1
|
Elajaili HB, Dee NM, Dikalov SI, Kao JPY, Nozik ES. Use of Electron Paramagnetic Resonance (EPR) to Evaluate Redox Status in a Preclinical Model of Acute Lung Injury. Mol Imaging Biol 2024; 26:495-502. [PMID: 37193807 PMCID: PMC10188229 DOI: 10.1007/s11307-023-01826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/18/2023]
Abstract
PURPOSE Patients with hyper- vs. hypo-inflammatory subphenotypes of acute respiratory distress syndrome (ARDS) exhibit different clinical outcomes. Inflammation increases the production of reactive oxygen species (ROS) and increased ROS contributes to the severity of illness. Our long-term goal is to develop electron paramagnetic resonance (EPR) imaging of lungs in vivo to precisely measure superoxide production in ARDS in real time. As a first step, this requires the development of in vivo EPR methods for quantifying superoxide generation in the lung during injury, and testing if such superoxide measurements can differentiate between susceptible and protected mouse strains. PROCEDURES In WT mice, mice lacking total body extracellular superoxide dismutase (EC-SOD) (KO), or mice overexpressing lung EC-SOD (Tg), lung injury was induced with intraperitoneal (IP) lipopolysaccharide (LPS) (10 mg/kg). At 24 h after LPS treatment, mice were injected with the cyclic hydroxylamines 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine hydrochloride (CPH) or 4-acetoxymethoxycarbonyl-1-hydroxy-2,2,5,5-tetramethylpyrrolidine-3-carboxylic acid (DCP-AM-H) probes to detect, respectively, cellular and mitochondrial ROS - specifically superoxide. Several probe delivery strategies were tested. Lung tissue was collected up to one hour after probe administration and assayed by EPR. RESULTS As measured by X-band EPR, cellular and mitochondrial superoxide increased in the lungs of LPS-treated mice compared to control. Lung cellular superoxide was increased in EC-SOD KO mice and decreased in EC-SOD Tg mice compared to WT. We also validated an intratracheal (IT) delivery method, which enhanced the lung signal for both spin probes compared to IP administration. CONCLUSIONS We have developed protocols for delivering EPR spin probes in vivo, allowing detection of cellular and mitochondrial superoxide in lung injury by EPR. Superoxide measurements by EPR could differentiate mice with and without lung injury, as well as mouse strains with different disease susceptibilities. We expect these protocols to capture real-time superoxide production and enable evaluation of lung EPR imaging as a potential clinical tool for subphenotyping ARDS patients based on redox status.
Collapse
Affiliation(s)
- Hanan B Elajaili
- Pediatric Critical Care Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., B131, Aurora, CO, 80045, USA
| | - Nathan M Dee
- Pediatric Critical Care Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., B131, Aurora, CO, 80045, USA
| | - Sergey I Dikalov
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joseph P Y Kao
- Center for Biomedical Engineering and Technology, and Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eva S Nozik
- Pediatric Critical Care Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19th Ave., B131, Aurora, CO, 80045, USA.
| |
Collapse
|
2
|
Elajaili H, Hernandez-Lagunas L, Harris P, Sparagna GC, Jonscher R, Ohlstrom D, Sucharov CC, Bowler RP, Suliman H, Fritz KS, Roede JR, Nozik ES. Extracellular superoxide dismutase (EC-SOD) R213G variant reduces mitochondrial ROS and preserves mitochondrial function in bleomycin-induced lung injury: EC-SOD R213G variant and intracellular redox regulation. ADVANCES IN REDOX RESEARCH 2022; 5:100035. [PMID: 38273965 PMCID: PMC10810244 DOI: 10.1016/j.arres.2022.100035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Extracellular superoxide dismutase (EC-SOD) is highly expressed in the lung and vasculature. A common human single nucleotide polymorphism (SNP) in the matrix binding region of EC-SOD leads to a single amino acid substitution, R213G, and alters EC-SOD tissue binding affinity. The change in tissue binding affinity redistributes EC-SOD from tissue to extracellular fluids. Mice (R213G mice) expressing a knock-in of this EC-SOD SNP exhibit elevated plasma and reduced lung EC-SOD content and activity and are protected against bleomycin-induced lung injury and inflammation. It is unknown how the redistribution of EC-SOD alters site-specific redox-regulated molecules relevant for protection. In this study, we tested the hypothesis that the change in the local EC-SOD content would influence not only the extracellular redox microenvironment where EC-SOD is localized but also protect the intracellular redox status of the lung. Mice were treated with bleomycin and harvested 7 days post-treatment. Superoxide levels, measured by electron paramagnetic resonance (EPR), were lower in plasma and Bronchoalveolar lavage fluid (BALF) cells in R213G mice compared to wild-type (WT) mice, while lung cellular superoxide levels in R213G mice were not elevated post-bleomycin compared to WT mice despite low lung EC-SOD levels. Lung glutathione redox potential (EhGSSG), determined by HPLC and fluorescence, was more oxidized in WT compared to R213G mice. In R213G mice, lung mitochondrial oxidative stress was reduced shown by mitochondrial superoxide level measured by EPR in lung and the resistance to bleomycin-induced cardiolipin oxidation. Bleomycin treatment suppressed mitochondrial respiration in WT mice. Mitochondrial function was impaired at baseline in R213G mice but did not exhibit further suppression in respiration post-bleomycin. Collectively, the results indicate that R213G variant preserves intracellular redox state and protects mitochondrial function in the setting of bleomycin-induced inflammation.
Collapse
Affiliation(s)
- Hanan Elajaili
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Laura Hernandez-Lagunas
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Peter Harris
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Genevieve C. Sparagna
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Raleigh Jonscher
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Denis Ohlstrom
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Carmen C. Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | | | - Hagir Suliman
- Departments of Anesthesiology and Pathology, Duke University School of Medicine, Durham, North Carolina
| | - Kristofer S. Fritz
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - James R. Roede
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Eva S. Nozik
- Cardiovascular Pulmonary Research Laboratories and Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
3
|
Pearson R, Butler A. Glyceryl Trinitrate: History, Mystery, and Alcohol Intolerance. Molecules 2021; 26:6581. [PMID: 34770988 PMCID: PMC8587134 DOI: 10.3390/molecules26216581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 11/23/2022] Open
Abstract
Glyceryl trinitrate (GTN) is one of the earliest known treatments for angina with a fascinating history that bridges three centuries. However, despite its central role in the nitric oxide (NO) story as a NO-donating compound, establishing the precise mechanism of how GTN exerts its medicinal benefit has proven to be far more difficult. This review brings together the explosive and vasodilatory nature of this three-carbon molecule while providing an update on the likely in vivo pathways through which GTN, and the rest of the organic nitrate family, release NO, nitrite, or a combination of both, while also trying to explain nitrate tolerance. Over the last 20 years the alcohol detoxification enzyme, aldehyde dehydrogenase (ALDH), has undoubtedly emerged as the front runner to explaining GTN's bioactivation. This is best illustrated by reduced GTN efficacy in subjects carrying the single point mutation (Glu504Lys) in ALDH, which is also responsible for alcohol intolerance, as characterized by flushing. While these findings are significant for anyone following the GTN story, they appear particularly relevant for healthcare professionals, and especially so, if administering GTN to patients as an emergency treatment. In short, although the GTN puzzle has not been fully solved, clinical study data continue to cement the importance of ALDH, as uncovered in 2002, as a key GTN activator.
Collapse
Affiliation(s)
- Russell Pearson
- School of Pharmacy & Bioengineering, Keele University, Newcastle-under-Lyme ST5 5BG, Staffordshire, UK
| | - Anthony Butler
- School of Psychology & Neuroscience, University of St Andrews, St Andrews KY16 9JP, UK;
| |
Collapse
|
4
|
Gotham JP, Li R, Tipple TE, Lancaster JR, Liu T, Li Q. Quantitation of spin probe-detectable oxidants in cells using electron paramagnetic resonance spectroscopy: To probe or to trap? Free Radic Biol Med 2020; 154:84-94. [PMID: 32376456 PMCID: PMC7368495 DOI: 10.1016/j.freeradbiomed.2020.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 12/22/2022]
Abstract
Electron Paramagnetic Resonance (EPR) spectroscopy coupled with spin traps/probes enables quantitative determination of reactive nitrogen and oxygen species (RNOS). Even with numerous studies using spin probes, the methodology has not been rigorously investigated. The autoxidation of spin probes has been commonly overlooked. Using the spin probe 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH), the present study has tested the effects of metal chelators, temperature, and oxygen content on the autoxidation of spin probes, where an optimized condition is refined for cell studies. The apparent rate of CMH autoxidation under this condition is 7.01 ± 1.60 nM/min, indicating low sensitivity and great variation of the CMH method and that CMH autoxidation rate should be subtracted from the generation rate of CMH-detectable oxidants (simplified as oxidants below) in samples. Oxidants in RAW264.7 cells are detected at an initial rate of 4.0 ± 0.7 pmol/min/106 cells, which is not considered as the rate of basal oxidants generation because the same method has failed to detect oxidant generation from the stimulation of phorbol-12-mysirate-13-acetate (PMA, 0.1 nmol/106 cells) in cells (2.5 ± 0.9 for PMA vs. 2.1 ± 1.5 pmol/min/106 cells for dimethyl sulfoxide (DMSO)-treated cells). In contrast, the spin trap 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), which exhibits minimal autoxidation, reveals differences between PMA and DMSO treatment (0.26 ± 0.09 vs. -0.06 ± 0.12 pmol/min/106 cells), which challenges previous claims that spin probes are more sensitive than spin traps. We have also found that low temperature EPR measurements of frozen samples of CMH autoxidation provide lower signal intensity and greater variation compared to RT measurements of fresh samples. The current study establishes an example for method development of RNOS detection, where experimental details are rigorously considered and tested, and raises questions on the applications of spin probes and spin traps.
Collapse
Affiliation(s)
- John P Gotham
- Science and Technology Honors College, University of Alabama at Birmingham, Birmingham, AL, 35294, USA; Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Rui Li
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Trent E Tipple
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Jack R Lancaster
- Department of Pharmacology & Chemical Biology, Medicine, and Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Taiming Liu
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, Loma Linda, CA, 92354, USA
| | - Qian Li
- Division of Neonatology, Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
5
|
Dikalov SI, Polienko YF, Kirilyuk I. Electron Paramagnetic Resonance Measurements of Reactive Oxygen Species by Cyclic Hydroxylamine Spin Probes. Antioxid Redox Signal 2018; 28:1433-1443. [PMID: 29037084 PMCID: PMC5910043 DOI: 10.1089/ars.2017.7396] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Oxidative stress contributes to numerous pathophysiological conditions such as development of cancer, neurodegenerative, and cardiovascular diseases. A variety of measurements of oxidative stress markers in biological systems have been developed; however, many of these methods are not specific, can produce artifacts, and do not directly detect the free radicals and reactive oxygen species (ROS) that cause oxidative stress. Electron paramagnetic resonance (EPR) is a unique tool that allows direct measurements of free radical species. Cyclic hydroxylamines are useful and convenient molecular probes that readily react with ROS to produce stable nitroxide radicals, which can be quantitatively measured by EPR. In this work, we critically review recent applications of various cyclic hydroxylamine spin probes in biology to study oxidative stress, their advantages, and the shortcomings. Recent Advances: In the past decade, a number of new cyclic hydroxylamine spin probes have been developed and their successful application for ROS measurement using EPR has been published. These new state-of-the-art methods provide improved selectivity and sensitivity for in vitro and in vivo studies. CRITICAL ISSUES Although cyclic hydroxylamine spin probes EPR application has been previously described, there has been lack of translation of these new methods into biomedical research, limiting their widespread use. This work summarizes "best practice" in applications of cyclic hydroxylamine spin probes to assist with EPR studies of oxidative stress. FUTURE DIRECTIONS Additional studies to advance hydroxylamine spin probes from the "basic science" to biomedical applications are needed and could lead to better understanding of pathological conditions associated with oxidative stress. Antioxid. Redox Signal. 28, 1433-1443.
Collapse
Affiliation(s)
- Sergey I Dikalov
- 1 Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee
| | - Yuliya F Polienko
- 2 Laboratory of Nitrogen Compounds, Novosibirsk Institute of Organic Chemistry , Novosibirsk, Russia .,3 Department of Organic Chemistry, Novosibirsk State University , Novosibirsk, Russia
| | - Igor Kirilyuk
- 2 Laboratory of Nitrogen Compounds, Novosibirsk Institute of Organic Chemistry , Novosibirsk, Russia .,3 Department of Organic Chemistry, Novosibirsk State University , Novosibirsk, Russia
| |
Collapse
|
6
|
Nemzer BV, Centner C, Zdzieblik D, Fink B, Hunter JM, König D. Oxidative stress or redox signalling - new insights into the effects of a proprietary multifunctional botanical dietary supplement. Free Radic Res 2017; 52:362-372. [PMID: 29110555 DOI: 10.1080/10715762.2017.1390228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Recent interest has focused on maintenance of healthy levels of redox signalling and the related oxidants; these parameters are crucial for providing us with concrete nutritional targets that may help us to better understand and maintain "optimal health". Following the above hypothesis, we performed a pilot double-blind, crossover, placebo-controlled, single dose study to measure the dose-dependent effects of a proprietary plant-based dietary supplement labelled here as S7 (SPECTRA7), related to how it affected the cellular metabolic index (CMI) in healthy human participants (n = 8). We demonstrated using the electron spin resonance/electron paramagnetic resonance spectrometer NOXYSCAN that the administration S7 resulted in statistically significant, long-term, dose-dependent inhibition of mitochondrial and cellular reactive oxygen species generation by as much as 9.2 or 17.7% as well as 12.0 or 14.8% inhibition in extracellular nicotinamide-dinucleotide-phosphate oxidase system-dependent generation of O2•-, and 9.5 or 44.5% inhibition of extracellular H2O2 formation. This was reflected with dose-dependent 13.4 or 17.6% inhibition of tumour necrosis factor alpha induced cellular inflammatory resistance and also 1.7 or 2.3-times increases of bioavailable NO concentration. In this pilot study, we demonstrated the ability of a natural supplement to affect cellular redox signalling, which is considered by many researchers as oxidative stress. The design and activity of this proprietary plant-based material, in combination with the newly developed "CMI" test, demonstrates the potential of using dietary supplements to modulate redox signalling. This opens the door to future research into the use of S7 for modulation of inflammatory markers, for sports endurance or recovery applications.
Collapse
Affiliation(s)
- Boris V Nemzer
- a VDF FutureCeuticals, Inc. , Momence , IL , USA.,b Department of Food Science and Human Nutrition , University of Illinois at Urbana-Champaign , Urbana , IL , USA
| | - Christoph Centner
- c Steinbeis Center for Health Promotion and Metabolic Research , Freiburg , Germany
| | - Denise Zdzieblik
- c Steinbeis Center for Health Promotion and Metabolic Research , Freiburg , Germany
| | - Bruno Fink
- d Noxygen Science Transfer & Diagnostics GmbH , Elzach , Germany
| | | | - Daniel König
- c Steinbeis Center for Health Promotion and Metabolic Research , Freiburg , Germany
| |
Collapse
|
7
|
Tsai CY, Chen CH, Chang AYW, Chan JYH, Chan SHH. Upregulation of FLJ10540, a PI3K-association protein, in rostral ventrolateral medulla impairs brain stem cardiovascular regulation during mevinphos intoxication. Biochem Pharmacol 2015; 93:34-41. [PMID: 25449601 DOI: 10.1016/j.bcp.2014.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 12/15/2022]
Abstract
FLJ10540, originally identified as a microtubule-associated protein, induces cell proliferation and migration during tumorigenesis via the formation of FLJ10540-PI3K complex and enhancement of PI3K kinase activity. Interestingly, activation of PI3K/Akt cascade, leading to upregulation of nitric oxide synthase II (NOS II)/peroxynitrite signaling in the rostral ventrolateral medulla (RVLM), the brain stem site that maintains blood pressure and sympathetic vasomotor tone, mediates the impairment of brain stem cardiovascular regulation induced by the pesticide mevinphos. We evaluated the hypothesis that upregulation of FLJ10540 in the RVLM is upstream to this repertoire of signaling cascade that underpins mevinphos-induced circulatory depression. Microinjection bilaterally of mevinphos (10nmol) into the RVLM of anesthetized Sprague-Dawley rats induced a progressive hypotension that was accompanied by an increase (Phase I), followed by a decrease (Phase II) of an experimental index for baroreflex-mediated sympathetic vasomotor tone. There was augmentation in FLJ10540 mRNA in the RVLM or FLJ10540 protein in RVLM neurons, both of which were causally and temporally related to an augmentation of binding between the catalytic subunit (p110) and regulatory subunit (p85) of PI3K, phosphorylation of Akt at Thr308 site, and NOS II, superoxide or peroxynitrite level in the RVLM. Immunoneutralization of FJL10540 in the RVLM significantly antagonized those biochemical changes, and blunted the progressive hypotension and the reduced baroreflex-mediated sympathetic vasomotor tone during mevinphos intoxication. We conclude that upregulation of FLJ10540 in the RVLM elicits impairment of brain stem cardiovascular regulation that underpins circulatory depression during mevinphos intoxication via activation of PI3K/Akt/NOS II/peroxynitrite signaling cascade in the RVLM.
Collapse
Affiliation(s)
- Ching-Yi Tsai
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan, Republic of China
| | - Chang-Han Chen
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan, Republic of China
| | - Alice Y W Chang
- Institute of Physiology, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Julie Y H Chan
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan, Republic of China
| | - Samuel H H Chan
- Center for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan, Republic of China.
| |
Collapse
|
8
|
Nemzer BV, Fink N, Fink B. New insights on effects of a dietary supplement on oxidative and nitrosative stress in humans. Food Sci Nutr 2014; 2:828-39. [PMID: 25493202 PMCID: PMC4256589 DOI: 10.1002/fsn3.178] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 01/17/2023] Open
Abstract
The research community is generally agreed that maintenance of healthy levels of free radicals and related oxidants are important for good health. However, utilization of the "redox stress hypothesis" can provide us with concrete nutritional targets in order to better support and maintain "optimal health." Following this hypothesis we performed a crossover, double-blind, placebo-controlled, single-dose study on the effects of SPECTRA™, a dietary supplement, on oxidative stress markers (OSM) in human participants (n = 22). The measurement of OSM (ex vivo intra- and extracellular formation of reactive oxygen species (ROS, O2 (-), H2O2, OH(-)) in whole blood, respiratory activity of blood cells, as well as mitochondrial-dependent ROS formation, and respiratory activity), was performed using EPR spectrometer nOxyscan, spin probe CMH, and oxygen label NOX-15.1, respectively. Furthermore, we investigated the ability of SPECTRA™ to modulate ex vivo cellular inflammatory responses induced by stimulation with exogenous TNF-α and also followed changes in bioavailable NO concentrations. In this clinical study, we demonstrated that administration of SPECTRA™ resulted in statistically significant long-term inhibition of mitochondrial and cellular ROS generation by as much as 17% as well as 3.5-times inhibition in extracellular NADPH system-dependent generation of O2 (-), and nearly complete inhibition of extracellular H2O2 formation. This was reflected in more than two times inhibition of ex vivo cellular inflammatory response and also increases in bioavailable NO concentration. For the first time, we have measured synergetic, biological effects of a natural supplement on changes in OSM and cellular metabolic activity. The unique design and activity of the plant-based natural supplement, in combination with the newly developed and extended Vitality test, demonstrates the potential of using dietary supplements to modulate OSM and also opens the door to future research into the use of natural supplements for supporting optimal health.
Collapse
Affiliation(s)
- Boris V Nemzer
- VDF FutureCeuticals Inc. 2692 N State Rt. 1-17, Momence, Illinois, 60954 ; University of Illinois at Urbana-Champaign 1201 W. Gregory Dr, Urbana, Illinois, 61801
| | - Nelli Fink
- Noxygen Science Transfer & Diagnostics GmbH Lindenmatte 42, 79215, Elzach, Germany
| | - Bruno Fink
- Noxygen Science Transfer & Diagnostics GmbH Lindenmatte 42, 79215, Elzach, Germany
| |
Collapse
|
9
|
Shabalina IG, Vrbacký M, Pecinová A, Kalinovich AV, Drahota Z, Houštěk J, Mráček T, Cannon B, Nedergaard J. ROS production in brown adipose tissue mitochondria: the question of UCP1-dependence. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:2017-2030. [PMID: 24769119 DOI: 10.1016/j.bbabio.2014.04.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/08/2014] [Accepted: 04/14/2014] [Indexed: 02/05/2023]
Abstract
Whether active UCP1 can reduce ROS production in brown-fat mitochondria is presently not settled. The issue is of principal significance, as it can be seen as a proof- or disproof-of-principle concerning the ability of any protein to diminish ROS production through membrane depolarization. We therefore undertook a comprehensive investigation of the significance of UCP1 for ROS production, by comparing the ROS production in brown-fat mitochondria isolated from wildtype mice (that display membrane depolarization) or from UCP1(-/-) mice (with a high membrane potential). We tested the significance of UCP1 for glycerol-3-phosphate-supported ROS production by three methods (fluorescent dihydroethidium and the ESR probe PHH for superoxide, and fluorescent Amplex Red for hydrogen peroxide), and followed ROS production also with succinate, acyl-CoA or pyruvate as substrate. We studied the effects of the reverse electron flow inhibitor rotenone, the UCP1 activity inhibitor GDP, and the uncoupler FCCP. We also examined the effect of a physiologically induced increase in UCP1 amount. We noted GDP effects that were not UCP1-related. We conclude that only ROS production supported by exogenously added succinate was affected by the presence of active UCP1; ROS production supported by any other tested substrate (including endogenously generated succinate) was unaffected. This conclusion indicates that UCP1 is not involved in control of ROS production in brown-fat mitochondria. Extrapolation of these data to other tissues would imply that membrane depolarization may not necessarily decrease physiologically relevant ROS production. This article is a part of a Special Issue entitled: 18th European Bioenergetics Conference (Biochim. Biophys. Acta, Volume 1837, Issue 7, July 2014).
Collapse
Affiliation(s)
- Irina G Shabalina
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Marek Vrbacký
- Department of Bioenergetics, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| | - Alena Pecinová
- Department of Bioenergetics, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| | - Anastasia V Kalinovich
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Zdeněk Drahota
- Department of Bioenergetics, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| | - Josef Houštěk
- Department of Bioenergetics, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| | - Tomáš Mráček
- Department of Bioenergetics, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 142 20 Prague, Czech Republic
| | - Barbara Cannon
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Jan Nedergaard
- Department of Molecular Biosciences, The Wenner-Gren Institute, The Arrhenius Laboratories F3, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
10
|
A high precision method for quantitative measurements of reactive oxygen species in frozen biopsies. PLoS One 2014; 9:e90964. [PMID: 24603936 PMCID: PMC3947958 DOI: 10.1371/journal.pone.0090964] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 02/05/2014] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE An electron paramagnetic resonance (EPR) technique using the spin probe cyclic hydroxylamine 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CMH) was introduced as a versatile method for high precision quantification of reactive oxygen species, including the superoxide radical in frozen biological samples such as cell suspensions, blood or biopsies. MATERIALS AND METHODS Loss of measurement precision and accuracy due to variations in sample size and shape were minimized by assembling the sample in a well-defined volume. Measurement was carried out at low temperature (150 K) using a nitrogen flow Dewar. The signal intensity was measured from the EPR 1st derivative amplitude, and related to a sample, 3-carboxy-proxyl (CP•) with known spin concentration. RESULTS The absolute spin concentration could be quantified with a precision and accuracy better than ±10 µM (k = 1). The spin concentration of samples stored at -80°C could be reproduced after 6 months of storage well within the same error estimate. CONCLUSION The absolute spin concentration in wet biological samples such as biopsies, water solutions and cell cultures could be quantified with higher precision and accuracy than normally achievable using common techniques such as flat cells, tissue cells and various capillary tubes. In addition; biological samples could be collected and stored for future incubation with spin probe, and also further stored up to at least six months before EPR analysis, without loss of signal intensity. This opens for the possibility to store and transport incubated biological samples with known accuracy of the spin concentration over time.
Collapse
|
11
|
EPR spectroscopy as a predictive tool for the assessment of marginal donor livers perfused on a normothermic ex vivo perfusion circuit. Med Hypotheses 2014; 82:627-30. [PMID: 24629357 DOI: 10.1016/j.mehy.2014.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 02/24/2014] [Indexed: 12/16/2022]
Abstract
Liver transplantation is a highly successful treatment for end-stage liver disease. While liver transplantation is often the only effective treatment for cirrhosis there is a critical shortage of donor organs, leading to death of many potential recipients on the waiting list. Marginal liver grafts are increasingly being used in an attempt to increase the number of donor livers utilized for transplantation. Marginal donor livers often have complications and worse outcomes for recipients receiving these types of transplant. The ability to predict the outcome with the use of marginal grafts is difficult and often imprecise leading decreased use of potentially suitable grafts. The development and maturation of normothermic ex vivo perfusion as a platform for the assessment of donor organs presents an opportunity to increase the number of usable donor livers available for transplantation. Furthermore, direct measurement of reactive oxygen species (ROS) present in the donor liver on an ex vivo perfusion circuit by electron paramagnetic resonance (EPR) spectroscopy would allow for precise real-time quantification of donor organ injury. The combination normothermic ex vivo liver perfusion with EPR spectroscopy could therefore present a powerful platform to increase the number of donor organs utilized for transplantation.
Collapse
|
12
|
Hawkins CL, Davies MJ. Detection and characterisation of radicals in biological materials using EPR methodology. Biochim Biophys Acta Gen Subj 2014; 1840:708-21. [DOI: 10.1016/j.bbagen.2013.03.034] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 03/28/2013] [Indexed: 12/21/2022]
|
13
|
Dikalov SI, Harrison DG. Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxid Redox Signal 2014; 20:372-82. [PMID: 22978713 PMCID: PMC3887411 DOI: 10.1089/ars.2012.4886] [Citation(s) in RCA: 439] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
SIGNIFICANCE Mitochondrial and cellular reactive oxygen species (ROS) play important roles in both physiological and pathological processes. Different ROS, such as superoxide (O2(•-)), hydrogen peroxide, and peroxynitrite (ONOO(-)), stimulate distinct cell-signaling pathways and lead to diverse outcomes depending on their amount and subcellular localization. A variety of methods have been developed for ROS detection; however, many of these methods are not specific, do not allow subcellular localization, and can produce artifacts. In this review, we will critically analyze ROS detection and present advantages and the shortcomings of several available methods. RECENT ADVANCES In the past decade, a number of new fluorescent probes, electron-spin resonance approaches, and immunoassays have been developed. These new state-of-the-art methods provide improved selectivity and subcellular resolution for ROS detection. CRITICAL ISSUES Although new methods for HPLC superoxide detection, application of fluorescent boronate-containing probes, use of cell-targeted hydroxylamine spin probes, and immunospin trapping have been available for several years, there has been lack of translation of these into biomedical research, limiting their widespread use. FUTURE DIRECTIONS Additional studies to translate these new technologies from the test tube to physiological applications are needed and could lead to a wider application of these approaches to study mitochondrial and cellular ROS.
Collapse
Affiliation(s)
- Sergey I Dikalov
- Division of Clinical Pharmacology, Vanderbilt University Medical Center , Nashville, Tennessee
| | | |
Collapse
|
14
|
Rossi SH, McQuarrie EP, Miller WH, Mackenzie RM, Dymott JA, Moreno MU, Taurino C, Miller AM, Neisius U, Berg GA, Valuckiene Z, Hannay JA, Dominiczak AF, Delles C. Impaired renal function impacts negatively on vascular stiffness in patients with coronary artery disease. BMC Nephrol 2013; 14:173. [PMID: 23937620 PMCID: PMC3751647 DOI: 10.1186/1471-2369-14-173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 08/09/2013] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) and coronary artery disease (CAD) are independently associated with increased vascular stiffness. We examined whether renal function contributes to vascular stiffness independently of CAD status. METHODS We studied 160 patients with CAD and 169 subjects without CAD. The 4-variable MDRD formula was used to estimate glomerular filtration rate (eGFR); impaired renal function was defined as eGFR <60 mL/min. Carotid-femoral pulse wave velocity (PWV) was measured with the SphygmoCor® device. Circulating biomarkers were assessed in plasma using xMAP® multiplexing technology. RESULTS Patients with CAD and impaired renal function had greater PWV compared to those with CAD and normal renal function (10.2 [9.1;11.2] vs 7.3 [6.9;7.7] m/s; P < 0.001). In all patients, PWV was a function of eGFR (β = -0.293; P < 0.001) even after adjustment for age, sex, systolic blood pressure, body mass index and presence or absence of CAD. Patients with CAD and impaired renal function had higher levels of adhesion and inflammatory molecules including E-selectin and osteopontin (all P < 0.05) compared to those with CAD alone, but had similar levels of markers of oxidative stress. CONCLUSIONS Renal function is a determinant of vascular stiffness even in patients with severe atherosclerotic disease. This was paralleled by differences in markers of cell adhesion and inflammation. Increased vascular stiffness may therefore be linked to inflammatory remodeling of the vasculature in people with impaired renal function, irrespective of concomitant atherosclerotic disease.
Collapse
|
15
|
Ethers and esters derived from apocynin avoid the interaction between p47phox and p22phox subunits of NADPH oxidase: evaluation in vitro and in silico. Biosci Rep 2013; 33:BSR20130029. [PMID: 23802190 PMCID: PMC3731894 DOI: 10.1042/bsr20130029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
NOX (NADPH oxidase) plays an important role during several pathologies because it produces the superoxide anion (O2•−), which reacts with NO (nitric oxide), diminishing its vasodilator effect. Although different isoforms of NOX are expressed in ECs (endothelial cells) of blood vessels, the NOX2 isoform has been considered the principal therapeutic target for vascular diseases because it can be up-regulated by inhibiting the interaction between its p47phox (cytosolic protein) and p22phox (transmembrane protein) subunits. In this research, two ethers, 4-(4-acetyl-2-methoxy-phenoxy)-acetic acid (1) and 4-(4-acetyl-2-methoxy-phenoxy)-butyric acid (2) and two esters, pentanedioic acid mono-(4-acetyl-2-methoxy-phenyl) ester (3) and heptanedioic acid mono-(4-acetyl-2-methoxy-phenyl) ester (4), which are apocynin derivatives were designed, synthesized and evaluated as NOX inhibitors by quantifying O2•− production using EPR (electron paramagnetic resonance) measurements. In addition, the antioxidant activity of apocynin and its derivatives were determined. A docking study was used to identify the interactions between the NOX2′s p47phox subunit and apocynin or its derivatives. The results showed that all of the compounds exhibit inhibitory activity on NOX, being 4 the best derivative. However, neither apocynin nor its derivatives were free radical scavengers. On the other hand, the in silico studies demonstrated that the apocynin and its derivatives were recognized by the polybasic SH3A and SH3B domains, which are regions of p47phox that interact with p22phox. Therefore this experimental and theoretical study suggests that compound 4 could prevent the formation of the complex between p47phox and p22phox without needing to be activated by MPO (myeloperoxidase), this being an advantage over apocynin.
Collapse
|
16
|
Alterations in vascular function in primary aldosteronism: a cardiovascular magnetic resonance imaging study. J Hum Hypertens 2013; 28:92-7. [DOI: 10.1038/jhh.2013.70] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/13/2013] [Accepted: 06/28/2013] [Indexed: 12/11/2022]
|
17
|
Freel EM, Mark PB, Weir RA, McQuarrie EP, Allan K, Dargie HJ, McClure JD, Jardine AG, Davies E, Connell JM. Demonstration of Blood Pressure-Independent Noninfarct Myocardial Fibrosis in Primary Aldosteronism. Circ Cardiovasc Imaging 2012; 5:740-7. [DOI: 10.1161/circimaging.112.974576] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background—
Primary aldosteronism (PA) is common and associates with excess cardiovascular morbidity independent of blood pressure. Exposure to aldosterone and sodium leads to cardiac fibrosis and hypertrophy in humans and animals possibly mediated by inflammation and oxidative stress. We aimed to clarify the effects of aldosterone excess on myocardial structure and composition in human subjects with PA and essential hypertension using contrast-enhanced cardiac magnetic resonance imaging as well as explore the mechanistic basis for any observed differences.
Methods and Results—
Twenty-seven subjects with recently diagnosed PA and 54 essential hypertension controls were recruited. Subjects underwent gadolinium-enhanced cardiac magnetic resonance; noninfarct related myocardial fibrosis was identified by a diffuse pattern of late gadolinium enhancement. Patients also underwent assessment of pulse wave velocity, measurement of circulating superoxide anion and C-reactive protein, as well as blood pressure and biochemical assessment. Subjects were well matched with no difference in severity or duration of hypertension. There was a significant increase in the frequency of noninfarct late gadolinium enhancement in PA (70%) when compared with essential hypertension subjects (13%;
P
<0.0001) with no difference in left ventricular mass. Pulse wave velocity, superoxide, and C-reactive protein were significantly higher in subjects with PA.
Conclusions—
These data illustrate that patients with PA exhibit frequent myocardial fibrosis as demonstrated by late gadolinium enhancement using cardiac magnetic resonance imaging; this finding is independent of blood pressure. This may be mediated partly through inflammation and oxidative stress. This study highlights the importance of specific targeting of aldosterone excess as well as blood pressure reduction to minimize cardiac morbidity in PA.
Collapse
Affiliation(s)
- E. Marie Freel
- From the Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (E.M.F., P.B.M., E.P.M.Q., K.A., H.J.D., J.D.M.C., A.G.J., E.D.); Department of Cardiology, Hairmyres Hospital, East Kilbride, Glasgow, United Kingdom (R.A.P.W.); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (J.M.C.C.)
| | - Patrick B. Mark
- From the Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (E.M.F., P.B.M., E.P.M.Q., K.A., H.J.D., J.D.M.C., A.G.J., E.D.); Department of Cardiology, Hairmyres Hospital, East Kilbride, Glasgow, United Kingdom (R.A.P.W.); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (J.M.C.C.)
| | - Robin A.P. Weir
- From the Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (E.M.F., P.B.M., E.P.M.Q., K.A., H.J.D., J.D.M.C., A.G.J., E.D.); Department of Cardiology, Hairmyres Hospital, East Kilbride, Glasgow, United Kingdom (R.A.P.W.); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (J.M.C.C.)
| | - Emily P. McQuarrie
- From the Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (E.M.F., P.B.M., E.P.M.Q., K.A., H.J.D., J.D.M.C., A.G.J., E.D.); Department of Cardiology, Hairmyres Hospital, East Kilbride, Glasgow, United Kingdom (R.A.P.W.); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (J.M.C.C.)
| | - Karen Allan
- From the Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (E.M.F., P.B.M., E.P.M.Q., K.A., H.J.D., J.D.M.C., A.G.J., E.D.); Department of Cardiology, Hairmyres Hospital, East Kilbride, Glasgow, United Kingdom (R.A.P.W.); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (J.M.C.C.)
| | - Henry J. Dargie
- From the Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (E.M.F., P.B.M., E.P.M.Q., K.A., H.J.D., J.D.M.C., A.G.J., E.D.); Department of Cardiology, Hairmyres Hospital, East Kilbride, Glasgow, United Kingdom (R.A.P.W.); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (J.M.C.C.)
| | - John D. McClure
- From the Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (E.M.F., P.B.M., E.P.M.Q., K.A., H.J.D., J.D.M.C., A.G.J., E.D.); Department of Cardiology, Hairmyres Hospital, East Kilbride, Glasgow, United Kingdom (R.A.P.W.); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (J.M.C.C.)
| | - Alan G. Jardine
- From the Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (E.M.F., P.B.M., E.P.M.Q., K.A., H.J.D., J.D.M.C., A.G.J., E.D.); Department of Cardiology, Hairmyres Hospital, East Kilbride, Glasgow, United Kingdom (R.A.P.W.); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (J.M.C.C.)
| | - Eleanor Davies
- From the Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (E.M.F., P.B.M., E.P.M.Q., K.A., H.J.D., J.D.M.C., A.G.J., E.D.); Department of Cardiology, Hairmyres Hospital, East Kilbride, Glasgow, United Kingdom (R.A.P.W.); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (J.M.C.C.)
| | - John M.C. Connell
- From the Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom (E.M.F., P.B.M., E.P.M.Q., K.A., H.J.D., J.D.M.C., A.G.J., E.D.); Department of Cardiology, Hairmyres Hospital, East Kilbride, Glasgow, United Kingdom (R.A.P.W.); and Medical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom (J.M.C.C.)
| |
Collapse
|
18
|
Dungel P, Haindl S, Behling T, Mayer B, Redl H, Kozlov AV. Neither nitrite nor nitric oxide mediate toxic effects of nitroglycerin on mitochondria. J Biochem Mol Toxicol 2011; 25:297-302. [PMID: 21523859 DOI: 10.1002/jbt.20389] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 02/16/2011] [Indexed: 11/09/2022]
Abstract
It is commonly accepted that the major effect of nitroglycerin (NG) is realized through the release of nitric oxide (NO) catalyzed by aldehyde dehydrogenase-2 (ALDH2). In addition, it has been shown that NG inhibits mitochondrial respiration. The aim of this study was to clarify whether NG-mediated inhibition of mitochondrial respiration is mediated by NO. In rat liver mitochondria, NG inhibited complex-I-dependent respiration and induced reactive oxygen species (ROS) production, preferentially at complex I. Both effects were insensitive to chloral hydrate, an ALDH2 inhibitor. Nitrite, an NG intermediate, had no influence on either mitochondrial respiration or the production of ROS. NO inhibited preferentially complex I but did not elevate ROS production. Hemoglobin, an NO scavenger, and blue light had contrary effects on mitochondria inhibited by NO or NG. In summary, our data suggest that although NG induces vasodilatation via NO release, it causes mitochondrial dysfunction via an NO-independent pathway.
Collapse
Affiliation(s)
- Peter Dungel
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Austrian Workers' Compensation Board Research Center, A-1200 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
19
|
Rons formation under restrictive reperfusion does not affect organ dysfunction early after hemorrhage and trauma. Shock 2010; 34:384-9. [PMID: 20844412 DOI: 10.1097/shk.0b013e3181d8e578] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Reactive oxygen species have been implicated in the pathophysiology of early reperfusion. We aimed to determine 1) reactive oxygen and nitrogen species (RONS) formation in organs of rats and 2) its pathophysiological relevance during a phase of restrictive reperfusion after hemorrhagic/traumatic shock (HTS). Fifty-seven male Sprague-Dawley rats were subjected to a clinically relevant HTS model, featuring laparotomy, bleeding, and a phase of restrictive reperfusion. The RONS scavenger 1-hydroxy-3-carboxy-2,2,5,5-tetramethyl-pyrrolidine hydrochloride (continuous i.v. infusion) and electron paramagnetic resonance spectroscopy were applied for RONS (primarily superoxide and peroxynitrite) detection. Compared with sham-operated animals, the organ-specific distribution of RONS changed during restrictive reperfusion after HTS. Reactive oxygen and nitrogen species formation increased during restrictive reperfusion in red blood cells and ileum only but decreased in the kidney and remained unchanged in other organs. Hemorrhagic traumatic shock followed by restrictive reperfusion resulted in metabolic acidosis, dysfunction of liver and kidney, and increased oxidative burst capacity in circulating cells. Plasma RONS correlated with shock severity and organ dysfunction. However, RONS scavenging neither affected organ dysfunction nor oxidative burst capacity nor myeloperoxidase activity in lung when compared with the shock controls. In summary, a phase of restrictive reperfusion does not increase RONS formation in most organs except in intestine and red blood cells. Moreover, scavenging of RONS does not affect the early organ dysfunction manifested at the end of a phase of restrictive reperfusion.
Collapse
|
20
|
Deschacht M, Horemans T, Martinet W, Bult H, Maes L, Cos P. Comparative EPR study of different macrophage types stimulated for superoxide and nitric oxide production. Free Radic Res 2010; 44:763-72. [PMID: 20446898 DOI: 10.3109/10715761003782288] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Despite the major impact of ROS on human health, their quantification remains difficult and requires an analytical approach, such as the EPR spin trap technique. In this study, a comparative EPR analysis of different macrophage types stimulated for superoxide and nitric oxide production was performed. U937 monocytes, J774A.1, RAW 264.7 and primary mouse (PMM) macrophages were included. In contrast to the U937 cells, all macrophages produced significant EPR signals after stimulation. The use of PMA as stimulator and CM-H as spin probe led to the highest response in EPR signals for detection of O(2)(.-) as nitroxide radical. A combination of LPS and IFN-gamma and the spin trap [Fe(DETC)(2)] turned out to be the best combination for the production and detection of intracellular NO spin adducts. In conclusion, this study established practical experimental conditions for the EPR analysis of O(2)(.-) and NO produced by different types of activated macrophages.
Collapse
|
21
|
Soto J, Avila FJ, Otero JC, Peláez D, Arenas JF. A molecular mechanism for direct generation of nitric oxide, peroxynitrite and superoxide in the reaction of nitroglycerin with a cysteil-cysteine derivative. Theor Chem Acc 2010. [DOI: 10.1007/s00214-010-0802-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Adam S, Loertzer H, Fornara P, Brömme HJ. The carboxyproxyl-derived spin trap (CP-H) is an appropriate detector-compound for oxidative stress. ACTA ACUST UNITED AC 2010; 38:179-86. [PMID: 20179915 DOI: 10.1007/s00240-010-0256-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Accepted: 01/26/2010] [Indexed: 10/19/2022]
Abstract
Reperfusion of ischemic tissue disturbs the balance between reactive oxygen species (ROS) and the cellular antioxidative defense. This imbalance is known as oxidative stress. In this study the spin trap 3-carboxy-2,2,5,5-tetramethylpyrrolin-1-hydroxide (CP-H) with its ESR-detectable paramagnetic analogue 3-carboxy-2,2,5,5-tetramethylpyrrolin-1-oxyl (*CP) was analyzed in vitro and in vivo. In preliminary in vitro experiments we studied the interaction of CP-H with reactive compounds like hydroxyl radicals (*OH) and alkylperoxyl radicals (ROO*) which are formed during organ reperfusion or tissue reoxygenation. The increase in the peak intensity of the ESR signal of the *CP-radical was used as a measure for CP-H oxidation by the above-mentioned oxidizing radicals. It could be clearly shown that *OH as well as ROO* induce CP-H oxidation. The intensity of the ESR signal (*CP) depends on the concentration of the applied oxidant. In a further set of in vitro experiments we analyzed some factors influencing the stability of the generated *CP. Cellular reductants are able to interact with many radicals whereby their paramagnetic signal intensity decreases. We could show that glutathione (GSH) up to 5 mM does not influence *CP concentration. On the other hand, ascorbate at a concentration of 0.6 mM significantly reduces 55% of *CP within 60 min to the ESR-silent CP-H. At 1 mM ascorbate the *CP derived ESR signal is reduced within 60 min by 90%. Lower concentrations of ascorbate (0.1-0.3 mM) do not significantly decrease signal intensity within 1 h. Homogenization of ischemic rat kidney in the presence of an air-equilibrated buffer obviously induces the formation of oxidizing radicals which in turn are able to convert diamagnetic CP-H into paramagnetic *CP. The intensity of the formed *CP was analyzed in a 600 g supernatant with ESR spectroscopy at 25 degrees C. It could be demonstrated that at least 3.0 +/- 0.5 microM *CP is formed 15 min after starting tissue homogenization and reoxygenation. Subsequent measurements of the *CP concentration indicated that its signal intensity continuously decreases. After 75 min a residual *CP concentration of 0.7 +/- 0.3 microM was monitored. Removal of mitochondria from the homogenate by centrifugation at 6,000g decelerates the disappearance of *CP but does not block it completely. In summary it could be shown that the marker (CP-H) is able to indicate the formation of oxidizing radicals during reoxygenation of ischemic tissue. This method underestimates the amount of produced oxidizing radicals. One reason for this is the reduction of *CP by some cellular reductants. Other reasons will be discussed. We assume that the used method allows a nearly real-time determination of radical production during organ reoxygenation.
Collapse
Affiliation(s)
- S Adam
- Institut für Pathophysiologie der Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | | | | | | |
Collapse
|
23
|
Delles C, Dymott JA, Neisius U, Rocchiccioli JP, Bryce GJ, Moreno MU, Carty DM, Berg GA, Hamilton CA, Dominiczak AF. Reduced LDL-cholesterol levels in patients with coronary artery disease are paralleled by improved endothelial function: An observational study in patients from 2003 and 2007. Atherosclerosis 2010; 211:271-7. [PMID: 20138279 PMCID: PMC2946556 DOI: 10.1016/j.atherosclerosis.2010.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/11/2010] [Accepted: 01/11/2010] [Indexed: 12/01/2022]
Abstract
Objective Recent guidelines recommend more aggressive lipid-lowering in secondary prevention protocols. We examined whether this resulted in improved endothelial function. Methods We studied saphenous vein specimens of patients undergoing surgical coronary revascularisation in 2007 and compared results with those of patients examined in 2003. Endothelium-dependent vasodilation was assessed by relaxation to calcium ionophore A23187, and vascular superoxide production by lucigenin enhanced chemiluminescence. Results Statin dose increased from 26 ± 16 mg/d in 2003 to 37 ± 17 mg/d in 2007 (P < 0.001), and total (4.0 ± 0.9 mmol/L vs 4.8 ± 1.0 mmol/L) and LDL-cholesterol levels (2.0 ± 0.7 mmol/L vs 3.0 ± 0.9 mmol/L) were lower in 2007 compared to 2003 (P < 0.001; n = 90 each). Endothelium-dependent vasodilation was greater in 2007 (44 ± 15%) compared to 2003 (28 ± 12%; n = 36 each; P < 0.001). Vascular superoxide derived from endothelial NO synthase (eNOS) was lower in 2007 than in 2003 (reduction by NG-nitro-l-arginine-methyl ester, 0.29 ± 0.21 nmol/(mg min) vs 0.09 ± 0.20 nmol/(mg min); P = 0.002). In linear regression analysis, LDL-cholesterol levels have been shown to be the major determinant of endothelial function in the combined 2003 and 2007 cohort. Conclusion Intensive lipid-lowering is associated with improved endothelial function and reduced superoxide production from eNOS. Further improvement in vascular function could be achieved by targeting other sources of superoxide including xanthine oxidase.
Collapse
Affiliation(s)
- Christian Delles
- BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, University of Glasgow, and Department of Vascular Surgery, Gartnavel General Hospital, 126 University Place, Glasgow G12 8TA, Scotland, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Graham D, Huynh NN, Hamilton CA, Beattie E, Smith RAJ, Cochemé HM, Murphy MP, Dominiczak AF. Mitochondria-targeted antioxidant MitoQ10 improves endothelial function and attenuates cardiac hypertrophy. Hypertension 2009; 54:322-8. [PMID: 19581509 DOI: 10.1161/hypertensionaha.109.130351] [Citation(s) in RCA: 276] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mitochondria are a major site of reactive oxygen species production, which may contribute to the development of cardiovascular disease. Protecting mitochondria from oxidative damage should be an effective therapeutic strategy; however, conventional antioxidants are ineffective, because they cannot penetrate the mitochondria. This study investigated the role of mitochondrial oxidative stress during development of hypertension in the stroke-prone spontaneously hypertensive rat, using the mitochondria-targeted antioxidant, MitoQ(10). Eight-week-old male stroke-prone spontaneously hypertensive rats were treated with MitoQ(10) (500 mumol/L; n=16), control compound decyltriphenylphosphonium (decylTPP; 500 mumol/L; n=8), or vehicle (n=9) in drinking water for 8 weeks. Systolic blood pressure was significantly reduced by approximately 25 mm Hg over the 8-week MitoQ(10) treatment period compared with decylTPP (F=5.94; P=0.029) or untreated controls (F=65.6; P=0.0001). MitoQ(10) treatment significantly improved thoracic aorta NO bioavailability (1.16+/-0.03 g/g; P=0.002, area under the curve) compared with both untreated controls (0.68+/-0.02 g/g) and decylTPP-treated rats (0.60+/-0.06 g/g). Cardiac hypertrophy was significantly reduced by MitoQ(10) treatment compared with untreated control and decylTPP treatment (MitoQ(10): 4.01+/-0.05 mg/g; control: 4.42+/-0.11 mg/g; and decylTPP: 4.40+/-0.09 mg/g; ANOVA P=0.002). Total MitoQ(10) content was measured in liver, heart, carotid artery, and kidney harvested from MitoQ(10)-treated rats by liquid chromatography-tandem mass spectrometry. All of the organs analyzed demonstrated detectable levels of MitoQ(10), with comparable accumulation in vascular and cardiac tissues. Administration of the mitochondria-targeted antioxidant MitoQ(10) protects against the development of hypertension, improves endothelial function, and reduces cardiac hypertrophy in young stroke-prone spontaneously hypertensive rats. MitoQ(10) provides a novel approach to attenuate mitochondrial-specific oxidative damage with the potential to become a new therapeutic intervention in human cardiovascular disease.
Collapse
Affiliation(s)
- Delyth Graham
- BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, University of Glasgow, 126 University Pl, Glasgow, G12 8TA United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Mayer B, Beretta M. The enigma of nitroglycerin bioactivation and nitrate tolerance: news, views and troubles. Br J Pharmacol 2008; 155:170-84. [PMID: 18574453 PMCID: PMC2538691 DOI: 10.1038/bjp.2008.263] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 05/28/2008] [Accepted: 06/03/2008] [Indexed: 02/07/2023] Open
Abstract
Nitroglycerin (glyceryl trinitrate; GTN) is the most prominent representative of the organic nitrates or nitrovasodilators, a class of compounds that have been used clinically since the late nineteenth century for the treatment of coronary artery disease (angina pectoris), congestive heart failure and myocardial infarction. Medline lists more than 15 000 publications on GTN and other organic nitrates, but the mode of action of these drugs is still largely a mystery. In the first part of this article, we give an overview on the molecular mechanisms of GTN biotransformation resulting in vascular cyclic GMP accumulation and vasodilation with focus on the role of mitochondrial aldehyde dehydrogenase (ALDH2) and the link between the ALDH2 reaction and activation of vascular soluble guanylate cyclase (sGC). In particular, we address the identity of the bioactive species that activates sGC and the potential involvement of nitrite as an intermediate, describe our recent findings suggesting that ALDH2 catalyses direct 3-electron reduction of GTN to NO and discuss possible reaction mechanisms. In the second part, we discuss contingent processes leading to markedly reduced sensitivity of blood vessels to GTN, referred to as vascular nitrate tolerance. Again, we focus on ALDH2 and describe the current controversy on the role of ALDH2 inactivation in tolerance development. Finally, we emphasize some of the most intriguing, in our opinion, unresolved puzzles of GTN pharmacology that urgently need to be addressed in future studies.
Collapse
Affiliation(s)
- B Mayer
- Department of Pharmacology and Toxicology, Karl-Franzens-University Graz, Graz, Austria.
| | | |
Collapse
|
26
|
Beretta M, Gruber K, Kollau A, Russwurm M, Koesling D, Goessler W, Keung WM, Schmidt K, Mayer B. Bioactivation of nitroglycerin by purified mitochondrial and cytosolic aldehyde dehydrogenases. J Biol Chem 2008; 283:17873-80. [PMID: 18450747 PMCID: PMC2440601 DOI: 10.1074/jbc.m801182200] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Metabolism of nitroglycerin (GTN) to 1,2-glycerol dinitrate (GDN) and nitrite by mitochondrial aldehyde dehydrogenase (ALDH2) is essentially involved in GTN bioactivation resulting in cyclic GMP-mediated vascular relaxation. The link between nitrite formation and activation of soluble guanylate cyclase (sGC) is still unclear. To test the hypothesis that the ALDH2 reaction is sufficient for GTN bioactivation, we measured GTN-induced formation of cGMP by purified sGC in the presence of purified ALDH2 and used a Clark-type electrode to probe for nitric oxide (NO) formation. In addition, we studied whether GTN bioactivation is a specific feature of ALDH2 or is also catalyzed by the cytosolic isoform (ALDH1). Purified ALDH1 and ALDH2 metabolized GTN to 1,2- and 1,3-GDN with predominant formation of the 1,2-isomer that was inhibited by chloral hydrate (ALDH1 and ALDH2) and daidzin (ALDH2). GTN had no effect on sGC activity in the presence of bovine serum albumin but caused pronounced cGMP accumulation in the presence of ALDH1 or ALDH2. The effects of the ALDH isoforms were dependent on the amount of added protein and, like 1,2-GDN formation, were sensitive to ALDH inhibitors. GTN caused biphasic sGC activation with apparent EC50 values of 42 ± 2.9 and 3.1 ± 0.4 μm in the presence of ALDH1 and ALDH2, respectively. Incubation of ALDH1 or ALDH2 with GTN resulted in sustained, chloral hydrate-sensitive formation of NO. These data may explain the coupling of ALDH2-catalyzed GTN metabolism to sGC activation in vascular smooth muscle.
Collapse
Affiliation(s)
- Matteo Beretta
- Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, Graz, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Piskernik C, Haindl S, Behling T, Gerald Z, Kehrer I, Redl H, Kozlov AV. Antimycin A and lipopolysaccharide cause the leakage of superoxide radicals from rat liver mitochondria. Biochim Biophys Acta Mol Basis Dis 2008; 1782:280-5. [PMID: 18298959 DOI: 10.1016/j.bbadis.2008.01.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 01/20/2008] [Accepted: 01/24/2008] [Indexed: 11/29/2022]
Abstract
Here we show that both Antimycin A, a respiratory chain inhibitor inducing apoptosis, and endotoxic shock, a syndrome accompanied by both necrosis and apoptosis, cause not only an increase but also the leakage of superoxide radicals (O(2)(*-)) from rat heart mitochondria (RHM), while O(2)(*-) generated in intact RHM do not escape from mitochondria. This was shown by a set of O(2)(*-)-sensitive spin probes with varying hydrophobicity. The levels of O(2)(*-) detected in intact RHM gradually increase as the hydrophobicity of spin probes increases and were not sensitive to superoxide dismutase (SOD) added to the incubation medium. Both Antimycin A and endotoxic shock elevated O(2)(*-) levels. Elevated O(2)(*-) levels became sensitive to SOD but in a different manner. The determination of O(2)(*-) with water-soluble PPH was fully sensitive to SOD, while the determination of O(2)(*-) with the more hydrophobic CMH and CPH was only partially sensitive to SOD, suggesting the release of a portion of O(2)(*-) into the surrounding medium.
Collapse
Affiliation(s)
- Christina Piskernik
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in the Research Center of AUVA, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
28
|
Palazzolo-Ballance AM, Suquet C, Hurst JK. Pathways for intracellular generation of oxidants and tyrosine nitration by a macrophage cell line. Biochemistry 2007; 46:7536-48. [PMID: 17530864 PMCID: PMC2584613 DOI: 10.1021/bi700123s] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two transformed murine macrophage cell lines (RAW 264.7 ATCC TIB-71 and CRL-2278) were examined for oxidant production at various times following activation by using a set of fluorescence and ESR-active probes. Stimulation with a soluble agonist or activation with bacterial lipopolysaccharide plus gamma-interferon caused only very small initial increases in O2 consumption above basal rates; however, at 2-4 h post-activation, respiration increased to 2-3-fold and remained at these elevated levels over the subsequent lifetime of the cell (20-30 h). Oxidation reactions were confined primarily within the cell, as was demonstrated by using phagocytosable dichlorodihydrofluorescein-conjugated latex beads and cyclic hydroxylamines with differing membrane permeabilities. From the intrinsic reactivities of these probes and the time course of their oxidations, one infers the induction of apparent peroxidase activity beginning at approximately 2 h post-activation coinciding with the increase in overall respiratory rate; this acquired capability was accompanied by accumulation of a stable horseradish peroxidase-reactive oxidant, presumably H2O2, in the extracellular medium. Nitrite ion rapidly accumulated in the extracellular medium over a period of 5-8 h post-activation in both cell lines, indicating the presence of active nitric oxide synthase (iNOS) during that period. Prostaglandin endoperoxide H synthase (COX-2) activity was detected at 15-20 h post-activation by the use of a sensitive peroxide assay in conjunction with a COX-2 specific inhibitor (DuP-697). Superoxide formation was detected by reaction with hydroethidine within the first hour following activation, but not thereafter. Consistent with the absence of significant respiratory stimulation, the amount of O2*- formed was very small; comparative reactions of cyclic hydroxylamine probes indicated that virtually none of the O2*- was discharged into the external medium. Myeloperoxidase (MPO) activity was probed at various times post-activation by using fluorescein-conjugated polyacrylamide beads, which efficiently trap MPO-generated HOCl in neutrophils to give stable chlorofluorescein products. However, chlorination of the dye was not detected under any conditions in RAW cells, virtually precluding MPO involvement in their intracellular reactions. This same probe was used to determine changes in intraphagosomal pH, which increased slowly from approximately 6.5 to approximately 8.2 over a 20 h post-phagocytosis period. The cumulative data suggest that activation is followed by sequential induction of an endogenous peroxidase, iNOS, and COX-2, with NADPH oxidase-derived O2*- playing a minimal role in the direct generation of intracellular oxidants. To account for reported observations of intracellular tyrosine nitration late in the life cycles of macrophages, we propose a novel mechanism wherein iNOS-generated NO2- is used by COX-2 to produce NO2* as a terminal microbicidal oxidant and nitrating agent.
Collapse
|
29
|
Lakshminrusimha S, Wiseman D, Black SM, Russell JA, Gugino SF, Oishi P, Steinhorn RH, Fineman JR. The role of nitric oxide synthase-derived reactive oxygen species in the altered relaxation of pulmonary arteries from lambs with increased pulmonary blood flow. Am J Physiol Heart Circ Physiol 2007; 293:H1491-7. [PMID: 17513498 PMCID: PMC2111047 DOI: 10.1152/ajpheart.00185.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Congenital cardiac defects associated with increased pulmonary blood flow (Q(p)) produce pulmonary hypertension. We have previously reported attenuated endothelium-dependent relaxations in pulmonary arteries (PA) isolated from lambs with increased Q(p) and pulmonary hypertension. To better characterize the vascular alterations in the nitric oxide-superoxide system, 12 fetal lambs underwent in utero placement of an aortopulmonary vascular graft (shunt). Twin lambs served as controls. PA were isolated from these lambs at 4-6 wk of age. Electron paramagnetic resonance spectroscopy on fourth-generation PA showed significantly increased superoxide anion generation in shunt PA that were decreased to control levels following inhibition of nitric oxide synthase (NOS) with 2-ethyl-2-thiopseudourea. Preconstricted fifth-generation PA rings were relaxed with a NOS agonist (A-23187), a nitric oxide donor [S-nitrosyl amino penicillamine (SNAP)], polyethylene glycol-conjugated superoxide dismutase (PEG-SOD), or H(2)O(2). A-23187-, PEG-SOD-, and H(2)O(2)-mediated relaxations were impaired in shunt PA compared with controls. Pretreatment with PEG-SOD significantly enhanced the relaxation response to A-23187 and SNAP in shunt but not control PA. Inhibition of NOS with nitro-L-arginine or scavenging superoxide anions with tiron enhanced relaxation to SNAP and inhibited relaxation to PEG-SOD in shunt PA. Pretreatment with catalase inhibited relaxation of shunt PA to A-23187, SOD, and H(2)O(2). We conclude that NOS catalyzes the production of superoxide anions in shunt PA. PEG-SOD relaxes shunt PA by converting these anions to H(2)O(2), a pulmonary vasodilator. The redox environment, influenced by the balance between production and scavenging of ROS, may have important consequences on pulmonary vascular reactivity in the setting of increased Q(p).
Collapse
Affiliation(s)
- Satyan Lakshminrusimha
- Department of Pediatrics, Women's and Children's Hospital of Buffalo, State University of New York at Buffalo, NY 14222, USA.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Cai H, Dikalov S, Griendling KK, Harrison DG. Detection of reactive oxygen species and nitric oxide in vascular cells and tissues: comparison of sensitivity and specificity. METHODS IN MOLECULAR MEDICINE 2007; 139:293-311. [PMID: 18287681 DOI: 10.1007/978-1-59745-571-8_20] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Reactive oxygen and nitrogen species are thought to contribute to pathogenesis of many cardiovascular diseases including hypertension, atherosclerosis, restenosis, heart failure, and diabetic vascular complications. Some of these reactive oxygen species also play an important role in vascular signaling. In this chapter, we describe various techniques that we have successfully employed to reliably measure superoxide and hydrogen peroxide. Because reactive oxygen species are capable of rapidly inactivating nitric oxide and because endothelial function characterized by nitric oxide bioavailability is an important indicator of vascular health, we have also included novel techniques capable of directly measuring nitric oxide radical from vascular cells and tissues.
Collapse
Affiliation(s)
- Hua Cai
- Division of Molecular Medicine, Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California, Los Angeles, USA
| | | | | | | |
Collapse
|
31
|
Bartosz G. Use of spectroscopic probes for detection of reactive oxygen species. Clin Chim Acta 2006; 368:53-76. [PMID: 16483560 DOI: 10.1016/j.cca.2005.12.039] [Citation(s) in RCA: 204] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2005] [Revised: 12/24/2005] [Accepted: 12/30/2005] [Indexed: 11/24/2022]
Abstract
The detection and quantitation of reactive oxygen species (ROS) receives a great deal of interest because of their importance in a wide range of physiological and pathogenic events. Probe-assisted spectroscopy (electron spin resonance, spectrophotometry, fluorescence and luminescence) is the main tool for this application. This review discusses the properties of spectroscopic probes most commonly used for ROS detection and highlights their limitations in cellular systems. These include poor stability of some probes and/or products that may be subjected to cellular metabolism and lack of specificity in their reactions with oxidants or reductants. Additional problems often arise from undesired reactions of the probes and from their non-homogeneous distribution in the studied system, production of ROS by the probes themselves, perturbation of the systems under investigation by the probes, and artifacts due to the presence of ROS in the reaction medium. The limits imposed by these difficulties on the precise evaluation of the amounts and rates of formation of ROS are discussed critically.
Collapse
Affiliation(s)
- Grzegorz Bartosz
- Department of Molecular Biophysics, University of Lodz and Department of Biochemistry and Cell Biology, University of Rzeszow, Banacha 12/16, 90-237 Lodz, Poland.
| |
Collapse
|
32
|
Gelasco AK, Raymond JR. Indoxyl sulfate induces complex redox alterations in mesangial cells. Am J Physiol Renal Physiol 2006; 290:F1551-8. [PMID: 16434574 DOI: 10.1152/ajprenal.00281.2004] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Indoxyl sulfate is a protein metabolite that is concentrated in the serum of patients with chronic renal insufficiency. It also is a uremic toxin that has been implicated in the progression of chronic renal disease in rodent models. We have shown previously that mesangial cell redox status is related to activation of mitogen-activated protein kinases and cell proliferation, which are factors related to glomerular damage. We used three methods to examine the ability of indoxyl sulfate to alter mesangial cell redox as a possible mechanism for its toxicity. Indoxyl sulfate increases mesangial cell reduction rate in a concentration-dependent manner as demonstrated by redox microphysiometry. Alterations occurred at concentrations as low as 100 microM, with more marked alterations occurring at higher concentrations associated with human renal failure. We demonstrated that indoxyl sulfate induces the production of intracellular reactive oxygen species (ROS) in mesangial cells (EC50 = 550 microM) by using the ROS-sensitive fluorescent dye CM-DCF. ROS generation was only partially (approximately 50%) inhibited by the NADPH oxidase inhibitor diphenylene iodinium at low (< or = 300 microM) indoxyl sulfate concentrations. Diphenylene iodinium was without effect at higher concentrations of indoxyl sulfate. We also used electron paramagnetic spin resonance spectroscopy with extracellular and intracellular spin traps to show that indoxyl sulfate increases extracellular SOD-sensitive O2-* production and intracellular hydroxyl radical production that may derive from an initial O2-* burst. These results document that indoxyl sulfate, when applied to renal mesangial cells at pathological concentrations, induces rapid and complex changes in mesangial cell redox.
Collapse
Affiliation(s)
- Andrew K Gelasco
- Nephrology Division, Medical Univ. of South Carolina, 96 Jonathan Lucas St., 829 CSB, Charleston, SC 29425-2227, USA.
| | | |
Collapse
|
33
|
Kozlov AV, Szalay L, Umar F, Kropik K, Staniek K, Niedermüller H, Bahrami S, Nohl H. Skeletal muscles, heart, and lung are the main sources of oxygen radicals in old rats. Biochim Biophys Acta Mol Basis Dis 2005; 1740:382-9. [PMID: 15949706 DOI: 10.1016/j.bbadis.2004.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Revised: 09/30/2004] [Accepted: 11/09/2004] [Indexed: 11/25/2022]
Abstract
The aim of this study was to compare rat tissues with respect to their reactive oxygen and nitrogen species (RONS) generating activities as a function of age. We quantified the RONS generation in vivo in young (6 months) and in old (30 months) male Sprague-Dawley rats using the recently developed spin trap 1-hydroxy-3-carboxy-pyrrolidine, applied intravenously. This spin trap reacts with superoxide radical and peroxynitrite yielding a stable spin adduct which is detectable by means of electron paramagnetic resonance (EPR) spectroscopy in frozen tissues. In old rats RONS generation was significantly increased compared to their young counterparts in the following order: blood<skeletal muscle<lung<heart, but did not change in intestine, brain, liver, and kidney. Experiments with isolated heart mitochondria showed a significant rate of RONS generation in succinate-supplemented mitochondria from old rats while no RONS were detected in mitochondria from young rats. This study identifies heart, lung, and skeletal muscle as the tissues with increased RONS formation as a function of age.
Collapse
Affiliation(s)
- Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Sokołowska M, Bednarski M, Kwiecień I, Filipek B, Włodek L. Bioactivation of nitroglycerin to nitric oxide (NO) and S-nitrosothiols in the rat liver and evaluation of the coexisting hypotensive effect. Fundam Clin Pharmacol 2004; 18:449-56. [PMID: 15312151 DOI: 10.1111/j.1472-8206.2004.00265.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The aim of the present study was to investigate nitroglycerin (NTG) bioactivation pathways in the liver after various periods of its administration. We also attempted to elucidate the relationship between nitric oxide (NO) and S-nitrosothiol (SNT) levels, and concentration of nonprotein thiols (NPSH) and intensity of peroxidative processes. Intravenous injections of NTG cause an increase in NO and SNT levels in the rat liver. The same intravenous NTG injections in the rats pretreated with 5-day i.p. NTG administrations lead to a drop in the levels of the biologically active NO, SNT and NPSH, with no concomitant changes in the rate of lipid peroxidation. This indicates that after such period of nitroglycerin pretreatment, levels of pharmacologically active NO and SNT decrease. However, during longer periods of NTG administration (for 10 and 17 days) NO, SNT and NPSH concentrations remain at the control level in spite of a considerably enhanced lipid peroxidation, which indicates that tolerance did not develop. Effects of NTG bioactivation in the liver, i.e. the levels of NO and SNT released from it, after different periods of drug administration correspond with hypotensive effects, which are known to be dependent on NTG biodegradation in vascular endothelial cells. The changes in NO and SNT levels observed in the rat liver after different periods of NTG administration parallel alterations in the hypotensive effect. In conclusion, NTG treatment for 10 and 17 days does not lead to tolerance, however, a transient loss of its pharmacological activity occurs after 5-day NTG pretreatment.
Collapse
Affiliation(s)
- Maria Sokołowska
- Institute of Medical Biochemistry, Jagiellonian University, Collegium Medicum, Kopernika 7, 31-034 Krakow, Poland
| | | | | | | | | |
Collapse
|
35
|
Chen R, Warden JT, Stenken JA. Microdialysis Sampling Combined with Electron Spin Resonance for Superoxide Radical Detection in Microliter Samples. Anal Chem 2004; 76:4734-40. [PMID: 15307784 DOI: 10.1021/ac035543g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Quantitation of superoxide radical (O2.-) production at the site of radical generation remains challenging. Microdialysis sampling is an advantageous tool for sampling from localized environments. It is difficult to combine electron spin resonance (ESR) spin traps with microdialysis because O2.- adducts with common nitrone spin traps have shorter half-lives than typical microdialysis collection times. Furthermore, typical dialysate samples (5-15 microL) suffer significant sensitivity loss when diluted for detection in a conventional ESR flat cell (200 microL). To overcome these difficulties, a cyclic hydroxylamine, 1-hydroxy-4-phosphonooxy-2,2,6,6-tetramethylpiperidine (PP-H), which produces a stable nitroxide radical (PP.) product upon reaction with O2.- was employed. Capillary cells (1.4 microL effective volume) coupled with a loop-gap resonator were utilized to measure PP. in microliter microdialysis samples (LOD 0.36 pmol). A xanthine/xanthine oxidase (X/XO) model system provided sustained O2.- production. When PP-H was included in the X/XO medium external to the microdialysis probe, a relative recovery of 22.1 +/- 1.1 and 57.2 +/- 5.7% for PP. was achieved at perfusion fluid flow rates of 0.5 and 1.0 microL/min, respectively. The respiratory burst in interferon-gamma and zymosan-stimulated RAW 264.7 macrophages was also investigated.
Collapse
Affiliation(s)
- Rui Chen
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA
| | | | | |
Collapse
|
36
|
Khatri JJ, Johnson C, Magid R, Lessner SM, Laude KM, Dikalov SI, Harrison DG, Sung HJ, Rong Y, Galis ZS. Vascular oxidant stress enhances progression and angiogenesis of experimental atheroma. Circulation 2004; 109:520-5. [PMID: 14744973 DOI: 10.1161/01.cir.0000109698.70638.2b] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Although multiple pathological processes have been associated with oxidative stress, the causative relation between oxidative stress and arterial lesion progression remains unclear. METHODS AND RESULTS To test the effect of creating arterial wall oxidative stress, we compared progression of mouse carotid lesions induced by flow cessation in the wild-type (WT) versus transgenic mice (Tg(p22vsmc)), in which overexpression of p22phox, a critical component of NAD(P)H oxidase was targeted to smooth muscle cell (SMC). Compared with WT mice, arterial lesions grew significantly larger in Tg(p22vsmc) (P<0.001) and demonstrated elevated hydrogen peroxide (H2O2) and vascular endothelial growth factor (VEGF) levels at all time points examined (P<0.001, n=4 animals per time point), probably related to increased expression of hypoxia inducible factor (HIF)-1alpha via SMC oxidative stress in the Tg(p22vsmc) arteries, both basally (203+/-12% versus WT, P<0.001, n=3) and after lesion formation. Interestingly, Tg(p22vsmc) lesions were complicated by extensive neointimal angiogenesis. In vitro experiments confirmed SMCs isolated from Tg(p22vsmc) to be the source for increased H2O2, VEGF, and HIF-1alpha and their capacity to induce angiogenic cord-like structures when cocultured with endothelial cells. The antioxidant ebselen inhibited SMC activities in vitro and intralesion angiogenesis and lesion progression in vivo. CONCLUSIONS We have demonstrated a novel pathway by which oxidative stress can trigger in vivo an angiogenic switch associated with experimental plaque progression and angiogenesis. This pathway may be related to human atheroma progression and destabilization through intraplaque hemorrhage.
Collapse
Affiliation(s)
- Jaikirshan J Khatri
- Division of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
|
38
|
Husain K. Interaction of regular exercise and chronic nitroglycerin treatment on blood pressure and rat aortic antioxidants. Biochim Biophys Acta Mol Basis Dis 2004; 1688:18-25. [PMID: 14732477 DOI: 10.1016/j.bbadis.2003.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Many cardiac patients undergo exercise conditioning with or without medication. Therefore, we investigated the interaction of exercise training and chronic nitroglycerin treatment on blood pressure (BP), aortic nitric oxide (NO), oxidants and antioxidants in rats. Fisher 344 rats were divided into four groups and treated as follows: (1) sedentary control, (2) exercise training (ET) for 8 weeks, (3) nitroglycerin (15 mg/kg, s.c. for 8 weeks) and (4) ET+nitroglycerin. BP was monitored with tail-cuff method. The animals were sacrificed 24 h after the last treatments and thoracic aorta was isolated and analyzed. Exercise training on treadmill for 8 weeks significantly increased respiratory exchange ratio (RER), aortic NO levels, and endothelial nitric oxide synthase (eNOS) protein expression. Training significantly enhanced aortic glutathione (GSH), reduced to oxidized glutathione (GSH/GSSG) ratio, copper/zinc-superoxide dismutase (CuZn-SOD), Mn-SOD, catalase (CAT), glutathione peroxidase (GSH-Px) glutathione disulfide reductase (GR) activities and protein expressions. Training significantly depleted aortic malondialdehyde (MDA) and protein carbonyls without change in BP. Nitroglycerin administration for 8 weeks significantly increased aortic NO levels and eNOS protein expression. Nitroglycerin significantly enhanced aortic Mn-SOD, CAT, GR and glutathione-S-transferase (GST) activities and protein expressions with decreased MDA levels, protein carbonyls and BP. Interaction of training and nitroglycerin treatment significantly increased aortic NO levels, eNOS protein expression, GSH/GSSG ratio, antioxidant enzymes and normalized BP. The data suggest that the interaction of training and nitroglycerin maintained BP by up-regulating the aortic NO and antioxidants and reducing the oxidative stress in rats.
Collapse
Affiliation(s)
- Kazim Husain
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, USA.
| |
Collapse
|
39
|
Kozlov AV, Szalay L, Umar F, Fink B, Kropik K, Nohl H, Redl H, Bahrami S. Epr analysis reveals three tissues responding to endotoxin by increased formation of reactive oxygen and nitrogen species. Free Radic Biol Med 2003; 34:1555-62. [PMID: 12788475 DOI: 10.1016/s0891-5849(03)00179-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The excessive formation of reactive oxygen and nitrogen species (RONS) in tissue has been implicated in the development of various diseases. In this study we adopted ex vivo low temperature EPR spectroscopy combined with spin trapping technique to measure local RONS levels in frozen tissue samples. CP-H (1-hydroxy-3-carboxy-pyrrolidine), a new nontoxic spin probe, was used to analyze RONS in vivo. In addition, nitrosyl complexes of hemoglobin were determined to trace nitric oxide released into blood. By this technique we found that RONS formation in tissue of control animals increased in the following order: liver < heart < brain < cerebellum < lung < muscle < blood < ileum < kidney < duodenum < jejunum. We also found that endotoxin challenge, which represents the most common model of septic shock, increased the formation of RONS in rat liver, heart, lung, and blood, but decreased RONS formation in jejunum. We did not find changes in RONS levels in other parts of gut, brain, skeletal muscles, and kidney. Scavenging of RONS by CP-H was accompanied by an increase in blood pressure, indicating that LPS-induced vasodilatation may be due to RONS, but not due to nitric oxide. Experiments with tissue homogenates incubated in vitro with CP-H showed that ONOO(-) and O(2)(*)(-), as well as other not identified RONS, are detectable by CP-H in tissue. In summary, low-temperature EPR combined with CP-H infusion allowed detection of local RONS formation in tissues. Increased formation of RONS in response to endotoxin challenge is organ specific.
Collapse
Affiliation(s)
- Andrey V Kozlov
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Vienna, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Hashimoto S, Kobayashi A. Clinical pharmacokinetics and pharmacodynamics of glyceryl trinitrate and its metabolites. Clin Pharmacokinet 2003; 42:205-21. [PMID: 12603173 DOI: 10.2165/00003088-200342030-00001] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
This review discusses the pharmacokinetics and pharmacodynamics of glyceryl trinitrate (nitroglycerin; GTN) pertinent to clinical medicine. The pharmacokinetics of GTN associated with various dose regimens are characterised by prominent intra- and inter-individual variability. It is, nevertheless, important to clearly understand the pharmacokinetics and characteristics of GTN to optimise its use in clinical practice and, in particular, to obviate the development of tolerance. Measurements of plasma concentrations of GTN and of 1,2-glyceryl dinitrate (1,2-GDN), 1,3-glyceryl dinitrate (1,3-GDN), 1-glyceryl mononitrate (1-GMN), and 2-glyceryl mononitrate (2-GMN), its four main metabolites, remain difficult and require meticulous techniques to obtain reliable results. Since GDNs have an effect on haemodynamic function, pharmacokinetic analyses that include the parent drug as well as the metabolites are important. Although the precise mechanisms of GTN metabolism have not been elucidated, two main pathways have been proposed for its biotransformation. The first is a mechanism-based biotransformation pathway that produces nitric oxide (NO) and contributes directly to vasodilation. The second is a clearance-based biotransformation or detoxification pathway that produces inorganic nitrite anions (NO(2) -). NO(2) - has no apparent cardiovascular effect and is not converted to NO in pharmacologically relevant concentrations in vivo. In addition, several non-enzymatic and enzymatic systems are capable of metabolising GTN. This complex metabolism complicates considerably the evaluation of the pharmacokinetics and pharmacodynamics of GTN. Regardless of the route of administration, concentrations of the metabolites exceed those of the parent compound by several orders of magnitude. During continuous steady-state delivery of GTN, for instance by a patch, concentrations of 1,2-GDN are consistently 2-7 times higher than those of 1,3-GDN, and concentrations of 2-GMN are 4-8 times higher than those of 1-GMN. Concentrations of GDNs are approximately 10 times higher, and of GMNs approximately 100 times higher, than those of GTN during sustained administration. The development of tolerance is closely related to the metabolism of GTN, and can be broadly categorised as haemodynamic tolerance versus vascular tolerance. Efforts are warranted to circumvent the development of tolerance and facilitate the use of GTN in clinical practice. Although this remains to be accomplished, it is likely that, in the near future, regimens will be developed based on a full understanding of the pharmacokinetics and pharmacodynamics of GTN and its metabolites.
Collapse
Affiliation(s)
- Satoru Hashimoto
- Department of Intensive Care and Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan.
| | | |
Collapse
|
41
|
Husain K, Somani SM, Boley TM, Hazelrigg SR. Interaction of physical training and chronic nitroglycerin treatment on blood pressure and plasma oxidant/antioxidant systems in rats. Mol Cell Biochem 2003; 247:37-44. [PMID: 12841629 DOI: 10.1023/a:1024112532382] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Many individuals with cardiovascular diseases undergo periodic physical conditioning with or without medication. Therefore, this study investigated the interaction of exercise training and chronic nitroglycerin treatment on blood pressure (BP) and alterations in nitric oxide (NO), glutathione (GSH), antioxidant enzyme activities and lipid peroxidation in rats. Fisher 344 rats were divided into four groups: (1) sedentary control, (2) exercise training for 8 weeks, (3) nitroglycerin (15 mg/kg, s.c. for 8 weeks) and (4) training + nitroglycerin for 8 weeks. BP, heart rate (HR) and respiratory exchange ratio (RER) were monitored weekly for 8 weeks using tail-cuff method and oxygen/carbon dioxide analyzer, respectively. The animals were sacrificed 24 h after last treatments and plasma isolated and analyzed using HPLC, ELISA and UV-VIS spectrophotometric techniques. The results show that exercise conditioning significantly enhanced NO production (p < 0.001), GSH levels (p < 0.001), GSH/GSSG ratio (p < 0.05) and the up-regulation of the activities of catalase (CAT) (p < 0.05), glutathione peroxidase (GSH-Px) (p < 0.001), and glutathione reductase (GR) (p < 0.05), and depression of lactate levels (p < 0.001) in the plasma of the rat. These biochemical changes were accompanied by a significant increase in RER (p < 0.001) without a significant change in BP and HR. Chronic nitroglycerin administration significantly increased NO levels (p < 0.05), GSH levels (p < 0.001), superoxide dismutase (SOD) activity (p < 0.05), GST activity (p < 0.05), and decreased MDA levels (p < 0.05). These biochemical changes were accompanied by a significant decrease in BP (p < 0.05) and without any significant changes in HR and RER. Interaction of exercise training and chronic nitroglycerin treatment resulted in normalization of plasma NO, MDA, lactate levels, and CAT activity. The combination of exercise and nitroglycerin significantly enhanced GSH levels (p < 0.05), and the up-regulation of SOD (p < 0.001), GSH-Px (p < 0.05), GR (p < 0.05) and GST (p < 0.001) activities. These biochemical changes were accompanied by normalization of BP and a significant increased in RER (p < 0.001). The data suggest that the interaction of physical training and chronic nitroglycerin treatment resulted in the maintenance of BP and the up-regulation of plasma antioxidant enzyme activities and GSH levels in the rat.
Collapse
Affiliation(s)
- Kazim Husain
- Department of Surgery, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | | | | | | |
Collapse
|
42
|
Spiekermann S, Landmesser U, Dikalov S, Bredt M, Gamez G, Tatge H, Reepschläger N, Hornig B, Drexler H, Harrison DG. Electron spin resonance characterization of vascular xanthine and NAD(P)H oxidase activity in patients with coronary artery disease: relation to endothelium-dependent vasodilation. Circulation 2003; 107:1383-9. [PMID: 12642358 DOI: 10.1161/01.cir.0000056762.69302.46] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Increased inactivation of nitric oxide by superoxide (O2*-) contributes to endothelial dysfunction in patients with coronary disease (CAD). We therefore characterized the vascular activities of xanthine oxidase and NAD(P)H oxidase, 2 major O2*--producing enzyme systems, and their relationship with flow-dependent, endothelium-mediated vasodilation (FDD) in patients with CAD. METHODS AND RESULTS Xanthine- and NAD(P)H-mediated O*.- formation was determined in coronary arteries from 10 patients with CAD and 10 controls by using electron spin resonance spectroscopy. Furthermore, activity of endothelium-bound xanthine oxidase in vivo and FDD of the radial artery were determined in 21 patients with CAD and 10 controls. FDD was measured before and after infusion of the antioxidant vitamin C (25 mg/min i.a.) to determine the portion of FDD inhibited by radicals. In coronary arteries from patients with CAD, xanthine- and NAD(P)H-mediated O2*- formation was increased compared with controls (xanthine: 12+/-2 versus 7+/-1 nmol O2*-/ microg protein; NADH: 11+/-1 versus 7+/-1 nmol O2*-/ microg protein; and NADPH: 12+/-2 versus 9+/-1 nmol O2*-/ microg protein; each P<0.05). Endothelium-bound xanthine oxidase activity was increased by >200% in patients with CAD (25+/-4 versus 9+/-1 nmol O2*-/ microL plasma per min; P<0.05) and correlated inversely with FDD (r=-0.55; P<0.05) and positively with the effect of vitamin C on FDD (r=0.54; P<0.05). CONCLUSIONS The present study represents the first electron spin resonance measurements of xanthine and NAD(P)H oxidase activity in human coronary arteries and supports the concept that increased activities of both enzymes contribute to increased vascular oxidant stress in patients with CAD. Furthermore, the present study suggests that increased xanthine oxidase activity contributes to endothelial dysfunction in patients with CAD and may thereby promote the atherosclerotic process.
Collapse
Affiliation(s)
- Stephan Spiekermann
- Division of Cardiology, Emory University School of Medicine and Atlanta Veterans Administration Hospital, Atlanta, Ga, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Fink B, Bassenge E. Association between vascular tolerance and platelet upregulation: comparison of nonintermittent administration of pentaerithrityltetranitrate and glyceryltrinitrate. J Cardiovasc Pharmacol 2002; 40:890-7. [PMID: 12451322 DOI: 10.1097/00005344-200212000-00010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Enhanced formation of oxygen-derived radicals O plays a dominant role in the development of nitrate tolerance. In 18 healthy subjects, this study tested the effect of additional vitamin C (Vit-C) administration (1 g three times daily) on glyceryltrinitrate (GTN)-induced hemodynamic changes during 3 days of nonintermittent transdermal administration of GTN (0.4 mg/h) in comparison with administration of pentaerithrityltetranitrate (PETN, 40 mg three times daily, orally). GTN caused an immediate significant rise in arterial conductivity (a/b ratio of dicrotic pulse pressure, from 2.33 +/- 0.06 to 2.52 +/- 0.06). Within 2 days of GTN administration, the a/b ratio progressively decreased and reached pre-GTN control levels, documenting tolerance. However, the administration of GTN along with Vit-C or with PETN alone induced changes in the a/b ratio and in the orthostatic reaction, which were fully maintained for the period of treatment. This vascular tolerance seen after GTN treatment was paralleled by an upregulation of ex vivo platelet activity, which was evident from a rise in aggregation from 29.2 +/- 2.8% at control day to 85.4 +/- 8.5% at day 3, and additionally from thrombin-induced increases of intracellular Ca concentration from 494 +/- 60 nM at control day to 741 +/- 37 nM at day 3. This upregulation was not observed during PETN or GTN; with additional Vit-C administration. Administration of PETN or GTN, the latter supplemented by Vit-C, induced neither vascular tolerance nor the upregulation of washed platelet activity during nonintermittent administration, in contrast to GTN without Vit-C. This is explained by a diminished formation of reactive oxygen species when PETN or when GTN along with Vit-C is used.
Collapse
Affiliation(s)
- Bruno Fink
- Institute of Applied Physiology, University of Freiburg, Germany [corrected].
| | | |
Collapse
|
44
|
Affiliation(s)
- Tommaso Gori
- Division of Cardiology, Department of Medicine, Mount Sinai and University Health Network Hospitals, University of Toronto, Toronto, Canada
| | | |
Collapse
|
45
|
Dikalov SI, Dikalova AE, Mason RP. Noninvasive diagnostic tool for inflammation-induced oxidative stress using electron spin resonance spectroscopy and an extracellular cyclic hydroxylamine. Arch Biochem Biophys 2002; 402:218-26. [PMID: 12051666 DOI: 10.1016/s0003-9861(02)00064-4] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Inflammation is one of the leading causes of the many pathological states associated with oxidative stress. A crucial role in the development of inflammation-induced oxidative stress is played by reactive oxidant species (ROS), which are very difficult to detect in vivo. One of the most sensitive and definitive methods in the detection of ROS is electron spin resonance, especially as used in conjunction with spin trapping. Unfortunately, the commonly used nitrone spin traps have a very low efficacy for trapping superoxide radicals, and their radical adducts are not stable. To address this deficiency, we have developed negatively charged cyclic hydroxylamines such as 1-hydroxy-4-phosphonooxy-2,2,6,6-tetramethylpiperidine (PP-H) for the detection of reactive oxidant species as a diagnostic tool for extracellular inflammation-induced oxidative stress. We used inflammation induced by a bacterial endotoxin lipopolysaccharide (LPS) as a model. ROS formation was tested in cultured macrophages, in blood and in vivo. PP-H reacts with reactive oxidant species generating the stable nitroxide radical 4-phosphonooxy-TEMPO. It was shown that a 5-h treatment of macrophages with LPS (1 microg/ml) leads to a threefold increase in superoxide formation as demonstrated using superoxide dismutase. Formation of reactive oxidant species 5 h after LPS (1 mg/kg) treatment of Fischer rats was analyzed in arterial blood; formation of reactive oxidant species in LPS-treated animals increased by a factor of 2.2 and was dependent upon the LPS dose. Diphenyleneiodonium (0.1 mM) inhibited formation of LPS-stimulated reactive oxidant species by 80%. We suggest that this test could be used as a noninvasive diagnostic tool for inflammation-induced oxidative stress.
Collapse
Affiliation(s)
- Sergey I Dikalov
- Laboratory of Pharmacology and Chemistry, National Institute of Environmental Health Sciences, National Institutes of Health, 111 Alexander Drive, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
46
|
Abstract
An EPR method for the measurement of the oxidative stress status in biological systems is described. The method is based on the X-band EPR detection of a persistent nitroxide generated under physiological or pseudo-physiological conditions by oxidation of a highly lipophylic hydroxylamine probe. The probe employed is bis(1-hydroxy-2,2,6,6-tetramethyl-4-piperidinyl)-decandioate which is administrated as hydrochloride salt. This probe is able to give a fast reaction with the majority of radical species involved in the oxidative stress. Furthermore, it crosses cell membranes and distributes in a biological environment without the need to alter or destroy compartmentation. The method is therefore suitable for quantitative measurements of ROS and can be applied to human tissues in real clinical settings. It has been successfully employed in systems of growing complexity and interest, ranging from subcellular fractions to whole animals and human liver.
Collapse
Affiliation(s)
- L Valgimigli
- Department of Organic Chemistry A. Mangini, University of Bologna, Bologna, Italy.
| | | | | |
Collapse
|