edible fish resource in Japan, metal accumulation in the soft body of T. sazae has not been examined. In this study, the metal concentrations, chemical forms, and distributions in soft tissues of T. sazae were characterized. We observed the extensive iron accumulation i.e. over 10,000 μg/g dw in the digestive gland of T. sazae. The iron accumulator in the digestive gland was ferritin, an iron storage protein. Analysis of elemental distribution revealed that ferritin in the digestive gland contains phosphorus, and that μm-sized brown granular cells were responsible for iron storage, with over 70,000 μg/g ww of iron accumulated at the most concentrated point. T. sazae probably contributes to the ocean's iron cycle by grazing on iron-rich algae and rocks and storing iron using unique ferritin.
Collapse
Affiliation(s)
- Yuto Namikawa
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan
| | - Yugo Kato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan
| | - Akiko Hokura
- Department of Applied Chemistry, School of Engineering, Tokyo Denki University, 5 Senju-Asahicho, Adachi, Tokyo 120-8551, Japan
| | - Shino Homma-Takeda
- Institute for Radiological Science, National Institutes for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-8657, Japan.
| |
Collapse
|
2
|
Pujol Carrión N, de la Torre-Ruiz MÁ. Heterologous Expression of Either Human or Soya Bean Ferritins in Budding Yeast Reveals Common Functions Protecting Against Oxidative Agents and Counteracting Double-Strand Break Accumulation. Biomolecules 2025; 15:447. [PMID: 40149982 PMCID: PMC11939973 DOI: 10.3390/biom15030447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/28/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Ferritins are globular proteins that, upon self-assembly in nanocages, are capable of bio-safely storing huge concentrations of bioavailable iron. They are present in most cell types and organisms; one of the exceptions is yeast. Heterologous expression of either human or vegetal ferritins in Saccharomyces cerevisiae revealed new and unknown functions for soya bean ferritins; validated this model by confirming previously characterized functions in human ferritins and also demonstrated that, like human H chain, vegetal H1, and H2 chains also shown a tendency to localize in the nucleus when expressed in an eukaryotic cell model lacking plastids and chloroplasts. Furthermore, when expressed in the system budding yeast, the four ferritins (human H and L and soya bean H1 and H2 chains) present equivalent and relevant functions as protectors against oxidative damage and against the accumulation of double-strand breaks in the DNA. We present evidence demonstrating that these effects are exclusively observed with oxidative agents that operate through the Fenton reaction, such as H2O2. Here, we also discuss the ferritin requirement for N-glycosylation to exert these functions. We believe that our approach might contribute to extending the knowledge around ferritin function and its consequent relevance to human health.
Collapse
|
3
|
Zhou W, Ma S, Gao R, Tang Y, Zhang H, Liang A, Yang M, Ma C, Fan Q, Zhang XE, Li F. Assembly of Matryoshka-Type Protein Nanocages for Compartmentalized Oxygen Sensing. NANO LETTERS 2025; 25:4433-4440. [PMID: 40062734 PMCID: PMC11927565 DOI: 10.1021/acs.nanolett.4c06699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Oxygen permeability is a critical property of protein nanocages (PNCs) that impacts or dictates the functions of PNCs. However, it remains challenging to determine it experimentally. Here, we report compartmentalized oxygen sensing inside PNCs by assembling matryoshka-type structures through interfacial engineering, namely, one PNC containing another smaller one functionalized with small-molecule oxygen probes. Oxygen in the lumen of the outer PNCs can be probed conveniently via phosphorescence spectrometry. This method enabled the analysis of two representative PNCs, MS2 virus-like particles and Thermotoga maritima encapsulin, revealing the former is oxygen permeable, while the latter is oxygen impermeable. This study establishes a general approach for measuring the oxygen permeability of PNC shells, which can provide an experimental basis for understanding the working mechanisms of PNCs and inspire applications like oxygen-sensitive or oxygen-responsive sensing, catalysis, and delivery. Also, the tunable nested PNCs may serve as platforms for designing hierarchical or compartmentalized devices or organelles.
Collapse
Affiliation(s)
- Wei Zhou
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaojie Ma
- Jiangsu
Key Laboratory of Marine Pharmaceutical Compound Screening, College
of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Ruimin Gao
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yufu Tang
- State
Key Laboratory of Organic Electronics and Information Displays and
Institute of Advanced Materials (IAM), Nanjing
University of Posts and Telecommunications, Nanjing 210023, China
| | - Hui Zhang
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ao Liang
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengsi Yang
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun Ma
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Quli Fan
- State
Key Laboratory of Organic Electronics and Information Displays and
Institute of Advanced Materials (IAM), Nanjing
University of Posts and Telecommunications, Nanjing 210023, China
| | - Xian-En Zhang
- Faculty
of Synthetic Biology, Shenzhen University
of Advanced Technology, Shenzhen 518107, China
- National
Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Li
- State
Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Szymulewska-Konopko K, Reszeć-Giełażyn J, Małeczek M. Ferritin as an Effective Prognostic Factor and Potential Cancer Biomarker. Curr Issues Mol Biol 2025; 47:60. [PMID: 39852175 PMCID: PMC11763953 DOI: 10.3390/cimb47010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
Ferritin is found in all cells of the body, serving as a reservoir of iron and protecting against damage to the molecules that make up cellular structures. It has emerged as a biomarker not only for iron-related disorders but also for inflammatory diseases and conditions in which inflammation plays a key role, including cancer, neurodegeneration, and infection. Oxidative stress, which can cause cellular damage, is induced by reactive oxygen species generated during the Fenton reaction, activating signaling pathways associated with tumor growth and proliferation. This review primarily emphasizes basic studies on the identification and function of ferritin, its essential role in iron metabolism, its involvement in inflammatory diseases, and its potential as an important prognostic factor and biomarker for cancer detection.
Collapse
Affiliation(s)
| | - Joanna Reszeć-Giełażyn
- Department of Medical Pathomorphology, Medical University of Bialystok, 15-089 Białystok, Poland; (K.S.-K.); (M.M.)
| | | |
Collapse
|
5
|
Liu J, Yang K, Zhou L, Deng J, Rong G, Shi L, Zhang X, Ren J, Zhang Y, Cao W. A new strategy for Astragaloside IV in the treatment of diabetic kidney disease: Analyzing the regulation of ferroptosis and mitochondrial function of renal tubular epithelial cells. Int Immunopharmacol 2024; 141:112794. [PMID: 39137626 DOI: 10.1016/j.intimp.2024.112794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/25/2024] [Accepted: 07/23/2024] [Indexed: 08/15/2024]
Abstract
In China, the Astragalus membranaceus root is used to treat chronic kidney disease. Astragaloside IV (AS-IV), the primary bioactive compound, exhibits anti-inflammatory and antioxidative properties; however, its renoprotective mechanism in diabetic kidney disease (DKD) remains unclear. The study aimed to investigate the protective effects of AS-IV on DKD revealing the underlying mechanisms. We established an early diabetic rat model by feeding a high-fat diet and administering low-dose streptozotocin. Twelve weeks post-treatment, renal function was evaluated using functional assays, histological analyses, immunohistochemistry, western blotting, and transmission electron microscopy. HK-2 cells exposed to high glucose conditions were used to examine the effect of AS-IV on oxidative stress, iron levels, reactive oxygen species (ROS), and lipid peroxidation. Network pharmacology, proteomics, molecular docking, and molecular dynamics simulation techniques were employed to elucidate the role of AS-IV in DKD. The results revealed that AS-IV effectively enhanced renal function and mitigated disease pathology, oxidative stress, and ferroptosis markers in DKD rats. In HK-2 cells, AS-IV lowered the levels of lipid peroxides, Fe2+, and glutathione, indicating the repair of ferroptosis-related mitochondrial damage. AS-IV reduced mitochondrial ROS while enhancing mitochondrial membrane potential and ATP production, indicating its role in combating mitochondrial dysfunction. Overall, in silico analyses revealed that AS-IV interacts with HMOX1, FTH1, and TFR1 proteins, supporting its efficacy in alleviating renal injury by targeting mitochondrial dysfunction and ferroptosis. AS-IV may play a renoprotective role by regulating mitochondrial dysfunction and inhibiting. HMOX1/FTH1/TFR1-induced ferroptosis. Accordingly, AS-IV could be developed for the clinical treatment of DKD-related renal injury.
Collapse
Affiliation(s)
- Jun Liu
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing 400016, China.
| | - Kang Yang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing 400016, China.
| | - Linlan Zhou
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing 400016, China.
| | - Jingwei Deng
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing 400016, China.
| | - Guoyi Rong
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing 400016, China.
| | - Lipeng Shi
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing 400016, China.
| | - Xin Zhang
- Beibei Hospital of Traditional Chinese Medicine, Chongqing, 400700,China.
| | - Jing Ren
- College of Traditional Chinese Medicine, Chongqing Medical and Pharmaceutical College,Chongqing 401331, China.
| | - Yudi Zhang
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing 400016, China; College of Combination of Chinese and Western Medicine, Chongqing College of Traditional Chinese Medicine, Chongqing 402760,China.
| | - Wenfu Cao
- Department of Combination of Chinese and Western Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing 400016, China.
| |
Collapse
|
6
|
Yu L, Que T, Zhou Y, Liu Z. Dose-response relationship of serum ferritin and dietary iron intake with metabolic syndrome and non-alcoholic fatty liver disease incidence: a systematic review and meta-analysis. Front Nutr 2024; 11:1437681. [PMID: 39410926 PMCID: PMC11476413 DOI: 10.3389/fnut.2024.1437681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/09/2024] [Indexed: 10/19/2024] Open
Abstract
Aim This study aims to assess the dose-response impact of iron load on systemic and hepatic metabolic disorders including metabolic syndrome (MetS) and non-alcoholic fatty liver disease (NAFLD). Methods Serum ferritin (SF) and dietary iron intake were selected to represent the indicators of iron load in the general population. PubMed, EMBASE and Web of Science databases were searched for epidemiological studies assessing the impact of SF/dietary iron intake on MetS/NAFLD occurrence. All literature was published before September 1st, 2023 with no language restrictions. Results Fifteen and 11 papers were collected with a focus on connections between SF and MetS/NAFLD, respectively. Eight papers focusing on dietary iron and MetS were included in the following meta-analysis. For the impact of SF on MetS, the pooled odds ratio (OR) of MetS was 1.88 (95% CI: 1.58-2.24) for the highest versus lowest SF categories. In males, the OR was 1.15 (95% CI: 1.10-1.21) per incremental increase in SF of 50 μg/L, while for females, each 50 μg/L increase in SF was associated with a 1.50-fold higher risk of MetS (95% CI: 1.15-1.94). For connections between SF and NAFLD, we found higher SF levels were observed in NAFLD patients compared to the control group [standardized mean difference (SMD) 0.71; 95% CI: 0.27-1.15], NASH patients against control group (SMD1.05; 95% CI:0.44-1.66), NASH patients against the NAFLD group (SMD 0.6; 95% CI: 0.31-1.00), each 50 μg/L increase in SF was associated with a 1.08-fold higher risk of NAFLD (95% CI: 1.07-1.10). For the impact of dietary iron on MetS, Pooled OR of MetS was 1.34 (95% CI: 1.10-1.63) for the highest versus lowest dietary iron categories. Conclusion Elevated SF levels is a linear relation between the incidence of MetS/NAFLD. In addition, there is a positive association between dietary iron intake and metabolic syndrome. The association between serum ferritin and metabolic syndrome may be confounded by body mass index and C-reactive protein levels.
Collapse
Affiliation(s)
- Lu Yu
- School of Medicine, Zhejiang Chinese Medical University, Hangzhou, China
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Shulan (Hangzhou) Hospital, Hangzhou, China
| | - Ting Que
- Birth Defects Prevention and Control Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yifeng Zhou
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zhengtao Liu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- Shulan (Hangzhou) Hospital, Hangzhou, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, School of Medicine, Chinese Academy of Medical Sciences, First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Key Laboratory of Organ Transplantation, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Ma L, Chen K, Li J, Xie L, Zhang Z, Zarif M, Chai T, Wu Q, Chen L, Qiu Z. Identification of potential therapeutic targets from bioinformatics analysis of necroptosis and immune infiltration in acute myocardial infarction. J Cardiothorac Surg 2024; 19:524. [PMID: 39261934 PMCID: PMC11389343 DOI: 10.1186/s13019-024-03038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
INTRODUCTION Acute myocardial infarction (AMI) is a serious, deadly disease with a high incidence. However, it remains unclear how necroptosis affects the pathophysiology of AMI. Using bioinformatic analyses, this study investigated necroptosis in AMI. METHODS We obtained the GSE66360 dataset related to AMI by the GEO database. Venn diagrams were used to identify necroptosis-related differential genes (NRDEGs). The genes with differential expression in AMI were analyzed using gene set enrichment analysis, and a PPI network was established. A transcription factor prediction and enrichment analysis were conducted for the NRDEGs, and the relationships between AMI, NRDEGs, and immune cells were determined. Finally, in the additional dataset, NRDEG expression levels, immune infiltration, and ROC curve analysis were confirmed, and gene expression levels were further verified experimentally. RESULTS GSEA revealed that necroptosis pathways were significantly enriched in AMI. We identified 10 NRDEGs, including TNF, TLR4, FTH1 and so on. Enrichment analysis indicated that the NOD-like receptor and NF-kappa B signaling pathways were significantly enriched. Four NRDEGs, FTH1, IFNGR1, STAT3, and TLR4, were identified; however, additional datasets and further experimental validation are required to confirm their roles. In addition, we determined that a high abundance of macrophages and neutrophils prompted AMI development. CONCLUSIONS In this study, four potential genes that affect the development of AMI through necroptosis (FTH1, IFNGR1, STAT3, and TLR4) were identified. In addition, we found that a high abundance of macrophages and neutrophils affected AMI. This helps determine the pathological mechanism of necroptosis and immune cells that influence AMI and provides a novel strategy for targeted therapy.
Collapse
Affiliation(s)
- Likang Ma
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Keyuan Chen
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Jiakang Li
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, The School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Linfeng Xie
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Zhaofeng Zhang
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Mohammad Zarif
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Tianci Chai
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Qingsong Wu
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China
| | - Liangwan Chen
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China.
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China.
| | - Zhihuang Qiu
- Department of Cardiovascular Surgery, Fujian Medical University Union Hospital, No. 29 Xinquan Road, Fuzhou, Fujian, 350001, China.
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, Fujian, China.
| |
Collapse
|
8
|
Bosco G, Vezzoli A, Brizzolari A, Paganini M, Giacon TA, Savini F, Gussoni M, Montorsi M, Dellanoce C, Mrakic-Sposta S. Consumption of Sylimarin, Pyrroloquinoline Quinone Sodium Salt and Myricetin: Effects on Alcohol Levels and Markers of Oxidative Stress-A Pilot Study. Nutrients 2024; 16:2965. [PMID: 39275279 PMCID: PMC11397684 DOI: 10.3390/nu16172965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/24/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND Alcohol abuse is one of the most common causes of mortality worldwide. This study aimed to investigate the efficacy of a treatment in reducing circulating ethanol and oxidative stress biomarkers. METHODS Twenty wine-drinking subjects were investigated in a randomized controlled, single-blind trial (ClinicalTrials.gov. Identifier: NCT06548503; Ethical Committee of the University of Padova (HEC-DSB/12-2023) to evaluate the effect of the intake of a product containing silymarin, pyrroloquinoline quinone sodium salt, and myricetin (referred to as Si.Pi.Mi. for this project) on blood alcohol, ethyl glucuronide (EtG: marker for alcohol consumption) and markers of oxidative stress levels (Reactive Oxygen Species-ROS, Total Antioxidant Capacity-TAC, CoQ10, thiols redox status, 8-isoprostane, NO metabolites, neopterin, and uric acid). The effects of the treatment versus placebo were evaluated acutely and after 1 week of supplementation in blood and/or saliva and urine samples. RESULTS Si.Pi.Mi intake reduced circulating ethanol after 120 min (-33%). Changes in oxidative stress biomarkers, particularly a TAC (range +9-12%) increase and an 8-isoprostane (marker of lipidic peroxidation) decrease (range -22-27%), were observed too. CONCLUSION After the administration of Si.Pi.Mi, the data seemed to suggest a better alcohol metabolism and oxidative balance in response to wine intake. Further verification is requested.
Collapse
Affiliation(s)
- Gerardo Bosco
- Department of Biomedical Sciences, University of Padua, 35122 Padua, Italy
| | - Alessandra Vezzoli
- Department of Biomedical Sciences, University of Padua, 35122 Padua, Italy
- Institute of Clinical Physiology, National Research Council (CNR), 20159 Milan, Italy
| | - Andrea Brizzolari
- Department of Biomedical Sciences, University of Padua, 35122 Padua, Italy
| | - Matteo Paganini
- Department of Biomedical Sciences, University of Padua, 35122 Padua, Italy
| | | | - Fabio Savini
- Pharmatoxicology Laboratory-Hospital "Santo Spirito", 65100 Pescara, Italy
| | - Maristella Gussoni
- Institute of Clinical Physiology, National Research Council (CNR), 20159 Milan, Italy
| | - Michela Montorsi
- Institute of Clinical Physiology, National Research Council (CNR), 20159 Milan, Italy
| | - Cinzia Dellanoce
- Institute of Clinical Physiology, National Research Council (CNR), 20159 Milan, Italy
| | - Simona Mrakic-Sposta
- Institute of Clinical Physiology, National Research Council (CNR), 20159 Milan, Italy
| |
Collapse
|
9
|
Zhang Y, He F, Hu W, Sun J, Zhao H, Cheng Y, Tang Z, He J, Wang X, Liu T, Luo C, Lu Z, Xiang M, Liao Y, Wang Y, Li J, Xia J. Bortezomib elevates intracellular free Fe 2+ by enhancing NCOA4-mediated ferritinophagy and synergizes with RSL-3 to inhibit multiple myeloma cells. Ann Hematol 2024; 103:3627-3637. [PMID: 38647678 DOI: 10.1007/s00277-024-05762-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Iron contributes to tumor initiation and progression; however, excessive intracellular free Fe2+ can be toxic to cancer cells. Our findings confirmed that multiple myeloma (MM) cells exhibited elevated intracellular iron levels and increased ferritin, a key protein for iron storage, compared with normal cells. Interestingly, Bortezomib (BTZ) was found to trigger ferritin degradation, increase free intracellular Fe2+, and promote ferroptosis in MM cells. Subsequent mechanistic investigation revealed that BTZ effectively increased NCOA4 levels by preventing proteasomal degradation in MM cells. When we knocked down NCOA4 or blocked autophagy using chloroquine, BTZ-induced ferritin degradation and the increase in intracellular free Fe2+ were significantly reduced in MM cells, confirming the role of BTZ in enhancing ferritinophagy. Furthermore, the combination of BTZ with RSL-3, a specific inhibitor of GPX4 and inducer of ferroptosis, synergistically promoted ferroptosis in MM cell lines and increased cell death in both MM cell lines and primary MM cells. The induction of ferroptosis inhibitor liproxstatin-1 successfully counteracted the synergistic effect of BTZ and RSL-3 in MM cells. Altogether, our findings reveal that BTZ elevates intracellular free Fe2+ by enhancing NCOA4-mediated ferritinophagy and synergizes with RSL-3 by increasing ferroptosisin MM cells.
Collapse
Affiliation(s)
- Yanyan Zhang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Fen He
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Wei Hu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Jingqi Sun
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Hongyan Zhao
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Yuzhi Cheng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Zhanyou Tang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Jiarui He
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Xiangyuan Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Tairan Liu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Cong Luo
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhongwei Lu
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Mei Xiang
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yiting Liao
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Yihao Wang
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China
| | - Junjun Li
- Department of Hematology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Jiliang Xia
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Changshengxi Road 28#, Hengyang, 421001, Hunan, China.
| |
Collapse
|
10
|
Zhang DD. Ironing out the details of ferroptosis. Nat Cell Biol 2024; 26:1386-1393. [PMID: 38429476 DOI: 10.1038/s41556-024-01361-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/22/2024] [Indexed: 03/03/2024]
Abstract
Ferroptosis, spurred by excess labile iron and lipid peroxidation, is implicated in various diseases. Advances have been made in comprehending the lipid-peroxidation side of ferroptosis, but the exact role of iron in driving ferroptosis remains unknown. Although iron overload is characterized in multiple disease states, the potential role of ferroptosis within them remains undefined. This overview focuses on the 'ferro' side of ferroptosis, highlighting iron dysregulation in human diseases and potential therapeutic strategies targeting iron regulation and metabolism.
Collapse
Affiliation(s)
- Donna D Zhang
- Center for Inflammation Science and Systems Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL, USA.
| |
Collapse
|
11
|
Wang Y, Han J, Zhan S, Guo C, Yin S, Zhan L, Zhou Q, Liu R, Yan H, Wang X, Yan D. Fucoidan alleviates doxorubicin-induced cardiotoxicity by inhibiting ferroptosis via Nrf2/GPX4 pathway. Int J Biol Macromol 2024; 276:133792. [PMID: 38992539 DOI: 10.1016/j.ijbiomac.2024.133792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Doxorubicin (Dox), a chemotherapeutic agent frequently used to treat cancer, elicits cardiotoxicity, a condition referred to as Dox-induced cardiotoxicity (DIC), and ferroptosis plays a contributory role in its pathophysiology. Fucoidan, a polysaccharide with various biological activities and safety profile, has potential therapeutic and pharmaceutical applications. This study aimed to investigate the protective effects and underlying mechanisms of fucoidan in DIC. Echocardiography, biomarkers of cardiomyocyte injury, serum creatine kinase, creatine kinase isoenzyme and lactate dehydrogenase, as well as histological staining results, revealed that fucoidan significantly reduced myocardial damage and improved cardiac function in DIC mice. Transmission electron microscopy; levels of lipid reactive oxygen species, glutathione, and malondialdehyde; ferroptosis-related markers; and regulatory factors such as glutathione peroxidase 4 (GPX4), transferrin receptor protein-1, ferritin heavy chain-1, heme oxygenase-1 in the heart tissue were measured to explore the effect of fucoidan on Dox-induced ferroptosis. These results suggested that fucoidan could inhibit cardiomyocyte ferroptosis caused by Dox. In vitro experiments revealed that silencing nuclear factor-erythroid 2-related factor 2 (Nrf2) in cardiomyocytes reduced the inhibitory effect of fucoidan on ferroptosis. Hence, fucoidan has the potential to ameliorate DIC by inhibiting ferroptosis via the Nrf2/GPX4 pathway.
Collapse
Affiliation(s)
- Yizhi Wang
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Jiawen Han
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Shifang Zhan
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Chenyu Guo
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Shuangneng Yin
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Lin Zhan
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Qianyi Zhou
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Ruiying Liu
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Hua Yan
- Department of Cardiology, Wuhan Asia Heart Hospital, Wuhan University of Science and Technology, Wuhan 430022, Hubei, China
| | - Xiaoyan Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei, China; Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, Hainan, China.
| | - Dan Yan
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China; Department of Cardiology, Wuhan Asia Heart Hospital, Wuhan University of Science and Technology, Wuhan 430022, Hubei, China; Institute of Pharmaceutical Innovation, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China.
| |
Collapse
|
12
|
Cohen Z, Lau L, Ahmed M, Jack CR, Liu C. Quantitative susceptibility mapping in the brain reflects spatial expression of genes involved in iron homeostasis and myelination. Hum Brain Mapp 2024; 45:e26688. [PMID: 38896001 PMCID: PMC11187871 DOI: 10.1002/hbm.26688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 06/21/2024] Open
Abstract
Quantitative susceptibility mapping (QSM) is an MRI modality used to non-invasively measure iron content in the brain. Iron exhibits a specific anatomically varying pattern of accumulation in the brain across individuals. The highest regions of accumulation are the deep grey nuclei, where iron is stored in paramagnetic molecule ferritin. This form of iron is considered to be what largely contributes to the signal measured by QSM in the deep grey nuclei. It is also known that QSM is affected by diamagnetic myelin contents. Here, we investigate spatial gene expression of iron and myelin related genes, as measured by the Allen Human Brain Atlas, in relation to QSM images of age-matched subjects. We performed multiple linear regressions between gene expression and the average QSM signal within 34 distinct deep grey nuclei regions. Our results show a positive correlation (p < .05, corrected) between expression of ferritin and the QSM signal in deep grey nuclei regions. We repeated the analysis for other genes that encode proteins thought to be involved in the transport and storage of iron in the brain, as well as myelination. In addition to ferritin, our findings demonstrate a positive correlation (p < .05, corrected) between the expression of ferroportin, transferrin, divalent metal transporter 1, several gene markers of myelinating oligodendrocytes, and the QSM signal in deep grey nuclei regions. Our results suggest that the QSM signal reflects both the storage and active transport of iron in the deep grey nuclei regions of the brain.
Collapse
Affiliation(s)
- Zoe Cohen
- Department of Electrical Engineering and Computer SciencesUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Laurance Lau
- Department of Electrical Engineering and Computer SciencesUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Maruf Ahmed
- Department of Electrical Engineering and Computer SciencesUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| | - Clifford R. Jack
- Mayo Foundation for Medical Education and ResearchRochesterMinnesotaUSA
| | - Chunlei Liu
- Department of Electrical Engineering and Computer SciencesUniversity of California, BerkeleyBerkeleyCaliforniaUSA
- Helen Wills Neuroscience InstituteUniversity of California, BerkeleyBerkeleyCaliforniaUSA
| |
Collapse
|
13
|
Signorelli SS, Barbagallo A, Oliveri Conti G, Fiore M, Cristaldi A, Ferrante M. Oxidative Status, Iron Plasma Levels in Venous Thrombosis Patients. Antioxidants (Basel) 2024; 13:689. [PMID: 38929128 PMCID: PMC11200582 DOI: 10.3390/antiox13060689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/29/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
Exaggerated clot induces venous thrombosis (VTE); oxidative stress (OxS) can to be postulated as additional risk factor. This study evaluates firstly OxS by measuring surrogate biomarkers (malondialdehyde-MDA, 4-hydroxinonenal-4-HNE, superoxide desmutase enzyme (SOD)), secondly the iron (Fe) plasma level and thirdly the hepcidin protein (Hep) level in patients with VTE. A case control study was performed enrolling twenty hospitalized patients and an equal number of healthy individuals. In VTE patients, the following results were found. The MDA was 8.38 ± 0.5 µM/L, the 4-HNE measured 2.75 ± 0.03 µM/L and the SOD was 0.025 ± 0.01 U/mL. The I was 73.10 ± 10 µg/dL and the He was 4.77 ± 0.52 ng/mL. In the control group, the MDA measured 5.5 ± 0.6 µM/L, the 4-HNE 2.24 ± 0.021 µM/L and the SOD 0.08 ± 0.12 U/mL. The Hep was 2.1 ± 0.55 ng/mL and the Fe was 88.2 ± 9.19 µg/dL. Differences were statistically significant. Results suggest that in VTE there is activated OxS, Fe deregulation and over-production of Hep. Fe deregulation induces OxS, leading both to inflammation in the clot activator and stimulation of the pro-thrombotic status. The study highlights OxS and Fe and their regulation as intriguing indicators for risk of VTE.
Collapse
Affiliation(s)
- Salvatore Santo Signorelli
- Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia 80, 95123 Catania, Italy
| | - Andrea Barbagallo
- Department of Clinical and Experimental Medicine, University of Catania, Via Santa Sofia 80, 95123 Catania, Italy
| | - Gea Oliveri Conti
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, Hygiene and Public Health, University of Catania, Via Santa Sofia 73, 95123 Catania, Italy; (G.O.C.); (M.F.); (A.C.)
| | - Maria Fiore
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, Hygiene and Public Health, University of Catania, Via Santa Sofia 73, 95123 Catania, Italy; (G.O.C.); (M.F.); (A.C.)
| | - Antonio Cristaldi
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, Hygiene and Public Health, University of Catania, Via Santa Sofia 73, 95123 Catania, Italy; (G.O.C.); (M.F.); (A.C.)
| | - Margherita Ferrante
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, Hygiene and Public Health, University of Catania, Via Santa Sofia 73, 95123 Catania, Italy; (G.O.C.); (M.F.); (A.C.)
| |
Collapse
|
14
|
Xie T, Yao L, Li X. Advance in Iron Metabolism, Oxidative Stress and Cellular Dysfunction in Experimental and Human Kidney Diseases. Antioxidants (Basel) 2024; 13:659. [PMID: 38929098 PMCID: PMC11200795 DOI: 10.3390/antiox13060659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Kidney diseases pose a significant global health issue, frequently resulting in the gradual decline of renal function and eventually leading to end-stage renal failure. Abnormal iron metabolism and oxidative stress-mediated cellular dysfunction facilitates the advancement of kidney diseases. Iron homeostasis is strictly regulated in the body, and disturbance in this regulatory system results in abnormal iron accumulation or deficiency, both of which are associated with the pathogenesis of kidney diseases. Iron overload promotes the production of reactive oxygen species (ROS) through the Fenton reaction, resulting in oxidative damage to cellular molecules and impaired cellular function. Increased oxidative stress can also influence iron metabolism through upregulation of iron regulatory proteins and altering the expression and activity of key iron transport and storage proteins. This creates a harmful cycle in which abnormal iron metabolism and oxidative stress perpetuate each other, ultimately contributing to the advancement of kidney diseases. The crosstalk of iron metabolism and oxidative stress involves multiple signaling pathways, such as hypoxia-inducible factor (HIF) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. This review delves into the functions and mechanisms of iron metabolism and oxidative stress, along with the intricate relationship between these two factors in the context of kidney diseases. Understanding the underlying mechanisms should help to identify potential therapeutic targets and develop novel and effective therapeutic strategies to combat the burden of kidney diseases.
Collapse
Affiliation(s)
- Tiancheng Xie
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Li Yao
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, China;
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
15
|
Truby LK, Michelis K, Grodin JL. More Than Meets the Eye: Defining the Prevalence, Pathophysiology, and Approach to Myocardial Iron Overload. Am J Cardiol 2024; 219:38-43. [PMID: 38461925 DOI: 10.1016/j.amjcard.2024.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/05/2024] [Accepted: 01/19/2024] [Indexed: 03/12/2024]
Affiliation(s)
- Lauren K Truby
- University of Texas Southwestern Medical Center, Dallas, Texas
| | - Katherine Michelis
- University of Texas Southwestern Medical Center, Dallas, Texas; Dallas VA Medical Center, Dallas, Texas
| | - Justin L Grodin
- University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
16
|
Levi S, Ripamonti M, Moro AS, Cozzi A. Iron imbalance in neurodegeneration. Mol Psychiatry 2024; 29:1139-1152. [PMID: 38212377 PMCID: PMC11176077 DOI: 10.1038/s41380-023-02399-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Iron is an essential element for the development and functionality of the brain, and anomalies in its distribution and concentration in brain tissue have been found to be associated with the most frequent neurodegenerative diseases. When magnetic resonance techniques allowed iron quantification in vivo, it was confirmed that the alteration of brain iron homeostasis is a common feature of many neurodegenerative diseases. However, whether iron is the main actor in the neurodegenerative process, or its alteration is a consequence of the degenerative process is still an open question. Because the different iron-related pathogenic mechanisms are specific for distinctive diseases, identifying the molecular mechanisms common to the various pathologies could represent a way to clarify this complex topic. Indeed, both iron overload and iron deficiency have profound consequences on cellular functioning, and both contribute to neuronal death processes in different manners, such as promoting oxidative damage, a loss of membrane integrity, a loss of proteostasis, and mitochondrial dysfunction. In this review, with the attempt to elucidate the consequences of iron dyshomeostasis for brain health, we summarize the main pathological molecular mechanisms that couple iron and neuronal death.
Collapse
Affiliation(s)
- Sonia Levi
- Vita-Salute San Raffaele University, Milano, Italy.
- IRCCS San Raffaele Scientific Institute, Milano, Italy.
| | | | - Andrea Stefano Moro
- Vita-Salute San Raffaele University, Milano, Italy
- Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Anna Cozzi
- IRCCS San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
17
|
Li S, Huang P, Lai F, Zhang T, Guan J, Wan H, He Y. Mechanisms of Ferritinophagy and Ferroptosis in Diseases. Mol Neurobiol 2024; 61:1605-1626. [PMID: 37736794 DOI: 10.1007/s12035-023-03640-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
The discovery of the role of autophagy, particularly the selective form like ferritinophagy, in promoting cells to undergo ferroptosis has inspired us to investigate functional connections between diseases and cell death. Ferroptosis is a novel model of procedural cell death characterized by the accumulation of iron-dependent reactive oxygen species (ROS), mitochondrial dysfunction, and neuroinflammatory response. Based on ferroptosis, the study of ferritinophagy is particularly important. In recent years, extensive research has elucidated the role of ferroptosis and ferritinophagy in neurological diseases and anemia, suggesting their potential as therapeutic targets. Besides, the global emergence and rapid transmission of COVID-19, which is caused by SARS-CoV-2, represents a considerable risk to public health worldwide. The potential involvement of ferroptosis in the pathophysiology of brain injury associated with COVID-19 is still unclear. This review summarizes the pathophysiological changes of ferroptosis and ferritinophagy in neurological diseases, anemia, and COVID-19, and hypothesizes that ferritinophagy may be a potential mechanism of ferroptosis. Advancements in these fields will enhance our comprehension of methods to prevent and address neurological disorders, anemia, and COVID-19.
Collapse
Affiliation(s)
- Siqi Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ping Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Feifan Lai
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ting Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jiaqi Guan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Haitong Wan
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
18
|
Zaher A, Duchman B, Ivanovic M, Spitz DR, Furqan M, Allen BG, Petronek MS. Exploratory Analysis of Image-Guided Ionizing Radiation Delivery to Induce Long-Term Iron Accumulation and Ferritin Expression in a Lung Injury Model: Preliminary Results. Bioengineering (Basel) 2024; 11:182. [PMID: 38391668 PMCID: PMC10886280 DOI: 10.3390/bioengineering11020182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/03/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Radiation therapy (RT) is an integral and commonly used therapeutic modality for primary lung cancer. However, radiation-induced lung injury (RILI) limits the irradiation dose used in the lung and is a significant source of morbidity. Disruptions in iron metabolism have been linked to radiation injury, but the underlying mechanisms remain unclear. PURPOSE To utilize a targeted radiation delivery approach to induce RILI for the development of a model system to study the role of radiation-induced iron accumulation in RILI. METHODS This study utilizes a Small Animal Radiation Research Platform (SARRP) to target the right lung with a 20 Gy dose while minimizing the dose delivered to the left lung and adjacent heart. Long-term pulmonary function was performed using RespiRate-x64image analysis. Normal-appearing lung volumes were calculated using a cone beam CT (CBCT) image thresholding approach in 3D Slicer software. Quantification of iron accumulation was performed spectrophotometrically using a ferrozine-based assay as well as histologically using Prussian blue and via Western blotting for ferritin heavy chain expression. RESULTS Mild fibrosis was seen histologically in the irradiated lung using hematoxylin and eosin-stained fixed tissue at 9 months, as well as using a scoring system from CBCT images, the Szapiel scoring system, and the highest fibrotic area metric. In contrast, no changes in breathing rate were observed, and median survival was not achieved up to 36 weeks following irradiation, consistent with mild lung fibrosis when only one lung was targeted. Our study provided preliminary evidence on increased iron content and ferritin heavy chain expression in the irradiated lung, thus warranting further investigation. CONCLUSIONS A targeted lung irradiation model may be a useful approach for studying the long-term pathological effects associated with iron accumulation and RILI following ionizing radiation.
Collapse
Affiliation(s)
- Amira Zaher
- Department of Radiation Oncology, Division of Free Radical and Radiation Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Bryce Duchman
- Division of Pulmonary, Critical Care, Sleep Medicine & Physiology, UC San Diego Health, San Diego, CA 92093, USA
| | - Marina Ivanovic
- Department of Pathology and Laboratory Medicine, Loyola University Health System, Loyola University, Chicago, IL 60660, USA
| | - Douglas R Spitz
- Department of Radiation Oncology, Division of Free Radical and Radiation Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Muhammad Furqan
- Department of Internal Medicine Division of Hematology and Oncology, University of Iowa, Iowa City, IA 52242, USA
| | - Bryan G Allen
- Department of Radiation Oncology, Division of Free Radical and Radiation Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Michael S Petronek
- Department of Radiation Oncology, Division of Free Radical and Radiation Biology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
19
|
Athanassiou L, Kostoglou-Athanassiou I, Nikolakopoulou S, Konstantinou A, Mascha O, Siarkos E, Samaras C, Athanassiou P, Shoenfeld Y. Vitamin D Levels as a Marker of Severe SARS-CoV-2 Infection. Life (Basel) 2024; 14:210. [PMID: 38398719 PMCID: PMC10890332 DOI: 10.3390/life14020210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
The SARS-CoV-2 virus may cause severe infection, which is associated with diverse clinical manifestations. Vitamin D has immunomodulating properties and may enhance the body's defense system against invading pathogenic organisms. The aim was to assess 25(OH)D3 levels in patients hospitalized for severe infection from the SARS-CoV-2 virus and explore the relationship between 25(OH)D3 and outcomes. In a group of 88 patients hospitalized for severe infection from the SARS-CoV-2 virus and a control group matched for age and sex, the levels of 25(OH)D3 were analyzed. Levels of 25(OH)D3 were 17.36 ± 8.80 ng/mL (mean ± SD) compared with 24.34 ± 10.34 ng/mL in patients with severe SARS-CoV-2 infection and the control group, respectively, p < 0.001 (Student's t-test). 25(OH)D3 levels were significantly related to outcomes, i.e., survival as opposed to non-survival, as more patients with 25(OH)D3 deficiency (0-10 ng/mL) and insufficiency (10-20 ng/mL) had a fatal outcome as compared with those with vitamin D sufficiency (p < 0.001, chi-square test, p < 0.001, Fisher's exact test). Levels of 25(OH)D3 were inversely related to C-reactive protein (CRP), ferritin, d-dimer, and fibrinogen levels (p < 0.001, linear regression analysis, beta coefficient of variation, -0.176, -0.160, -0.178, and -0.158, respectively). Vitamin D deficiency observed in severe SARS-CoV-2 infection was related to disease outcomes.
Collapse
Affiliation(s)
- Lambros Athanassiou
- COVID-19 Department, Asclepeion Hospital, Voula, GR16673 Athens, Greece; (L.A.); (S.N.); (A.K.); (E.S.); (C.S.)
| | | | - Sofia Nikolakopoulou
- COVID-19 Department, Asclepeion Hospital, Voula, GR16673 Athens, Greece; (L.A.); (S.N.); (A.K.); (E.S.); (C.S.)
| | - Alexandra Konstantinou
- COVID-19 Department, Asclepeion Hospital, Voula, GR16673 Athens, Greece; (L.A.); (S.N.); (A.K.); (E.S.); (C.S.)
| | - Olga Mascha
- Department of Biochemistry, Asclepeion Hospital, Voula, GR16673 Athens, Greece;
| | - Evangelos Siarkos
- COVID-19 Department, Asclepeion Hospital, Voula, GR16673 Athens, Greece; (L.A.); (S.N.); (A.K.); (E.S.); (C.S.)
| | - Charilaos Samaras
- COVID-19 Department, Asclepeion Hospital, Voula, GR16673 Athens, Greece; (L.A.); (S.N.); (A.K.); (E.S.); (C.S.)
| | | | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Reichman University, Herzelya 4610101, Israel;
| |
Collapse
|
20
|
Troike KM, Wang SZ, Silver DJ, Lee J, Mulkearns-Hubert EE, Hajdari N, Ghosh PK, Kay KE, Beilis JL, Mitchell SE, Bishop CW, Hong ES, Artomov M, Hubert CG, Rajappa P, Connor JR, Fox PL, Kristensen BW, Lathia JD. Homeostatic iron regulatory protein drives glioblastoma growth via tumor cell-intrinsic and sex-specific responses. Neurooncol Adv 2024; 6:vdad154. [PMID: 38239626 PMCID: PMC10794878 DOI: 10.1093/noajnl/vdad154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2024] Open
Abstract
Background Glioblastoma (GBM) displays alterations in iron that drive proliferation and tumor growth. Iron regulation is complex and involves many regulatory mechanisms, including the homeostatic iron regulator (HFE) gene, which encodes the homeostatic iron regulatory protein. While HFE is upregulated in GBM and correlates with poor survival outcomes, the function of HFE in GBM remains unclear. Methods We interrogated the impact of cell-intrinsic Hfe expression on proliferation and survival of intracranially implanted animals through genetic gain- and loss-of-function approaches in syngeneic mouse glioma models, along with in vivo immune assessments. We also determined the expression of iron-associated genes and their relationship to survival in GBM using public data sets and used transcriptional profiling to identify differentially expressed pathways in control compared to Hfe-knockdown cells. Results Overexpression of Hfe accelerated GBM proliferation and reduced animal survival, whereas suppression of Hfe induced apoptotic cell death and extended survival, which was more pronounced in females and associated with attenuation of natural killer cells and CD8+ T cell activity. Analysis of iron gene signatures in Hfe-knockdown cells revealed alterations in the expression of several iron-associated genes, suggesting global disruption of intracellular iron homeostasis. Further analysis of differentially expressed pathways revealed oxidative stress as the top pathway upregulated following Hfe loss. Hfe knockdown indeed resulted in enhanced 55Fe uptake and generation of reactive oxygen species. Conclusions These findings reveal an essential function for HFE in GBM cell growth and survival, as well as a sex-specific interaction with the immune response.
Collapse
Affiliation(s)
- Katie M Troike
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Sabrina Z Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Daniel J Silver
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Juyeun Lee
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Erin E Mulkearns-Hubert
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicole Hajdari
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Prabar K Ghosh
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kristen E Kay
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Julia L Beilis
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Sofia E Mitchell
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Christopher W Bishop
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ellen S Hong
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Mykyta Artomov
- Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
| | - Christopher G Hubert
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
| | - Prajwal Rajappa
- Institute for Genomic Medicine, Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Neurological Surgery, The Ohio State Wexner Medical Center, Columbus, Ohio, USA
| | - James R Connor
- Department of Neurosurgery, Penn State Hershey Medical Center, Hershey, Pennsylvania, USA
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Bjarne W Kristensen
- Department of Clinical Medicine, Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
21
|
Hu J, Sha X, Li Y, Wu J, Ma J, Zhang Y, Yang R. Multifaceted Applications of Ferritin Nanocages in Delivering Metal Ions, Bioactive Compounds, and Enzymes: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19903-19919. [PMID: 37955969 DOI: 10.1021/acs.jafc.3c05510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Ferritin, a distinctive iron-storage protein, possesses a unique cage-like nanoscale structure that enables it to encapsulate and deliver a wide range of biomolecules. Recent advances prove that ferritin can serve as an efficient 8 nm diameter carrier for various bioinorganic nutrients, such as minerals, bioactive polyphenols, and enzymes. This review offers a comprehensive summary of ferritin's structural features from different sources and emphasizes its functions in iron supplementation, calcium delivery, single- and coencapsulation of polyphenols, and enzyme package. Additionally, the influence of innovative food processing technologies, including manothermosonication, pulsed electric field, and atmospheric cold plasma, on the structure and function of ferritin are examined. Furthermore, the limitations and prospects of ferritin in food and nutritional applications are discussed. The exploration of ferritin as a multifunctional protein with the capacity to load various biomolecules is crucial to fully harnessing its potential in food applications.
Collapse
Affiliation(s)
- Jiangnan Hu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xinmei Sha
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yue Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jincan Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Junrui Ma
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yuyu Zhang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Rui Yang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
22
|
Bhardwaj M, Kailoo S, Khan RT, Khan SS, Rasool S. Harnessing fungal endophytes for natural management: a biocontrol perspective. Front Microbiol 2023; 14:1280258. [PMID: 38143866 PMCID: PMC10748429 DOI: 10.3389/fmicb.2023.1280258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/21/2023] [Indexed: 12/26/2023] Open
Abstract
In the ever-evolving realm of agriculture, the convoluted interaction between plants and microorganisms have assumed paramount significance. Fungal endophytes, once perceived as mere bystanders within plant tissues, have now emerged as dynamic defenders of plant health. This comprehensive review delves into the captivating world of fungal endophytes and their multifaceted biocontrol mechanisms. Exploring their unique ability to coexist with their plant hosts, fungal endophytes have unlocked a treasure trove of biological weaponry to fend off pathogens and enhance plant resilience. From the synthesis of bioactive secondary metabolites to intricate signaling pathways these silent allies are masters of biological warfare. The world of fungal endophytes is quite fascinating as they engage in a delicate dance with the plant immune system, orchestrating a symphony of defense that challenges traditional notions of plant-pathogen interactions. The journey through the various mechanisms employed by these enigmatic endophytes to combat diseases, will lead to revelational understanding of sustainable agriculture. The review delves into cutting-edge research and promising prospects, shedding light on how fungal endophytes hold the key to biocontrol and the reduction of chemical inputs in agriculture. Their ecological significance, potential for bioprospecting and avenues for future research are also explored. This exploration of the biocontrol mechanisms of fungal endophytes promise not only to enrich our comprehension of plant-microbe relationships but also, to shape the future of sustainable and ecofriendly agricultural practices. In this intricate web of life, fungal endophytes are indeed the unsung heroes, silently guarding our crops and illuminating a path towards a greener, healthier tomorrow.
Collapse
Affiliation(s)
| | | | | | | | - Shafaq Rasool
- Molecular Biology Laboratory, School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| |
Collapse
|
23
|
Liao Q, Yang J, Lu Z, Jiang Q, Gong Y, Liu L, Peng H, Wang Q, Zhang X, Liu Z. FTH1 indicates poor prognosis and promotes metastasis in head and neck squamous cell carcinoma. PeerJ 2023; 11:e16493. [PMID: 38025726 PMCID: PMC10658887 DOI: 10.7717/peerj.16493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Background Currently, ferritin heavy chain (FTH1) has been increasingly found to play a crucial role in cancer as a core regulator of ferroptosis, while its role of non-ferroptosis in head and neck squamous cell carcinoma (HNSCC) is still unclear. Methods Herein, we analyzed the expression level of FTH1 in HNSCC using TCGA database, and FTH1 protein in HNSCC tissues and cell lines was determined by immunohistochemistry (IHC) and western blotting, respectively. Then, its prognostic value and relationship with clinical parameters were investigated in HNSCC patients. Additionally, the biological function of FTH1 in HNSCC was explored. Results The current study showed that FTH1 is significantly overexpressed in HNSCC tissues and related to poor prognosis and lymph node metastasis of HNSCC. FTH1 knockdown could suppress the metastasis and epithelial-mesenchymal transition (EMT) process of HNSCC. Conclusion Our findings indicate that FTH1 plays a critical role in the progression and metastasis of HNSCC and can serve as a promising prognostic factor and therapeutic target in HNSCC.
Collapse
Affiliation(s)
- Qingyun Liao
- The First Affiliated Hospital, Department of Otolaryngology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jing Yang
- Cancer Research Institute, Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, University of South China, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Gastroenterology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhaoyi Lu
- Otolaryngology Major Disease Research, Key Laboratory of Hunan Province, Central South University, Changsha, Hunan, China
| | - Qingshan Jiang
- The First Affiliated Hospital, Department of Otolaryngology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yongqian Gong
- The First Affiliated Hospital, Department of Otolaryngology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Lijun Liu
- The First Affiliated Hospital, Department of Otolaryngology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hong Peng
- The First Affiliated Hospital, Department of Otolaryngology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qin Wang
- The First Affiliated Hospital, Department of Otolaryngology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xin Zhang
- Otolaryngology Major Disease Research, Key Laboratory of Hunan Province, Central South University, Changsha, Hunan, China
| | - Zhifeng Liu
- The First Affiliated Hospital, Department of Otolaryngology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
24
|
Wang Z, Wang X, Xu W, Li Y, Lai R, Qiu X, Chen X, Chen Z, Mi B, Wu M, Wang J. Translational Challenges and Prospective Solutions in the Implementation of Biomimetic Delivery Systems. Pharmaceutics 2023; 15:2623. [PMID: 38004601 PMCID: PMC10674763 DOI: 10.3390/pharmaceutics15112623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Biomimetic delivery systems (BDSs), inspired by the intricate designs of biological systems, have emerged as a groundbreaking paradigm in nanomedicine, offering unparalleled advantages in therapeutic delivery. These systems, encompassing platforms such as liposomes, protein-based nanoparticles, extracellular vesicles, and polysaccharides, are lauded for their targeted delivery, minimized side effects, and enhanced therapeutic outcomes. However, the translation of BDSs from research settings to clinical applications is fraught with challenges, including reproducibility concerns, physiological stability, and rigorous efficacy and safety evaluations. Furthermore, the innovative nature of BDSs demands the reevaluation and evolution of existing regulatory and ethical frameworks. This review provides an overview of BDSs and delves into the multifaceted translational challenges and present emerging solutions, underscored by real-world case studies. Emphasizing the potential of BDSs to redefine healthcare, we advocate for sustained interdisciplinary collaboration and research. As our understanding of biological systems deepens, the future of BDSs in clinical translation appears promising, with a focus on personalized medicine and refined patient-specific delivery systems.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; (Z.W.); (R.L.)
| | - Xinpei Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Wanting Xu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Yongxiao Li
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Ruizhi Lai
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen 518033, China; (Z.W.); (R.L.)
| | - Xiaohui Qiu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Xu Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Zhidong Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China;
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Meiying Wu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| | - Junqing Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (X.W.); (W.X.); (Y.L.); (X.Q.); (X.C.); (Z.C.)
| |
Collapse
|
25
|
Yu H, Wang K, Yang Z, Li X, Liu S, Wang L, Zhang H. A ferritin protein is involved in the development and reproduction of the whitefly, Bemisia tabaci. ENVIRONMENTAL ENTOMOLOGY 2023; 52:750-758. [PMID: 37318359 DOI: 10.1093/ee/nvad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/06/2023] [Accepted: 06/01/2023] [Indexed: 06/16/2023]
Abstract
Ferritins are conserved iron-binding proteins that exist in most living organisms and play an essential role in the maintenance of cellular iron homeostasis. Although ferritin has been studied in many species, little is known about its role in the whitefly, Bemisia tabaci. In this study, we identified an iron-binding protein from B. tabaci and named it BtabFer1. The full-length cDNA of BtabFer1 is 1,043 bp and encodes a protein consisting of 224 amino acids with a deduced molecular weight of 25.26 kDa, and phylogenetic analysis shows that BtabFer1 is conserved among Hemiptera insects. The expression levels of BtabFer1 in different developmental stages and tissues were analyzed by real-time PCR, and results showed that BtabFer1 was ubiquitously expressed at all developmental stages and in all examined tissues. The RNAi-mediated knockdown of BtabFer1 caused a significant reduction in survival rate, egg production, and egg hatching rate of whiteflies. Knockdown of BtabFer1 also inhibited the transcription of genes in the juvenile hormone signal transduction pathway. Taken together, these results suggest that BtabFer1 plays a critical role in the development and reproduction of whiteflies. This study can broaden our understanding of ferritin in insect fecundity and development, as well as provide baseline data for future studies.
Collapse
Affiliation(s)
- Hao Yu
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Kui Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Zhifang Yang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Xiang Li
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Shunxiao Liu
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
- College of Agrarian Technology and Natural Resources, Sumy National Agrarian University, Sumy 40021, Ukraine
| | - Liuhao Wang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| | - Hongwei Zhang
- Department of Natural Resources, Henan Institute of Science and Technology, Xinxiang, Henan Province 453003, China
| |
Collapse
|
26
|
Huang W, Zhao X, Chai Z, Herrera-Balandrano DD, Li B, Yang Y, Lu S, Tu Z. Improving Blueberry Anthocyanins' Stability Using a Ferritin Nanocarrier. Molecules 2023; 28:5844. [PMID: 37570814 PMCID: PMC10421234 DOI: 10.3390/molecules28155844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Blueberries are fruits known for their high level of anthocyanins, which have high nutritional value and several biological properties. However, the chemical instability of anthocyanins is one of the major limitations of their application. The stability of blueberry anthocyanin extracts (BAEs) encapsulated in a ferritin nanocarrier was investigated in this study for several influencing parameters, including pH, temperature, UV-visible light, redox agents, and various metal ions. The outcomes supported the positive role of protein nanoparticles in enhancing the stability of blueberry anthocyanins by demonstrating that the stability of encapsulated BAE nanoparticles with ferritin carriers was significantly higher than that of free BAEs and a mixture of BAEs and ferritin carriers. This study provides an alternative approach for enhancing blueberry anthocyanin stability using ferritin nanocarrier encapsulation.
Collapse
Affiliation(s)
- Wuyang Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.H.)
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Xingyu Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.H.)
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Zhi Chai
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | | | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yiyun Yang
- Zhejiang Lanmei Technology Co., Ltd., Zhuji 311899, China
| | - Shan Lu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhigang Tu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (W.H.)
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
27
|
Jhelum P, Zandee S, Ryan F, Zarruk JG, Michalke B, Venkataramani V, Curran L, Klement W, Prat A, David S. Ferroptosis induces detrimental effects in chronic EAE and its implications for progressive MS. Acta Neuropathol Commun 2023; 11:121. [PMID: 37491291 PMCID: PMC10369714 DOI: 10.1186/s40478-023-01617-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
Ferroptosis is a form of lipid peroxidation-mediated cell death and damage triggered by excess iron and insufficiency in the glutathione antioxidant pathway. Oxidative stress is thought to play a crucial role in progressive forms of multiple sclerosis (MS) in which iron deposition occurs. In this study we assessed if ferroptosis plays a role in a chronic form of experimental autoimmune encephalomyelitis (CH-EAE), a mouse model used to study MS. Changes were detected in the mRNA levels of several ferroptosis genes in CH-EAE but not in relapsing-remitting EAE. At the protein level, expression of iron importers is increased in the earlier stages of CH-EAE (onset and peak). While expression of hemoxygenase-1, which mobilizes iron from heme, likely from phagocytosed material, is increased in macrophages at the peak and progressive stages. Excess iron in cells is stored safely in ferritin, which increases with disease progression. Harmful, redox active iron is released from ferritin when shuttled to autophagosomes by 'nuclear receptor coactivator 4' (NCOA4). NCOA4 expression increases at the peak and progressive stages of CH-EAE and accompanied by increase in redox active ferrous iron. These changes occur in parallel with reduction in the antioxidant pathway (system xCT, glutathione peroxidase 4 and glutathione), and accompanied by increased lipid peroxidation. Mice treated with a ferroptosis inhibitor for 2 weeks starting at the peak of CH-EAE paralysis, show significant improvements in function and pathology. Autopsy samples of tissue sections of secondary progressive MS (SPMS) showed NCOA4 expression in macrophages and oligodendrocytes along the rim of mixed active/inactive lesions, where ferritin+ and iron containing cells are located. Cells expressing NCOA4 express less ferritin, suggesting ferritin degradation and release of redox active iron, as indicated by increased lipid peroxidation. These data suggest that ferroptosis is likely to contribute to pathogenesis in CH-EAE and SPMS.
Collapse
Affiliation(s)
- Priya Jhelum
- Centre for Research in Neuroscience and BRaIN Program, Research Institute of the McGill University Health Centre (RI-MUHC), Livingston Hall, Room L7-210, 1650 Cedar Ave., Montreal, QC, H3G 1A4, Canada
| | - Stephanie Zandee
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, H2X 0A9, Canada
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Fari Ryan
- Centre for Research in Neuroscience and BRaIN Program, Research Institute of the McGill University Health Centre (RI-MUHC), Livingston Hall, Room L7-210, 1650 Cedar Ave., Montreal, QC, H3G 1A4, Canada
| | - Juan G Zarruk
- Centre for Research in Neuroscience and BRaIN Program, Research Institute of the McGill University Health Centre (RI-MUHC), Livingston Hall, Room L7-210, 1650 Cedar Ave., Montreal, QC, H3G 1A4, Canada
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Vivek Venkataramani
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, 97080, Würzburg, Germany
| | - Laura Curran
- Centre for Research in Neuroscience and BRaIN Program, Research Institute of the McGill University Health Centre (RI-MUHC), Livingston Hall, Room L7-210, 1650 Cedar Ave., Montreal, QC, H3G 1A4, Canada
| | - Wendy Klement
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, H2X 0A9, Canada
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Alexandre Prat
- Neuroimmunology Research Laboratory, Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montreal, QC, H2X 0A9, Canada
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Samuel David
- Centre for Research in Neuroscience and BRaIN Program, Research Institute of the McGill University Health Centre (RI-MUHC), Livingston Hall, Room L7-210, 1650 Cedar Ave., Montreal, QC, H3G 1A4, Canada.
| |
Collapse
|
28
|
Huang W, He Y, Yang S, Xue X, Qin H, Sun T, Yang W. CA9 knockdown enhanced ionizing radiation-induced ferroptosis and radiosensitivity of hypoxic glioma cells. Int J Radiat Biol 2023; 99:1908-1924. [PMID: 37463506 DOI: 10.1080/09553002.2023.2235433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/03/2023] [Accepted: 06/28/2023] [Indexed: 07/20/2023]
Abstract
PURPOSE Ferroptosis is a type of regulatory cell death, caused by excessive lipid peroxidation This study aimed to explore whether ionizing radiation could induce ferroptosis in glioma cells and whether carbonic anhydrase 9 (CA9) knockdown could enhance the killing effect of ionizing radiation on hypoxic glioma cells through ferroptosis. MATERIALS AND METHODS The protein levels of Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) were detected by Western blot in glioma cells irradiated by different doses of X-ray. The relative mRNA levels of ferroptosis markers and intracellular iron-associated proteins were detected by Real-time qPCR. Lipid peroxidation of glioma cells was detected by oxidation-sensitive probe C11-BODIPY581/591 staining. CCK-8 Assay was used to detect cell viability after X-ray irradiation. Cloning formation assay was used to assess the radiosensitivity of glioma cells. The exposure of cell surface calreticulin was measured by immunofluorescence staining. RESULTS X-ray induced lipid peroxidation and ferroptosis markers expression in U251 and GL261 glioma cells. Knockdown of CA9 in hypoxic glioma cells significantly altered the expression of iron regulation-related proteins and enhanced X-ray-induced ferroptosis and radiosensitivity. The ferroptosis inhibitor significantly improved the survival of cells irradiated by X-ray, while ferroptosis inducers (FINs) enhanced the lethal effect of X-ray on cells. Enhancing ferroptosis in glioma cells promoted the exposure and release of damage-associated molecular patterns (DAMPs). CONCLUSIONS Ionizing radiation can induce ferroptosis in glioma cells. CA9 knockdown can enhance the radiosensitivity of hypoxic glioma cells and overcome the resistance of ferroptosis under hypoxia. Enhancing ferroptosis will become a new idea to improve the efficacy of radiotherapy for glioma.
Collapse
Affiliation(s)
- Wenpeng Huang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Yuping He
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Shuangyu Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Xuefei Xue
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| | - Hualong Qin
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Ting Sun
- Neurosurgery and Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Wei Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
29
|
Levinson T, Feigin E, Berliner S, Shenhar-Tsarfaty S, Shapira I, Rogowski O, Zeltzer D, Goldiner I, Shtark M, Katz Shalhav M, Wasserman A. Normoferremia in Patients with Acute Bacterial Infections-A Hitherto Unexplored Field of the Dichotomy between CRP and Ferritin Expression in Patients with Hyper Inflammation and Failure to Increase Ferritin. Int J Mol Sci 2023; 24:11350. [PMID: 37511109 PMCID: PMC10379163 DOI: 10.3390/ijms241411350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Ferritin is an acute phase response protein, which may not rise as expected in acute bacterial infections. This could be due to the time required for its production or to a lack of response of ferritin to the bacterial inflammatory process. Medical records of hospitalized patients with acute hyper inflammation were retrieved and studied, looking closely at two acute phase proteins: C-reactive protein (CRP) and ferritin. The estimated time between symptom onset and the procurement of blood tests was also measured. 225 patients had a median ferritin level of 109.9 ng/mL [IQR 85.1, 131.7] and a median CRP level of 248.4 mg/L [IQR 221, 277.5]. An infectious inflammatory process was identified in 195 patients. Ferritin levels were relatively low in comparison with the CRP in each group, divided according to time from symptom onset until the procurement of blood tests. The discrepancy between high CRP and low ferritin suggests that these two acute phase response proteins utilize different pathways, resulting in a failure to increase ferritin concentrations in a documented state of hyperinflammation. A new entity of normoferremic inflammation accounts for a significant percentage of patients with acute bacterial infections, which enables bacteria to better survive the inflammation and serves as a new "inflammatory stamp".
Collapse
Affiliation(s)
- Tal Levinson
- Infectious Diseases Unit, Tel-Aviv Sourasky Medical Center Affiliated to the Faculty of Medicine, Tel-Aviv University, Tel Aviv 6423906, Israel
- Departments of Internal Medicine C, D and E, Tel Aviv Sourasky Medical Center Affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Eugene Feigin
- Departments of Internal Medicine C, D and E, Tel Aviv Sourasky Medical Center Affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
- Department of Endocrinology, Tel Aviv Sourasky Medical Center Affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Shlomo Berliner
- Departments of Internal Medicine C, D and E, Tel Aviv Sourasky Medical Center Affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Shani Shenhar-Tsarfaty
- Departments of Internal Medicine C, D and E, Tel Aviv Sourasky Medical Center Affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Itzhak Shapira
- Departments of Internal Medicine C, D and E, Tel Aviv Sourasky Medical Center Affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Ori Rogowski
- Departments of Internal Medicine C, D and E, Tel Aviv Sourasky Medical Center Affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - David Zeltzer
- Department of Emergency Medicine, Tel-Aviv Sourasky Medical Center, Affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Ilana Goldiner
- Clinical Laboratory Services, Tel Aviv Sourasky Medical Center, Tel Aviv, Affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Moshe Shtark
- Clinical Laboratory Services, Tel Aviv Sourasky Medical Center, Tel Aviv, Affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Malka Katz Shalhav
- Department of Emergency Medicine, Tel-Aviv Sourasky Medical Center, Affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| | - Asaf Wasserman
- Departments of Internal Medicine C, D and E, Tel Aviv Sourasky Medical Center Affiliated to the Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel
| |
Collapse
|
30
|
Shamsuzzaman M, Dahal RH, Kim S, Kim J. Genome insight and probiotic potential of three novel species of the genus Corynebacterium. Front Microbiol 2023; 14:1225282. [PMID: 37485528 PMCID: PMC10358988 DOI: 10.3389/fmicb.2023.1225282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/14/2023] [Indexed: 07/25/2023] Open
Abstract
Three bacterial strains, B5-R-101T, TA-R-1T, and BL-R-1T, were isolated from the feces of a healthy Korean individual. Cells of these strains were Gram-stain-positive, facultatively anaerobic, oxidase-negative, catalase-positive, rod-shaped, and non-motile. They were able to grow within a temperature range of 10-42°C (optimum, 32-37°C), at a pH range of 2.0-10.0 (optimum, pH 5.5-8.0), and at NaCl concentration of 0.5-10.5% (w/v). All the three strains exhibited 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activities ranging from 58 ± 1.62 to 79 ± 1.46% (% inhibition). These strains survived in lower pH (2.0) and in 0.3% bile salt concentration for 4 h. They did not show hemolytic activity and exhibited antimicrobial activity against pathogenic bacteria, such as Escherichia coli, Acinetobacter baumannii, Staphylococcus aureus, and Salmonella enterica. The genomic analysis presented no significant concerns regarding antibiotic resistance or virulence gene content, indicating these strains could be potential probiotic candidates. Phylogenetic analysis showed that they belonged to the genus Corynebacterium, with 98.5-99.0% 16S rRNA gene sequence similarities to other members of the genus. Their major polar lipids were diphosphatidylglycerol and phosphatidylglycerol. The abundant cellular fatty acids were C16:0, C18:1ω9c, and anteiso-C19:0. Genomic analysis of these isolates revealed the presence of genes necessary for their survival and growth in the gut environment, such as multi-subunit ATPases, stress response genes, extracellular polymeric substance biosynthesis genes, and antibacterial genes. Furthermore, the genome of each strain possessed biosynthetic gene clusters with antioxidant and antimicrobial potentials, including terpenes, saccharides, polyketides, post-translationally modified peptides (RIPPs), and non-ribosomal peptides (NRPs). In silico DNA-DNA hybridization (dDDH) and average nucleotide identity (ANI) values were lower than the thresholds to distinguish novel species. Based on phenotypic, genomic, phylogenomic, and phylogenetic analysis, these potential probiotic strains represent novel species within the genus Corynebacterium, for which the names Corynebacterium intestinale sp. nov. (type strain B5-R-101T = CGMCC 1.19408T = KCTC 49761T), Corynebacterium stercoris sp. nov. (type strain TA-R-1T = CGMCC 1.60014T = KCTC 49742T), and Corynebacterium faecium sp. nov. (type strain BL-R-1T = KCTC 49735T = TBRC 17331T) are proposed.
Collapse
Affiliation(s)
- Md Shamsuzzaman
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ram Hari Dahal
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Shukho Kim
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jungmin Kim
- Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
31
|
Hanke N, Rami A. Inhibition of autophagy rescues HT22 hippocampal neurons from erastin-induced ferroptosis. Neural Regen Res 2023; 18:1548-1552. [PMID: 36571361 PMCID: PMC10075118 DOI: 10.4103/1673-5374.360246] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ferroptosis is a regulated form of cell death which is considered an oxidative iron-dependent process. The lipid hydroperoxidase glutathione peroxidase 4 prevents the iron (Fe2+)-dependent formation of toxic lipid reactive oxygen species. While emerging evidence indicates that inhibition of glutathione peroxidase 4 as a hallmark of ferroptosis in many cancer cell lines, the involvement of this biochemical pathway in neuronal death remains largely unclear. Here, we investigate, first whether the ferroptosis key players are involved in the neuronal cell death induced by erastin. The second objective was to examine whether there is a cross talk between ferroptosis and autophagy. The third main was to address neuron response to erastin, with a special focus on ferritin and nuclear receptor coactivator 4-mediated ferritinophagy. To test this in neurons, erastin (0.5-8 µM) was applied to hippocampal HT22 neurons for 16 hours. In addition, cells were cultured with the autophagy inhibitor, 3-methyladenin (10 mM) and/or ferroptosis inhibitors, ferrostatin 1 (10-20 µM) or deferoxamine (10-200 µM) before exposure to erastin. In this study, we demonstrated by immunofluorescence and western blot analysis, that erastin downregulates dramatically the expression of glutathione peroxidase 4, the sodium-independent cystine-glutamate antiporter and nuclear receptor coactivator 4. The protein levels of ferritin and mitochondrial ferritin in HT22 hippocampal neurons did not remarkably change following erastin treatment. In addition, we demonstrated that not only the ferroptosis inhibitor, ferrostatin1/deferoxamine abrogated the ferroptotic cell death induced by erastin in hippocampal HT22 neurons, but also the potent autophagy inhibitor, 3-methyladenin. We conclude that (1) erastin-induced ferroptosis in hippocampal HT22 neurons, despite reduced nuclear receptor coactivator 4 levels, (2) that either nuclear receptor coactivator 4-mediated ferritinophagy does not occur or is of secondary importance in this model, (3) that ferroptosis seems to share some features of the autophagic cell death process.
Collapse
Affiliation(s)
- Nora Hanke
- Institut für Experimentelle Neurobiologie (Anatomie II), Klinikum der Johann Wolfgang von Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Abdelhaq Rami
- Institut für Experimentelle Neurobiologie (Anatomie II), Klinikum der Johann Wolfgang von Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| |
Collapse
|
32
|
Velkova I, Pasino M, Khalid Z, Menichini P, Martorana E, Izzotti A, Pulliero A. Modulation of Ferroptosis by microRNAs in Human Cancer. J Pers Med 2023; 13:jpm13050719. [PMID: 37240889 DOI: 10.3390/jpm13050719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/28/2023] Open
Abstract
Ferroptosis is a cell death pathway triggered by an imbalance between the production of oxidants and antioxidants, which plays an emerging role in tumorigenesis. It is mainly regulated at three different levels including iron metabolism, the antioxidant response, and lipid metabolism. Epigenetic dysregulation is a "hallmark" of human cancer, with nearly half of all human cancers harboring mutations in epigenetic regulators such as microRNA. While being the crucial player in controlling gene expression at the mRNA level, microRNAs have recently been shown to modulate cancer growth and development via the ferroptosis pathway. In this scenario, some miRNAs have a function in upregulating, while others play a role in inhibiting ferroptosis activity. The investigation of validated targets using the miRBase, miRTarBase, and miRecords platforms identified 13 genes that appeared enriched for iron metabolism, lipid peroxidation, and antioxidant defense; all are recognized contributors of tumoral suppression or progression phenotypes. This review summarizes and discuss the mechanism by which ferroptosis is initiated through an imbalance in the three pathways, the potential function of microRNAs in the control of this process, and a description of the treatments that have been shown to have an impact on the ferroptosis in cancer along with potential novel effects.
Collapse
Affiliation(s)
- Irena Velkova
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Martina Pasino
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Zumama Khalid
- Department of Health Sciences, University of Genoa, 16132 Genoa, Italy
| | | | | | - Alberto Izzotti
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
| | | |
Collapse
|
33
|
Vucic V, Ristic-Medic D, Arsic A, Petrovic S, Paunovic M, Vasiljevic N, Ilich JZ. Nutrition and Physical Activity as Modulators of Osteosarcopenic Adiposity: A Scoping Review and Recommendations for Future Research. Nutrients 2023; 15:1619. [PMID: 37049460 PMCID: PMC10096523 DOI: 10.3390/nu15071619] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Osteosarcopenic adiposity (OSA) syndrome denotes the confluence of bone, muscle, and adipose tissue deterioration. Being a complex entity, numerous uncertainties about OSA still exist, despite the extensive research on the topic. Our objectives were to evaluate human studies addressing dietary intake/nutritional status and the quantity/types of physical activity related to OSA. The search in PubMed, Scopus, and Web of Science databases was conducted to examine relevant articles published from inception to the end of December 2022, utilizing the MeSH strings in the search strategy. Only studies published in English and conducted in humans (≥18 years) without chronic conditions (cancers, kidney/liver disease) or pregnancy were used. Book chapters, abstracts-only, and studies in which participants did not have all three body composition components measured to identify OSA or when body composition components could not be related to the independent/exposure variables were excluded. A total of n = 1020 articles were retrieved from all three databases and eight more from the reference lists. After the exclusion of duplicates and other unsuitable articles, n = 23 studies were evaluated. Among those, eleven were from epidemiological or cross-sectional studies relating nutrients/dietary intake or nutritional status with OSA. Another four examined the relationship between serum biomarkers (vitamin D and ferritin) with OSA, while eight articles presented the results of the interventional studies with resistance training. Overall, higher protein, calcium, potassium, and vitamins D and C intakes emerged as nutrients positively modifying OSA, along with a diet higher in fruits and low-fat dairy foods. Higher serum vitamin D and ferritin were respectively positively and negatively related to OSA. Resistance training was a safe intervention yielding several beneficial outcomes for the OSA syndrome in older women.
Collapse
Affiliation(s)
- Vesna Vucic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Danijela Ristic-Medic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Arsic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Snjezana Petrovic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Marija Paunovic
- Group for Nutritional Biochemistry and Dietology, Centre of Research Excellence in Nutrition and Metabolism, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Nadja Vasiljevic
- Institute of Hygiene and Medical Ecology, Medical Faculty University of Belgrade, 11000 Belgrade, Serbia
| | - Jasminka Z. Ilich
- Institute for Successful Longevity, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
34
|
Ko G, Kim J, Jeon YJ, Lee D, Baek HM, Chang KA. Salvia miltiorrhiza Alleviates Memory Deficit Induced by Ischemic Brain Injury in a Transient MCAO Mouse Model by Inhibiting Ferroptosis. Antioxidants (Basel) 2023; 12:antiox12040785. [PMID: 37107160 PMCID: PMC10135292 DOI: 10.3390/antiox12040785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Salvia miltiorrhiza (SM) has been used in oriental medicine for its neuroprotective effects against cardiovascular diseases and ischemic stroke. In this study, we investigated the therapeutic mechanism underlying the effects of SM on stroke using a transient middle cerebral artery occlusion (tMCAO) mouse model. Our results showed that SM administration significantly attenuated acute brain injury, including brain infarction and neurological deficits, 3 days after tMCAO. This was confirmed by our magnetic resonance imaging (MRI) study, which revealed a reduction in brain infarction with SM administration, as well as our magnetic resonance spectroscopy (MRS) study, which demonstrated the restoration of brain metabolites, including taurine, total creatine, and glutamate. The neuroprotective effects of SM were associated with the reduction in gliosis and upregulation of inflammatory cytokines, such as interleukin-6 (IL-6) and Tumor necrosis factor-α (TNF-α), along with the upregulation of phosphorylated STAT3 in post-ischemic brains. SM also reduced the levels of 4-Hydroxynonenal (4-HNE) and malondialdehyde (MDA), which are markers of lipid peroxidation, induced by oxidative stress upregulation in the penumbra of the tMCAO mouse brain. SM administration attenuated ischemic neuronal injury by inhibiting ferroptosis. Additionally, post-ischemic brain synaptic loss and neuronal loss were alleviated by SM administration, as demonstrated by Western blot and Nissl staining. Moreover, daily administration of SM for 28 days after tMCAO significantly reduced neurological deficits and improved survival rates in tMCAO mice. SM administration also resulted in improvement in post-stroke cognitive impairment, as measured by the novel object recognition and passive avoidance tests in tMCAO mice. Our findings suggest that SM provides neuroprotection against ischemic stroke and has potential as a therapeutic agent.
Collapse
Affiliation(s)
- Geon Ko
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Jinho Kim
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Yeong-Jae Jeon
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Hyeon-Man Baek
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Molecular Medicine, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| | - Keun-A Chang
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
- Department of Basic Neuroscience, Neuroscience Research Institute, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
35
|
Zhang L, Cui T, Wang X. The Interplay Between Autophagy and Regulated Necrosis. Antioxid Redox Signal 2023; 38:550-580. [PMID: 36053716 PMCID: PMC10025850 DOI: 10.1089/ars.2022.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022]
Abstract
Significance: Autophagy is critical to cellular homeostasis. Emergence of the concept of regulated necrosis, such as necroptosis, ferroptosis, pyroptosis, and mitochondrial membrane-permeability transition (MPT)-derived necrosis, has revolutionized the research into necrosis. Both altered autophagy and regulated necrosis contribute to major human diseases. Recent studies reveal an intricate interplay between autophagy and regulated necrosis. Understanding the interplay at the molecular level will provide new insights into the pathophysiology of related diseases. Recent Advances: Among the three forms of autophagy, macroautophagy is better studied for its crosstalk with regulated necrosis. Macroautophagy seemingly can either antagonize or promote regulated necrosis, depending upon the form of regulated necrosis, the type of cells or stimuli, and other cellular contexts. This review will critically analyze recent advances in the molecular mechanisms governing the intricate dialogues between macroautophagy and main forms of regulated necrosis. Critical Issues: The dual roles of autophagy, either pro-survival or pro-death characteristics, intricate the mechanistic relationship between autophagy and regulated necrosis at molecular level in various pathological conditions. Meanwhile, key components of regulated necrosis are also involved in the regulation of autophagy, which further complicates the interrelationship. Future Directions: Resolving the controversies over causation between altered autophagy and a specific form of regulated necrosis requires approaches that are more definitive, where rigorous evaluation of autophagic flux and the development of more reliable and specific methods to quantify each form of necrosis will be essential. The relationship between chaperone-mediated autophagy or microautophagy and regulated necrosis remains largely unstudied. Antioxid. Redox Signal. 38, 550-580.
Collapse
Affiliation(s)
- Lei Zhang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China
- Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China
| | - Taixing Cui
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Xuejun Wang
- Division of Basic Biomedical Sciences, The University of South Dakota Sanford School of Medicine, Vermillion, South Dakota, USA
| |
Collapse
|
36
|
Gehrer CM, Mitterstiller AM, Grubwieser P, Meyron-Holtz EG, Weiss G, Nairz M. Advances in Ferritin Physiology and Possible Implications in Bacterial Infection. Int J Mol Sci 2023; 24:4659. [PMID: 36902088 PMCID: PMC10003477 DOI: 10.3390/ijms24054659] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/17/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Due to its advantageous redox properties, iron plays an important role in the metabolism of nearly all life. However, these properties are not only a boon but also the bane of such life forms. Since labile iron results in the generation of reactive oxygen species by Fenton chemistry, iron is stored in a relatively safe form inside of ferritin. Despite the fact that the iron storage protein ferritin has been extensively researched, many of its physiological functions are hitherto unresolved. However, research regarding ferritin's functions is gaining momentum. For example, recent major discoveries on its secretion and distribution mechanisms have been made as well as the paradigm-changing finding of intracellular compartmentalization of ferritin via interaction with nuclear receptor coactivator 4 (NCOA4). In this review, we discuss established knowledge as well as these new findings and the implications they may have for host-pathogen interaction during bacterial infection.
Collapse
Affiliation(s)
- Clemens M. Gehrer
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Anna-Maria Mitterstiller
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Philipp Grubwieser
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Esther G. Meyron-Holtz
- Laboratory of Molecular Nutrition, Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
37
|
He L, Wang J, Wan Z, Xiong Y, Man J, Wang Y, Mao G, Yu F. Biomimetic-compartmented nanoprobe for in-situ imaging of iron storage and release from ferritin in cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121967. [PMID: 36274535 DOI: 10.1016/j.saa.2022.121967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/16/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Ferritin plays an important role in regulating the homeostasis of iron in cells by storing/releasing iron. Current methods usually explored the determination of iron content, but in-situ imaging of the iron storage/release from ferritin in cells cannot be achieved. Hence, an engineered self-assembled biomimetic-compartmented nanoprobe (APO@CDs) has been constructed. The protein shell of APO (apoferritin) acted as ion channel module to control iron ions entering/exiting ferritin cavity; the inner core of CDs (carbon dots) acted as signal module for iron ions response. Compared with CDs, the response sensitivity and specificity to iron ions (Fe3+) have been improved by using APO@CDs, and the cytotoxicity was significantly reduced. Additionally, compared with cells containing APO@CDs alone, the normalized fluorescence gray value of Fe3+-treated cells was significantly decreased (0.275), indicating that Fe3+ has effectively entered the ferritin. Furtherly, that of Fe3+-treated cells incubated with deferoxamine (DFO) was significantly enhanced (0.712), showing that Fe3+ was released from ferritin under the mediation of DFO. The results demonstrate that APO@CDs can be successfully applied to in-situ imaging of iron storage/release from ferritin in cells, providing a potential platform for the in-situ dynamic study of the iron storage/release in biomedical field.
Collapse
Affiliation(s)
- Leiliang He
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jingjing Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhen Wan
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Yamin Xiong
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jin Man
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Ya Wang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Guojiang Mao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| | - Fei Yu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
38
|
Fuhrmann DC, Becker S, Brüne B. Mitochondrial ferritin expression in human macrophages is facilitated by thrombin-mediated cleavage under hypoxia. FEBS Lett 2023; 597:276-287. [PMID: 36416578 DOI: 10.1002/1873-3468.14545] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/26/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022]
Abstract
Ferritins are iron storage proteins, which maintain cellular iron homeostasis. Among these proteins, the ferritin heavy chain is well characterized, but the regulatory principles of mitochondrial ferritin (FTMT) remain elusive. FTMT appears to be cleaved from a 27 kDa to a 22 kDa form. In human macrophages, FTMT increased under hypoxia in a hypoxia-inducible factor 2-dependent manner. Occurrence of FTMT resulted from cleavage by thrombin, which was supplied by serum. Inhibition of thrombin as well as serum removal decreased FTMT, while supplementation of thrombin under serum-deprived conditions restored its expression. Besides hypoxia, thrombin facilitated FTMT expression after treatment with the ferroptosis inducer RSL3 and the pro-inflammatory stimulus lipopolysaccharide. This study provides insights into the regulation of FTMT under hypoxia and identifies thrombin as a FTMT maturation-associated peptidase.
Collapse
Affiliation(s)
- Dominik C Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site, Frankfurt, Germany
| | - Sabrina Becker
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Germany.,German Cancer Consortium (DKTK), Partner Site, Frankfurt, Germany.,Frankfurt Cancer Institute, Goethe University Frankfurt, Germany.,Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| |
Collapse
|
39
|
He X, Wang W, Zhu Z, Zang J, Liu T, Shi Y, Fu C. Percent Body Fat-Related Disparities of Serum Ferritin on the Risk of Lipid Metabolism Abnormalities in Children and Adolescents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16235. [PMID: 36498311 PMCID: PMC9740190 DOI: 10.3390/ijerph192316235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVE This study examined the association between serum ferritin and dyslipidemia in children and adolescents with different degrees of obesity. METHOD In this multi-stage, stratified, randomized, sampling cross-section cohort study, demographic data were collected by questionnaire from 4320 children and adolescents (aged 6-17 years) in Shanghai, China. Anthropometric measures and percent body fat (PBF) were recorded. Serum lipid parameters were detected by an automatic biochemical method, and ferritin levels were measured by an automatic immunoassay. RESULTS Our results showed 70.6%, 13.9%, and 15.5% of participants had a healthy body fat, low fat, and overweight/obese, respectively. Increasing ferritin quartiles were independently associated with a greater hazard of dyslipidemia, especially in overweight/obese participants, and the OR (95% CI) was 3.01 (1.29-7.00), 3.58 (1.59-8.04), and 5.66 (2.57-12.46) across the ferritin quartiles after adjustment for confounders. Ferritin was only a predictive value for dyslipidemia in overweight/obese participants (AUC = 0.64) and was consistent in boys (AUC = 0.61) and girls (AUC = 0.68). The significant positive correlation between ferritin value and lipid abnormalities profiles (except for low HDL-C) mainly appeared in the overweight/obesity group. CONCLUSION The results showed that serum ferritin can be considered an independent risk factor for dyslipidemia in children and adolescents with obesity. HIGHLIGHTS Ferritin overload had a greater risk of dyslipidemia, especially in children and adolescents with overweight/obesity.
Collapse
Affiliation(s)
- Xin He
- Laboratory of Functional Medicine, Division of Chronic Non-Communicable Diseases and Injury, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Wenjing Wang
- Laboratory of Functional Medicine, Division of Chronic Non-Communicable Diseases and Injury, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Zhenni Zhu
- Department of Nutrition Hygiene, Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Jiajie Zang
- Department of Nutrition Hygiene, Division of Health Risk Factors Monitoring and Control, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Tong Liu
- Laboratory of Functional Medicine, Division of Chronic Non-Communicable Diseases and Injury, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Yan Shi
- Laboratory of Functional Medicine, Division of Chronic Non-Communicable Diseases and Injury, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| | - Chen Fu
- Laboratory of Functional Medicine, Division of Chronic Non-Communicable Diseases and Injury, Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| |
Collapse
|
40
|
Yang R, Ma J, Hu J, Sun H, Han Y, Meng D, Wang Z, Cheng L. Formation of ferritin-agaro oligosaccharide-epigallocatechin gallate nanoparticle induced by CHAPS and partitioned by the ferritin shell with enhanced delivery efficiency. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
41
|
Di Sanzo M, Cozzolino F, Battaglia AM, Aversa I, Monaco V, Sacco A, Biamonte F, Palmieri C, Procopio F, Santamaria G, Ortuso F, Pucci P, Monti M, Faniello MC. Ferritin Heavy Chain Binds Peroxiredoxin 6 and Inhibits Cell Proliferation and Migration. Int J Mol Sci 2022; 23:12987. [PMID: 36361777 PMCID: PMC9654362 DOI: 10.3390/ijms232112987] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/18/2022] [Accepted: 10/23/2022] [Indexed: 08/04/2023] Open
Abstract
The H Ferritin subunit (FTH1), as well as regulating the homeostasis of intracellular iron, is involved in complex pathways that might promote or inhibit carcinogenesis. This function may be mediated by its ability to interact with different molecules. To gain insight into the FTH1 interacting molecules, we analyzed its interactome in HEK293T cells. Fifty-one proteins have been identified, and among them, we focused our attention on a member of the peroxiredoxin family (PRDX6), an antioxidant enzyme that plays an important role in cell proliferation and in malignancy development. The FTH1/PRDX6 interaction was further supported by co-immunoprecipitation, in HEK293T and H460 cell lines and by means of computational methods. Next, we demonstrated that FTH1 could inhibit PRDX6-mediated proliferation and migration. Then, the results so far obtained suggested that the interaction between FTH1/PRDX6 in cancer cells might alter cell proliferation and migration, leading to a less invasive phenotype.
Collapse
Affiliation(s)
- Maddalena Di Sanzo
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Flora Cozzolino
- Department of Chemical Sciences, Università degli Studi di Napoli “Federico II”, Via Cinthia 21, 80126 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Anna Martina Battaglia
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Ilenia Aversa
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Vittoria Monaco
- Department of Chemical Sciences, Università degli Studi di Napoli “Federico II”, Via Cinthia 21, 80126 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Alessandro Sacco
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Flavia Biamonte
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Interdepartmental Centre of Services, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Camillo Palmieri
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Procopio
- Department of Health Science, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Gianluca Santamaria
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Francesco Ortuso
- Department of Health Science, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Piero Pucci
- CEINGE Biotecnologie Avanzate, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Maria Monti
- Department of Chemical Sciences, Università degli Studi di Napoli “Federico II”, Via Cinthia 21, 80126 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Maria Concetta Faniello
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
42
|
Chung SJ, Lim HS, Lee MY, Lee YT, Yoon KJ, Park CH. Sex-Specific Associations between Serum Ferritin and Osteosarcopenic Obesity in Adults Aged over 50 Years. Nutrients 2022; 14:nu14194023. [PMID: 36235680 PMCID: PMC9570979 DOI: 10.3390/nu14194023] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
We investigated the sex-specific association between ferritin and adverse body composition in adults aged over 50 years in a population-based cohort. A total of 25,546 participants (16,912 women; 8634 men) were stratified into three groups by the tertiles of ferritin. The number of adverse body compositions was categorized as 0 (without osteopenia/osteoporosis, low muscle mass, or obesity), 1 (having one of the components), 2 (two), and 3 (all three; osteosarcopenic obesity). As ferritin tertile increased, the prevalence of one, two, or three simultaneous adverse body compositions increased, significant only in women (p < 0.0001), not in men (p = 0.125). Among women, the prevalence of osteosarcopenic obesity gradually increased from 1.7% in the lowest, to 2.2% in the middle, and 2.5% in the highest tertile. Using multivariate-adjusted analysis, women in the higher tertile had an increased likelihood of having multiple adverse body compositions compared with those in the lowest tertile. Women in the highest tertile had a 1.52 times increased risk of osteosarcopenic obesity than those in the lowest tertile. A high ferritin level was associated with an increased risk of having multiple adverse body compositions, especially for osteosarcopenic obesity in women aged >50 years, suggesting its potential use for detecting osteosarcopenic obesity.
Collapse
Affiliation(s)
- Sung-Joon Chung
- Department of Physical and Rehabilitation Medicine, Kyunghee University Hospital at Gangdong, 892 Dongnam-ro, Gangdong-gu, Seoul 05278, Korea
- Department of Medicine, Graduate School, Kyunghee University, Seoul 02447, Korea
| | - Han Sol Lim
- Department of Physical and Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Korea
| | - Mi-Yeon Lee
- Division of Biostatistics, Department of R&D Management, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Korea
| | - Yong-Taek Lee
- Department of Physical and Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Korea
| | - Kyung Jae Yoon
- Department of Physical and Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06355, Korea
| | - Chul-Hyun Park
- Department of Physical and Rehabilitation Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, 29 Saemunan-ro, Jongno-gu, Seoul 03181, Korea
- Correspondence: ; Tel.: +82-2-2001-2284
| |
Collapse
|
43
|
Qu Y, Li N, Xu M, Zhang D, Xie J, Wang J. Estrogen Up-Regulates Iron Transporters and Iron Storage Protein Through Hypoxia Inducible Factor 1 Alpha Activation Mediated by Estrogen Receptor β and G Protein Estrogen Receptor in BV2 Microglia Cells. Neurochem Res 2022; 47:3659-3669. [PMID: 35829942 DOI: 10.1007/s11064-022-03658-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
Abstract
Estrogen is a steroid hormone produced mainly by the ovaries. It has been found that estrogen could regulate iron metabolism in neurons and astrocytes in different ways. The role of estrogen on iron metabolism in microglia is currently unknown. In this study, we investigated the effect and mechanism of 17β-estrogen (E2) on iron transport proteins. We found that following E2 treatment for 24h in BV2 microglial cell lines, the iron importer divalent metal transporter 1 (DMT1) and iron exporter ferroportin 1 (FPN1) were up-regulated , iron storage protein ferritin (FT) was increased. The protein levels of iron regulatory proteins (IRPs) and hepcidin remained unchanged, but hypoxia inducible factor 1 alpha (HIF-1α) was up-regulated. Two kinds of estrogen receptor β (ERβ) antagonist G15 and G protein estrogen receptor (GPER) antagonist PHTPPcould block the effects of E2 in BV2 microglial cell lines. These results suggest that estrogen could increase the protein expressions of DMT1, FPN1, FT-L and FT-H in BV2 microglia cells, which were not related to the regulation of IRP1 and hepcidin, but to the upregulation of HIF-1α. In addition, estrogen might regulate the expressions of iron-related proteins through both ER β and GPER in BV2 microglia cells.
Collapse
Affiliation(s)
- Yan Qu
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Na Li
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Manman Xu
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China
| | - Danyang Zhang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| | - Jun Wang
- School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
44
|
Shahwan M, Alhumaydhi FA, Sharaf SE, Alghamdi BS, Baeesa S, Tayeb HO, Ashraf GM, Shamsi A. Computational insight into the binding of bryostatin 1 with ferritin: implication of natural compounds in Alzheimer's disease therapeutics. J Biomol Struct Dyn 2022:1-11. [PMID: 35787781 DOI: 10.1080/07391102.2022.2092552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Neuronal damage in iron-sensitive brain regions occurs as a result of iron dyshomeostasis. Increased iron levels and iron-related pathogenic triggers are associated with neurodegenerative diseases, including Alzheimer's disease (AD). Ferritin is a key player involved in iron homeostasis. Major pathological hallmarks of AD are amyloid plaques, neurofibrillary tangles (NFTs) and synaptic loss that lead to cognitive dysfunction and memory loss. Natural compounds persist in being the most excellent molecules in the area of drug discovery because of their different range of therapeutic applications. Bryostatins are naturally occurring macrocyclic lactones that can be implicated in AD therapeutics. Among them, Bryostatin 1 regulates protein kinase C, a crucial player in AD pathophysiology, thus highlighting the importance of bryostatin 1 in AD management. Thus, this study explores the binding mechanism of Bryotstain 1 with ferritin. In this work, the molecular docking calculations revealed that bryostatin 1 has an appreciable binding potential towards ferritin by forming stable hydrogen bonds (H-bonds). Molecular dynamics simulation studies deciphered the binding mechanism and conformational dynamics of ferrritin-bryostatin 1 system. The analyses of root mean square deviation, root mean square fluctuations, Rg, solvent accessible surface area, H-bonds and principal component analysis revealed the stability of the ferritin-bryostatin 1 docked complex throughout the trajectory of 100 ns. Moreover, the free energy landscape analysis advocated that the ferritin-bryostatin 1 complex stabilized to the global minimum. Altogether, the present work delineated the binding of bryostatin 1 with ferritin that can be implicated in the management of AD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Moyad Shahwan
- College of Pharmacy & Health sciences, Ajman University, Ajman, United Arab Emirates.,Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Sharaf E Sharaf
- Pharmaceutical Chemistry Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Clinical Research Administration, Executive Administration of Research and Innovation, King Abdullah Medical City in Holy Capital, Makkah, Saudi Arabia
| | - Badrah S Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh Baeesa
- Division of Neurosurgery, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haythum O Tayeb
- The Neuroscience Research Unit, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.,Division of Neurology, Department of Internal Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anas Shamsi
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.,Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| |
Collapse
|
45
|
Zeng F, Yi C, Zhang W, Cheng S, Sun C, Luo F, Feng Z, Hu W. A new ferritin SjFer0 affecting the growth and development of Schistosoma japonicum. Parasit Vectors 2022; 15:177. [PMID: 35610663 PMCID: PMC9128280 DOI: 10.1186/s13071-022-05247-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/21/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Schistosomiasis, an acute and chronic parasitic disease, causes substantial morbidity and mortality in tropical and subtropical regions of the world. Iron is an essential constituent of numerous macromolecules involving in important cellular reactions in virtually all organisms. Trematodes of the genus Schistosoma live in iron-rich blood, feed on red blood cells and store abundant iron in vitelline cells. Ferritins are multi-meric proteins that store iron inside cells. Three ferritin isoforms in Schistosoma japonicum are known, namely SjFer0, SjFer1 and SjFer2; however, their impact on the growth and development of the parasites is still unknown. In this study we report on and characterize the ferritins in S. japonicum. METHODS A phylogenetic tree of the SjFer0, SjFer1 and SjFer2 genes was constructed to show the evolutionary relationship among species of genus Schistosoma. RNA interference in vivo was used to investigate the impact of SjFer0 on schistosome growth and development. Immunofluorescence assay was applied to localize the expression of the ferritins. RNA-sequencing was performed to characterize the iron transport profile after RNA interference. RESULTS SjFer0 was found to have low similarity with SjFer1 and SjFer2 and contain an additional signal peptide sequence. Phylogenetic analysis revealed that SjFer0 can only cluster with some ferritins of other trematodes and tapeworms, suggesting that this ferritin branch might be unique to these parasites. RNA interference in vivo showed that SjFer0 significantly affected the growth and development of schistosomula but did not affect egg production of adult female worms. SjFer1 and SjFer2 had no significant impact on growth and development. The immunofluorescence study showed that SjFer0 was widely expressed in the somatic cells and vitelline glands but not in the testicle or ovary. RNA-sequencing indicated that, in female, the ion transport process and calcium ion binding function were downregulated after SjFer0 RNA interference. Among the differentially downregulated genes, Sj-cpi-2, annexin and insulin-like growth factor-binding protein may be accounted for the suppression of schistosome growth and development. CONCLUSIONS The results indicate that SjFer0 affects the growth and development of schistosomula but does not affect egg production of adult female worms. SjFer0 can rescue the growth of the fet3fet4 double mutant Saccharomyces cerevisiae (strain DEY1453), suggesting being able to promote iron absorption. The RNA interference of SjFer0 inferred that the suppression of worm growth and development may via down-regulating Sj-cpi-2, annexin, and IGFBP.
Collapse
Affiliation(s)
- Fanyuan Zeng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road, Shanghai, 200438, People's Republic of China
| | - Cun Yi
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road, Shanghai, 200438, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road, Shanghai, 200438, People's Republic of China
| | - Shaoyun Cheng
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road, Shanghai, 200438, People's Republic of China
| | - Chengsong Sun
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road, Shanghai, 200438, People's Republic of China
| | - Fang Luo
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road, Shanghai, 200438, People's Republic of China
| | - Zheng Feng
- Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-Host Interaction, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, People's Republic of China
| | - Wei Hu
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, 2005 Song Hu Road, Shanghai, 200438, People's Republic of China.
- Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-Host Interaction, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, 200025, People's Republic of China.
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Monglia University, Hohhot, 010030, People's Republic of China.
| |
Collapse
|
46
|
Xu X, Tian K, Lou X, Du Y. Potential of Ferritin-Based Platforms for Tumor Immunotherapy. Molecules 2022; 27:2716. [PMID: 35566065 PMCID: PMC9104857 DOI: 10.3390/molecules27092716] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
Ferritin is an iron storage protein that plays a key role in iron homeostasis and cellular antioxidant activity. Ferritin has many advantages as a tumor immunotherapy platform, including a small particle size that allows for penetration into tumor-draining lymph nodes or tumor tissue, a unique structure consisting of 24 self-assembled subunits, cavities that can encapsulate drugs, natural targeting functions, and a modifiable outer surface. In this review, we summarize related research applying ferritin as a tumor immune vaccine or a nanocarrier for immunomodulator drugs based on different targeting mechanisms (including dendritic cells, tumor-associated macrophages, tumor-associated fibroblasts, and tumor cells). In addition, a ferritin-based tumor vaccine expected to protect against a wide range of coronaviruses by targeting multiple variants of SARS-CoV-2 has entered phase I clinical trials, and its efficacy is described in this review. Although ferritin is already on the road to transformation, there are still many difficulties to overcome. Therefore, three barriers (drug loading, modification sites, and animal models) are also discussed in this paper. Notwithstanding, the ferritin-based nanoplatform has great potential for tumor immunotherapy, with greater possibility of clinical transformation.
Collapse
Affiliation(s)
- Xiaoling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (X.X.); (K.T.)
| | - Kewei Tian
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, China; (X.X.); (K.T.)
| | - Xuefang Lou
- School of Medicine, Zhejiang University City College, Hangzhou 310015, China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
47
|
Hanke N, Rami A. Cerebral ischemia induced iron deposit, ferritin accumulation, nuclear receptor coactivator 4-depletion and ferroptosis. Curr Neurovasc Res 2022; 19:47-60. [PMID: 35319371 DOI: 10.2174/1567202619666220321120954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The neuronal death upon cerebral ischemia shares not only characteristics of necrosis, apoptosis and autophagy, but exhibits also biochemical and morphological characteristics of ferroptosis. Ferroptosis is a regulated form of cell death which is considered to be an oxidative iron-dependent process. It is now commonly accepted that iron and free radicals are considered to cause lipid peroxidation as well as the oxidation of proteins and nucleic acids, leading to increased membrane and enzymatic dysfunction, and finally contributing to cell death. Although ferroptosis was first described in cancer cells, emerging evidence now links mechanisms of ferroptosis to many different diseases, including cerebral ischemia. METHODS The objective of this study was to identify the ferroptosis key players and the underlying biochemical pathways leading to cell death upon focal cerebral ischemia in mice by using immunofluorescence, Western blotting, histochemistry and densitometry. RESULTS In this study, we demonstrated that cerebral ischemia induced iron-deposition, down-regulated dramatically the expression of the glutathione peroxidase 4 (GPX4), decreased the expression of the nuclear receptor coactivator 4 (NCOA4) and induced inappropriate accumulation of ferritin in the ischemic brain. This supports the hypothesis that an ischemic insult may induce ferroptosis through inhibition of GPX4. CONCLUSION We conclude that iron excess following cerebral ischemia leads to cell death despite activation of compensatory mechanisms for iron homeostasis, as illustrated by the accumulation of ferritins. These data emphasize the presence of a cellular mechanism that allows neuronal cells to handle restriction in iron overload.
Collapse
Affiliation(s)
- Nora Hanke
- Institut für Experimentelle Neurobiologie (Anatomie II), Klinikum der Johann Wolfgang von Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Abdelhaq Rami
- Institut für Experimentelle Neurobiologie (Anatomie II), Klinikum der Johann Wolfgang von Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| |
Collapse
|
48
|
Forensic biomarkers of lethal traumatic brain injury. Int J Legal Med 2022; 136:871-886. [PMID: 35226180 PMCID: PMC9005436 DOI: 10.1007/s00414-022-02785-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/21/2022] [Indexed: 11/01/2022]
Abstract
AbstractTraumatic brain injury (TBI) is a major cause of death and its accurate diagnosis is an important concern of daily forensic practice. However, it can be challenging to diagnose TBI in cases where macroscopic signs of the traumatic head impact are lacking and little is known about the circumstances of death. In recent years, several post-mortem studies investigated the possible use of biomarkers for providing objective evidence for TBIs as the cause of death or to estimate the survival time and time since death of the deceased. This work systematically reviewed the available scientific literature on TBI-related biomarkers to be used for forensic purposes. Post-mortem TBI-related biomarkers are an emerging and promising resource to provide objective evidence for cause of death determinations as well as survival time and potentially even time since death estimations. This literature review of forensically used TBI-biomarkers revealed that current markers have low specificity for TBIs and only provide limited information with regards to survival time estimations and time since death estimations. Overall, TBI fatality-related biomarkers are largely unexplored in compartments that are easily accessible during autopsies such as urine and vitreous humor. Future research on forensic biomarkers requires a strict distinction of TBI fatalities from control groups, sufficient sample sizes, combinations of currently established biomarkers, and novel approaches such as metabolomics and mi-RNAs.
Collapse
|
49
|
Wu Y, Ming T, Huo C, Qiu X, Su C, Lu C, Zhou J, Li Y, Su X. Crystallographic characterization of a marine invertebrate ferritin from the sea cucumber Apostichopus japonicus. FEBS Open Bio 2022; 12:664-674. [PMID: 35090095 PMCID: PMC8886333 DOI: 10.1002/2211-5463.13375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 11/11/2022] Open
Abstract
Ferritin is considered to be an ubiquitous and conserved iron-binding protein that plays a crucial role in iron storage, detoxification and immune response. Although ferritin is of critical importance for almost all kingdoms of life, there is a lack of knowledge about its role in the marine invertebrate sea cucumber (Apostichopus japonicus). In this study, we characterized the first crystal structure of Apostichopus japonicas ferritin (AjFER) at 2.75 Å resolution. The structure of AjFER shows a 4-3-2 symmetry cage-like hollow shell composed of 24 subunits, mostly similar to the structural characteristics of other known ferritin species, including the conserved ferroxidase center and 3-fold channel. The 3-fold channel consisting of three 3-fold negative amino acid rings suggests a potential pathway in which metal ions can be first captured by Asp120 from the outside environment, attracted by His116 and Cys128 when entering the channel, and then transferred by Glu138 from the 3-fold channel to the ferroxidase site. Overall, the presented crystal structure of AjFER may provide insights into the potential mechanism of the metal transport pathway for related marine invertebrate ferritins.
Collapse
Affiliation(s)
- Yan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China.,College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Tinghong Ming
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China.,School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Chunheng Huo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China.,School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Xiaoting Qiu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Chang Su
- Zhejiang Collaborative Innovation Center for High Value Utilization of Byproducts from Ethylene Project, Ningbo Polytechnic College, Ningbo, Zhejiang, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China.,School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Jun Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China.,School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Ye Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China.,School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, Zhejiang, China.,School of Marine Science, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
50
|
Mahroum N, Alghory A, Kiyak Z, Alwani A, Seida R, Alrais M, Shoenfeld Y. Ferritin - from iron, through inflammation and autoimmunity, to COVID-19. J Autoimmun 2022; 126:102778. [PMID: 34883281 PMCID: PMC8647584 DOI: 10.1016/j.jaut.2021.102778] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 01/08/2023]
Abstract
While it took decades to arrive to a conclusion that ferritin is more than an indicator of iron storage level, it took a short period of time through the COVID-19 pandemic to wonder what the reason behind high levels of ferritin in patients with severe COVID-19 might be. Unsurprisingly, acute phase reactant was not a satisfactory explanation. Moreover, the behavior of ferritin in patients with severe COVID-19 and the subsequent high mortality rates in patients with high ferritin levels necessitated further investigations to understand the role of ferritin in the diseases. Ferritin was initially described to accompany various acute infections, both viral and bacterial, indicating an acute response to inflammation. However, with the introduction of the hyperferritinemic syndrome connecting four severe pathological conditions such as adult-onset Still's disease, macrophage activation syndrome, catastrophic antiphospholipid syndrome, and septic shock added another aspect of ferritin where it could have a pathogenetic role rather than an extremely elevated protein only. In fact, suggesting that COVID-19 is a new member in the spectrum of hyperferritinemic syndrome besides the four mentioned conditions could hopefully direct further search on the pathogenetic role of ferritin. Doubtlessly, improving our understanding of those aspects of ferritin would enormously contribute to better coping with severe diseases in terms of treatment and prevention of complications. The origin, history, importance, and the advances of searching the role of ferritin in various pathological and clinical processes are presented hereby in our article. In addition, the implications of ferritin in COVID-19 are addressed.
Collapse
Affiliation(s)
- Naim Mahroum
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey,Internal Medicine B and Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Ramat- Gan, Israel,Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel,Corresponding author. Internal medicine “B” department, Sheba Medical Center (Affiliated to Tel-Aviv University), Tel-Hashomer, 5265601, Israel
| | - Amal Alghory
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Zeynep Kiyak
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Abdulkarim Alwani
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ravend Seida
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Mahmoud Alrais
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | | |
Collapse
|