1
|
Stoeberl L, Silveira de Melo M, Cordeiro Koppe de França L, Aparecida de Souza L, Panazzollo RDC, Pertile Remor A, Glaser V. Assessing antioxidant responses in C6 and U-87 MG cell lines exposed to high copper levels. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110065. [PMID: 39505290 DOI: 10.1016/j.cbpc.2024.110065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/14/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Copper excess has been tested as an anticancer therapy, due to its properties to generate oxidative stress resulting in tumoral cell death. Thus, this study aimed to evaluate the impact of copper excess on oxidative stress and antioxidant responses in glioma cells, establishing the antioxidant system as a target of copper toxicity in tumoral cells. C6 and U-87 MG cells were exposed to CuSO4 (0-600 μM) for 24-48 h. SOD, CAT, GPx, GR, and CK activities, protein and non-protein thiol levels (PSH and NPSH), and O2- production were assessed, alongside SOD1, GPx1, and GR gene expression. Results revealed a decrease in GPx, GR, and CAT activity after CuSO4 exposure in both cell lines over 24-48 h, while SOD activity initially increased, then declined after 48 h. CK activity was also decreased in C6 cells. NPSH and PSH levels dropped after 24 h, and O2- production was observed in all CuSO4 concentrations. GR mRNA was reduced in both cell lines, contrasting with increased GPx1 mRNA in C6. U-87 MG cells exhibited higher levels of SOD1 mRNA, while C6 cells displayed lower expression. Our findings suggest that copper excess limits antioxidant enzyme activity and thiol levels, particularly in the C6 cells, likely attributable to oxidative stress or direct copper-enzyme interactions. Moreover, our results imply differences in copper toxicity regarding the cell lineage used, highlighting the importance of analyzing high copper levels effects in different models. Moreover, it could be proposed that the antioxidant system is a target of copper toxicity, contributing to glioma cell death.
Collapse
Affiliation(s)
- Lara Stoeberl
- Laboratório de Biologia Celular, Centro de Ciências Rurais, Coordenadoria Especial de Ciências Biológicas e Agronômicas, Universidade Federal de Santa Catarina (UFSC), Campus de Curitibanos, SC, Curitibanos, Brazil
| | - Madson Silveira de Melo
- Departamento de Biologia Celular, Embriologia e Genética, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, Brazil
| | - Letícia Cordeiro Koppe de França
- Laboratório de Biologia Celular, Centro de Ciências Rurais, Coordenadoria Especial de Ciências Biológicas e Agronômicas, Universidade Federal de Santa Catarina (UFSC), Campus de Curitibanos, SC, Curitibanos, Brazil
| | - Lorena Aparecida de Souza
- Laboratório de Biologia Celular, Centro de Ciências Rurais, Coordenadoria Especial de Ciências Biológicas e Agronômicas, Universidade Federal de Santa Catarina (UFSC), Campus de Curitibanos, SC, Curitibanos, Brazil
| | - Roberta de Cássia Panazzollo
- Laboratório de Biologia Celular, Centro de Ciências Rurais, Coordenadoria Especial de Ciências Biológicas e Agronômicas, Universidade Federal de Santa Catarina (UFSC), Campus de Curitibanos, SC, Curitibanos, Brazil
| | - Aline Pertile Remor
- Programa De Pós-graduação Em Biociências E Saúde, Universidade Do Oeste De Santa Catarina - Campus Joaçaba, Joaçaba, Brazil
| | - Viviane Glaser
- Laboratório de Biologia Celular, Centro de Ciências Rurais, Coordenadoria Especial de Ciências Biológicas e Agronômicas, Universidade Federal de Santa Catarina (UFSC), Campus de Curitibanos, SC, Curitibanos, Brazil.
| |
Collapse
|
2
|
Marjanović Čermak AM, Mustać S, Cvjetko P, Pavičić I, Kifer D, Bešić E, Domijan AM. Thallium Toxicity and its Interference with Potassium Pathways Tested on Various Cell Lines. Biol Trace Elem Res 2024; 202:5025-5035. [PMID: 38349487 DOI: 10.1007/s12011-024-04086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/28/2024] [Indexed: 10/01/2024]
Abstract
Thallium (Tl) is a highly toxic heavy metal whose mechanism of toxicity is still not completely understood. The aim of this study was to test Tl cytotoxicity on several cell lines of different tissue origin in order to clarify specific Tl toxicity to a particular organ. In addition, possible interference of Tl with cell potassium (K) transport was examined. Human keratinocytes (HaCaT), human hepatocellular carcinoma (HepG2), porcine kidney epithelial cells (PK15), human neuroblastoma (SH-SY5Y) and Chinese hamster lung fibroblast cells (V79) were treated with thallium (I) acetate in a wide concentration range (3.9-500 µg/mL) for 24 h, 48 and 72 h. To assess competitive interaction between Tl and K, the cells were treated with four Tl concentrations close to IC50 (15.63, 31.25, 62.50, 125 µg/mL) in combination with/or without potassium (I) acetate (500 µg/mL). The cells' morphology was monitored, and cytotoxic effect was assessed by 3-(4, 5-dimethylthiazole-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) test. The most sensitive to Tl exposure were SH-SY5Y cells, while HepG2 were the most resistant. The combined exposure to thallium (I) acetate and potassium (I) acetate for every cell line, except V79 cells, resulted in higher cell viability compared to thallium (I) acetate alone. The results of our study indicate that cell sensitivity to Tl treatment is largely affected by tissue culture origin, its function, and Na+/K+-ATPase activity.
Collapse
Affiliation(s)
| | - Stipe Mustać
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, 10000, Croatia
| | - Petra Cvjetko
- Faculty of Science, Department of Biology, University of Zagreb, Zagreb, 10000, Croatia
| | - Ivan Pavičić
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, Zagreb, 10000, Croatia
| | - Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, 10000, Croatia
| | - Erim Bešić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, 10000, Croatia
| | - Ana-Marija Domijan
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, 10000, Croatia
| |
Collapse
|
3
|
Elmansi AM, Miller RA. Oxidative phosphorylation and fatty acid oxidation in slow-aging mice. Free Radic Biol Med 2024; 224:246-255. [PMID: 39153667 DOI: 10.1016/j.freeradbiomed.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Oxidative metabolism declines with aging in humans leading to multiple metabolic ailments and subsequent inflammation. In mice, there is evidence of age-related suppression of fatty acid oxidation and oxidative phosphorylation in the liver, heart, and muscles. Many interventions that extend healthy lifespan of mice have been developed, including genetic, pharmacological, and dietary interventions. In this article, we review the literature on oxidative metabolism changes in response to those interventions. We also discuss the molecular pathways that mediate those changes, and their potential as targets for future longevity interventions.
Collapse
Affiliation(s)
- Ahmed M Elmansi
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; University of Michigan Geriatrics Center, Ann Arbor, MI, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA; University of Michigan Geriatrics Center, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Li D, Yu J, Zhu J, Xiao W, Zou Z, Chen B, Wei C, Zhu J, Yang H. Identification of the effects of hypoxia on the liver tissues of Nile tilapia Oreochromis Niloticus. BMC Genomics 2024; 25:946. [PMID: 39379813 PMCID: PMC11463132 DOI: 10.1186/s12864-024-10700-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 08/09/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Hypoxia stress resulted in mortality during the fish aquaculture program, affecting the sustainable development of the aquaculture industry. The Egyptian strain of O. niloticus showed a strong ability to hypoxia. In this study, a Nile tilapia strain that was kept and selected for 45 years by the author's team was used to elucidate the mechanism of the hypoxia response in the liver, including the identification of metabolic pathways and genes, involved in the hypoxia response of this strain. RESULTS The effects of hypoxia stress were detected at 0-hour, 6-hour, and 72-hour time points (0 h, 6 h, 72 h) on tilapia liver at 1 mg/L dissolved oxygen conditions. The blood triglyceride, blood glucose and cholesterol values exhibited significantly different change trends, but the hemoglobin content showed no significant differences between 0 h, 6 h and 72 h (P > 0.05). The activities of catalase (CAT), glutathione peroxidase (GSH-PX), total antioxidant capacity (T-AOC), lactate dehydrogenase (LDH), and acid phosphatase (ACP) in the liver tissue gradually increased at 0 h, 6 h and 72 h (P < 0.05). Histological analyses revealed structural changes in intracellular lipid droplets, nuclear migration and dissolution, and cell vacuolization in liver tissues. Six pathways were identified as the main enriched metabolic pathways according to the transcriptome profiling analysis, which were protein processing in endoplasmic reticulum, steroid biosynthesis, peroxisome, PPAR signaling pathway, glycolysis/gluconeogenesis and Insulin signaling pathway. The expressions of the important differentially expressed genes were verified by qPCR analysis, including erola, LOC100692144, sqle, cratb, pipox, cpt1a2b, hik and acss2l, ehhadh, prkcz, fasn and plaa, which showed the same expressions trends as those of RNA-Seq. CONCLUSIONS The Nile tilapia strain improves the abilities of hypoxia response through energy metabolism. Antioxidant enzyme measurements in the liver indicate that these five antioxidant enzymes play important roles in protecting the body from hypoxic damage. The histological changes in liver cells indicate that the damage caused by hypoxia stress. The immune-related metabolic pathways and energy metabolism-related pathways were obtained by transcriptome profiling, and these metabolic pathways and the differentially expressed genes selected from these metabolic pathways may be involved in the mechanism of hypoxia tolerance in this strain. These findings provide a better understanding of the hypoxia response mechanism of fish, and represent a useful resource for the genetic breeding of O. niloticus.
Collapse
Affiliation(s)
- Dayu Li
- College of Marine Sciences, Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, Ningbo University, Ningbo, 315211, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jie Yu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Jinglin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Wei Xiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Zhiying Zou
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Binglin Chen
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Chengliang Wei
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Junquan Zhu
- College of Marine Sciences, Key Laboratory of Applied Marine Biotechnology by the Ministry of Education, Ningbo University, Ningbo, 315211, China.
| | - Hong Yang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China.
| |
Collapse
|
5
|
Lee S, Itagaki A, Satoh A, Sugimoto I, Saito T, Shibukawa Y, Tatehana H. Effects of psychogenic stress on oxidative stress and antioxidant capacity at different growth stages of rats: Experimental study. PLoS One 2024; 19:e0287421. [PMID: 38653001 PMCID: PMC11038576 DOI: 10.1371/journal.pone.0287421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 02/19/2024] [Indexed: 04/25/2024] Open
Abstract
This study examined the psychogenic stress (PS) effects on changes in oxidative stress and the antioxidant capacity of an organism at different growth stages. The experimental animals were male Wistar rats of five different ages from growth periods (GPs) to old age. The growth stages were randomly classified into control (C) and experimental (PS) groups. The PS was performed using restraint and water immersion once daily for 3 h for 4 weeks. Reactive oxygen metabolites (d-ROMs) and the biological antioxidant potential (BAP) were measured before and after the experiment. In addition, the liver and adrenal glands were removed, and the wet weight was measured. The d-ROM and BAP of all growth stages given PS increased significantly. The d-ROM in the C group without PS increased significantly in GPs while decreased significantly in old-aged rats. In addition, the BAP of the C group in GP and early adulthood were all significantly elevated. There were significant differences in organ weights between the C and PS groups at all growth stages. Oxidative stress and antioxidant capacity differed depending on the organism's developmental status and growth stage, and PS also showed different effects. In particular, the variability in oxidative stress was remarkable, suggesting that the effect of PS was more significant in the organism's immature organs.
Collapse
Affiliation(s)
- Sangun Lee
- Department of Physical Therapy, Aomori University of Health and Welfare, Aomori-shi, Aomori-ken, Japan
- Aomori University of Health and Welfare Graduate School of Health Sciences, Aomori-shi, Aomori-ken, Japan
| | - Atsunori Itagaki
- Department of Physical Therapy, Aomori University of Health and Welfare, Aomori-shi, Aomori-ken, Japan
| | - Atsuko Satoh
- Faculty of Nursing, Hirosaki Gakuen University, Hirosaki-shi, Aomori-ken, Japan
| | - Issei Sugimoto
- Aomori University of Health and Welfare Graduate School of Health Sciences, Aomori-shi, Aomori-ken, Japan
| | - Takumi Saito
- Aomori University of Health and Welfare Graduate School of Health Sciences, Aomori-shi, Aomori-ken, Japan
| | - Yoshihiko Shibukawa
- Aomori University of Health and Welfare Graduate School of Health Sciences, Aomori-shi, Aomori-ken, Japan
| | - Haruka Tatehana
- Department of Nutrition, Aomori University of Health and Welfare, Aomori-shi, Aomori-ken, Japan
| |
Collapse
|
6
|
Vilar E, Collado-Boira E, Guerrero C, Folch-Ayora A, Salas-Medina P, Hernando C, Baliño P, Muriach M. Is There a Role of Beetroot Consumption on the Recovery of Oxidative Status and Muscle Damage in Ultra-Endurance Runners? Nutrients 2024; 16:583. [PMID: 38474711 DOI: 10.3390/nu16050583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
(1) Background: Ultra-endurance exercise involves a high physical impact, resulting in muscle damage, inflammatory response and production of free radicals that alter the body's oxidative state. Supplementation with antioxidants, such as beetroot, may improve recovery in ultra-endurance runners. The aim of this study was to determine whether there is a correlation between beetroot intake and recovery of serum oxidative status, inflammatory response and muscle damage parameters after an ultra-endurance race. (2) Methods: An observational and longitudinal study was conducted by means of surveys and blood samples collected from 32 runners during the IX Penyagolosa Trails CSP®® race and the two following days. The variables C-reactive protein (CRP), lactate dehydrogenase (LDH), creatine kinase (CK), the activity of the antioxidant enzymes glutathione peroxidase (GPx) and glutathione reductase (GR) as well as the oxidative damage markers malondialdehyde (MDA), carbonyl groups (CG) and loss of muscle strength using the squat jump (SJ) test were analyzed to discriminate whether beetroot consumption can modulate the recovery of ultra-trail runners. (3) Results: Significant differences were observed between runners who ingested beetroot and those who did not, in terms of oxidative status, specifically in serum GPx activity at 24 and 48 h, muscle damage variables CK and LDH and regarding the SJ test results at the finish line. Therefore, the intake of supplements containing beetroot positively influences the recovery of serum oxidative status and muscle damage after ultra-endurance running.
Collapse
Affiliation(s)
- Eva Vilar
- Hospital de La Plana, Vila-Real, 12540 Castellon, Spain
| | - Eladio Collado-Boira
- Unidad Predepartamental de Enfermeria, Jaume I University, 12071 Castellon, Spain
| | - Carlos Guerrero
- Unitat Predepartamental de Medicina, Jaume I University, 12071 Castellón, Spain
| | - Ana Folch-Ayora
- Unidad Predepartamental de Enfermeria, Jaume I University, 12071 Castellon, Spain
| | - Pablo Salas-Medina
- Unidad Predepartamental de Enfermeria, Jaume I University, 12071 Castellon, Spain
| | - Carlos Hernando
- Department of Education and Specific Didactics, Sport Service, Jaume I University, 12071 Castellon, Spain
| | - Pablo Baliño
- Unitat Predepartamental de Medicina, Jaume I University, 12071 Castellón, Spain
| | - María Muriach
- Unitat Predepartamental de Medicina, Jaume I University, 12071 Castellón, Spain
| |
Collapse
|
7
|
Winiarska-Mieczan A, Kwiecień M, Jachimowicz-Rogowska K, Donaldson J, Tomaszewska E, Baranowska-Wójcik E. Anti-Inflammatory, Antioxidant, and Neuroprotective Effects of Polyphenols-Polyphenols as an Element of Diet Therapy in Depressive Disorders. Int J Mol Sci 2023; 24:ijms24032258. [PMID: 36768580 PMCID: PMC9916817 DOI: 10.3390/ijms24032258] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/15/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Depressive disorders can affect up to 350 million people worldwide, and in developed countries, the percentage of patients with depressive disorders may be as high as 10%. During depression, activation of pro-inflammatory pathways, mitochondrial dysfunction, increased markers of oxidative stress, and a reduction in the antioxidant effectiveness of the body are observed. It is estimated that approximately 30% of depressed patients do not respond to traditional pharmacological treatments. However, more and more attention is being paid to the influence of active ingredients in food on the course and risk of neurological disorders, including depression. The possibility of using foods containing polyphenols as an element of diet therapy in depression was analyzed in the review. The possibility of whether the consumption of products such as polyphenols could alleviate the course of depression or prevent the progression of it was also considered. Results from preclinical studies demonstrate the potential of phenolic compounds have the potential to reduce depressive behaviors by regulating factors related to oxidative stress, neuroinflammation, and modulation of the intestinal microbiota.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland
- Correspondence: ; Tel.: +48-81-445-67-44
| | - Małgorzata Kwiecień
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland
| | - Karolina Jachimowicz-Rogowska
- Institute of Animal Nutrition and Bromatology, University of Life Sciences in Lublin, Akademicka St. 13, 20-950 Lublin, Poland
| | - Janine Donaldson
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Ewa Tomaszewska
- Department of Animal Physiology, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka St. 12, 20-950 Lublin, Poland
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, Skromna St. 8, 20-704 Lublin, Poland
| |
Collapse
|
8
|
Yoshina S, Izuhara L, Kamatani N, Mitani S. Regulation of aging by balancing mitochondrial function and antioxidant levels. J Physiol Sci 2022; 72:28. [PMID: 36380272 PMCID: PMC10717039 DOI: 10.1186/s12576-022-00853-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022]
Abstract
Aging is the deterioration of physiological mechanisms that is associated with getting old. There is a link between aging and mitochondrial function. However, there is an unresolved relationship between ATP levels and aging. To address this issue, we administered febuxostat (FBX), an inhibitor of human xanthine oxidase (XO)/xanthine dehydrogenase (XDH), to C. elegans. We used C. elegans as a model to evaluate the effects of FBX and to challenge the enigma of the relationship between ATP and lifespan. In this study, we showed that FBX protects mitochondria and prevents age-related muscle deterioration in C. elegans. In addition, we showed that FBX administration could increase ATP levels without overloading the mitochondria while extending the lifespan. We also showed that the combination of FBX and an antioxidant as a protection against ROS prolongs lifespan more. We have shown that the antioxidant effects and increased ATP levels may lead to antiaging effects.
Collapse
Affiliation(s)
- Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University School of Medicine, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
| | - Luna Izuhara
- Department of Physiology, Tokyo Women's Medical University School of Medicine, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan
| | - Naoyuki Kamatani
- StaGen Co., Ltd, 4-11-6, Kuramae, Taito-Ku, Tokyo, 111-0051, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan.
- Institute for Comprehensive Medical Sciences, Tokyo Women's Medical University, 8-1, Kawada-Cho, Shinjuku-Ku, Tokyo, 162-8666, Japan.
| |
Collapse
|
9
|
Wang-Eckhardt L, Becker I, Wang Y, Yuan J, Eckhardt M. Absence of endogenous carnosine synthesis does not increase protein carbonylation and advanced lipoxidation end products in brain, kidney or muscle. Amino Acids 2022; 54:1013-1023. [PMID: 35294673 PMCID: PMC9217836 DOI: 10.1007/s00726-022-03150-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/03/2022] [Indexed: 02/05/2023]
Abstract
Carnosine and other histidine-containing dipeptides are expected to be important anti-oxidants in vertebrates based on various in vitro and in vivo studies with exogenously administered carnosine or its precursor β-alanine. To examine a possible anti-oxidant role of endogenous carnosine, mice lacking carnosine synthase (Carns1−/−) had been generated and were examined further in the present study. Protein carbonylation increased significantly between old (18 months) and aged (24 months) mice in brain and kidney but this was independent of the Carns1 genotype. Lipoxidation end products were not increased in 18-month-old Carns1−/− mice compared to controls. We also found no evidence for compensatory increase of anti-oxidant enzymes in Carns1−/− mice. To explore the effect of carnosine deficiency in a mouse model known to suffer from increased oxidative stress, Carns1 also was deleted in the type II diabetes model Leprdb/db mouse. In line with previous studies, malondialdehyde adducts were elevated in Leprdb/db mouse kidney, but there was no further increase by additional deficiency in Carns1. Furthermore, Leprdb/db mice lacking Carns1 were indistinguishable from conventional Leprdb/db mice with respect to fasting blood glucose and insulin levels. Taken together, Carns1 deficiency appears not to reinforce oxidative stress in old mice and there was no evidence for a compensatory upregulation of anti-oxidant enzymes. We conclude that the significance of the anti-oxidant activity of endogenously synthesized HCDs is limited in mice, suggesting that other functions of HCDs play a more important role.
Collapse
Affiliation(s)
- Lihua Wang-Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Ivonne Becker
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Yong Wang
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
- Shandong Xinchuang Biotechnology Co., LTD, Jinan, China
| | - Jing Yuan
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
- College of Animal Science, Yangtze University, Jingzhou, Hubei, China
| | - Matthias Eckhardt
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany.
| |
Collapse
|
10
|
Senescence-Mediated Redox Imbalance in Liver and Kidney: Antioxidant Rejuvenating Potential of Green Tea Extract. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:ijerph19010260. [PMID: 35010518 PMCID: PMC8751114 DOI: 10.3390/ijerph19010260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022]
Abstract
This study investigates the catechin composition and protective effect of green tea extract on senescence-mediated redox imbalance in the livers and kidneys of aged mice. The results showed that the seven catechins in the green tea extract analyzed in this study could be completely separated within 30 min and the main components of catechins in green tea extract were EGCG, EGC and ECG. In terms of the anti-senescence effects of green tea extract, green tea extract supplementation at doses of 125, 625 and 1250 mg/kg for 4 weeks significantly alleviated the senescence-mediated redox imbalance, as exhibited from significantly (p < 0.05) reduced thiobarbituric acid-reactive substances (TBARS) and protein carbonyls levels in the serum, and increased glutathione (GSH) and total thiols contents in the plasma. Additionally, hepatic and renal protein carbonyls levels were significantly diminished (p < 0.05) and the activities of superoxide dismutase (SOD), catalase, glucose-6-phosphate dehydrogenase (G6PD), glutathione peroxidase (GSH-Px) and glutathione reductase (GSH-Rd) in the liver and kidney were remarkably elevated (p < 0.05). Overall, these results clearly show that green tea extract exhibits extremely potent protective effects against senescence-mediated redox imbalance in the livers and kidneys of mice by inhibiting oxidative damage of lipids and proteins and increasing the activities of antioxidant enzymes in organs.
Collapse
|
11
|
Gallo P, De Vincentis A, Bandinelli S, Ferrucci L, Picardi A, Antonelli Incalzi R, Vespasiani-Gentilucci U. Combined evaluation of aminotransferases improves risk stratification for overall and cause-specific mortality in older patients. Aging Clin Exp Res 2021; 33:3321-3331. [PMID: 34506007 DOI: 10.1007/s40520-021-01979-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Recent studies identified low levels of alanine aminotransferase (ALT) as strong predictors of mortality in older people. AIMS Here we verified if the combined evaluation of aminotransferases may improve risk stratification for adverse outcomes in older patients. METHODS Data are from 761 participants aged more than 65 years from a prospective population-based database (InCHIANTI study), without known baseline chronic liver disease or malignancies. Associations between aminotransferase levels and the risk of all-cause, cardiovascular- and cancer-death were assessed by Cox-models with time-dependent covariates. RESULTS The association of ALT and aspartate aminotransferase (AST) with mortality was non-linear, mirroring a J- and a U-shaped curve, respectively. Based on quintiles of transaminase activities and on their association with overall mortality, low, intermediate (reference group) and high levels were defined. Having at least one transaminase in the low range [aHR 1.76 (1.31-2.36), p < 0.001], mainly if both [(aHR 2.39 (1.81-3.15), p < 0.001], increased the risk of overall mortality, as well as having both enzymes in the high range [aHR 2.14 (1.46-3.15), p < 0.001]. While similar trends were confirmed with respect to cardiovascular mortality, subjects with the highest risk of cancer mortality were those with both enzymes in the high range [aHR 3.48 (1.43-8.44), p = 0.006]. Low levels of transaminases were associated with frailty, sarcopenia and disability, while high levels did not capture any known proxy of adverse outcome. Conclusions and discussion The prognostic information is maximized by the combination of the 2 liver enzymes. While both aminotransferases in low range are characteristically found in the most fragile phenotype, both enzymes in high range are more likely to identify new-onset vascular/infiltrative diseases with adverse outcome.
Collapse
Affiliation(s)
- Paolo Gallo
- Clinical Medicine and Hepatology Unit, Campus Bio-Medico University, Rome, Italy
| | - Antonio De Vincentis
- Internal Medicine Unit, Campus Bio-Medico University, Via Alvaro del Portillo 200 , Rome, Italy.
| | | | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Antonio Picardi
- Clinical Medicine and Hepatology Unit, Campus Bio-Medico University, Rome, Italy
| | | | | |
Collapse
|
12
|
Wang Q, Zennadi R. The Role of RBC Oxidative Stress in Sickle Cell Disease: From the Molecular Basis to Pathologic Implications. Antioxidants (Basel) 2021; 10:antiox10101608. [PMID: 34679742 PMCID: PMC8533084 DOI: 10.3390/antiox10101608] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 01/14/2023] Open
Abstract
Sickle cell disease (SCD) is an inherited monogenic disorder and the most common severe hemoglobinopathy in the world. SCD is characterized by a point mutation in the β-globin gene, which results in hemoglobin (Hb) S production, leading to a variety of mechanistic and phenotypic changes within the sickle red blood cell (RBC). In SCD, the sickle RBCs are the root cause of the disease and they are a primary source of oxidative stress since sickle RBC redox state is compromised due to an imbalance between prooxidants and antioxidants. This imbalance in redox state is a result of a continuous production of reactive oxygen species (ROS) within the sickle RBC caused by the constant endogenous Hb autoxidation and NADPH oxidase activation, as well as by a deficiency in the antioxidant defense system. Accumulation of non-neutralized ROS within the sickle RBCs affects RBC membrane structure and function, leading to membrane integrity deficiency, low deformability, phosphatidylserine exposure, and release of micro-vesicles. These oxidative stress-associated RBC phenotypic modifications consequently evoke a myriad of physiological changes involved in multi-system manifestations. Thus, RBC oxidative stress in SCD can ultimately instigate major processes involved in organ damage. The critical role of the sickle RBC ROS production and its regulation in SCD pathophysiology are discussed here.
Collapse
|
13
|
Cacao powder supplementation attenuates oxidative stress, cholinergic impairment, and apoptosis in D-galactose-induced aging rat brain. Sci Rep 2021; 11:17914. [PMID: 34504131 PMCID: PMC8429651 DOI: 10.1038/s41598-021-96800-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/11/2021] [Indexed: 12/31/2022] Open
Abstract
Aging, a critical risk factor of several diseases, including neurodegenerative disorders, affects an ever-growing number of people. Cacao supplementation has been suggested to improve age-related neuronal deficits. Therefore, this study investigated the protective effects of raw cacao powder on oxidative stress-induced aging. Male Sprague-Dawley rats were divided into 4 groups: Control (C), D-galactose-induced aging (G), D-galactose injection with 10% (LC), and 16% (HC) cacao powder mixed diet. D-galactose (300 mg/3 mL/kg) was intraperitoneally injected into all but the control group for 12 weeks. Cacao supplemented diets were provided for 8 weeks. The levels of serum Malondialdehyde (MDA), Advanced Glycation End-products (AGEs), brain and liver MDA, the indicators of the D-galactose induced oxidative stress were significantly decreased in LC and HC but increased in G. The Acetylcholinesterase (AChE) activity of brain showed that the cholinergic impairment was significantly lower in LC, and HC than G. Furthermore, the expression levels of catalase (CAT), phospho-Akt/Akt, and procaspase-3 were significantly increased in LC and HC. In conclusion, cacao consumption attenuated the effects of oxidative stress, cholinergic impairment and apoptosis, indicating its potential in future clinical studies.
Collapse
|
14
|
Krishna H, Avinash K, Shivakumar A, Al-Tayar NGS, Shrestha AK. A quantitative method for the detection and validation of catalase activity at physiological concentration in human serum, plasma and erythrocytes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 251:119358. [PMID: 33486434 DOI: 10.1016/j.saa.2020.119358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
A novel method has been proposed to develop a simple, rapid, sensitive and affordable chromogenic attempt for the quantification of catalase (CAT) activity in blood samples. The method is based on the oxidation of pyrocatechol (PC) to give quinone form which by oxidative coupling with aminyl radical of 4-aminoantipyrine (4-AAP) resulting from H2O2/CAT to produce a pink colored quinone-imine product with λmax = 530 nm in a 100 mmol/L of tris buffer of pH 9.8 at room temperature (30 °C). The linearity of CAT assay was between 0.316 and 10 U/mL. The accuracy ranges for CAT having concentrations of 1.25, 5 and 7.5 μmol/L were 89-105.52, 90-107%, and 91-104.58% respectively. Within-run and between-run precision studies showed CV's of 1.98-3.02% (n = 7) and 2.97-4.40% (n = 7), respectively. The detection and quantification limits of CAT were 0.12 and 0.225 μmol/L, respectively. The Michaelis-Menten constant and maximum velocity of the reaction was Km = 1.052 mM and Vmax = 0.168 μmol/min, respectively. The present method provides a convenient means for investigating the usefulness of CAT measurements in biological sample assessing the potential for free radical-induced pathology.
Collapse
Affiliation(s)
- Honnur Krishna
- Department of Chemistry, S. D. V. S. Sangh's S. S. Arts College and T. P. Science Institute, Sankeshwar, Belagavi 591313, India.
| | | | - Anantharaman Shivakumar
- PG Department of Chemistry and Research Centre, St. Philomena's College (Autonomous), Bangalore-Mysore Road, Bannimantap, Mysore 570015, India.
| | | | | |
Collapse
|
15
|
Zhang H, Dai J, Tian D, Xiao L, Xue H, Guo Q, Zhang X, Teng X, Jin S, Wu Y. Hydrogen Sulfide Restored the Diurnal Variation in Cardiac Function of Aging Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8841575. [PMID: 33747351 PMCID: PMC7943277 DOI: 10.1155/2021/8841575] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/06/2021] [Accepted: 02/12/2021] [Indexed: 12/21/2022]
Abstract
The present study was performed to investigate whether H2S could restore the diurnal variation in cardiac function of aging mice and explore the potential mechanisms. We found that ejection fraction (EF) and fractional shortening (FS) in 3-month-old mice exhibited diurnal variations over a 24-hour period. However, the diurnal variations were disrupted in 18-month-old mice, and there was a decline in EF and FS. In addition, the plasma malondialdehyde (MDA) levels were increased, and H2S concentrations and superoxide dismutase (SOD) activities were decreased in 18-month-old mice. Then, CSE KO mice were used to determine if there was a relationship between endogenous H2S and diurnal variations in EF and FS. There was no difference in 12-hour averaged EF and FS between dark and light periods in CSE KO mice accompanying increased MDA levels and decreased SOD activities in plasma, indicating that deficiency of endogenous H2S blunted diurnal variations of cardiac function. To determine whether oxidative stress disrupted the diurnal variations in cardiac function, D-galactose-induced subacute aging mice were employed. After 3-month D-gal treatment, both 12-hour averaged EF and FS in dark or light periods were decreased; meanwhile, there was no difference in 12-hour averaged EF and FS between dark and light periods. After 3-month NaHS treatment in the D-gal group, the plasma MDA levels were decreased and SOD activities were increased. The EF and FS were lower during the 12-hour light period than those during the 12-hour dark period which was fit to sine curves in the D-gal+NaHS group. Identical findings were also observed in 18-month-old mice. In conclusion, our studies revealed that the disrupted diurnal variation in cardiac function was associated with increased oxidative stress and decreased H2S levels in aging mice. H2S could restore the diurnal variation in cardiac function of aging mice by reducing oxidative stress.
Collapse
Affiliation(s)
- Huaxing Zhang
- School of Basic Medical Sciences, Hebei Medical University, Hebei 050017, China
| | - Jing Dai
- Department of Clinical Diagnostics, Hebei Medical University, Hebei 050017, China
| | - Danyang Tian
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Lin Xiao
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Hongmei Xue
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Qi Guo
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Xiangjian Zhang
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, 050017 Hebei, China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Hebei 050017, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, 050017 Hebei, China
| |
Collapse
|
16
|
Impact of Plasma Oxidative Stress Markers on Post-race Recovery in Ultramarathon Runners: A Sex and Age Perspective Overview. Antioxidants (Basel) 2021; 10:antiox10030355. [PMID: 33673404 PMCID: PMC7996940 DOI: 10.3390/antiox10030355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 01/04/2023] Open
Abstract
Oxidative stress has been widely studied in association to ultra-endurance sports. Although it is clearly demonstrated the increase in reactive oxygen species and free radicals after these extreme endurance exercises, the effects on the antioxidant defenses and the oxidative damage to macromolecules, remain to be fully clarified. Therefore, the aim of this study was to elucidate the impact of an ultramarathon race on the plasma markers of oxidative stress of 32 runners and their post-race recovery, with especial focused on sex and age effect. For this purpose, the antioxidant enzymes glutathione peroxidase (GPx) and glutathione reductase (GR) activity, as well as the lipid peroxidation product malondialdehyde (MDA) and the carbonyl groups (CG) content were measured before the race, in the finish line and 24 and 48 h after the race. We have reported an increase of the oxidative damage to lipids and proteins (MDA and CG) after the race and 48 h later. Moreover, there was an increase of the GR activity after the race. No changes were observed in runners' plasma GPx activity throughout the study. Finally, we have observed sex and age differences regarding damage to macromolecules, but no differences were found regarding the antioxidant enzymes measured. Our results suggest that several basal plasma markers of oxidative stress might be related to the extent of muscle damage after an ultraendurance race and also might affect the muscle strength evolution.
Collapse
|
17
|
Interplay between bioenergetics and oxidative stress at normal brain aging. Aging as a result of increasing disbalance in the system oxidative stress-energy provision. Pflugers Arch 2021; 473:713-722. [PMID: 33599804 DOI: 10.1007/s00424-021-02531-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/18/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
At normal aging, the brain exhibits signs of compromised bioenergetic and increased levels of products of interaction between reactive oxygen/nitrogen species (ROS/RNS) and brain constituents. Under normal conditions, steady-state levels of ATP and ROS/RNS fluctuate in certain ranges providing basis for stable homeostasis. However, from time to time these parameters leave a "comfort zone," and at adulthood, organisms are able to cope with these challenges efficiently, whereas at aging, efficiency of the systems maintaining homeostasis declines. That is very true for the brain due to high ATP demands which are mainly covered by mitochondrial oxidative phosphorylation. Such active oxidative metabolism gives rise to intensive ROS generation as side products. The situation is worsened by high brain level of polyunsaturated fatty acids which are substrates for ROS/RNS attack and production of lipid peroxides. In this review, organization of energetic metabolism in the brain with a focus on its interplay with ROS at aging is discussed. The working hypothesis on aging as a disbalance between oxidative stress and energy provision as a reason for brain aging is proposed. From this point of view, normal age-related physiological decline in the brain functions results from increased disbalance between decrease in capability of the brain to control constantly increased incapability to maintain ROS levels and produce ATP due to amplification of vicious cycles intensification of oxidative stress <----> impairment of energy provision.
Collapse
|
18
|
Bozdogan O, Bozcaarmutlu A, Kaya ST, Sapmaz C, Ozarslan TO, Eksioglu D, Yasar S. Decreasing myocardial estrogen receptors and antioxidant activity may be responsible for increasing ischemia- and reperfusion-induced ventricular arrhythmia in older female rats. Life Sci 2021; 271:119190. [PMID: 33571518 DOI: 10.1016/j.lfs.2021.119190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 01/21/2021] [Accepted: 02/06/2021] [Indexed: 11/18/2022]
Abstract
AIMS This study aimed to investigate the relationship between ischemia- and reperfusion-induced arrhythmia and blood serum estrogen levels, myocardial estrogen receptor levels, antioxidant enzyme activities, and the effects of the estrogen receptor blocker, fulvestrant (ICI 182 780). MAIN METHODS A total of 102 female Sprague-Dawley rats of different ages (2-3, 6-7, 14-15, and 20-21 months) were used in this study. Myocardial ischemia was produced by ligation of the descending branch of the left anterior descending coronary artery, and reperfusion was produced by releasing this artery. An electrocardiogram (ECG) and blood pressure were recorded for 6 min of ischemia and 6 min of reperfusion. The levels of superoxide dismutase (SOD), malondialdehyde (MDA), catalase (CAT), estrogen receptor α (ERα), and estrogen receptor β (ERβ) in myocardial tissue and 17 beta-estradiol (E2) in blood serum were measured via enzyme-linked immunosorbent assay (ELISA). The results were compared using a Mann-Whitney U test, one-way analysis of variance (ANOVA), and a student's t-test. KEY FINDINGS It is not the changes in serum estrogen levels but the decreasing myocardial estrogen receptors and antioxidant activities that could be responsible for the occurrence of more severe arrhythmia in response to reperfusion in older female rats. SIGNIFICANCE The death rate due to a heart attack in younger men is higher than in women. However, it equalizes after the menopausal stage in women. In this study, the reason for the increasing sudden post-menopausal death rate in women was investigated experimentally.
Collapse
Affiliation(s)
- Omer Bozdogan
- Department of Biology, Faculty of Arts and Science, Bolu Abant Izzet Baysal University, Bolu, Turkey.
| | - Azra Bozcaarmutlu
- Department of Chemistry, Faculty of Arts and Science, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Salih Tunc Kaya
- Department of Biology, Faculty of Arts and Science, Düzce University, Düzce, Turkey
| | - Canan Sapmaz
- Department of Chemistry, Faculty of Arts and Science, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Talat Ogulcan Ozarslan
- Department of Infectious Diseases and Clinical Microbiology, Institute of Health Sciences, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Didem Eksioglu
- Department of Biology, Faculty of Arts and Science, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Selcuk Yasar
- Program of Medical Laboratory Techniques, Vocational School of Health Services, Istanbul Esenyurt University, Istanbul, Turkey
| |
Collapse
|
19
|
Oxidative Stress and Thrombosis during Aging: The Roles of Oxidative Stress in RBCs in Venous Thrombosis. Int J Mol Sci 2020; 21:ijms21124259. [PMID: 32549393 PMCID: PMC7352981 DOI: 10.3390/ijms21124259] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 01/17/2023] Open
Abstract
Mid-life stage adults are at higher risk of developing venous thrombosis (VT)/thromboembolism (VT/E). Aging is characterized by an overproduction of reactive oxygen species (ROS), which could evoke a series of physiological changes involved in thrombosis. Here, we focus on the critical role of ROS within the red blood cell (RBC) in initiating venous thrombosis during aging. Growing evidence has shifted our interest in the role of unjustifiably unvalued RBCs in blood coagulation. RBCs can be a major source of oxidative stress during aging, since RBC redox homeostasis is generally compromised due to the discrepancy between prooxidants and antioxidants. As a result, ROS accumulate within the RBC due to the constant endogenous hemoglobin (Hb) autoxidation and NADPH oxidase activation, and the uptake of extracellular ROS released by other cells in the circulation. The elevated RBC ROS level affects the RBC membrane structure and function, causing loss of membrane integrity, and decreased deformability. These changes impair RBC function in hemostasis and thrombosis, favoring a hypercoagulable state through enhanced RBC aggregation, RBC binding to endothelial cells affecting nitric oxide availability, RBC-induced platelet activation consequently modulating their activity, RBC interaction with and activation of coagulation factors, increased RBC phosphatidylserine exposure and release of microvesicles, accelerated aging and hemolysis. Thus, RBC oxidative stress during aging typifies an ultimate mechanism in system failure, which can affect major processes involved in the development of venous thrombosis in a variety of ways. The reevaluated concept of the critical role of RBC ROS in the activation of thrombotic events during aging will help identify potential targets for novel strategies to prevent/reduce the risk for VT/E or VT/E recurrences in mid-life stage adults.
Collapse
|
20
|
ROS and oncogenesis with special reference to EMT and stemness. Eur J Cell Biol 2020; 99:151073. [PMID: 32201025 DOI: 10.1016/j.ejcb.2020.151073] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/10/2020] [Accepted: 03/10/2020] [Indexed: 01/03/2023] Open
Abstract
Elevation of the level of intracellular reactive oxygen species (ROS) has immense implication in the biological system. On the one hand, ROS promote the signaling cascades for the maintenance of normal physiological functions, the phenomenon referred to as redox biology, and on the other hand increased ROS can cause damages to the cellular macromolecules as well as genetic material, the process known as oxidative stress. Oxidative stress acts as an etiological factor for wide varieties of pathologies, cancer being one of them. ROS is regarded as a "double-edged sword" with respect to oncogenesis. It can suppress as well as promote the malignant progression depending on the type of signaling pathway it uses. Moreover, the attribution of ROS in promoting phenotypic plasticity as well as acquisition of stemness during neoplasia has become a wide area of research. The current review discussed all the aspects of ROS in the perspective of tumor biology with special reference to epithelial-mesenchymal transition (EMT) and cancer stem cells.
Collapse
|
21
|
Winiarska-Mieczan A, Baranowska-Wójcik E, Kwiecień M, Grela ER, Szwajgier D, Kwiatkowska K, Kiczorowska B. The Role of Dietary Antioxidants in the Pathogenesis of Neurodegenerative Diseases and Their Impact on Cerebral Oxidoreductive Balance. Nutrients 2020; 12:nu12020435. [PMID: 32046360 PMCID: PMC7071337 DOI: 10.3390/nu12020435] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/26/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases are progressive diseases of the nervous system that lead to neuron loss or functional disorders. Neurodegenerative diseases require long-term, sometimes life-long pharmacological treatment, which increases the risk of adverse effects and a negative impact of pharmaceuticals on the patients’ general condition. One of the main problems related to the treatment of this type of condition is the limited ability to deliver drugs to the brain due to their poor solubility, low bioavailability, and the effects of the blood-brain barrier. Given the above, one of the main objectives of contemporary scientific research focuses on the prevention of neurodegenerative diseases. As disorders related to the competence of the antioxidative system are a marker in all diseases of this type, the primary prophylactics should entail the use of exogenous antioxidants, particularly ones that can be used over extended periods, regardless of the patient’s age, and that are easily available, e.g., as part of a diet or as diet supplements. The paper analyzes the significance of the oxidoreductive balance in the pathogenesis of neurodegenerative diseases. Based on information published globally in the last 10 years, an analysis is also provided with regard to the impact of exogenous antioxidants on brain functions with respect to the prevention of this type of diseases.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Department of Bromatology and Food Physiology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (M.K.); (E.R.G.); (K.K.); (B.K.)
- Correspondence: ; Tel.: +48-81-445-67-44; Fax: +48-81-53-335-49
| | - Ewa Baranowska-Wójcik
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (E.B.-W.); (D.S.)
| | - Małgorzata Kwiecień
- Department of Bromatology and Food Physiology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (M.K.); (E.R.G.); (K.K.); (B.K.)
| | - Eugeniusz R. Grela
- Department of Bromatology and Food Physiology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (M.K.); (E.R.G.); (K.K.); (B.K.)
| | - Dominik Szwajgier
- Department of Biotechnology, Microbiology and Human Nutrition, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (E.B.-W.); (D.S.)
| | - Katarzyna Kwiatkowska
- Department of Bromatology and Food Physiology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (M.K.); (E.R.G.); (K.K.); (B.K.)
| | - Bożena Kiczorowska
- Department of Bromatology and Food Physiology, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (M.K.); (E.R.G.); (K.K.); (B.K.)
| |
Collapse
|
22
|
Kaplán P, Tatarková Z, Lichardusová L, Kmeťová Sivoňová M, Tomašcová A, Račay P, Lehotský J. Age-Associated Changes in Antioxidants and Redox Proteins of Rat Heart. Physiol Res 2019; 68:883-892. [PMID: 31647296 DOI: 10.33549/physiolres.934170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress and decline in cellular redox regulation have been hypothesized to play a key role in cardiovascular aging; however, data on antioxidant and redox regulating systems in the aging heart are controversial. The aim of the present study was to examine the effect of aging on critical antioxidant enzymes and two major redox-regulatory systems glutathione (GSH) and thioredoxin (Trx) system in hearts from adult (6-month-old), old (15-month-old), and senescent (26-month-old) rats. Aging was associated with a non-uniform array of changes, including decline in contents of reduced GSH and total mercaptans in the senescent heart. The activities of Mn-superoxide dismutase (SOD2), glutathione peroxidase (GPx), glutathione reductase (GR), and thioredoxin reductase (TrxR) exhibited an age-related decline, whereas catalase was unchanged and Cu,Zn-superoxide dismutase (SOD1) displayed only slight decrease in old heart and was unchanged in the senescent heart. GR, Trx, and peroxiredoxin levels were significantly reduced in old and/or senescent hearts, indicating a diminished expression of these proteins. In contrast, SOD2 level was unchanged in the old heart and was slightly elevated in the senescent heart. Decline in GPx activity was accompanied by a loss of GPx level only in old rats, the level in senescent heart was unchanged. These results indicate age-related posttranslational protein modification of SOD2 and GPx. In summary, our data suggest that changes are more pronounced in senescent than in old rat hearts and support the view that aging is associated with disturbed redox balance that could alter cellular signaling and regulation.
Collapse
Affiliation(s)
- P Kaplán
- Department of Medical Biochemistry, Comenius University in Bratislava, Jessenius Faculty of Medicine, Martin, Slovak Republic.
| | | | | | | | | | | | | |
Collapse
|
23
|
Lian S, Wang J, Zhang L, Xing Q, Hu N, Liu S, Dai X, Zhang F, Hu X, Bao Z, Wang S. Integration of Biochemical, Cellular, and Genetic Indicators for Understanding the Aging Process in a Bivalve Mollusk Chlamys farreri. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:718-730. [PMID: 31392593 DOI: 10.1007/s10126-019-09917-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
The major causal factors for the irreversible decline in physical vitality during organismal aging are postulated to be a chronic state of cellular redox imbalance, metabolic toxicity, and impaired energy homeostasis. We assessed whether the relevant enzyme activity, oxidative stress, and intracellular ATP might be causally involved in the aging of short-lived Chlamys farreri (life span 4~5 years). A total of eight related biochemical and cellular indicators were chosen for the subsequent analysis. All the indicators were measured in seven different tissues from scallops aged one to four years, and our data support that the aging of C. farreri is associated with attenuated tissue enzyme activity as well as a decreased metabolic rate. Through principal component analysis, we developed an integrated vigor index for each tissue for comprehensive age-related fitness evaluation. Remarkably, all tissue-integrated vigor indexes significantly declined with age, and the kidney was observed to be the most representative tissue. Further transcriptional profiling of the enzymatic genes provided additional detail on the molecular responses that may underlie the corresponding biochemical results. Moreover, these critical molecular responses may be attributed to the conserved hierarchical regulators, e.g., FOXO, AMPKs, mTOR, and IGF1R, which were identified as potentially novel markers for chronic fitness decline with age in bivalves. The present study provides a systematic approach that could potentially benefit the global assessment of the aging process in C. farreri and provide detailed evaluation of the biochemical, cellular, and genetic indicators that might be involved. This information may assist in a better understanding of bivalve adaptability and life span.
Collapse
Affiliation(s)
- Shanshan Lian
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Naina Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Sinuo Liu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Xiaoting Dai
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Fengmei Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
| | - Xiaoli Hu
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
24
|
Bekhouche K, Ozen T, Boussaha S, Demirtas I, Kout M, Yildirim K, Zama D, Benayache F, Benayache S. Hepatoprotective effects of the n-butanol extract from Perralderia coronopifolia Coss. against PCP-induced toxicity in Wistar albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:31215-31224. [PMID: 31463753 DOI: 10.1007/s11356-019-06231-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
In the present study, in vivo antioxidant properties of the n-butanol extract obtained from aerial parts of Perralderia coronopifolia were investigated in term of its hepatoprotective effect of female Wistar albino rats (n, 36; average age, 48 ± 5 days; weighing 150 ± 18 g) against PCP (pentachlorphenol)-induced toxicity. PCP (20 mg/kg b.w.) and plant extract (50 mg/kg b.w.) were administered daily by gavages for 2 weeks. Vitamin E (100 mg/kg b.w.) was given intraperitoneally as a positive control. Lipid peroxidation (LPO) levels, reduced glutathione (GSH) levels, and glutathione peroxidase (GPx) activities were evaluated in liver homogenates. While, aspartate aminotransferase (AST), alanine aminotransferase (ALT), cholesterol, and triglyceride parameters were analyzed in serums. The liver fragments were observed using light microscopy. Experimental results exhibited that PCP-treated group has a significant increase in the liver lipid peroxidation (LPO) levels of animals while decreased in plant extract-treated group. In addition, PCP caused significant decreases in glutathione peroxidase (GPx) activities and reduced glutathione (GSH) levels. Moreover, PCP induced hepatotoxicity by increasing serum transaminase enzymes, cholesterol, and triglyceride levels. While, these levels were restored to control value in animals treated with plant extract. The regularized levels of LPO, GSH, cholesterol, triglyceride, transaminase enzymes, and GPx activities revealed the antioxidant properties of the extract plant as well as of the vitamin E. The histological study showed the hepatoprotective effect of our extracts against PCP-induced acute intoxication, protecting the hepatic architecture and decreasing the functional and structural alterations of the liver. The plant extract had high antioxidant potential and completely prevented the toxic effect of PCP on the above of liver and serum parameters.
Collapse
Affiliation(s)
- Khadidja Bekhouche
- Department of Animal Biology, Faculty of Nature and Life Sciences, University Frères Mentouri 1, Constantine, Algeria
| | - Tevfik Ozen
- Department of Chemistry, Faculty of Science and Letters, Ondokuz Mayis University, Samsun, Turkey.
| | - Sara Boussaha
- Research Unit: Valuation of Natural Resources, Bioactive Molecules, Physicochemical and Biological Analyzes (VARENBIOMOL), University Frères Mentouri 1, Constantine, Algeria
| | - Ibrahim Demirtas
- Plant Research Laboratory, Department of Chemistry, University of Cankiri, Karatekin, Turkey
| | - Mounir Kout
- Anatomic and Pathologic Cytology Laboratory, University Hospital Center, Constantine, Algeria
| | - Kemal Yildirim
- Department of Chemistry, Faculty of Science and Letters, Ondokuz Mayis University, Samsun, Turkey
| | - Djamila Zama
- Department of Animal Biology, Faculty of Nature and Life Sciences, University Frères Mentouri 1, Constantine, Algeria
- Research Unit: Valuation of Natural Resources, Bioactive Molecules, Physicochemical and Biological Analyzes (VARENBIOMOL), University Frères Mentouri 1, Constantine, Algeria
| | - Fadila Benayache
- Research Unit: Valuation of Natural Resources, Bioactive Molecules, Physicochemical and Biological Analyzes (VARENBIOMOL), University Frères Mentouri 1, Constantine, Algeria
| | - Samir Benayache
- Research Unit: Valuation of Natural Resources, Bioactive Molecules, Physicochemical and Biological Analyzes (VARENBIOMOL), University Frères Mentouri 1, Constantine, Algeria
| |
Collapse
|
25
|
Novoa B, Pereiro P, López‐Muñoz A, Varela M, Forn‐Cuní G, Anchelin M, Dios S, Romero A, Martinez‐López A, Medina‐Gali RM, Collado M, Coll J, Estepa A, Cayuela ML, Mulero V, Figueras A. Rag1 immunodeficiency-induced early aging and senescence in zebrafish are dependent on chronic inflammation and oxidative stress. Aging Cell 2019; 18:e13020. [PMID: 31348603 PMCID: PMC6718522 DOI: 10.1111/acel.13020] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/14/2019] [Indexed: 12/16/2022] Open
Abstract
In mammals, recombination activating gene 1 (RAG1) plays a crucial role in adaptive immunity, generating a vast range of immunoglobulins. Rag1−/− zebrafish (Danio rerio) are viable and reach adulthood without obvious signs of infectious disease in standard nonsterile conditions, suggesting that innate immunity could be enhanced to compensate for the lack of adaptive immunity. By using microarray analysis, we confirmed that the expression of immunity‐ and apoptosis‐related genes was increased in the rag1−/− fish. This tool also allows us to notice alterations of the DNA repair and cell cycle mechanisms in rag1−/− zebrafish. Several senescence and aging markers were analyzed. In addition to the lower lifespan of rag1−/− zebrafish compared to their wild‐type (wt) siblings, rag1−/− showed a higher incidence of cell cycle arrest and apoptosis, a greater amount of phosphorylated histone H2AX, oxidative stress and decline of the antioxidant mechanisms, an upregulated expression and activity of senescence‐related genes and senescence‐associated β‐galactosidase, respectively, diminished telomere length, and abnormal self‐renewal and repair capacities in the retina and liver. Metabolomic analysis also demonstrated clear differences between wt and rag1−/− fish, as was the deficiency of the antioxidant metabolite l‐acetylcarnitine (ALCAR) in rag1−/− fish. Therefore, Rag1 activity does not seem to be limited to V(D)J recombination but is also involved in senescence and aging. Furthermore, we confirmed the senolytic effect of ABT‐263, a known senolytic compound and, for the first time, the potential in vivo senolytic activity of the antioxidant agent ALCAR, suggesting that this metabolite is essential to avoid premature aging.
Collapse
Affiliation(s)
- Beatriz Novoa
- Instituto de Investigaciones Marinas Consejo Superior de Investigaciones Científicas (CSIC) Vigo Spain
| | - Patricia Pereiro
- Instituto de Investigaciones Marinas Consejo Superior de Investigaciones Científicas (CSIC) Vigo Spain
| | - Azucena López‐Muñoz
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia IMIB‐Arrixaca Murcia Spain
| | - Mónica Varela
- Instituto de Investigaciones Marinas Consejo Superior de Investigaciones Científicas (CSIC) Vigo Spain
| | - Gabriel Forn‐Cuní
- Instituto de Investigaciones Marinas Consejo Superior de Investigaciones Científicas (CSIC) Vigo Spain
| | - Monique Anchelin
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca IMIB‐Arrixaca Murcia Spain
| | - Sonia Dios
- Instituto de Investigaciones Marinas Consejo Superior de Investigaciones Científicas (CSIC) Vigo Spain
| | - Alejandro Romero
- Instituto de Investigaciones Marinas Consejo Superior de Investigaciones Científicas (CSIC) Vigo Spain
| | - Alicia Martinez‐López
- Instituto de Biología Molecular y Celular (IBMC) Universidad Miguel Hernández (UMH) Elche Spain
| | - Regla María Medina‐Gali
- Instituto de Biología Molecular y Celular (IBMC) Universidad Miguel Hernández (UMH) Elche Spain
| | - Manuel Collado
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS) SERGAS Santiago de Compostela Spain
| | - Julio Coll
- Departamento de Biotecnología Instituto Nacional Investigación y Tecnología Agraria y Alimentaria (INIA) Madrid Spain
| | - Amparo Estepa
- Instituto de Biología Molecular y Celular (IBMC) Universidad Miguel Hernández (UMH) Elche Spain
| | - María Luisa Cayuela
- Grupo de Telomerasa, Cáncer y Envejecimiento, Hospital Clínico Universitario Virgen de la Arrixaca IMIB‐Arrixaca Murcia Spain
| | - Victoriano Mulero
- Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia IMIB‐Arrixaca Murcia Spain
| | - Antonio Figueras
- Instituto de Investigaciones Marinas Consejo Superior de Investigaciones Científicas (CSIC) Vigo Spain
| |
Collapse
|
26
|
Tolmacheva AS, Buneva VN, Nevinsky GA. Substrate specificity of IgGs with peroxidase and oxidoreductase activities from sera of patients with systemic lupus erythematosus and multiple sclerosis. J Mol Recognit 2019; 32:e2807. [PMID: 31389073 DOI: 10.1002/jmr.2807] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 06/18/2019] [Accepted: 06/29/2019] [Indexed: 12/26/2022]
Abstract
The analysis of IgGs to protect humans from oxidative stress through oxidation of harmful compounds was carried out. We have compared here for the first time peroxidase (in the presence of H2 O2 ) and oxidoreductase (in the absence of H2 O2 ) activities of IgGs from sera of healthy humans and patients with systemic lupus erythematosus (SLE) and multiple sclerosis (MS). In addition, substrate specificity of SLE and MS IgG preparations in the oxidation of different compounds was analyzed: 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 3,3'-diaminobenzidine (DAB), homovanillic acid (HVA), o-phenylenediamine (OPD), α-naphthol, 3-amino-9-ethylcarbazole (AEC), p-hydroquinone (pHQ), and adrenaline. IgGs of healthy humans and SLE and MS patients oxidized DAB, ABTS, and OPD due to their peroxidase and oxidoreductase activities, while other compounds were substrates of IgGs only in the presence of H2 O2 : adrenaline was not oxidized by both activities of IgGs. The average SLE IgGs peroxidase activity increased statistically significant in comparison with abzymes from healthy humans in the order (-fold): OPD (1.2) < DAB (1.7) < α-naphtol (2.2) ≤ AEC (2.4) < ABTS (4.5) < 5-ASA (10.6), while with oxidoreductase activity: OPD (1.8) ≤ DAB (2.1-fold) < ABTS (5.0). Only HVA was oxidized by IgGs with peroxidase activity of healthy donors faster than by SLE (1.3-fold) and MS abzymes (2.4-fold). In the oxidation of several substrates, only three IgGs of MS patients were used. The data speak of a tendency to increase the peroxidase and oxidoreductase activities of MS IgGs in comparison with healthy donors, but to a lesser extent: OPD (1.1 to 1.2-fold) ≤ ABTS (1.2 to 1.8-fold). It was shown that development of SLE and MS leads to increase in peroxidase and oxidoreductase activities of IgGs toward most of classical substrates. Thus, abzymes can serve as an additional factor of reactive oxygen species detoxification protecting of patients with SLE and MS from some harmful compounds somewhat better than healthy peoples.
Collapse
Affiliation(s)
- Anna S Tolmacheva
- Siberian Division of Russian Academy of Sciences, Institute of Cytology and Genetics, Novosibirsk, Russia
| | - Valentina N Buneva
- Siberian Division of Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Georgy A Nevinsky
- Siberian Division of Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
27
|
Baliño P, Romero-Cano R, Sánchez-Andrés JV, Valls V, Aragón CG, Muriach M. Effects of Acute Ethanol Administration on Brain Oxidative Status: The Role of Acetaldehyde. Alcohol Clin Exp Res 2019; 43:1672-1681. [PMID: 31211868 DOI: 10.1111/acer.14133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/11/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Ethanol (EtOH), one of the most widely consumed substances of abuse, can induce brain damage and neurodegeneration. EtOH is centrally metabolized into acetaldehyde, which has been shown to be responsible for some of the neurophysiological and cellular effects of EtOH. Although some of the consequences of chronic EtOH administration on cell oxidative status have been described, the mechanisms by which acute EtOH administration affects the brain's cellular oxidative status and the role of acetaldehyde remain to be elucidated in detail. METHODS Swiss CD-I mice were pretreated with the acetaldehyde-sequestering agent d-penicillamine (DP; 75 mg/kg, i.p.) or the antioxidant lipoic acid (LA; 50 mg/kg, i.p.) 30 minutes before EtOH (2.5 g/kg, i.p.) administration. Animals were sacrificed 30 minutes after EtOH injection. Glutathione peroxidase (GPx) mRNA levels; GPx and glutathione reductase (GR) enzymatic activities; reduced glutathione (GSH), glutathione disulfide (GSSG), glutamate, g-L-glutamyl-L-cysteine (Glut-Cys), and malondialdehyde (MDA) concentrations; and protein carbonyl group (CG) content were determined in whole-brain samples. RESULTS Acute EtOH administration enhanced GPx activity and the GSH/GSSG ratio, while it decreased GR activity and GSSG concentration. Pretreatment with DP or LA only prevented GPx activity changes induced by EtOH. CONCLUSIONS Altogether, these results show the capacity of a single dose of EtOH to unbalance cellular oxidative homeostasis.
Collapse
Affiliation(s)
- Pablo Baliño
- From the, Unitat predepartamental de Medicina, (PB, RR-C, JVS-A, VV, MM), Universitat Jaume I, Castellón de la Plana, Spain
| | - Ricard Romero-Cano
- From the, Unitat predepartamental de Medicina, (PB, RR-C, JVS-A, VV, MM), Universitat Jaume I, Castellón de la Plana, Spain
| | - Juan Vicente Sánchez-Andrés
- From the, Unitat predepartamental de Medicina, (PB, RR-C, JVS-A, VV, MM), Universitat Jaume I, Castellón de la Plana, Spain
| | - Victoria Valls
- From the, Unitat predepartamental de Medicina, (PB, RR-C, JVS-A, VV, MM), Universitat Jaume I, Castellón de la Plana, Spain
| | | | - María Muriach
- From the, Unitat predepartamental de Medicina, (PB, RR-C, JVS-A, VV, MM), Universitat Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
28
|
Razygraev AV, Petrosyan MA, Tumasova ZN, Taborskaya KI, Polyanskikh LS, Baziian EV, Balashova NN. Changes in the Activity of Glutathione Peroxidase in the Blood Plasma and Serum of Rats during Postnatal Development and Aging. ADVANCES IN GERONTOLOGY 2019. [DOI: 10.1134/s2079057019030147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
29
|
Perkins AT, Greig MM, Sontakke AA, Peloquin AS, McPeek MA, Bickel SE. Increased levels of superoxide dismutase suppress meiotic segregation errors in aging oocytes. Chromosoma 2019; 128:215-222. [PMID: 31037468 PMCID: PMC6823651 DOI: 10.1007/s00412-019-00702-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/04/2019] [Accepted: 03/25/2019] [Indexed: 12/19/2022]
Abstract
The risk of meiotic segregation errors increases dramatically during a woman’s thirties, a phenomenon known as the maternal age effect. In addition, several lines of evidence indicate that meiotic cohesion deteriorates as oocytes age. One mechanism that may contribute to age-induced loss of cohesion is oxidative damage. In support of this model, we recently reported (Perkins et al. in Proc Natl Acad Sci U S A 113(44):E6823–E6830, 2016) that the knockdown of the reactive oxygen species (ROS)–scavenging enzyme, superoxide dismutase (SOD), during meiotic prophase causes premature loss of arm cohesion and segregation errors in Drosophila oocytes. If age-dependent oxidative damage causes meiotic segregation errors, then the expression of extra SOD1 (cytosolic/nuclear) or SOD2 (mitochondrial) in oocytes may attenuate this effect. To test this hypothesis, we generated flies that contain a UAS-controlled EMPTY, SOD1, or SOD2 cassette and induced expression using a Gal4 driver that turns on during meiotic prophase. We then compared the fidelity of chromosome segregation in aged and non-aged Drosophila oocytes for all three genotypes. As expected, p{EMPTY} oocytes subjected to aging exhibited a significant increase in nondisjunction (NDJ) compared with non-aged oocytes. In contrast, the magnitude of age-dependent NDJ was significantly reduced when expression of extra SOD1 or SOD2 was induced during prophase. Our findings support the hypothesis that a major factor underlying the maternal age effect in humans is age-induced oxidative damage that results in premature loss of meiotic cohesion. Moreover, our work raises the exciting possibility that antioxidant supplementation may provide a preventative strategy to reduce the risk of meiotic segregation errors in older women.
Collapse
Affiliation(s)
- Adrienne T Perkins
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH, 03755, USA.,Intermountain Healthcare Precision Genomics, 600 S. Medical Center Drive, St. George, UT, 84770, USA
| | - Miranda M Greig
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH, 03755, USA
| | - Amrita A Sontakke
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH, 03755, USA
| | - Andrew S Peloquin
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH, 03755, USA
| | - Mark A McPeek
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH, 03755, USA
| | - Sharon E Bickel
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH, 03755, USA.
| |
Collapse
|
30
|
Moyse E, Arsenault M, Gaudreau P, Ferland G, Ramassamy C. Brain region-specific effects of long-term caloric restriction on redox balance of the aging rat. Mech Ageing Dev 2019; 179:51-59. [PMID: 30659860 DOI: 10.1016/j.mad.2019.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/01/2018] [Accepted: 01/03/2019] [Indexed: 12/22/2022]
Abstract
Caloric restriction (CR) is the most effective intervention to improve health span and extend lifespan in preclinical models. This anti-aging effect of CR is related to attenuation of oxidative damage in various tissues, with divergent results in the brain. We addressed how brain oxidoreductive balance would be modulated in male Sprague-Dawley (SD) rats submitted to a 40% CR from 8 to 19 months of age, by reference to ad libitum-fed (AL) rats at 2 and 19 months of age. Four brain structures were compared: hippocampus, striatum, parietal cortex, cerebellum. Our CR diet elicits significant prevention of oxidative damages with the upregulation of antioxidant defenses (levels of glutathione [GSH], mRNAs of clusterin and of three key antioxidant enzymes) as compared to age-matched AL controls, in a strikingly region-specific pattern. CR also prevented a drastic rise of the glial fibrillary acidic protein in the hippocampus of old AL rats. Besides, the CR effects at age 19 months mainly consist in improving endogenous defenses before the onset of age-related redox alterations. These effects are more prominent in the hippocampus.
Collapse
Affiliation(s)
- Emmanuel Moyse
- Laboratory of Neuroendocrinology of Aging, Centre Hospitalier de l'Université de Montréal, 900 St-Denis Street, R Pavilion, Rm R05.436B-02, Montreal, QC, H2X0A9, Canada; Physiology of Reproduction and Behaviour Unit (PRC), University of Tours, INRA Centre of Tours, F-37380, Nouzilly, France
| | - Madeleine Arsenault
- Institut Armand-Frappier, INRS, 531 Bld des Prairies, Laval, QC, H7V 1B7, Canada
| | - Pierrette Gaudreau
- Laboratory of Neuroendocrinology of Aging, Centre Hospitalier de l'Université de Montréal, 900 St-Denis Street, R Pavilion, Rm R05.436B-02, Montreal, QC, H2X0A9, Canada; Department of Medicine, University of Montreal, Montreal, QC, H3C 3J7, Canada
| | - Guylaine Ferland
- Institut de cardiologie de Montréal Research Center, Montreal, QC, H4J 1C5, Canada; Department of Nutrition, University of Montreal, Montreal, QC, H1T 1C8, Canada
| | - Charles Ramassamy
- Institut Armand-Frappier, INRS, 531 Bld des Prairies, Laval, QC, H7V 1B7, Canada; Institute of Nutrition and Functional Foods, Laval University, Quebec City, QC, G1V 4L3, Canada.
| |
Collapse
|
31
|
Winiarska-Mieczan A. Protective effect of tea against lead and cadmium-induced oxidative stress-a review. Biometals 2018; 31:909-926. [PMID: 30317404 PMCID: PMC6245044 DOI: 10.1007/s10534-018-0153-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/28/2018] [Indexed: 11/17/2022]
Abstract
Exposure to Cd and Pb reduces the activity of antioxidant enzymes, which points to a decrease in the antioxidant potential of the body as a result of supplying factors which enhance cellular oxidation processes. Man is exposed to the effects of toxic metals because they are present in the environment, including in food. Since no effective ways to reduce the concentrations of Cd an Pb in food exist, studies are undertaken to develop methods of reducing their toxic effect on the body through chelating these metals using nutrients (which reduces their absorption by tissues) or increasing the oxidative capacity of the body (which decreases the possibility of inducing oxidative damage to internal organs). Studies performed on laboratory animals have shown that the use of tea infusions fulfil both functions.
Collapse
Affiliation(s)
- Anna Winiarska-Mieczan
- Department of Bromatology and Food Physiology, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
| |
Collapse
|
32
|
Zhang H, Lin S, Chen X, Gu L, Zhu X, Zhang Y, Reyes K, Wang B, Jin K. The effect of age, sex and strains on the performance and outcome in animal models of stroke. Neurochem Int 2018; 127:2-11. [PMID: 30291954 DOI: 10.1016/j.neuint.2018.10.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 12/26/2022]
Abstract
Stroke is one of the leading causes of death worldwide, and the majority of cerebral stroke is caused by occlusion of cerebral circulation, which eventually leads to brain infarction. Although stroke occurs mainly in the aged population, most animal models for experimental stroke in vivo almost universally rely on young-adult rodents for the evaluation of neuropathological, neurological, or behavioral outcomes after stroke due to their greater availability, lower cost, and fewer health problems. However, it is well established that aged animals differ from young animals in terms of physiology, neurochemistry, and behavior. Stroke-induced changes are more pronounced with advancing age. Therefore, the overlooked role of age in animal models of stroke could have an impact on data quality and hinder the translation of rodent models to humans. In addition to aging, other factors also influence functional performance after ischemic stroke. In this article, we summarize the differences between young and aged animals, the impact of age, sex and animal strains on performance and outcome in animal models of stroke and emphasize age as a key factor in preclinical stroke studies.
Collapse
Affiliation(s)
- Hongxia Zhang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Siyang Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xudong Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Lei Gu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Xiaohong Zhu
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yinuo Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Kassandra Reyes
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Brian Wang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Kunlin Jin
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
33
|
Abdul Sani NF, Ahmad Damanhuri MH, Amir Hamzah AIZ, Abu Bakar ZH, Tan JK, Nor Aripin KN, Mohd Rani MD, Noh NA, Shamaan NA, Razali R, Mohd Yusof YA, Mazlan M, Makpol S, Wan Ngah WZ. DNA damage and protein oxidation associated with ageing correlate with cognitive dysfunction in a Malaysian population. Free Radic Res 2018; 52:1000-1009. [PMID: 30079776 DOI: 10.1080/10715762.2018.1506877] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ageing is associated with increased oxidative stress accompanied by cognitive decline. The aim of this study was to evaluate oxidative stress biomarkers and their possible relationship with cognitive performances during ageing among the Malay population. Approximately 160 healthy Malay adults aged between 28 and 79 years were recruited around Selangor and Klang Valley. Cognitive function was assessed by Montreal Cognitive Assessment (MoCA), forward digit span (FDS), backward digit span (BDS), digit symbol, Rey Auditory Verbal Learning Test immediate recalled [RAVLT(I)] and delayed recalled [RAVLT(D)], and visual reproduction immediate recalled (VR-I) and delayed recalled (VR-II). DNA damage, plasma protein carbonyl and malondialdehyde (MDA) levels were also determined. Cognitive function test showed significant lower scores of MoCA, BDS, RAVLT(I), RAVLT(D), digit symbol, VR-I, and VR-II in the older age group (60 years old) compared with the 30-, 40-, and 50-year-old group. The extent of DNA damage was sequential with age: 60 > 50 > 40 > 30, whereas protein carbonyl was higher in 40-, 50-, and 60-year-old groups compared with the youngest group (30 years old). However, the MDA level was observed unchanged in all age groups. Approximately 21.88% of the participants had cognitive impairment. Multiple logistic regression analysis revealed that DNA damage and protein carbonyl levels are predictors for cognitive impairment in healthy Malays. In conclusion, cognitive decline occurred in healthy adult Malay population at an early age of 30 years old with corresponding higher DNA damage and protein oxidation.
Collapse
Affiliation(s)
- Nur Fathiah Abdul Sani
- a Department of Biochemistry , Universiti Kebangsaan Malaysia Medical Center Jalan Yaacob Latif , Kuala Lumpur , Malaysia
| | - Mohd Hanafi Ahmad Damanhuri
- a Department of Biochemistry , Universiti Kebangsaan Malaysia Medical Center Jalan Yaacob Latif , Kuala Lumpur , Malaysia
| | - Ahmad Imran Zaydi Amir Hamzah
- a Department of Biochemistry , Universiti Kebangsaan Malaysia Medical Center Jalan Yaacob Latif , Kuala Lumpur , Malaysia
| | - Zulzikry Hafiz Abu Bakar
- a Department of Biochemistry , Universiti Kebangsaan Malaysia Medical Center Jalan Yaacob Latif , Kuala Lumpur , Malaysia
| | - Jen-Kit Tan
- a Department of Biochemistry , Universiti Kebangsaan Malaysia Medical Center Jalan Yaacob Latif , Kuala Lumpur , Malaysia
| | - Khairun Nain Nor Aripin
- b Faculty of Medicine and Health Sciences , Universiti Sains Islam Malaysia , Kuala Lumpur , Malaysia
| | - Mohd Dzulkhairi Mohd Rani
- b Faculty of Medicine and Health Sciences , Universiti Sains Islam Malaysia , Kuala Lumpur , Malaysia
| | - Nor Azila Noh
- b Faculty of Medicine and Health Sciences , Universiti Sains Islam Malaysia , Kuala Lumpur , Malaysia
| | - Nor Aripin Shamaan
- b Faculty of Medicine and Health Sciences , Universiti Sains Islam Malaysia , Kuala Lumpur , Malaysia
| | - Rosdinom Razali
- c Department of Psychiatry , Universiti Kebangsaan Malaysia Medical Center , Kuala Lumpur , Malaysia
| | - Yasmin Anum Mohd Yusof
- a Department of Biochemistry , Universiti Kebangsaan Malaysia Medical Center Jalan Yaacob Latif , Kuala Lumpur , Malaysia
| | - Musalmah Mazlan
- d Faculty of Medicine , Universiti Teknologi Mara, Jalan Hospital , 47000 Sungai Buloh , Malaysia
| | - Suzana Makpol
- a Department of Biochemistry , Universiti Kebangsaan Malaysia Medical Center Jalan Yaacob Latif , Kuala Lumpur , Malaysia
| | - Wan Zurinah Wan Ngah
- a Department of Biochemistry , Universiti Kebangsaan Malaysia Medical Center Jalan Yaacob Latif , Kuala Lumpur , Malaysia
| |
Collapse
|
34
|
Nikray N, Karimi I, Siavashhaghighi Z, Becker LA, Mofatteh MM. An effort toward molecular biology of food deprivation induced food hoarding in gonadectomized NMRI mouse model: focus on neural oxidative status. BMC Neurosci 2018; 19:59. [PMID: 30249177 PMCID: PMC6154416 DOI: 10.1186/s12868-018-0461-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 09/20/2018] [Indexed: 12/03/2022] Open
Abstract
Background Environmental uncertainty, such as food deprivation, may alter internal milieu of nervous system through various mechanisms. In combination with circumstances of stress or aging, high consumption of unsaturated fatty acids and oxygen can make neural tissues sensitive to oxidative stress (OS). For adult rats, diminished level of gonadal steroid hormones accelerates OS and may result in special behavioral manifestations. This study was aimed to partially answer the question whether OS mediates trade-off between food hoarding and food intake (fat hoarding) in environmental uncertainty (e.g., fluctuations in food resource) within gonadectomized mouse model in the presence of food deprivation-induced food hoarding behavior. Results Hoarding behavior was not uniformly expressed in all male mice that exposed to food deprivation. Extended phenotypes including hoarder and non-hoarder mice stored higher and lower amounts of food respectively as compared to that of low-hoarder mice (normal phenotype) after food deprivation. Results showed that neural oxidative status was not changed in the presence of hoarding behavior in gonadectomized mice regardless of tissue type, however, glutathione levels of brain tissues were increased in the presence of hoarding behavior. Decreased superoxide dismutase activity in brain and spinal cord tissues and increased malondialdehyde in brain tissues of gonadectomized mice were also seen. Conclusions Although, food deprivation-induced hoarding behavior is a strategic response to food shortage in mice, it did not induce the same amount of hoarding across all colony mates. Hoarding behavior, in this case, is a response to the environmental uncertainty of food shortage, therefore is not an abnormal behavior. Hoarding behavior induced neural OS with regard to an increase in brain glutathione levels but failed to show other markers of neural OS. Decreased superoxide dismutase activity in brain and spinal cord tissues and increased malondialdehyde levels in brain tissues of gonadectomized mice could be a hallmark of debilitated antioxidative defense and more lipid peroxidation due to reduced amount of gonadal steroid hormones during aging.
Collapse
Affiliation(s)
- Noushin Nikray
- Laboratory of Molecular and Cellular Biology 1214, Department of Basic Veterinary Sciences, School of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Isaac Karimi
- Laboratory of Molecular and Cellular Biology 1214, Department of Basic Veterinary Sciences, School of Veterinary Medicine, Razi University, Kermanshah, Iran. .,Department of Biology, Faculty of Science, Razi University, Kermanshah, 67149-67346, Iran.
| | | | - Lora A Becker
- Department of Psychology, University of Evansville, Evansville, IN, 47722, USA
| | - Mohammad Mehdi Mofatteh
- Department of Accounting, School of Economics and Accounting, Islamic Azad University South Tehran Branch, Tehran, Iran
| |
Collapse
|
35
|
Lee JY, Paik IY, Kim JY. Voluntary exercise reverses immune aging induced by oxidative stress in aging mice. Exp Gerontol 2018; 115:148-154. [PMID: 30189231 DOI: 10.1016/j.exger.2018.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/26/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022]
Abstract
Excessive oxidative stress leads to aging due to persistent damage to the cells, tissues, and the entire organism. Immunosenescence is also a devastating consequence of oxidative stress, but there is a lack of research on effective ways to overcome it. In this study, we used physiologic and immunological aging mouse models that had sustained oxidative stress to investigate whether voluntary exercise and/or antioxidant treatment could overcome oxidative damage as well as aging. We established an aging model induced by continuously administering d-galactose (d-gal) to 6-week-old female C57BL/6J mice. We also assessed reversal of immunosenescence by providing free-wheel running and vitamin E (vit E) supplementation to this aging model. As an aging index, the level of advanced glycation end products (AGEs) in the blood was measured. Phenotypes of T cells in the thymus and spleen were examined as an index of immunosenescence. Intracellular reactive oxygen species (ROS) levels in the mouse spleen and levels of AGEs in the blood were significantly higher after 6 weeks of d-gal administration. In addition, immunosenescence was observed, in which the naïve:effector cell ratio in the spleen decreased. After 4 weeks of free-wheel running and vit E administration, both intracellular ROS and serum AGE levels decreased. Above all, free-wheel running restored the naïve:effector ratio of cytotoxic T lymphocytes reduced by d-gal administration. Taken together, these results suggest that voluntary exercise may be effective in restoring immunosenescence induced by oxidative stress.
Collapse
Affiliation(s)
- Ji-Young Lee
- Department of Physical Education, Yonsei University, Seoul, South Korea
| | - Il-Young Paik
- Department of Physical Education, Yonsei University, Seoul, South Korea
| | - Joo Young Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
36
|
Garaschuk O, Semchyshyn HM, Lushchak VI. Healthy brain aging: Interplay between reactive species, inflammation and energy supply. Ageing Res Rev 2018; 43:26-45. [PMID: 29452266 DOI: 10.1016/j.arr.2018.02.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/13/2017] [Accepted: 02/08/2018] [Indexed: 02/07/2023]
Abstract
Brains' high energy expenditure with preferable utilization of glucose and ketone bodies, defines the specific features of its energy homeostasis. The extensive oxidative metabolism is accompanied by a concomitant generation of high amounts of reactive oxygen, nitrogen, and carbonyl species, which will be here collectively referred to as RONCS. Such metabolism in combination with high content of polyunsaturated fatty acids creates specific problems in maintaining brains' redox homeostasis. While the levels of products of interaction between RONCS and cellular components increase slowly during the first two trimesters of individuals' life, their increase is substantially accelerated towards the end of life. Here we review the main mechanisms controlling the redox homeostasis of the mammalian brain, their age-dependencies as well as their adaptive potential, which might turn out to be much higher than initially assumed. According to recent data, the organism seems to respond to the enhancement of aging-related toxicity by forming a new homeostatic set point. Therefore, further research will focus on understanding the properties of the new set point(s), the general nature of this phenomenon and will explore the limits of brains' adaptivity.
Collapse
Affiliation(s)
- O Garaschuk
- Department of Neurophysiology, Institute of Physiology, University of Tübingen, 72074 Tübingen, Germany.
| | - H M Semchyshyn
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str, Ivano-Frankivsk, 76018, Ukraine.
| | - V I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, 57 Shevchenko Str, Ivano-Frankivsk, 76018, Ukraine.
| |
Collapse
|
37
|
Yahyapour R, Motevaseli E, Rezaeyan A, Abdollahi H, Farhood B, Cheki M, Rezapoor S, Shabeeb D, Musa AE, Najafi M, Villa V. Reduction–oxidation (redox) system in radiation-induced normal tissue injury: molecular mechanisms and implications in radiation therapeutics. Clin Transl Oncol 2018; 20:975-988. [DOI: 10.1007/s12094-017-1828-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/27/2017] [Indexed: 02/07/2023]
|
38
|
Tolmacheva AS, Ermakov EA, Buneva VN, Nevinsky GA. Substrate specificity of healthy human sera IgG antibodies with peroxidase and oxydoreductase activities. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171097. [PMID: 29410824 PMCID: PMC5792901 DOI: 10.1098/rsos.171097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/02/2018] [Indexed: 06/08/2023]
Abstract
We have carried out an analysis of whether blood IgG antibodies can protect humans from oxidative stress by oxidizing different harmful compounds. A somewhat unexpected result was obtained. We show here for the first time that healthy human sera IgGs with the peroxidase (in the presence H2O2) efficiently oxidize different compounds: 3,3'-diaminobenzidine (1; DAB), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (2; ATBS), o-phenylenediamine (3; OPD), homovanillic acid (4; HVA), α-naphthol (5), 5-aminosalicylic acid (6; 5-ASA) and 3-amino-9-ethylcarbazole (7; AEC), but seven of nine IgG preparations from different volunteers cannot oxidize p-hydroquinone (8: pHQ). The average apparent kcat values in the H2O2-dependent oxidation by human IgGs decreased in the following order (min-1): ATBS (73.7) ≥ DAB (66.3) > AEC (38.0) ≥ HVA (19.8) ≥ α-naphthol (8.6) > OPD (0.62) ≥ 5-ASA (0.48) > pHQ (0.24). In the absence of H2O2 (oxidoreductase activity), the relative average kcat values decreased in the following order (min-1): DAB (52.1) ≥ ATBS (50.5) > OPD (0.25). The peroxidase average activity of human IgGs was higher than the oxidoreductase one: 1.2-, 1.5- and 2.5-fold for DAB, ATBS and OPD, respectively. It should be assumed that antibodies can oxidize in addition to the large number of other different compounds analysed by us. As a whole, the specific wide repertoire of polyclonal human IgGs oxidizing various compounds could play an important role in protecting humans from oxidative stress and serve as an additional natural system destroying H2O2 and different toxic mutagenic and carcinogenic compounds.
Collapse
Affiliation(s)
- Anna S. Tolmacheva
- Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, 10 Lavrentiev Avenue, Novosibirsk, Russia
| | - Evgeny A. Ermakov
- Siberian Division of Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
| | - Valentina N. Buneva
- Siberian Division of Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
| | - Georgy A. Nevinsky
- Siberian Division of Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentiev Avenue, Novosibirsk 630090, Russia
- Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090, Russia
| |
Collapse
|
39
|
Jacob MH, Fernandes RO, Bonetto JH, Mendes RH, Araujo ASDR, Belló-Klein A, Ribeiro MF. DHEA Treatment Effects on Redox Environment in Skeletal Muscle of Young and Aged Healthy Rats. Curr Aging Sci 2018; 11:126-132. [PMID: 30073935 PMCID: PMC6388512 DOI: 10.2174/1874609811666180803125723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/28/2018] [Accepted: 07/04/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dehydroepiandrosterone (DHEA) is an important precursor of active steroid hormone, produced abundantly by the adrenal cortex with an age-dependent pattern. OBJECTIVE We investigated whether chronic DHEA administration impacts on redox status and on Akt protein activation in skeletal muscle during the aging process (3 and 24 months-old rats). METHODS Rats received one weekly dose/5 weeks of DHEA (10 mg/kg) or vehicle. Gastrocnemius muscle was removed to evaluate glutathione system, hydrogen peroxide, antioxidant enzymes, and expression of Akt kinase protein. RESULTS In the 3-months-old rats DHEA induced an increase in hydrogen peroxide when compared both to its control (276%) and the 24-months-old DHEA group (485%). Moreover, in the 24- months-old rats DHEA caused an increase in GSSG (41 and 28%), a decrease in reduced-GSH (55 and 51%), and a more oxidized redox status (reduction in GSH/GSSG ratio, 47 and 65 %) when compared to 3-month-old DHEA and to 24-months-old control groups, respectively. Both older groups had increased G6PDH (2.7 fold) and GST (1.7 fold) activities when compared to younger groups, independently of any DHEA treatment. However, there was no modulation of Akt protein (phosphorylated/total isoform). CONCLUSION The results show that chronic DHEA administration to 3 and 24-months-old rats may not present positive effects regarding the redox environment in skeletal muscle without modulation of pro-survival Akt kinase. Due to the large-scale self-administration of DHEA as an "anti-aging" dietary supplement, it is crucial to investigate its molecular mechanisms over oxidative stressinduced related diseases.
Collapse
Affiliation(s)
- Maria H.V.M. Jacob
- Address correspondence to this author at the UFRGS, ICBS - Rua Sarmento Leite, 500. Porto Alegre/RS/Brazil CEP 90050-170, Brazil;
E-mail:
| | | | | | | | | | | | | |
Collapse
|
40
|
Change of the State of the Natural Antioxidant Barrier of a Body and Psychological Parameters in Patients Aged above 60. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6568501. [PMID: 29410734 PMCID: PMC5749277 DOI: 10.1155/2017/6568501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/30/2017] [Accepted: 10/08/2017] [Indexed: 11/18/2022]
Abstract
Background The goal of this study is to assess the natural antioxidant barrier of the organism and selected psychological aspects of the aging process in patients above 60 years old. Methods The study included a total of 52 patients aged above 60 (mean age 67 ± 3.4) and 32 healthy subjects (mean age 22 ± 3.4) as a control group. All patients underwent psychological assessment using Test of Attentional Performance version 2.3 (TAP 2.3, four subtests: alertness, cross-modal integration, neglect with central task, and working memory) and biochemical analysis of venous blood concerning values of the selected parameters of oxidative stress (HT, GSH, GPXOS, GPXRBC, GRRBC1, SODRBC1, MDARBC1, NO2−/NO3−, and CP). Results Disorders of attention were observed mainly in elderly people, but an assumption that elderly people have developed more efficient ways of working memory use than younger people may be true. Results showed the reduced effectiveness of the body's natural antioxidant barrier in elderly people. Moderate positive and negative correlations among parameters of oxidative stress and psychological parameters were observed in the control group. Discussion Intensification of the attention deficits and oxidative stress may be observed as one of the pathogenic factors of age-dependent diseases.
Collapse
|
41
|
Singh AK, Garg G, Singh S, Rizvi SI. Synergistic Effect of Rapamycin and Metformin Against Age-Dependent Oxidative Stress in Rat Erythrocytes. Rejuvenation Res 2017; 20:420-429. [DOI: 10.1089/rej.2017.1916] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
| | - Geetika Garg
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | - Sandeep Singh
- Department of Biochemistry, University of Allahabad, Allahabad, India
| | | |
Collapse
|
42
|
Jeong H, Liu Y, Kim HS. Dried plum and chokeberry ameliorate d-galactose-induced aging in mice by regulation of Pl3k/Akt-mediated Nrf2 and Nf-kB pathways. Exp Gerontol 2017; 95:16-25. [DOI: 10.1016/j.exger.2017.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/19/2017] [Accepted: 05/03/2017] [Indexed: 12/20/2022]
|
43
|
Suganya KSU, Govindaraju K, Sivaraman D, Selvaraj R, Manikandan R, Ganesh Kumar V. Nanotoxicity Assessment of Functionalized Gold Nanoparticles in Sprague–Dawley Rats. J CLUST SCI 2017; 28:2933-2951. [DOI: 10.1007/s10876-017-1269-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
44
|
Cheng JM, Liu YX. Age-Related Loss of Cohesion: Causes and Effects. Int J Mol Sci 2017; 18:E1578. [PMID: 28737671 PMCID: PMC5536066 DOI: 10.3390/ijms18071578] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 12/25/2022] Open
Abstract
Aneuploidy is a leading genetic cause of birth defects and lower implantation rates in humans. Most errors in chromosome number originate from oocytes. Aneuploidy in oocytes increases with advanced maternal age. Recent studies support the hypothesis that cohesion deterioration with advanced maternal age represents a leading cause of age-related aneuploidy. Cohesin generates cohesion, and is established only during the premeiotic S phase of fetal development without any replenishment throughout a female's period of fertility. Cohesion holds sister chromatids together until meiosis resumes at puberty, and then chromosome segregation requires the release of sister chromatid cohesion from chromosome arms and centromeres at anaphase I and anaphase II, respectively. The time of cohesion cleavage plays an important role in correct chromosome segregation. This review focuses specifically on the causes and effects of age-related cohesion deterioration in female meiosis.
Collapse
Affiliation(s)
- Jin-Mei Cheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
45
|
Jimenez AG, Jayawardene S, Alves S, Dallmer J, Dowd WW. Micro-scale environmental variation amplifies physiological variation among individual mussels. Proc Biol Sci 2017; 282:20152273. [PMID: 26645201 DOI: 10.1098/rspb.2015.2273] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The contributions of temporal and spatial environmental variation to physiological variation remain poorly resolved. Rocky intertidal zone populations are subjected to thermal variation over the tidal cycle, superimposed with micro-scale variation in individuals' body temperatures. Using the sea mussel (Mytilus californianus), we assessed the consequences of this micro-scale environmental variation for physiological variation among individuals, first by examining the latter in field-acclimatized animals, second by abolishing micro-scale environmental variation via common garden acclimation, and third by restoring this variation using a reciprocal outplant approach. Common garden acclimation reduced the magnitude of variation in tissue-level antioxidant capacities by approximately 30% among mussels from a wave-protected (warm) site, but it had no effect on antioxidant variation among mussels from a wave-exposed (cool) site. The field-acclimatized level of antioxidant variation was restored only when protected-site mussels were outplanted to a high, thermally stressful site. Variation in organismal oxygen consumption rates reflected antioxidant patterns, decreasing dramatically among protected-site mussels after common gardening. These results suggest a highly plastic relationship between individuals' genotypes and their physiological phenotypes that depends on recent environmental experience. Corresponding context-dependent changes in the physiological mean-variance relationships within populations complicate prediction of responses to shifts in environmental variability that are anticipated with global change.
Collapse
Affiliation(s)
- Ana Gabriela Jimenez
- Department of Biology, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045
| | - Sarah Jayawardene
- Department of Chemistry and Biochemistry, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045
| | - Shaina Alves
- Department of Chemistry and Biochemistry, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045
| | - Jeremiah Dallmer
- Department of Biology, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045
| | - W Wesley Dowd
- Department of Biology, Loyola Marymount University, 1 LMU Drive, Los Angeles, CA 90045
| |
Collapse
|
46
|
Zbynovska K, Petruska P, Kalafova A, Ondruska L, Jurcik R, Chrastinova L, Tusimova E, Kovacik A, Capcarova M. Antioxidant status of rabbits after treatment with epicatechin and patulin. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Hemmeryckx B, Hohensinner P, Swinnen M, Heggermont W, Wojta J, Lijnen HR. Antioxidant Treatment Improves Cardiac Dysfunction in a Murine Model of Premature Aging. J Cardiovasc Pharmacol 2016; 68:374-382. [PMID: 27824722 DOI: 10.1097/fjc.0000000000000423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Bmal1-(brain and muscle ARNT-like protein-1) deficient (Bmal1) mice prematurely age because of an increased reactive oxygen species (ROS) production. These mice also show a decline in cardiac function with age. We investigated whether an antioxidant treatment can ameliorate the declining cardiac function in prematurely aged Bmal1 mice. Male Bmal1 and wild-type (Bmal1) mice were exposed for 15 weeks to a high fat and high cholesterol diet with or without the antioxidant 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPOL; 5 mmol/L; in drinking water during the last 10 weeks). Echocardiographic analysis revealed that TEMPOL treatment of Bmal1 mice normalized cardiac function, as evidenced by a decrease in left ventricular diastolic and systolic internal diameters, and by an increase in fractional shortening and ejection fraction. The antioxidant did not affect cardiac function in Bmal1 mice. Although TEMPOL did not influence cardiac ROS levels in Bmal1 mice, it significantly protected Bmal1 cardiac telomeres from oxidation, as evidenced by a reduction in the telomere damage score (0.11 ± 0.012% vs. 0.16 ± 0.015%; P = 0.028). Thus, antioxidant treatment normalized cardiac function of Bmal1 mice, probably in part by scavenging ROS.
Collapse
Affiliation(s)
- Bianca Hemmeryckx
- *Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; †Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria; ‡Cardiology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium; §Department of Internal Medicine, Service of Cardiology, University Hospitals Leuven, Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
48
|
Oxidative stress in oocytes during midprophase induces premature loss of cohesion and chromosome segregation errors. Proc Natl Acad Sci U S A 2016; 113:E6823-E6830. [PMID: 27791141 DOI: 10.1073/pnas.1612047113] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In humans, errors in meiotic chromosome segregation that produce aneuploid gametes increase dramatically as women age, a phenomenon termed the "maternal age effect." During meiosis, cohesion between sister chromatids keeps recombinant homologs physically attached and premature loss of cohesion can lead to missegregation of homologs during meiosis I. A growing body of evidence suggests that meiotic cohesion deteriorates as oocytes age and contributes to the maternal age effect. One hallmark of aging cells is an increase in oxidative damage caused by reactive oxygen species (ROS). Therefore, increased oxidative damage in older oocytes may be one of the factors that leads to premature loss of cohesion and segregation errors. To test this hypothesis, we used an RNAi strategy to induce oxidative stress in Drosophila oocytes and measured the fidelity of chromosome segregation during meiosis. Knockdown of either the cytoplasmic or mitochondrial ROS scavenger superoxide dismutase (SOD) caused a significant increase in segregation errors, and heterozygosity for an smc1 deletion enhanced this phenotype. FISH analysis indicated that SOD knockdown moderately increased the percentage of oocytes with arm cohesion defects. Consistent with premature loss of arm cohesion and destabilization of chiasmata, the frequency at which recombinant homologs missegregate during meiosis I is significantly greater in SOD knockdown oocytes than in controls. Together these results provide an in vivo demonstration that oxidative stress during meiotic prophase induces chromosome segregation errors and support the model that accelerated loss of cohesion in aging human oocytes is caused, at least in part, by oxidative damage.
Collapse
|
49
|
Okudan N, Belviranli M. Effects of exercise training on hepatic oxidative stress and antioxidant status in aged rats. Arch Physiol Biochem 2016; 122:180-185. [PMID: 27424521 DOI: 10.1080/13813455.2016.1199574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This study investigated the effects of exercise training on oxidative stress, and antioxidant defense markers in the liver tissues of young and aged rats. Two age groups of 4-(young) and 20-months-(aged) old male Wistar rats were performed exercise training program consisted of swimming exercise for 8 weeks. The biomarkers of pro/antioxidant status malondialdehyde (MDA), protein carbonyl (PC), 8-hydroxy-2'-deoxyguanosine (8-OHdG), total glutathione (GSH) and superoxide dismutase (SOD) were assessed by commercially available kits. PC levels were higher in the untrained aged rats compared to the young groups and exercise training decreased PC levels (p < 0.05). 8-OHdG levels were higher in the aged groups (p < 0.05). MDA and GSH levels and SOD activity did not differ significantly between the groups (p > 0.05). The present findings indicate that exercise training prevents aging-induced hepatic oxidative damage especially in the proteins.
Collapse
Affiliation(s)
- Nilsel Okudan
- a School of Medicine, Department of Physiology, Division of Sports Physiology, Selçuk University , Konya , Turkey
| | - Muaz Belviranli
- a School of Medicine, Department of Physiology, Division of Sports Physiology, Selçuk University , Konya , Turkey
| |
Collapse
|
50
|
Taskiran D, Nesil T, Alkan K. Mitochondrial oxidative stress in female and male rat brain after ex vivo carbon monoxide treatment. Hum Exp Toxicol 2016; 26:645-51. [PMID: 17884952 DOI: 10.1177/0960327107076882] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Carbon monoxide (CO) is the most common cause of fatal poisoning all over the world. At the cellular level, a combination of tissue hypoxia and direct cellular damage underlie the pathophysiology of CO toxicity. The purpose of this study was to determine the effect of CO treatment on oxidative stress parameters in mitochondria isolated from male and female rat brains. Mitochondria prepared from frontal cortex, hippocampus and corpus striatum were treated with 0.1% CO at 37°C for 30 minutes; control samples were not exposed to CO. Cytochrome c oxidase activity (COX), lipid peroxidation (thiobarbituric acid reactive species = TBARS), protein oxidation (protein carbonyls) and glutathione (GSH) levels were measured in CO treated and control samples. Our results confirmed previous studies reporting the inhibition of cytochrome c oxidase activity by CO in rat brain. Additionally, protein carbonyl levels in the hippocampus and striatum significantly increased after CO treatment in male rats. While CO treatment caused a significant decrease in GSH levels in the cortex and striatum in male rats, reduced GSH levels were observed in the cortex and hippocampus in female rats following CO exposure. Taken together, our data suggest a role for mitochondrial oxidative stress in CO toxicity at the cellular level during CO poisoning. Human & Experimental Toxicology (2007) 26, 645—651
Collapse
Affiliation(s)
- D Taskiran
- Ege University School of Medicine, Department of Physiology and Center for Brain Research, Izmir, Turkey.
| | | | | |
Collapse
|