1
|
Tanev MZ, Tomov GT, Georgiev KG, Georgieva ED, Petkova-Parlapanska KV, Nikolova GD, Karamalakova YD. Evaluation of indocyanine green antimicrobial photodynamic therapy in radical species elimination: an in vitro study. Folia Med (Plovdiv) 2024; 66:876-883. [PMID: 39774359 DOI: 10.3897/folmed.66.e135281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
INTRODUCTION Antimicrobial photodynamic therapy (aPDT) utilizes light-sensitive materials to inactivate pathogens. Indocyanine green (ICG) is an FDA-approved photosensitizer known for its effective photo-thermal and photo-chemical properties.
Collapse
|
2
|
Elajaili HB, Woodcock LB, Hovey TA, Rinard GA, DeGraw S, Canny A, Dee NM, Kao JPY, Nozik ES, Eaton SS, Eaton GR. Imaging Reactive Oxygen Radicals in Excised Mouse Lung Trapped by Reaction with Hydroxylamine Probes Using 1 GHz Rapid Scan Electron Paramagnetic Resonance. Mol Imaging Biol 2024; 26:503-510. [PMID: 37821714 PMCID: PMC11006821 DOI: 10.1007/s11307-023-01860-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Oxidative stress is proposed to be critical in acute lung disease, but methods to monitor radicals in lungs are lacking. Our goal is to develop low-frequency electron paramagnetic resonance (EPR) methods to monitor radicals that contribute to the disease. PROCEDURES Free radicals generated in a lipopolysaccharide-induced mouse model of acute respiratory distress syndrome reacted with cyclic hydroxylamines CPH (1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine hydrochloride) and DCP-AM-H (4-acetoxymethoxycarbonyl-1-hydroxy-2,2,5,5-tetramethylpyrrolidine-3-carboxylic acid), which were converted into the corresponding nitroxide radicals, CP• and DCP•. The EPR signals of the nitroxide radicals in excised lungs were imaged with a 1 GHz EPR spectrometer/imager that employs rapid scan technology. RESULTS The small numbers of nitroxides formed by reaction of the hydroxylamine with superoxide result in low signal-to-noise in the spectra and images. However, since the spectral properties of the nitroxides are known, we can use prior knowledge of the line shape and hyperfine splitting to fit the noisy data, yielding well-defined spectra and images. Two-dimensional spectral-spatial images are shown for lung samples containing (4.5 ± 0.5) ×1014 CP• and (9.9 ± 1.0) ×1014 DCP• nitroxide spins. These results suggest that a probe that accumulates in cells gives a stronger nitroxide signal than a probe that is more easily washed out of cells. CONCLUSION The nitroxide radicals in excised mouse lungs formed by reaction with hydroxylamine probes CPH and DCP-AM-H can be imaged at 1 GHz.
Collapse
Affiliation(s)
- Hanan B Elajaili
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., B131, Aurora, CO, 80045, USA
| | - Lukas B Woodcock
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - Tanden A Hovey
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - George A Rinard
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - Samuel DeGraw
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - Autumn Canny
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - Nathan M Dee
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., B131, Aurora, CO, 80045, USA
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eva S Nozik
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., B131, Aurora, CO, 80045, USA
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, 80210, USA.
| |
Collapse
|
3
|
Podgorbunskikh E, Kuskov T, Matveeva A, Ulihin A, Bychkov A, Lomovskiy I, Polienko Y. Disordering of Starch Films as a Factor Influencing the Release Rate of Biologically Active Substances. Polymers (Basel) 2023; 15:polym15102303. [PMID: 37242877 DOI: 10.3390/polym15102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The release of a spin probe (nitroxide radical) from polymer films was studied by electron paramagnetic resonance (EPR). The films were fabricated from starch having different crystal structures (A-, B-, and C-types) and disordering degrees. Film morphology (analysis of the scanning electron microscopy (SEM)) depended on the presence of dopant (nitroxide radical) to a larger extent rather than on crystal structure ordering or polymorphic modification. The presence of nitroxide radical led to additional crystal structure disordering and reduced the crystallinity index from the X-ray diffraction (XRD) data. Polymeric films made of amorphized starch powder were able to undergo recrystallization (crystal structure rearrangement), which manifested itself as an increase in crystallinity index and phase transition of the A- and C-type crystal structures to the B-type one. It was demonstrated that nitroxide radical does not form an individual phase during film preparation. According to the EPR data, local permittivity of starch-based films varied from 52.5 to 60.1 F/m, while bulk permittivity did not exceed 17 F/m, which demonstrates that local concentration of water is increased in the regions near the nitroxide radical. The mobility of the spin probe corresponds to small stochastic librations and is indicative of the strongly a mobilized state. The application of kinetic models made it possible to find out that substance release from biodegradable films consists of two stages: matrix swelling and spin probe diffusion through the matrix. Investigation of the release kinetics for nitroxide radical demonstrated that the course of this process depends on the type of crystal structure of native starch.
Collapse
Affiliation(s)
- Ekaterina Podgorbunskikh
- Institute of Solid State Chemistry and Mechanochemistry SB RAS, 18 Kutateladze Str., 630090 Novosibirsk, Russia
| | - Timofei Kuskov
- Institute of Solid State Chemistry and Mechanochemistry SB RAS, 18 Kutateladze Str., 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogova Str., 630090 Novosibirsk, Russia
| | - Anna Matveeva
- Institute of Solid State Chemistry and Mechanochemistry SB RAS, 18 Kutateladze Str., 630090 Novosibirsk, Russia
| | - Artem Ulihin
- Institute of Solid State Chemistry and Mechanochemistry SB RAS, 18 Kutateladze Str., 630090 Novosibirsk, Russia
| | - Aleksey Bychkov
- Institute of Solid State Chemistry and Mechanochemistry SB RAS, 18 Kutateladze Str., 630090 Novosibirsk, Russia
- Department of Business, Novosibirsk State Technical University, 20 Prospekt K. Marksa, 630073 Novosibirsk, Russia
| | - Igor Lomovskiy
- Institute of Solid State Chemistry and Mechanochemistry SB RAS, 18 Kutateladze Str., 630090 Novosibirsk, Russia
| | - Yuliya Polienko
- Laboratory of Nitrogen Compounds, N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 9 Lavrentiev Ave., 630090 Novosibirsk, Russia
| |
Collapse
|
4
|
Karamalakova Y, Stefanov I, Georgieva E, Nikolova G. Pulmonary Protein Oxidation and Oxidative Stress Modulation by Lemna minor L. in Progressive Bleomycin-Induced Idiopathic Pulmonary Fibrosis. Antioxidants (Basel) 2022; 11:523. [PMID: 35326173 PMCID: PMC8944767 DOI: 10.3390/antiox11030523] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 12/23/2022] Open
Abstract
Bleomycin (BLM) administration is associated with multifunctional proteins inflammations and induction of idiopathic pulmonary fibrosis (IPF). Lemna minor L. extract, a free-floating monocot macrophyte possesses antioxidant and anti-inflammatory potential. The aim of the study was to examine the protective effect of L. minor extract on lung protein oxidation and oxidative stress modulation by BLM-induced pulmonary fibrosis in Balb/c mice. For this purpose, the protein carbonyl content, advanced glycation end product, nitroxide protein oxidation (5-MSL), and lipid peroxidation (as MDA and ROS), in lung cells were examined. The histological examinations, collagen deposition, and quantitative measurements of IL-1β, IL-6, and TNF in lung tissues and blood were investigated. Intraperitoneal, BLM administration (0.069 U/mL; 0.29 U/kg b.w.) for 33 days, caused IPF induction in Balb/c mice. Pulmonary combining therapy was administered with L. minor at dose 120 mg/mL (0.187 mg/kg b.w.). L. minor histologically ameliorated BLM induced IPF in lung tissues. L. minor significantly modulated (p < 0.05) BLM-alterations induced in lung hydroxyproline, carbonylated proteins, 5-MSL-protein oxidation. Oxidative stress decreased levels in antioxidant enzymatic and non-enzymatic systems in the lung were significantly regulated (p < 0.05) by L. minor. L. minor decreased the IL-1β, IL-6, and TNF-α expression in lung tissues and plasma. The L. minor improves the preventive effect/defense response in specific pulmonary protein oxidation, lipid peroxidation, ROS identifications, and cytokine modulation by BLM-induced chronic inflammations, and could be a good antioxidant, anti-inflammatory, and anti-fibrotic alternative or IPF prevention involved in their pathogenesis.
Collapse
Affiliation(s)
- Yanka Karamalakova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (Y.K.); (E.G.)
| | - Ivaylo Stefanov
- Department of Anatomy, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria;
| | - Ekaterina Georgieva
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (Y.K.); (E.G.)
| | - Galina Nikolova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Trakia University, 11 Armeiska Str., 6000 Stara Zagora, Bulgaria; (Y.K.); (E.G.)
| |
Collapse
|
5
|
Yasukawa K. Redox-Based Theranostics of Gastric Ulcers Using Nitroxyl Radicals. Antioxid Redox Signal 2022; 36:160-171. [PMID: 34498915 DOI: 10.1089/ars.2021.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Redox-based theranostics involves redox monitoring and therapeutics that normalize redox imbalance. It may be a promising approach to markedly improve a patient's quality of life through streamlined treatment. Nitroxyl radicals are useful for both redox monitoring and treating gastric ulcers in rodents. Recent Advances: Redox monitoring using in vivo electron paramagnetic resonance (EPR) spectroscopy in a gastric ulcer rat model showed the production of reactive oxygen species in the whole stomach. A combination of Overhauser-enhanced magnetic resonance imaging (MRI) and nitroxyl radicals provided high-resolution images of redox imbalance in the stomach of rats with a gastric ulcer. Treatment with nitroxyl radicals was effective to treat ulcers that were formed using model experiments of Helicobacter pylori and mental stress as well as nonsteroidal anti-inflammatory drugs. Critical Issues: For redox monitoring using Overhauser-enhanced MRI, the EPR irradiation power that is delivered to subjects must be within the range of the specific absorption rate regulation to protect against microwave damage regardless of a decrease in image contrast. The effect of long-term treatment with a nitroxyl radical in patients with a gastric ulcer remains unclear. Future Directions: Further research on redox-based theranostics in redox-related diseases, including gastric ulcers, would be accelerated by improving the redox imager and by developing functional nitroxyl radicals that localize in the target organ, tissue, or cell and that have specific reactivity for the redox-related biomolecule.
Collapse
Affiliation(s)
- Keiji Yasukawa
- Laboratory of Advanced Pharmacology, Faculty of Pharmaceutical Sciences, Daiichi University of Pharmacy, Fukuoka, Japan
| |
Collapse
|
6
|
Saito K, Okazaki S, Tachibana Y, Anzai K, Ozawa T, Takeshita K. In vivo ESR imaging of redox status in mice after X-ray irradiation, measured by acyl-protected hydroxylamine probe, ACP. Free Radic Biol Med 2020; 160:596-603. [PMID: 32891759 DOI: 10.1016/j.freeradbiomed.2020.08.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 11/30/2022]
Abstract
More detailed investigations on the in vivo redox status are needed to elucidate the mechanisms contributing to damage caused by ionizing radiation. In the present study, the in vivo redox status of mice was examined using in vivo electron spin resonance (ESR) imaging after an intraperitoneal injection of 1-acetoxy-3-carbamoyl-2,2,5,5-tetramethylpyrrolidine (ACP) as a probe. ACP is easily hydrolyzed to its hydroxylamine form in the mouse body, and the interconversion between hydroxylamine and the corresponding nitroxyl radical reflects the biological redox status. Liver damage, based on changes in liver weight and plasma aspartate aminotransferase levels, was detected in mice 4 days after X-ray irradiation at 7.5 Gy. ESR imaging showed that the signal intensity of the nitroxyl radical was high at the liver area in both damaged and healthy mice after administration of ACP. Whereas the signal decayed at the liver area for healthy mouse, the decay was negligible in damaged mice. Unlike healthy mouse, signal in the chest for damaged mouse increased with time. The distribution of the sum of hydroxylamine and the nitroxyl radical was similar in damaged and healthy mice. X-ray irradiation slightly lowered the reduction activity of the liver microsomal fraction for the nitroxyl radical. Thiobarbituric acid reactive substances in the liver were higher in damaged mice than in healthy mice; however, no significant differences were noted in reduced glutathione. The present results indicate that the redox status of mice exposed to X-ray irradiation is more oxidative than that in healthy mice.
Collapse
Affiliation(s)
- Keita Saito
- National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Shoko Okazaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto, 860-0082, Japan
| | - Yoko Tachibana
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto, 860-0082, Japan
| | - Kazunori Anzai
- National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan; Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kita-Adachi-gun, Saitama, 362-0806, Japan
| | - Toshihiko Ozawa
- National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan; Nihon Pharmaceutical University, 10281 Komuro, Ina-machi, Kita-Adachi-gun, Saitama, 362-0806, Japan
| | - Keizo Takeshita
- National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan; Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto, 860-0082, Japan.
| |
Collapse
|
7
|
Hosain MZ, Hyodo F, Mori T, Takahashi K, Nagao Y, Eto H, Murata M, Akahoshi T, Matsuo M, Katayama Y. Development of a novel molecular probe for the detection of liver mitochondrial redox metabolism. Sci Rep 2020; 10:16489. [PMID: 33020535 PMCID: PMC7536409 DOI: 10.1038/s41598-020-73336-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/15/2020] [Indexed: 11/10/2022] Open
Abstract
Redox status influences the course of the inflammatory, metabolic, and proliferative liver diseases. Oxidative stress is thought to play a crucial and sustained role in the pathological progression of early steatosis to severe hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Oxidative stress induced by reactive oxygen species which are generated in the mitochondria can lead to chronic organelle damage in hepatocytes. Currently, the diagnosis of liver disease requires liver biopsy, which is invasive and associated with complications. The present report describes the development of a novel molecular probe, EDA-PROXYL, with higher reactivity and mitochondrial selectivity than standard carboxyl-PROXYL and carbamoyl-PROXYL probes. The membrane permeability of our probe improved in aqueous environments which led to increased accumulation in the liver and interaction of EDA-PROXYL with the carnitine transporter via the amine (NH3+) group further increased accumulation. This increased mitochondrial sensitivity and enhanced accumulation highlight the potential of EDA-PROXYL as a molecular probe for determining metabolic reactions of the mitochondria. Thus, this novel probe could be a tool for the evaluation of redox status of the mitochondria to assess the degree of liver injury and, ultimately, the response to pharmacological therapy.
Collapse
Affiliation(s)
- Md Zahangir Hosain
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Fuminori Hyodo
- Department of Radiology, School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.
- Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
- Department of Frontier Science for Imaging, School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan.
| | - Takeshi Mori
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| | - Koyo Takahashi
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yusuke Nagao
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hinako Eto
- Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masaharu Murata
- Innovation Center for Medical Redox Navigation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomohiko Akahoshi
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Masayuki Matsuo
- Department of Radiology, School of Medicine, Gifu University, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Yoshiki Katayama
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- International Research Center for Molecular Systems, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- Center for Advanced Medical Innovation, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Rd., Chung Li, 32023, Taiwan, ROC
| |
Collapse
|
8
|
Takeshita K, Okazaki H, Tsukamoto M, Okazaki S. Differences in pharmacokinetic behaviors of two lipophilic 3-substituted 2,2,5,5-tetramethylpyrrolidine-N-oxyl radicals, in vivo probes to assess the redox status in the brain using magnetic resonance techniques. Magn Reson Med 2020; 85:560-569. [PMID: 32905631 DOI: 10.1002/mrm.28499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE The pharmacokinetics of 3-methoxycarbonyl- and 3-hydroxymethyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl radicals (MCP and HMP, respectively), magnetic resonance probes to assess the brain redox status, were examined in healthy mouse brains. METHODS The time course of the concentration of the radical form of the probe in the brain was examined by signal enhancements on T1 -weighted MR image after an intravenous injection. The distribution of the total probe (sum of radical and reduced forms) was investigated using brain homogenates. RESULTS MCP distributed to the brain more than HMP. MCP exhibited biphasic decay with fast and slow components, whereas HMP exhibited monophasic decay with a similar rate constant to the slow component of MCP. Similar profiles were observed in various regions of the brain. The total probe for MCP exhibited monophasic decay at a similar rate constant to the slow component of the radical form; however, the initial content of the total probe was similar to its radical form. For HMP, decay of the total probe coincided with that of the radical form. CONCLUSION The decay of MCP needs to consider the reduction of the probe in and its elimination from the brain, while the decay of HMP may mainly result from its elimination from the brain.
Collapse
Affiliation(s)
- Keizo Takeshita
- Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan.,DDS Research Institute, Sojo University, Kumamoto, Japan
| | - Hana Okazaki
- Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Megumi Tsukamoto
- Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Shoko Okazaki
- Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| |
Collapse
|
9
|
Sun HJ, Lee WT, Leng B, Wu ZY, Yang Y, Bian JS. Nitroxyl as a Potential Theranostic in the Cancer Arena. Antioxid Redox Signal 2020; 32:331-349. [PMID: 31617376 DOI: 10.1089/ars.2019.7904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: As one-electron reduced molecule of nitric oxide (NO), nitroxyl (HNO) has gained enormous attention because of its novel physiological or pharmacological properties, ranging from cardiovascular protective actions to antitumoricidal effects. Recent Advances: HNO is emerging as a new entity with therapeutic advantages over its redox sibling, NO. The interests in the chemical, pharmacological, and biological characteristics of HNO have broadened our current understanding of its role in physiology and pathophysiology. Critical Issues: In particular, the experimental evidence suggests the therapeutic potential of HNO in tumor pharmacology, such as neuroblastoma, gastrointestinal tumor, ovarian, lung, and breast cancers. Indeed, HNO donors have been demonstrated to attenuate tumor proliferation and angiogenesis. Future Directions: In this review, the generation and detection of HNO are outlined, and the roles of HNO in cancer progression are further discussed. We anticipate that the completion of this review might give novel insights into the roles of HNO in cancer pharmacology and open up a novel field of cancer therapy based on HNO.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei-Thye Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bin Leng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yong Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, China
| | - Jin-Song Bian
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
10
|
Matsumoto KI, Nyui M, Ueno M, Ogawa Y, Nakanishi I. A quantitative analysis of carbon-ion beam-induced reactive oxygen species and redox reactions. J Clin Biochem Nutr 2019; 65:1-7. [PMID: 31379407 PMCID: PMC6667381 DOI: 10.3164/jcbn.18-34] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 01/12/2019] [Indexed: 11/22/2022] Open
Abstract
The amounts of reactive oxygen species generated in aqueous samples by irradiation with X-ray or clinical carbon-ion beams were quantified. Hydroxyl radical (•OH), hydrogen peroxide (H2O2), and the total amount of oxidation reactions, which occurred mainly because of •OH and/or hydroperoxy radicals (HO2 •), were measured by electron paramagnetic resonance-based methods. •OH generation was expected to be localized on the track/range of the carbon-ion beam/X-ray, and mM and M levels of •OH generation were observed. Total •OH generation levels were identical at the same dose irrespective of whether X-ray or carbon-ion beam irradiation was used, and were around 0.28-0.35 µmol/L/Gy. However, sparse •OH generation levels decreased with increasing linear energy transfer, and were 0.17, 0.15, and 0.09 µmol/L/Gy for X-ray, 20 keV/µm carbon-ion beam, and >100 keV/µm carbon-ion beam sources, respectively. H2O2 generation was estimated as 0.26, 0.20, and 0.17 µmol/L/Gy, for X-ray, 20 keV/µm carbon-ion beam, and >100 keV/µm carbon-ion beam sources, respectively, whereas the ratios of H2O2 generation per oxygen consumption were 0.63, 0.51, and 3.40, respectively. The amounts of total oxidation reactions were 2.74, 1.17, and 0.66 µmol/L/Gy, respectively. The generation of reactive oxygen species was not uniform at the molecular level.
Collapse
Affiliation(s)
- Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Minako Nyui
- Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Megumi Ueno
- Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Yukihiro Ogawa
- Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Ikuo Nakanishi
- Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
11
|
Matsumoto KI, Mitchell JB, Krishna MC. Effects of oxygen challenging to tissue redox and pO 2 status. Free Radic Biol Med 2019; 130:343-347. [PMID: 30391676 PMCID: PMC8202967 DOI: 10.1016/j.freeradbiomed.2018.10.454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/11/2018] [Accepted: 10/31/2018] [Indexed: 11/23/2022]
Abstract
Nitroxide free radicals can serve as redox-sensitive MRI contrast agents useful to image the redox status of tissue of interest. In this study, the effect of oxygen content in the inspired gas on the kinetics of metabolism of three nitroxides has been evaluated in the muscle and tumor in mice. SCC tumors (approximate size of 1.0 cm3) on the right hind leg of female C3H/Hen MTV- mice were prepared. Three nitroxides, 3-carboxy-2,2,5,5-tetramethylpyrrolidine-N-oxyl (CxP), 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl (CmP), and 4-hydroxy-tetramethylpiperidine-N-oxyl (TEMPOL), having different lipophilicities were compared using MR redox imaging. T1-mapping of the tissues was obtained using a multi-slice multi-echo (MSME) sequence with several TRs. The three nitroxides showed differences in accumulation and metabolism/clearance in muscle and tumor. The cell impermeable nitroxide CxP displayed kinetic patterns of slow enhancement followed by a slow decline typical of clearance rather than metabolism. The cell permeable CmP on the other hand showed a relatively faster uptake and metabolism with a modestly higher rate of metabolism in the tumor than muscle. The TEMPOL on the other hand displayed a rapid uptake and reduction with a trend of significantly rapid decay rate in tumor tissue, while slightly higher maximum signal intensity and slower decay rate was observed in normal muscle. The reduction rate of TEMPOL in the tumor was significantly enhanced when the breathing gas had 100%-oxygen while it was not significantly different in the muscle. EPR oximetry studies monitoring the oxygen dependent linewidth of TEMPOL showed that the pO2 in the healthy tissue during carbogen breathing significantly increased normal tissue pO2 compared to air breathing whereas breathing 100%-oxygen made normal tissue slight hypoxic. Since TEMPOL is a radioprotector, our studies show that a combination of 100%-oxygen breathing and TEMPOL has a potential to enhance radioprotective effects to normal tissue.
Collapse
Affiliation(s)
- Ken-Ichiro Matsumoto
- Quantitative RedOx Sensing Team, Department of Basic Medical Sciences for Radiation Damages, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba-shi, Chiba 263-8555, Japan.
| | - James B Mitchell
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA
| | - Murali C Krishna
- Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1002, USA
| |
Collapse
|
12
|
Stamenković S, Pavićević A, Mojović M, Popović-Bijelić A, Selaković V, Andjus P, Bačić G. In vivo EPR pharmacokinetic evaluation of the redox status and the blood brain barrier permeability in the SOD1 G93A ALS rat model. Free Radic Biol Med 2017; 108:258-269. [PMID: 28366802 DOI: 10.1016/j.freeradbiomed.2017.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder affecting the motor pathways of the central nervous system. Although a number of pathophysiological mechanisms have been described in the disease, post mortem and animal model studies indicate blood-brain barrier (BBB) disruption and elevated production of reactive oxygen species as major contributors to disease pathology. In this study, the BBB permeability and the brain tissue redox status of the SOD1G93A ALS rat model in the presymptomatic (preALS) and symptomatic (ALS) stages of the disease were investigated by in vivo EPR spectroscopy using three aminoxyl radicals with different cell membrane and BBB permeabilities, Tempol, 3-carbamoyl proxyl (3CP), and 3-carboxy proxyl (3CxP). Additionally, the redox status of the two brain regions previously implicated in disease pathology, brainstem and hippocampus, was investigated by spectrophotometric biochemical assays. The EPR results indicated that among the three spin probes, 3CP is the most suitable for reporting the intracellular redox status changes, as Tempol was reduced in vivo within minutes (t1/2 =2.0±0.5min), thus preventing reliable kinetic modeling, whereas 3CxP reduction kinetics gave divergent conclusions, most probably due to its membrane impermeability. It was observed that the reduction kinetics of 3CP in vivo, in the head of preALS and ALS SOD1G93A rats was altered compared to the controls. Pharmacokinetic modeling of 3CP reduction in vivo, revealed elevated tissue distribution and tissue reduction rate constants indicating an altered brain tissue redox status, and possibly BBB disruption in these animals. The preALS and ALS brain tissue homogenates also showed increased nitrilation, superoxide production, lipid peroxidation and manganese superoxide dismutase activity, and a decreased copper-zinc superoxide dismutase activity. The present study highlights in vivo EPR spectroscopy as a reliable tool for the investigation of changes in BBB permeability and for the unprecedented in vivo monitoring of the brain tissue redox status, as early markers of ALS.
Collapse
Affiliation(s)
- Stefan Stamenković
- University of Belgrade - Faculty of Biology, Center for Laser Microscopy, Studentski trg 3, 11158 Belgrade, Serbia
| | - Aleksandra Pavićević
- University of Belgrade - Faculty of Physical Chemistry, EPR Laboratory, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Miloš Mojović
- University of Belgrade - Faculty of Physical Chemistry, EPR Laboratory, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Ana Popović-Bijelić
- University of Belgrade - Faculty of Physical Chemistry, EPR Laboratory, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Vesna Selaković
- Institute for Medical Research, Military Medical Academy, Crnotravska 17, 11000 Belgrade, Serbia
| | - Pavle Andjus
- University of Belgrade - Faculty of Biology, Center for Laser Microscopy, Studentski trg 3, 11158 Belgrade, Serbia.
| | - Goran Bačić
- University of Belgrade - Faculty of Physical Chemistry, EPR Laboratory, Studentski trg 12-16, 11158 Belgrade, Serbia
| |
Collapse
|
13
|
Hyodo F, Ito S, Eto H, Nakaji T, Yasukawa K, Kobayashi R, Utsumi H. Development of Redox Metabolic Imaging Using Endogenous Molecules. YAKUGAKU ZASSHI 2017; 136:1107-14. [PMID: 27477725 DOI: 10.1248/yakushi.15-00234-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Redox metabolism plays a central role in maintaining homeostasis in living organisms. The electron transfer system in mitochondria produces ATP via endogenous redox molecules such as flavin mononucleotide (FMN), flavin adenine dinucleotide (FAD), and coenzyme Q10 (CoQ10), which have flavin or quinone moieties. One-electron transfer reactions convert FMN, FAD, and CoQ10 to the free radical intermediates FMNH and FADH, and CoQ10H, respectively. Dynamic nuclear polarization-magnetic resonance imaging (DNP-MRI) allows us to visualize free radicals in vitro and in vivo. We present a spectroscopic imaging technology with DNP-MRI, which enables the imaging of multiple free radical intermediates such as FADH and CoQH. DNP-MRI can also identify various endogenous free radical intermediates derived from redox transformations.
Collapse
Affiliation(s)
- Fuminori Hyodo
- Innovation Center for Medical Redox Navigation, Kyushu University
| | | | | | | | | | | | | |
Collapse
|
14
|
Takeshita K, Okazaki S, Hirose Y. Pharmacokinetics of lipophilically different 3-substituted 2,2,5,5-tetramethylpyrrolidine-N-oxyl radicals frequently used as redox probes in in vivo magnetic resonance studies. Free Radic Biol Med 2016; 97:263-273. [PMID: 27302159 DOI: 10.1016/j.freeradbiomed.2016.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 12/25/2022]
Abstract
3-Carboxy-, 3-carbamoyl-, 3-hydroxymethyl, and 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl radicals (CxP, CmP, HMP, and MCP, respectively) have been widely used as redox probes in in vivo magnetic resonance studies. Knowledge of the pharmacokinetics of these probes is essential for redox analyses. The apparent partition coefficient (Kp) of these probes at neutral pH was in the order of MCP>HMP>CmP>CxP. After these probes had been injected intravenously, their blood levels decayed in a bi-phasic manner, namely, fast decay followed by slow decay. The order of the area under the curve (AUC) was CxP»HMP>MCP≥CmP, which roughly coincided with that of Kp in the opposite direction, except for CmP. Decay in the slow phase largely affected the AUC of these probes. The reduction of these probes contributed to their decay in the slow phase. A two-compartment model analysis of blood levels, cyclic voltammetry, and magnetic resonance imaging provided the following pharmacokinetic information. The distribution of the probes between the central and peripheral compartments rapidly reached an equilibrium. In addition to lipophilicity, reduction potential may also be involved in the rate of in vivo reduction of the probes. Hydrophilic probes, such as CxP and CmP, were predominantly excreted in the urine. MCP was distributed to the peripheral tissues and then rapidly reduced. HMP was unique due to its moderate lipophilicity and slower reduction. Among the probes examined, the liver and kidney appear to be included in the central compartment in the two-compartment model analysis. MCP and HMP were rapidly distributed to the brain.
Collapse
Affiliation(s)
- Keizo Takeshita
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan.
| | - Shoko Okazaki
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| | - Yuriko Hirose
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto 860-0082, Japan
| |
Collapse
|
15
|
Eto H, Hyodo F, Kosem N, Kobayashi R, Yasukawa K, Nakao M, Kiniwa M, Utsumi H. Redox imaging of skeletal muscle using in vivo DNP-MRI and its application to an animal model of local inflammation. Free Radic Biol Med 2015; 89:1097-104. [PMID: 26505925 DOI: 10.1016/j.freeradbiomed.2015.10.418] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/18/2015] [Accepted: 10/22/2015] [Indexed: 01/21/2023]
Abstract
Disorders of skeletal muscle are often associated with inflammation and alterations in redox status. A non-invasive technique that could localize and evaluate the severity of skeletal muscle inflammation based on its redox environment would be useful for disease identification and monitoring, and for the development of treatments; however, no such technique currently exists. We describe a method for redox imaging of skeletal muscle using dynamic nuclear polarization magnetic resonance imaging (DNP-MRI), and apply this method to an animal model of local inflammation. Female C57/BL6 mice received injections of 0.5% bupivacaine into their gastrocnemius muscles. Plasma biomarkers, myeloperoxidase activity, and histological sections were assessed at 4 and 24h after bupivacaine injection to measure the inflammatory response. In vivo DNP-MRI was performed with the nitroxyl radicals carbamoyl-PROXYL (cell permeable) and carboxy-PROXYL (cell impermeable) as molecular imaging probes at 4 and 24h after bupivacaine administration. The images obtained after carbamoyl-PROXYL administration were confirmed with the results of L-band EPR spectroscopy. The plasma biomarkers, myeloperoxidase activity, and histological findings indicated that bupivacaine injection caused acute muscle damage and inflammation. DNP-MRI images of mice treated with carbamoyl-PROXYL or carboxy-PROXYL at 4 and 24h after bupivacaine injection showed similar increases in image intensity and decay rate was significantly increased at 24h. In addition, reduction rates in individual mice at 4h and 24h showed faster trends with bupivacaine injection than in their contralateral sides by image-based analysis. These findings indicate that in vivo DNP-MRI with nitroxyl radicals can non-invasively detect changes in the focal redox status of muscle resulting from locally-induced inflammation.
Collapse
Affiliation(s)
- Hinako Eto
- Innovation Center for Medical Redox Navigation, Kyushu University, Japan
| | - Fuminori Hyodo
- Innovation Center for Medical Redox Navigation, Kyushu University, Japan.
| | - Nutavutt Kosem
- Innovation Center for Medical Redox Navigation, Kyushu University, Japan
| | - Ryoma Kobayashi
- Innovation Center for Medical Redox Navigation, Kyushu University, Japan
| | - Keiji Yasukawa
- Faculty of Pharmaceutical Sciences, Kyushu University, Japan; Drug Innovation Research Center, Daiichi University of Pharmacy, Japan
| | - Motonao Nakao
- Medical Institute of Bioregulation, Research Center for Transomics Medicine, Division of Metabolomics, Kyushu University, Japan
| | - Mamoru Kiniwa
- Innovation Center for Medical Redox Navigation, Kyushu University, Japan
| | - Hideo Utsumi
- Innovation Center for Medical Redox Navigation, Kyushu University, Japan
| |
Collapse
|
16
|
Bačić G, Pavićević A, Peyrot F. In vivo evaluation of different alterations of redox status by studying pharmacokinetics of nitroxides using magnetic resonance techniques. Redox Biol 2015; 8:226-42. [PMID: 26827126 PMCID: PMC4753396 DOI: 10.1016/j.redox.2015.10.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 10/25/2015] [Indexed: 12/22/2022] Open
Abstract
Free radicals, particularly reactive oxygen species (ROS), are involved in various pathologies, injuries related to radiation, ischemia-reperfusion or ageing. Unfortunately, it is virtually impossible to directly detect free radicals in vivo, but the redox status of the whole organism or particular organ can be studied in vivo by using magnetic resonance techniques (EPR and MRI) and paramagnetic stable free radicals - nitroxides. Here we review results obtained in vivo following the pharmacokinetics of nitroxides on experimental animals (and a few in humans) under various conditions. The focus was on conditions where the redox status has been altered by induced diseases or harmful agents, clearly demonstrating that various EPR/MRI/nitroxide combinations can reliably detect metabolically induced changes in the redox status of organs. These findings can improve our understanding of oxidative stress and provide a basis for studying the effectiveness of interventions aimed to modulate oxidative stress. Also, we anticipate that the in vivo EPR/MRI approach in studying the redox status can play a vital role in the clinical management of various pathologies in the years to come providing the development of adequate equipment and probes.
Collapse
Affiliation(s)
- Goran Bačić
- EPR Laboratory, Faculty of Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksandra Pavićević
- EPR Laboratory, Faculty of Physical Chemistry, University of Belgrade, 11000 Belgrade, Serbia
| | - Fabienne Peyrot
- LCBPT, UMR 8601 CNRS - Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France; ESPE of Paris, Paris Sorbonne Université, 75016 Paris, France
| |
Collapse
|
17
|
Kajer TB, Fairfull-Smith KE, Yamasaki T, Yamada KI, Fu S, Bottle SE, Hawkins CL, Davies MJ. Inhibition of myeloperoxidase- and neutrophil-mediated oxidant production by tetraethyl and tetramethyl nitroxides. Free Radic Biol Med 2014; 70:96-105. [PMID: 24566469 DOI: 10.1016/j.freeradbiomed.2014.02.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 01/23/2014] [Accepted: 02/12/2014] [Indexed: 12/17/2022]
Abstract
The powerful oxidant HOCl (hypochlorous acid and its corresponding anion, (-)OCl) generated by the myeloperoxidase (MPO)-H2O2-Cl(-) system of activated leukocytes is strongly associated with multiple human inflammatory diseases; consequently there is considerable interest in inhibition of this enzyme. Nitroxides are established antioxidants of low toxicity that can attenuate oxidation in animal models, with this ascribed to superoxide dismutase or radical-scavenging activities. We have shown (M.D. Rees et al., Biochem. J. 421, 79-86, 2009) that nitroxides, including 4-amino-TEMPO (4-amino-2,2,6,6-tetramethylpiperidin-1-yloxyl radical), are potent inhibitors of HOCl formation by isolated MPO and activated neutrophils, with IC50 values of ~1 and ~6 µM respectively. The utility of tetramethyl-substituted nitroxides is, however, limited by their rapid reduction by biological reductants. The corresponding tetraethyl-substituted nitroxides have, however, been reported to be less susceptible to reduction. In this study we show that the tetraethyl species were reduced less rapidly than the tetramethyl species by both human plasma (89-99% decreased rate of reduction) and activated human neutrophils (62-75% decreased rate). The tetraethyl-substituted nitroxides retained their ability to inhibit HOCl production by MPO and activated neutrophils with IC50 values in the low-micromolar range; in some cases inhibition was enhanced compared to tetramethyl substitution. Nitroxides with rigid structures (fused oxaspiro rings) were, however, inactive. Overall, these data indicate that tetraethyl-substituted nitroxides are potent inhibitors of oxidant formation by MPO, with longer plasma and cellular half-lives compared to the tetramethyl species, potentially allowing lower doses to be employed.
Collapse
Affiliation(s)
- Tracey B Kajer
- Heart Research Institute, Newtown, Sydney, NSW 2042, Australia; Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Kathryn E Fairfull-Smith
- School of Physical and Chemical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Toshihide Yamasaki
- Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Kyushu, Japan
| | - Ken-ichi Yamada
- Faculty of Pharmaceutical Sciences, Kyushu University, Fukuoka, Kyushu, Japan
| | - Shanlin Fu
- Centre for Forensic Science, University of Technology, Sydney, NSW, Australia
| | - Steven E Bottle
- School of Physical and Chemical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Clare L Hawkins
- Heart Research Institute, Newtown, Sydney, NSW 2042, Australia; Faculty of Medicine, University of Sydney, Sydney, NSW, Australia
| | - Michael J Davies
- Heart Research Institute, Newtown, Sydney, NSW 2042, Australia; Faculty of Medicine, University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
18
|
Lee MCI. Assessment of oxidative stress and antioxidant property using electron spin resonance (ESR) spectroscopy. J Clin Biochem Nutr 2012; 52:1-8. [PMID: 23341690 PMCID: PMC3541412 DOI: 10.3164/jcbn.12-58] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 10/10/2012] [Indexed: 01/17/2023] Open
Abstract
The pathophysiology of hypertension or stroke is associated with an excess of ROS generation in the vascular system, and results in induction of various pathological cascades of cerebrovascular damage. We have demonstrated that electron spin resonance methods using a spin trap or spin probe will be useful for understanding redox status under conditions of oxidative stress in the spontaneously hypertensive rat or stroke-prone spontaneously hypertensive rat brain. We have used electron spin resonance imaging and noninvasive L-band electron spin resonance to characterize the higher degree of brain oxidative stress in the stroke-prone spontaneously hypertensive rat and spontaneously hypertensive rat than in the Wistar-Kyoto rat brain, and the lower extent of oxidative stress in the spontaneously hypertensive rat than in the stroke-prone spontaneously hypertensive rat brain. Indeed, we may be able to confirm propofol medium-chain triglyceride/long-chain triglyceride (MCT/LCT) as neuroprotective anesthesia and crocetin as antioxidant food factor against human stroke after screening for antioxidant properties in stroke models such as stroke-prone spontaneously hypertensive rat. Thus, our electron spin resonance biomedical application suggests that it could be used to assess antioxidant effects on oxidative stress in the brain using spontaneously hypertensive rat and stroke-prone spontaneously hypertensive rat. We hope that further advances in the instrumentation used for electron spin resonance imaging and the development of optimized nontoxic spin probes will make this technology even more promising for novel clinical prediction or noninvasive diagnosis of human stroke. After screening drugs or foods for antioxidant property using in vitro or in vivo electron spin resonance assessment, it will be possible to find and develop novel drugs or food factors with such properties for the prevention of stroke in the near future.
Collapse
Affiliation(s)
- Masaichi-Chang-Il Lee
- Department of Clinical Care Medicine, Division of Pharmacology and ESR Laboratories, Kanagawa Dental College, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| |
Collapse
|
19
|
Sugiyama S, Takahashi SS, Tokutomi FA, Yoshida A, Kobayashi K, Yoshino F, Wada-Takahashi S, Toyama T, Watanabe K, Hamada N, Todoki K, Lee MCI. Gingival vascular functions are altered in type 2 diabetes mellitus model and/or periodontitis model. J Clin Biochem Nutr 2012; 51:108-13. [PMID: 22962527 PMCID: PMC3432819 DOI: 10.3164/jcbn.11-103] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 11/22/2011] [Indexed: 01/17/2023] Open
Abstract
The association of vascular reactivity between diabetes and periodontal disease has not been clarified. Gingival blood flow was measured by laser Doppler flowmetry for 31 weeks in Wistar rats, Wistar rats orally challenged with Porphyromonas gingivalis (Wistar rats + Porphyromonas gingivalis), Goto-Kakizaki rats, and Goto-Kakizaki rats orally challenged with Porphyromonas gingivalis (Goto-Kakizaki rats + Porphyromonas gingivalis). Effects of alveolar bone resorption on periodontal tissue was enhanced in Wistar rats + Porphyromonas gingivalis, and Goto-Kakizaki rats, with this effect being significantly enhanced by Goto-Kakizaki rats + Porphyromonas gingivalis. Using the L-band electron spin resonance technique, we succeeded in measuring oxidative stress as decay rate constant (K(1) and K(2)) of 3-carbamoyl-2,2,5,5-tetramethylpyrrolidin-1-yloxy in the oral and maxillofacial region of the animal models. The decay rate constant (K(1)) of 3-carbamoyl-2,2,5,5-tetramethylpyrrolidin-1-yloxy was significantly greater in the oral and maxillofacial region of Goto-Kakizaki rats + Porphyromonas gingivalis compared to Wistar rats, Wistar rats + Porphyromonas gingivalis and Goto-Kakizaki rats groups. Gingival reactive hyperemia was attenuated by periodontal disease, and this effect was also remarkable in the diabetes mellitus model. Taken together, we found that vascular endothelial function was decreased in diabetes mellitus and/or periodontal disease animal models due to increasing oxidative stress in the gingival circulation.
Collapse
Affiliation(s)
- Shuta Sugiyama
- Department of Clinical Care Medicine, Division of Pharmacology and ESR Laboratories, Kanagawa Dental College, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
The photoreactions of simple amides with NO. Gaining insight into radical bio-damages through an EPR case study. Tetrahedron 2012. [DOI: 10.1016/j.tet.2012.01.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Takeshita K, Kinoshita S, Okazaki S. Simple Method for Quantification of Gadolinium Magnetic Resonance Imaging Contrast Agents Using ESR Spectroscopy. Chem Pharm Bull (Tokyo) 2012; 60:31-6. [DOI: 10.1248/cpb.60.31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Keizo Takeshita
- Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Sojo University
| | - Shota Kinoshita
- Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Sojo University
| | - Shoko Okazaki
- Laboratory of Analytical Chemistry, Faculty of Pharmaceutical Sciences, Sojo University
| |
Collapse
|
22
|
Davis RM, Mitchell JB, Krishna MC. Nitroxides as cancer imaging agents. Anticancer Agents Med Chem 2011; 11:347-58. [PMID: 21434855 DOI: 10.2174/187152011795677526] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 03/09/2011] [Indexed: 01/13/2023]
Abstract
Nitroxides are low molecular weight (150-400 Da) superoxide dismutase mimics that exhibit antioxidant, radical scavenging, and radioprotective activity. Additionally, the paramagnetic nature of nitroxides makes them viable as both spin probes for electron paramagnetic resonance imaging as well as contrast agents for magnetic resonance imaging. These imaging techniques enable in vivo monitoring of nitroxide metabolism. In biological systems, nitroxide metabolism occurs predominantly via reduction of the nitroxide to a hydroxylamine. The rate of nitroxide reduction can increase or decrease due to either oxidative stress, suggesting that nitroxides can provide an imaging-based assay of tissue redox status. The current review briefly summarizes the potential clinical applications of nitroxides, and focuses on the biochemical and tumor microenvironmental factors that affect the rate of nitroxide reduction. The potential therapeutic applications and bio-reduction mechanisms are discussed in the context of their relevance to oncology.
Collapse
Affiliation(s)
- Ryan M Davis
- Radiation Biology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
23
|
Yoshida A, Yoshino F, Tsubata M, Ikeguchi M, Nakamura T, Lee MCI. Direct assessment by electron spin resonance spectroscopy of the antioxidant effects of French maritime pine bark extract in the maxillofacial region of hairless mice. J Clin Biochem Nutr 2011. [PMID: 21980222 DOI: 10.3164/jcbn.10.103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Flavangenol, one of extract of French maritime pine bark, is a complex mixture of bioflavonoids with oligometric proanthocyanidins as the major constituents. These constituents, catechin and procyanidin B(1), are water-soluble derivatives of flavangenol. In this study, we investigated the antioxidant effects of flavangenol on reactive oxygen species such as hydroxyl radical, superoxide anion and singlet oxygen using electron spin resonance and spin trapping. The effect of flavangenol on oxidative stress in the skin from the maxillofacial region of hairless mice was investigated using an in vivo L-band electron spin resonance imaging system. Flavangenol attenuated oxidative stress in the maxillofacial skin by acting as a reactive oxygen species scavenger, as demonstrated by in vitro and in vivo electron spin resonance imaging analysis. The absorption and metabolism of flavangenol were also examined. After oral administration of flavangenol in human and rat, most of the catechin in plasma was in the conjugated form, while 45% to 78% of procyanidin B(1) was unconjugated, indicating that non-conjugated procyanidin B(1) would be active in the circulation. The ability of flavangenol to reduce reactive oxygen species levels in the circulation of the maxillofacial region suggests that this extract may be beneficial for skin protection from exposure to ultraviolet irradiation.
Collapse
Affiliation(s)
- Ayaka Yoshida
- Department of Clinical Care Medicine, Division of Pharmacology and ESR Laboratories, Kanagawa Dental College, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Yoshida A, Yoshino F, Tsubata M, Ikeguchi M, Nakamura T, Lee MCI. Direct assessment by electron spin resonance spectroscopy of the antioxidant effects of French maritime pine bark extract in the maxillofacial region of hairless mice. J Clin Biochem Nutr 2011; 49:79-86. [PMID: 21980222 PMCID: PMC3171680 DOI: 10.3164/jcbn.10-103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 11/29/2010] [Indexed: 02/05/2023] Open
Abstract
Flavangenol, one of extract of French maritime pine bark, is a complex mixture of bioflavonoids with oligometric proanthocyanidins as the major constituents. These constituents, catechin and procyanidin B1, are water-soluble derivatives of flavangenol. In this study, we investigated the antioxidant effects of flavangenol on reactive oxygen species such as hydroxyl radical, superoxide anion and singlet oxygen using electron spin resonance and spin trapping. The effect of flavangenol on oxidative stress in the skin from the maxillofacial region of hairless mice was investigated using an in vivo L-band electron spin resonance imaging system. Flavangenol attenuated oxidative stress in the maxillofacial skin by acting as a reactive oxygen species scavenger, as demonstrated by in vitro and in vivo electron spin resonance imaging analysis. The absorption and metabolism of flavangenol were also examined. After oral administration of flavangenol in human and rat, most of the catechin in plasma was in the conjugated form, while 45% to 78% of procyanidin B1 was unconjugated, indicating that non-conjugated procyanidin B1 would be active in the circulation. The ability of flavangenol to reduce reactive oxygen species levels in the circulation of the maxillofacial region suggests that this extract may be beneficial for skin protection from exposure to ultraviolet irradiation.
Collapse
Affiliation(s)
- Ayaka Yoshida
- Department of Clinical Care Medicine, Division of Pharmacology and ESR Laboratories, Kanagawa Dental College, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | | | | | | | | | | |
Collapse
|
25
|
In vivo electron spin resonance: An effective new tool for reactive oxygen species/reactive nitrogen species measurement. Arch Pharm Res 2010; 33:1293-9. [DOI: 10.1007/s12272-010-0901-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/08/2010] [Accepted: 08/11/2010] [Indexed: 11/25/2022]
|
26
|
Takeshita K, Kawaguchi K, Fujii-Aikawa K, Ueno M, Okazaki S, Ono M, Krishna MC, Kuppusamy P, Ozawa T, Ikota N. Heterogeneity of regional redox status and relation of the redox status to oxygenation in a tumor model, evaluated using electron paramagnetic resonance imaging. Cancer Res 2010; 70:4133-40. [PMID: 20442282 DOI: 10.1158/0008-5472.can-09-4369] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is widely accepted that redox status, along with the partial pressure of oxygen (pO(2)), determines the efficacy of some therapeutic methods applied to treat tumors, including radiation. Redox status, evaluated by the reduction of a nitroxyl probe, was reportedly heterogeneous in a mouse tumor model. However, neither variation of heterogeneity of the redox status among mice nor the relation of the redox status to pO(2) in tumors has been characterized sufficiently. In this study, the regional reduction status in a mouse radiation-induced fibrosarcoma tumor model was evaluated using sequential three-dimensional electron paramagnetic resonance (EPR) imaging after i.v. injection of a tissue-permeable nitroxyl probe, HM-PROXYL. The regional decay of HM-PROXYL signal obeyed first-order kinetics, and the amplitude of the reduction rate and extent of its heterogeneity in a tumor varied among six mice. The tissue pO(2) was measured using EPR oximetry with lithium phthalocyanine (LiPc) microcrystals implanted within the tumor. The location of LiPc was determined with EPR imaging. A sequential image was obtained following the injection of HM-PROXYL, even after LiPc implantation, by choosing an HM-PROXYL signal peak which does not overlap with the signal of LiPc. The relationship between pO(2) and the reduction rate at the region of pO(2) measurement was found to be low (r = 0.357) in 13 tumor-bearing mice, indicating that the extent of oxygenation does not necessarily affect the redox status under air-breathing conditions. The results strongly indicate the necessity of measurements of both redox status and oxygenation in every tumor to characterize tumor physiology.
Collapse
Affiliation(s)
- Keizo Takeshita
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Yoshino F, Lee MCI, Kobayashi K, Hayashi Y, Aruoma OI. Assessment of the effect of fermented papaya preparation on oxidative damage in spontaneously hypertensive rat brain using electron spin resonance (ESR) imaging and L-band ESR spectroscopy. J Funct Foods 2009. [DOI: 10.1016/j.jff.2009.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
28
|
Shiba T, Yamato M, Kudou W, Ichikawa K, Yamada KI, Watanabe T, Utsumi H. Analysis of Nitroxyl Spin Probes in Mouse Brain by X-Band ESR with Microdialysis Technique. J Pharm Sci 2008; 97:4101-7. [DOI: 10.1002/jps.21258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
29
|
Duca G, Secara N, Duca D. Physical Methods of Fast Reactions Investigation. CHEMISTRY JOURNAL OF MOLDOVA 2008. [DOI: 10.19261/cjm.2008.03(1).15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
This review presents the basic concepts of the methods used for investigation of fast reactions kinetics, such as: flow methods, with particular emphasis on the stopped-flow approach, NMR, ESR, electrochemical methods, with particular emphasis on the time resolved Fourier Transform electrochemical impedance spectroscopy, flash photolysis, and several others. It offers a brief description of fast reactions commonly encountered in chemical systems, providing an insight into the possibilities of performing kinetic investigations of such reaction systems.
Collapse
|
30
|
Hyodo F, Yasukawa K, Yamada KI, Utsumi H. Spatially resolved time-course studies of free radical reactions with an EPRI/MRI fusion technique. Magn Reson Med 2007; 56:938-43. [PMID: 16964613 DOI: 10.1002/mrm.21019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Electron paramagnetic resonance imaging (EPRI) using nitroxyl radicals is a useful technique for visualizing reactive oxygen species (ROS) and the pharmacokinetics of probes. To unambiguously identify anatomical locations, coregistration of EPRI with images obtained by MRI is necessary. In this study the feasibility of performing reliable EPRI/MRI fusion imaging using nitroxyl radical fiducial markers was tested. The pharmacokinetics of the nitroxyl radicals were observed after oral or intravenous administration in C57BL6 mice. To fuse both images, the nitroxyl radical was used as fiducial markers. The EPR and MR images corresponded well and clearly illustrated minimal changes in pharmacokinetics between carbamoyl-PROXYL and carboxy-PROXYL. These results demonstrate that the EPRI/MRI fused imaging technique is useful for investigating in vivo pharmacokinetics and provides unambiguous anatomic details.
Collapse
Affiliation(s)
- Fuminori Hyodo
- Department of Bio-function Science, Faculty of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | | | | |
Collapse
|
31
|
Manda S, Nakanishi I, Ohkubo K, Yakumaru H, Matsumoto KI, Ozawa T, Ikota N, Fukuzumi S, Anzai K. Nitroxyl radicals: electrochemical redox behaviour and structure–activity relationships. Org Biomol Chem 2007; 5:3951-5. [DOI: 10.1039/b714765a] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Ichikawa K, Sato Y, Kondo H, Utsumi H. An ESR contrast agent is transported to rat liver through organic anion transporter. Free Radic Res 2006; 40:403-8. [PMID: 16517505 DOI: 10.1080/10715760600563542] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Carboxy PROXYL is a useful extracellular paramagnetic contrast reagent in electron spin resonance (ESR) and magnetic resonance imaging (MRI). Active transfer of the probe was investigated using an in situ liver model in rats. Carboxy PROXYL, a nitroxyl spin probe, was perfused into in situ liver perfusion system from Wistar rats. Concentration of nitroxyl form of the spin probe in effluent increased gradually after introducing perfusate with the spin probe and reached a plateau. The disappearance of Carboxy PROXYL from the perfusate was 40%, which could not be explained with its partition coefficient. Administration of non-selective inhibitors of organic anion transporters, p-aminohippuric acid and penicillin G, inhibited competitively and in a dose dependent manner the transfer of Carboxy PROXYL into rat liver in situ, resulting in increases of Carboxy PROXYL in the effluent. The results demonstrate that there is an active transfer system of an ESR contrast reagent into in situ rat liver through organic anion transporters.
Collapse
Affiliation(s)
- Kazuhiro Ichikawa
- Department of Bio-function Analysis, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-Ku, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
33
|
Miyake S, Sasaguri K, Hori N, Shoji H, Yoshino F, Miyazaki H, Anzai K, Ikota N, Ozawa T, Toyoda M, Sato S, Lee MCI. Biting reduces acute stress-induced oxidative stress in the rat hypothalamus. Redox Rep 2006; 10:19-24. [PMID: 15829107 DOI: 10.1179/135100005x21417] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
We investigated the inhibitory effect of para-masticatory activity, namely biting, on restraint stress-induced oxidative stress. A blood brain barrier-permeable nitroxyl spin probe, 3-methoxycarbonyl-2,2,5,5,-tetramethylpyrrolidine-1-oxyl (MC-PROXYL), was administered to rats and L-band electron spin resonance (ESR) and ESR-computerized tomography (ESR-CT) imaging were used to show that the decay rate constant of MC-PROXYL in the hypothalamus of isolated brain after 30 min of restraint stress was more rapid than in unrestrained control rats, suggesting that restraint was associated with oxidative stress. Interestingly, biting during restraint stress caused the decay rate constant of MC-PROXYL in isolated brain to approach that of the control group. These observations suggest that biting suppresses oxidative stress induced by restraint stress, and that the anti-stress effect of masticatory motor activity movements, such as biting, are important for reducing the adverse effects associated with exposure to psychological stressors.
Collapse
Affiliation(s)
- Shinjiro Miyake
- Department of Craniofacial Growth and Development Dentistry, Kanagawa Dental College, Yokosuka, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Utsumi H, Yasukawa K, Soeda T, Yamada KI, Shigemi R, Yao T, Tsuneyoshi M. Noninvasive mapping of reactive oxygen species by in vivo electron spin resonance spectroscopy in indomethacin-induced gastric ulcers in rats. J Pharmacol Exp Ther 2006; 317:228-35. [PMID: 16339915 DOI: 10.1124/jpet.105.095166] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Reactive oxygen species (ROS) are thought to be involved in the gastric ulcer formation induced by indomethacin, a typical nonsteroidal anti-inflammatory drug. However, the location and the time course of ROS generation remain unknown. To assess the sites of ROS generation, we applied the noninvasive measurement of ROS to indomethacin-treated rats. By giving orally a membrane-permeable or impermeable probe, the spectra were collected as a function of time by in vivo 300-MHz electron spin resonance (ESR) spectroscopy. The ESR signal-decay rates of membrane-permeable probes, hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) and 3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl, in the gastric mucosal region were significantly enhanced 1 h after indomethacin treatment, and they both caused the protection of ulcer formation; however, membrane-impermeable probes, carboxy- and trimethylammonium-TEMPO, which did not exhibit the enhanced signal decay, had no effect on ulcer formation. The enhanced signal decay in the gastric mucosa was suppressed by coadministration of the antioxidants tiron or dimethylthiourea with the nitroxyl probe. The results suggest that the enhanced signal-decay rates in the gastric ulcers observed by in vivo ESR are associated with protective effects. The enhanced signal decay caused by ROS generation in stomach, contributing to the ulcer formation induced by indomethacin, is also suggested to occur at the gastric mucus layer or the interface or the intracellular compartment of epithelial cells. Overall, these results show the potentials of noninvasive assessment of ROS production and the sites of damage by in vivo ESR using nitroxyl probes directed to specific subcellular regions.
Collapse
Affiliation(s)
- Hideo Utsumi
- Department of Biofunctional Science, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | |
Collapse
|
35
|
Takeshita K, Chi C, Hirata H, Ono M, Ozawa T. In vivo generation of free radicals in the skin of live mice under ultraviolet light, measured by L-band EPR spectroscopy. Free Radic Biol Med 2006; 40:876-85. [PMID: 16520239 DOI: 10.1016/j.freeradbiomed.2005.10.049] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 09/27/2005] [Accepted: 10/16/2005] [Indexed: 11/18/2022]
Abstract
Although free radicals may be involved in various types of UV-induced injuries, only a few in vivo studies of the generation of free radicals, including oxygen radicals, during exposure to ultraviolet light (UV) have been reported. In this study, the nitroxyl probe 3-carbamoyl-2,2,5,5-tetramethylpyrrolidine-N-oxyl was intravenously injected into hairless mice, and its decay was monitored in the skin with an in vivo EPR spectrometer equipped with a surface-coil-type resonator. The rate of decay of the EPR signal increased during UV (UVA+B) irradiation. This increase in signal decay was suppressed by preadministration of a spin trap, N-tert-butyl-alpha-phenylnitrone (PBN). PBN did not change the rate of signal decay in nonirradiated mice. The correlation between signal decay rate and physiological parameters such as blood velocity, blood mass, or skin temperature was low. The decay rate responded rapidly and reversibly to starting and stopping the UV illumination. Hydroxyl and peroxyl radicals caused reduction of the probe signal in vitro, and PBN inhibited only the peroxyl radical-induced signal reduction. These observations suggest that peroxyl radicals are generated in the skin of live mice during UVA+B irradiation.
Collapse
Affiliation(s)
- Keizo Takeshita
- Faculty of Pharmaceutical Sciences, Sojo University, Ikeda, Kumamoto, Japan.
| | | | | | | | | |
Collapse
|
36
|
Okajo A, Matsumoto KI, Mitchell JB, Krishna MC, Endo K. Competition of nitroxyl contrast agents as an in vivo tissue redox probe: Comparison of pharmacokinetics by the bile flow monitoring (BFM) and blood circulating monitoring (BCM) methods using X-band EPR and simulation of decay profiles. Magn Reson Med 2006; 56:422-31. [PMID: 16810697 DOI: 10.1002/mrm.20958] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nitroxyl radicals used as tissue redox-sensitive contrast agents in electron paramagnetic resonance (EPR) and/or NMR imaging should satisfy the following two conditions: 1) the molecules disperse into tissues rapidly, and 2) paramagnetic loss occurs by simple reduction of the radical. The pharmacokinetic trends of several nitroxyl contrast agents were compared with the results obtained by bile flow monitoring (BFM) and blood circulation monitoring (BCM) methods using X-band EPR. The nitroxyl radicals (TEMPO, TEMPONE (oxo-TEMPO), and amino-TEMPO) showed additional EPR signals in the bile that were attributed to metabolites formed during transport from blood to bile through the liver. However, the highly hydrophilic CAT-1 (trimethylammonium-TEMPO), which has low membrane permeability, showed minimal concentration in the bile. Probes that have carboxyl moiety, such as carboxy-TEMPO and carboxy-PROXYL, can be transported via anion transporter into hepatic cells. The EPR signal decay profiles of the nitroxyl radicals were simulated based on the experimental data. The simulation, which we previously applied to mouse blood, was modified to simultaneously fit the experimental results of BFM and BCM obtained with rats. The simulation data showed the simplicity/complexity of the pharmacokinetic mechanisms and that carbamoyl-PROXYL and TEMPOL (hydroxy-TEMPO) are suitable contrast agents for assessing tissue redox status.
Collapse
Affiliation(s)
- Aya Okajo
- Department of Physical Chemistry, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | | | | | | | | |
Collapse
|
37
|
Lee MCI, Shoji H, Miyazaki H, Yoshino F, Hori N, Miyake S, Ikeda Y, Anzai K, Ozawa T. Measurement of oxidative stress in the rodent brain using computerized electron spin resonance tomography. Magn Reson Med Sci 2005; 2:79-84. [PMID: 16210824 DOI: 10.2463/mrms.2.79] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The strategy of this study was to improve the electronic spin resonance (ESR) application used to detect free radical-induced oxidative stress in animal models. We have developed an in vivo ESR imaging system with high-quality ESR-computed tomography (CT) images by using a nitroxyl spin probe--BBB-permeable, 3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-yloxy (MC-PROXYL)--in living small animals. We first measured the distribution of MC-PROXYL in the head region of a living mouse by using ESR-CT imaging after treatment with MC-PROXYL. In the ESR-CT experiments, it was clearly observed that MC-PROXYL was well distributed in the brain of head region of a living mouse. The ESR-CT images taken after treatment with MC-PROXYL demonstrate that the decay of MC-PROXYL in the isolated brain of a spontaneously hypertensive rat (SHR) was more rapid than that in a Wister Kyoto rat. ESR-CT analysis revealed that the region of rapid decay might be located in the cerebral cortex of the isolated brain of an SHR. These results suggest that the present study of ESR-CT imaging would be a useful tool for monitoring and detecting the locations of oxidative stress in the brains of rodent animal models.
Collapse
Affiliation(s)
- Masaichi-Chang-Il Lee
- Department of Pharmacology and ESR Laboratories, Kanagawa Dental College, Yokosuka, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Tsubouchi H, Inoguchi T, Sonta T, Sato N, Sekiguchi N, Kobayashi K, Sumimoto H, Utsumi H, Nawata H. Statin attenuates high glucose-induced and diabetes-induced oxidative stress in vitro and in vivo evaluated by electron spin resonance measurement. Free Radic Biol Med 2005; 39:444-52. [PMID: 16043016 DOI: 10.1016/j.freeradbiomed.2005.03.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 01/28/2005] [Accepted: 03/28/2005] [Indexed: 10/25/2022]
Abstract
An increased oxidative stress may contribute to the accelerated atherosclerosis in diabetic patients. Here we show that 3-hydroxy-3-methylglutaryl CoA reductase inhibitor (statin) attenuates a high glucose-induced and a diabetes-induced oxidative stress through inhibition of vascular NAD(P)H oxidase. Exposure of cultured aortic endothelial cells and smooth muscle cells to a high glucose level (450 mg/dl) for 3 days significantly increased oxidative stress compared with a normal glucose level (100 mg/dl), as evaluated by the staining with 2',7'-dichlorofluorescein diacetate and electron spin resonance (ESR) measurement. This increase was completely blocked by the treatment with pitavastatin (5 x 10(-7)M) as well as a NAD(P)H oxidase inhibitor (diphenylene iodonium) or a PKC inhibitor (calphostin C) in parallel with the change of small GTPase Rac-1 activity, a cytosolic regulatory component of NAD(P)H oxidase. Next, using streptozotocin-induced diabetic rats, the effect of pitavastatin on oxidative stress was evaluated by in vivo ESR measurements, which is a sensitive, noninvasive method. Administration of pitavastatin (5 mg/kg/day) for 4 days attenuated the increased oxidative stress in diabetic rats to control levels. In conclusion, pitavastatin attenuated a high glucose-induced and a diabetes-induced oxidative stress in vitro and in vivo. Thus, our data may provide a new insight into antioxidative therapy in diabetes.
Collapse
Affiliation(s)
- Hirotaka Tsubouchi
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Matsumoto KI, Okajo A, Kobayashi T, Mitchell JB, Krishna MC, Endo K. Estimation of free radical formation by β-ray irradiation in rat liver. ACTA ACUST UNITED AC 2005; 63:79-90. [PMID: 15896849 DOI: 10.1016/j.jbbm.2005.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 03/11/2005] [Indexed: 11/16/2022]
Abstract
In vivo free radical reactions in rat liver as a result of exposure to low-dose beta-radiation was evaluated with electron paramagnetic resonance (EPR) spectroscopy by monitoring the reduction of the nitroxyl spin probe after intravenous administration. The EPR signal intensity of a nitroxyl probe as a function of time in bile flow was monitored by cannulating the bile duct through the cavity of an X-band EPR spectrometer. The results show that the rate of nitroxyl signal loss was higher in rats whose livers were exposed to beta-rays compared to unexposed rats. However, the rate of signal loss was lower in animals whose organs were exposed to air by opening the abdominal cavity. In vitro experiments also showed that the nitroxyl EPR signal loss was greater in an atmosphere of nitrogen than in air. Results suggest that under low levels of tissue oxygen, exposure to beta-rays results in nitroxyl signal loss, which may be mediated by free radical dependent pathways. When tissue oxygen were higher, hydrogen peroxide mediated oxidation of hydroxylamine may predominate resulting in a signal loss of smaller magnitudes. This study shows possible evidence of reactive oxygen species formation by low-dose beta-ray irradiation in a living animal.
Collapse
Affiliation(s)
- Ken-ichiro Matsumoto
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-1002, USA
| | | | | | | | | | | |
Collapse
|
40
|
Nestle N, Shet K, Lurie DJ. Proton electron double resonance imaging of free radical distribution in environmental science applications—first results and perspectives. Magn Reson Imaging 2005; 23:183-9. [PMID: 15833610 DOI: 10.1016/j.mri.2004.11.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 11/10/2004] [Indexed: 11/30/2022]
Abstract
In this contribution, we explore the potential of proton electron double resonance imaging (PEDRI) in environmental science (hydrogeological) applications. After a discussion of the hydrogeological motivation for studies of free radical transport in environmental matrices, we present results from first experiments that show the principal applicability of the PEDRI technique to sediment samples. Field-cycled (FC) relaxation time contrast is identified as a possible source of artifacts in samples in which strong concentration gradients of the free radical phase are present. Furthermore, an outlook is given on how PEDRI can help in observations of the local interplay among contaminants, water and nonaqueous liquid phases.
Collapse
Affiliation(s)
- Nikolaus Nestle
- Institut für Festkörperphysik, TU Darmstadt, D-64289 Darmstadt, Germany.
| | | | | |
Collapse
|
41
|
Sonta T, Inoguchi T, Tsubouchi H, Sekiguchi N, Kobayashi K, Matsumoto S, Utsumi H, Nawata H. Evalution of oxidative stress in diabetic animals by in vivo electron spin resonance measurement--role of protein kinase C. Diabetes Res Clin Pract 2004; 66 Suppl 1:S109-13. [PMID: 15563958 DOI: 10.1016/j.diabres.2004.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Enhanced oxidative stress may be an important contributor to the pathogenesis of diabetic vascular complication. Although hyperglycemia-induced oxidative stress in diabetes has been well documented, exact source in vivo remains to be elucidated. Here we report a role of protein kinase C (PKC) in oxidative stress in diabetic animals using a technique of in vivo electron spin resonance (ESR) measurement that has been developed for direct and non-invasive analysis of free radical generation in living animals. First, using this measurement, we confirmed that streptozotocin-induced diabetic rats which showed a significant increase in free radical generation, which was restored by alpha-tocopherol treatment. Treatment of PKC inhibitor CGP41251 (50 mg/kg) or NAD(P)H oxidase inhibitor apocynin (5 mg/kg) restored the increased free radical generation in those diabetic animals. In conclusion, the present study provided the evidence that PKC-dependent activation of vascular NAD(P)H oxidase may be a major source in enhanced oxidative stress in diabetes in vivo. This may contribute to the pathogenesis of diabetic vascular complications.
Collapse
Affiliation(s)
- Toshiyo Sonta
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Takeshita K, Ozawa T. Recent progress in in vivo ESR spectroscopy. JOURNAL OF RADIATION RESEARCH 2004; 45:373-384. [PMID: 15613782 DOI: 10.1269/jrr.45.373] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The generation of free radicals and redox status is related to various diseases and injuries that are related to radiation, aging, ischemia-reperfusion, and other oxidative factors. In vivo electron spin resonance (ESR) spectroscopy is noninvasive and detects durable free radicals in live animals. ESR spectrometers for in vivo measurements operate at a lower frequency (approximately 3.5 GHz, approximately 1 GHz, 700 MHz, and approximately 300 MHz) than usual (9-10 GHz). Several types of resonators have been designed to minimize the dielectric loss of electromagnetic waves caused by water in animal bodies. In vivo ESR spectroscopy and its imaging have been used to analyze radical generation, redox status, partial pressure of oxygen and other conditions in various disease and injury models related to oxidative stress with probes, such as nitroxyl radicals. Through these applications, the clarification of the mechanisms related to oxidative diseases (injuries) and the accumulation of basic data for radiological cancer therapy are now ongoing. In vivo ESR measurement is performed in about 10 laboratories worldwide, including ours. To introduce in vivo ESR spectroscopy to life scientists, this article reviews the recent progress of in vivo ESR spectroscopy in instrumentation and its application to the life sciences.
Collapse
Affiliation(s)
- Keizo Takeshita
- Redox Regulation Research Group, National Institute of Radiological Sciences, Chiba, Japan.
| | | |
Collapse
|
43
|
Takeshita K, Takajo T, Hirata H, Ono M, Utsumi H. In Vivo Oxygen Radical Generation in the Skin of the Protoporphyria Model Mouse with Visible Light Exposure: An L-Band ESR Study. J Invest Dermatol 2004; 122:1463-70. [PMID: 15175038 DOI: 10.1111/j.0022-202x.2004.22601.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Although oxygen radicals are thought to play a key role in the skin injury that is caused by protoporphyria, there is no direct evidence of generation of these radicals in vivo. This study measured the generation of oxygen radicals caused by visible light non-invasively in the skin of griseofulvin-induced protoporphyria model mice, using an in vivo electron spin resonance spectrometer equipped with a surface-coil-type resonator that could detect radicals within about 0.5 mm of the skin surface. A durable nitroxyl radical was administered intravenously as a probe. Light irradiation enhanced the decay of the nitroxyl signal in griseofulvin-treated mice, whereas light irradiation did not enhance the signal decay in control mice. The enhanced signal decay was completely suppressed by intravenous administration of hydroxyl radical scavengers, superoxide dismutase or catalase, or the intraperitoneal administration of desferrioxamine. The enhanced signal decay with illumination was reversible, and quickly responded to turning the light on and off. These observations suggest that the hydroxyl radical is generated via an iron-catalyzed reaction in the skin. This paper demonstrates, for the first time, the specific generation of oxygen radicals in response to light irradiation of the skin of protoporphyria model mice.
Collapse
Affiliation(s)
- Keizo Takeshita
- Department of Biophysics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
44
|
Yamada KI, Inoue D, Matsumoto S, Utsumi H. In vivo measurement of redox status in streptozotocin-induced diabetic rat using targeted nitroxyl probes. Antioxid Redox Signal 2004; 6:605-11. [PMID: 15130287 DOI: 10.1089/152308604773934369] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In vivo electron paramagnetic resonance (EPR) with nitroxyl spin probes has been used for the evaluation of in vivo free radical reactions and redox status in living animals. The aim of this study was to clarify the location of free radical reactions induced by hyperglycemia in osteogenic disorder shionogi (ODS) rats using in vivo EPR spectroscopy. Diabetes was induced by intravenous injection of streptozotocin (STZ). The amount of ascorbic acid (AsA) in ODS rats was controlled by feeding AsA-containing water. Fourteen days after STZ injection, blood glucose and plasma malondialdehyde levels in STZ-treated rats significantly increased compared with untreated rats. Signal decay rates of intravenously injected 3-carbamoyl-2,2,5,5-tetramethyl-1-pyrrolidinyloxy (carbamoyl-PROXYL) (less membrane permeable) and 3-carboxy-PROXYL (membrane impermeable) were enhanced in STZ-treated rats in agreement with the previous reports. The decay rate of 3-acetoxymethoxy-PROXYL (membrane permeable) was significantly enhanced by STZ treatment in AsA-depleted rats, and this enhancement was partially restored to the control value by xanthine oxidase inhibitor, although the rate in AsA-supplemented rats was not changed by STZ treatment. These results suggested that the enhancement of signal decay occurred mainly in the intravascular region in STZ-induced diabetic rats and that AsA depletion induced the enhancement of intracellular signal decay through xanthine oxidase, although it is not clear whether the enhancement of signal decay is the cause or the effect of STZ-induced diabetes.
Collapse
Affiliation(s)
- Ken-Ichi Yamada
- Laboratory of Bio-function Science, Graduate School of Pharmaceutical Sciences, Kyusyu University, Fukuoka, Japan
| | | | | | | |
Collapse
|
45
|
Takeshita K, Fujii K, Anzai K, Ozawa T. In vivo monitoring of hydroxyl radical generation caused by x-ray irradiation of rats using the spin trapping/EPR technique. Free Radic Biol Med 2004; 36:1134-43. [PMID: 15082067 DOI: 10.1016/j.freeradbiomed.2004.02.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 01/21/2004] [Accepted: 02/06/2004] [Indexed: 11/19/2022]
Abstract
Measurement of hydroxyl radical (*OH) in living animals irradiated with ionizing radiation should be required to clarify the mechanisms of radiation injury and the in vivo assessment of radiation protectors, because generation of *OH is believed to be one of the major triggers of radiation injury. In this study, *OH generation was monitored by spin trapping the secondary methyl radical formed by the reaction of *OH with dimethyl sulfoxide (DMSO). Rats were injected intraperitoneally with a DMSO solution of alpha-phenyl-N-tert-butylnitrone (PBN). X-irradiation of the rats remarkedly increased the six-line EPR signal in the bile. The strengthened signal was detectable above 40 Gy. Use of 13C-substituted DMSO revealed that the signal included the methyl radical adduct of PBN as a major component. The EPR signal of the PBN-methyl radical adduct was completely suppressed by preadministration of methyl gallate, a scavenger of *OH but not of methyl radical. Methyl gallate did not reduce the spin adducts to EPR-silent forms. These observations indicate that what we were measuring was *OH generated in vivo by x-irradiation. This is the first report of the in vivo monitoring of *OH generation at a radiation dose close to what people might receive in the case of radiological accident or radiation therapy.
Collapse
Affiliation(s)
- Keizo Takeshita
- Redox Regulation Research Group, National Institute of Radiological Sciences, Chiba 263-8555, Japan
| | | | | | | |
Collapse
|
46
|
Anzai K, Saito K, Takeshita K, Takahashi S, Miyazaki H, Shoji H, Lee MCI, Masumizu T, Ozawa T. Assessment of ESR-CT imaging by comparison with autoradiography for the distribution of a blood-brain-barrier permeable spin probe, MC-PROXYL, to rodent brain. Magn Reson Imaging 2004; 21:765-72. [PMID: 14559341 DOI: 10.1016/s0730-725x(03)00118-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Blood-brain-barrier (BBB)-permeable, 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-yloxy (MC-PROXYL) and BBB-impermeable carbamoyl-PROXYL were used to assess the ESR imaging technique by comparing with autoradiography. For this purpose, spin probes, 14C-labeled at their five-membered ring, [14C]MC-PROXYL and [14C]carbamoyl-PROXYL, were newly synthesized. These probes were i.p. or i.v. injected into rats and autoradiograms were recorded. The autoradiograms of rat head showed that [14C]MC-PROXYL distributed well in the brain compared to [14C]carbamoyl-PROXYL. In vivo ESR spectra and two-dimensional ESR images of isolated rat brain treated with MC- or carbamoyl-PROXYL also indicated the extensive distribution of MC-PROXYL but not carbamoyl-PROXYL in the rat brain. The three-dimensional ESR images of the head of rats and mice were consistent with the fact that MC-PROXYL but not carbamoyl-PROXYL is incorporated into the brain. The ESR-CT images were better for mice than rats. However, the quality of the ESR-CT images was still not satisfactory. Although the resolution and sensitivity of the ESR-CT images were worse than those of the autoradiographic images, the former technique has unique features and advantages; e.g., functional, noninvasive and three-dimensional detection.
Collapse
Affiliation(s)
- Kazunori Anzai
- National Institute of Radiological Sciences, Anagawa, Chiba 263-8555, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Saito K, Takeshita K, Anzai K, Ozawa T. Pharmacokinetic study of acyl-protected hydroxylamine probe, 1-acetoxy-3-carbamoyl-2,2,5,5-tetramethylpyrrolidine, for in vivo measurements of reactive oxygen species. Free Radic Biol Med 2004; 36:517-25. [PMID: 14975454 DOI: 10.1016/j.freeradbiomed.2003.11.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2003] [Revised: 10/29/2003] [Accepted: 11/14/2003] [Indexed: 11/22/2022]
Abstract
1-Acetoxy-3-carbamoyl-2,2,5,5-tetramethylpyrrolidine (ACP) is a unique probe for in vivo measurements of reactive oxygen species (ROS), because it is hydrolyzed by esterase to a hydroxylamine form (CP-H), which is oxidized to an electron spin resonance-detectable nitroxyl radical (CP) by a reaction with superoxide anion radical, etc. Although a knowledge of pharmacokinetics is essential for the use of ACP in vivo, such information is limited. We investigated the pharmacokinetics of ACP in mice by examining the time course of the tissue distribution of ACP, CP-H, and CP after intravenous or intraperitoneal injection of ACP. Esterase activity for ACP in tissue homogenates was also measured. The concentration of ACP decreased in all tissues obeying a one-compartment model. ACP was hydrolyzed to CP-H in the liver and kidney predominantly, and the first-pass effect of liver on the hydrolysis of ACP was very large. A homogeneous biodistribution of CP-H was obtained 10 min after the injection of ACP regardless of the injection route, and concentrations remained stable over at least 20 min. Because of these pharmacokinetic properties, ACP should be suitable for the imaging of ROS in animals.
Collapse
Affiliation(s)
- Keita Saito
- Redox Regulation Research Group, National Institute of Radiological Sciences, 9-1, Anagawa-4, Inage-ku, Chiba 263-8555, Japan
| | | | | | | |
Collapse
|
48
|
Lee MCI, Shoji H, Miyazaki H, Yoshino F, Hori N, Toyoda M, Ikeda Y, Anzai K, Ikota N, Ozawa T. Assessment of Oxidative Stress in the Spontaneously Hypertensive Rat Brain Using Electron Spin Resonance (ESR) Imaging and in Vivo L-Band ESR. Hypertens Res 2004; 27:485-92. [PMID: 15302985 DOI: 10.1291/hypres.27.485] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study examined the blood brain barrier (BBB)-permeable nitroxyl compound, 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine-1-oxyl (MC-PROXYL), as a spin probe for the assessment of oxidative stress in the brain by electron spin resonance (ESR) imaging and in vivo L-band ESR. Preliminary comparisons were made by ESR imaging of MC-PROXYL in the isolated brains of normal Wistar-Kyoto rats (WKY), spontaneously hypertensive rats (SHR), and stroke prone SHR (SHRSP). The decay of the ESR images of MC-PROXYL in the isolated brains was faster in SHR than in normal WKY, but was only moderate in SHRSP. In addition, the decay rate of MC-PROXYL in the heads of live rats, as measured noninvasively by L-band ESR, was faster in SHR than in WKY, and was slower in SHR than in SHRSP. Taken together, our data suggest that the oxidative stress of SHR is not as high as that in high oxidative stress animal models such as SHRSP. This is the first study to present reconstructed 3D images of the distribution of MC-PROXYL in the isolated SHR brain. The ESR technique employed herein appears to be a powerful tool for evaluating oxidative stress and for detecting the region of oxidative stress in the brain of SHR.
Collapse
Affiliation(s)
- Masaichi-Chang-Il Lee
- Department of Clinical Care Medicine, Division of Pharmacology and ESR Laboratories, Kanagawa Dental College, Yokosuka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Yamato M, Egashira T, Utsumi H. Application of in vivo ESR spectroscopy to measurement of cerebrovascular ROS generation in stroke. Free Radic Biol Med 2003; 35:1619-31. [PMID: 14680685 DOI: 10.1016/j.freeradbiomed.2003.09.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This study used an in vivo ESR spectroscopy/spin probe technique to measure directly the generation of reactive oxygen species (ROS) in the brain after cerebral ischemia-reperfusion. Transient middle cerebral artery occlusion (MCAO) was induced in rats by inserting a nylon thread into the internal carotid artery for 1 h. The in vivo generation of ROS and its location in the brain were analyzed from the enhanced ESR signal decay data of three intra-arterially injected spin probes with different membrane permeabilities. The ESR signal decay of the probe with intermediate permeability was significantly enhanced 30 min after reperfusion following MCAO, whereas no enhancement was observed with the other probes or in the control group. The enhanced in vivo signal decay was significantly suppressed by superoxide dismutase (SOD). Brain damage was barely discernible until 3 h of reperfusion, and was clearly suppressed with the probe of intermediate permeability. The antioxidant MCI-186 completely suppressed the enhanced in vivo signal decay after transient MCAO. These results clearly demonstrate that ROS are generated at the interface of the cerebrovascular cell membrane when reperfusion follows MCAO in rats, and that the ROS generated during the initial stages of transient MCAO cause brain injury.
Collapse
Affiliation(s)
- Mayumi Yamato
- Laboratory of Bio-function Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | | | | |
Collapse
|
50
|
In vivo electron spin resonance-computed tomography/nitroxyl probe technique for non-invasive analysis of oxidative injuries. Arch Biochem Biophys 2003; 416:1-8. [PMID: 12859975 DOI: 10.1016/s0003-9861(03)00285-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Free radicals are widely recognized as harmful chemical species in oxidative tissue injury. However, there have been no satisfying methods to visualize free radicals in vivo non-invasively with information of their localization and amount. In vivo electron spin resonance (ESR) spectroscopy was recently developed to measure free radicals generated in rodents. Several kinds of stable nitroxyl radicals were used as spin probes to detect free radicals. ESR signal intensities reflecting the accumulation of nitroxyl probes in each organ decreases time-dependently and reduction decay rates are increased in the presence of free radicals. Such increase in signal decay rates is suppressed by prior administration of antioxidants or antioxidant enzymes. Thus, in vivo ESR techniques are useful in estimating not only in vivo free radical reactions but also the effects of antioxidants, and furthermore, in combination with other tomographic techniques, permits non-invasive localization of free radicals. Application of this technique to animal models will be described.
Collapse
|