1
|
Gautam R, Priyadarshini E, Nirala JP, Meena R, Rajamani P. Modulatory effects of Punica granatum L juice against 2115 MHz (3G) radiation-induced reproductive toxicity in male Wistar rat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:54756-54765. [PMID: 34018100 DOI: 10.1007/s11356-021-14378-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
Advancements in telecommunication sector result in increasing exposure to electromagnetic (EM) radiation, which has been correlated with incidence of male infertility. Therefore, the present study focused on analyzing the consequence of EM radiation (2115 MHz) exposure on the reproductive system of male Wistar rats. Besides, the antioxidant protective effect of Punica granatum juice was also evaluated. For experimental analysis, rats were divided into five groups (control, sham exposed, exposed, herbal plus exposed, and herbal only). Individual group consisted of 6 rats which were exposed to radiation for 45 days (2 h/day). The herbal-treated groups were given 1 ml of Punica granatum extract orally. Various parameters such as organ to body ratio, sperm count, motility, viability, and testis histopathology were studied. Furthermore, oxidative stress parameters and free radical generation were analyzed. The exposed group showed changes in sperm parameters along with decrease in seminiferous tubule diameter. On the contrary, herbal-exposed group showed enhanced sperm count, increased motility, and viability in comparison to exposed group. Histopathology studies also revealed the protective role of herbal juice. Significant alteration in oxidative parameters along with an enhanced free radical generation in exposed group and reduction in herbal groups was observed. The results thus indicate that continuous exposure to EM radiation can lead to oxidative stress which induces biochemical changes in rat sperms. However, Punica granatum extract has a protective role against oxidative damage induced by EM radiation.
Collapse
Affiliation(s)
- Rohit Gautam
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Eepsita Priyadarshini
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Jay Prakash Nirala
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ramovatar Meena
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Paulraj Rajamani
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
2
|
Almášiová V, Holovská K, Andrašková S, Cigánková V, Ševčíková Z, Raček A, Andrejčáková Z, Beňová K, Tóth Š, Tvrdá E, Molnár J, Račeková E. Potential influence of prenatal 2.45 GHz radiofrequency electromagnetic field exposure on Wistar albino rat testis. Histol Histopathol 2021; 36:685-696. [PMID: 33779980 DOI: 10.14670/hh-18-331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An ever-increasing use of wireless devices over the last decades has forced scientists to clarify their impact on living systems. Since prenatal development is highly sensitive to numerous noxious agents, including radiation, we focused on the assessment of potential adverse effects of microwave radiation (MR) on testicular development. Pregnant Wistar albino rats (3 months old, weighing 282±8 g) were exposed to pulsed MR at a frequency of 2.45 GHz, mean power density of 2.8 mW/cm², and a specific absorption rate of 1.82 W/kg for 2 hours/day throughout pregnancy. Male offspring were no longer exposed to MR following birth. Samples of biological material were collected after reaching adulthood (75 days). In utero MR exposure caused degenerative changes in the testicular parenchyma of adult rats. The shape of the seminiferous tubules was irregular, germ cells were degenerated and often desquamated. The diameters of the seminiferous tubules and the height of the germinal epithelium were significantly decreased (both at ∗∗p<0.01), while the interstitial space was significantly increased (∗∗p<0.01) when compared to the controls. In the group of rats prenatally exposed to MR, the somatic and germ cells were rich in vacuoles and their organelles were often altered. Necrotizing cells were more frequent and empty spaces between Sertoli cells and germ cells were observed. The Leydig cells contained more lipid droplets. An increased Fluoro Jade - C and superoxide dismutase 2 positivity was detected in the rats exposed to MR. Our results confirmed adverse effects of MR on testicular development.
Collapse
Affiliation(s)
- Viera Almášiová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, the Slovak Republic.
| | - Katarína Holovská
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, the Slovak Republic
| | - Sandra Andrašková
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, the Slovak Republic
| | - Viera Cigánková
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, the Slovak Republic
| | - Zuzana Ševčíková
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, the Slovak Republic
| | - Adam Raček
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, the Slovak Republic
| | - Zuzana Andrejčáková
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, the Slovak Republic
| | - Katarína Beňová
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, the Slovak Republic
| | - Štefan Tóth
- Department of Histology and Embryology, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, Kosice, the Slovak Republic
| | - Eva Tvrdá
- Department of Animal Physiology, Slovak University of Agriculture in Nitra, Nitra, the Slovak Republic
| | - Ján Molnár
- Department of Theoretical and Industrial Electrical Engineering, Faculty of Electrical Engineering and Informatics, Technical University of Kosice, Kosice, the Slovak Republic
| | - Enikö Račeková
- Institute of Neurobiology of Biomedical Research Center of Slovak Academy of Sciences, the Slovak Republic
| |
Collapse
|
3
|
Wang X, Tao T, Song D, Mao H, Liu M, Wang J, Liu X. Calreticulin stabilizes F-actin by acetylating actin and protects microvascular endothelial cells against microwave radiation. Life Sci 2019; 232:116591. [PMID: 31228513 DOI: 10.1016/j.lfs.2019.116591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/06/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023]
Abstract
AIMS Calreticulin (CRT) is a multifunctional protein that protects endothelial cells by alleviating actin cytoskeleton injury, but the underlying mechanism remains unclear. CRT was recently identified as a novel acyltransferase; acetylation at the N-terminus of actin monomers strengthens actin polymerization. This study was undertaken to determine whether CRT protects human microvascular endothelial cells (HMECs) against microwave radiation through actin acetylation. MATERIALS AND METHODS We prepared a eukaryotic-derived recombinant CRT and incubated the HMECs with it prior to microwave exposure. We then assessed cell injury and endothelial function, detected actin polymerization and acetylation after HMECs exposure to S-band high-power microwaves. Coimmunoprecipitation, pull-down, and ex vitro acetylation reaction were performed to determine whether actin is a novel substrate of CRT acyltransferase. Finally, we employed the mutant experiments to demonstrate the acetylation sites contributing to CRT acetyltransferase activity. KEY FINDINGS Microwave radiation induced severe cell injury and endothelial contact dysfunction, reduced the polymerization of actin filaments, and destroyed the actin arrangement, ultimately reducing acetylated actin expression. CRT treatment upregulated actin acetylation levels, promoted polymerization, and facilitated thicker and longer F-actin stress fibre formation. Pre-incubation with CRT rescued microwave-induced cell injury, decreased actin acetylation, and rendered the actin cytoskeleton radiation-retardant. The level of acetyl-actin was positively correlated with actin polymerization. Actin was identified as a novel substrate of CRT, being acetylated mainly through the CRT P-domain at lys-206 and -207. SIGNIFICANCE This work provides a better understanding of the underlying mechanism of CRT-induced cytoprotection, and suggests a novel therapeutic target for microwave radiation-related diseases with endothelial dysfunction.
Collapse
Affiliation(s)
- Xiaoreng Wang
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing, China
| | - Tianqi Tao
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing, China
| | - Dandan Song
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing, China
| | - Huimin Mao
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing, China
| | - Mi Liu
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing, China
| | - Jianli Wang
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing, China
| | - Xiuhua Liu
- Department of Pathophysiology, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
4
|
Yang MJ, Lang HY, Miao X, Liu HQ, Zhang YJ, Wang YF, Chen YB, Liu JY, Zeng LH, Guo GZ. Effects of paternal electromagnetic pulse exposure on the reproductive endocrine function of male offspring: a pilot study. Toxicol Res (Camb) 2018; 7:1120-1127. [PMID: 30510681 PMCID: PMC6220719 DOI: 10.1039/c8tx00096d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/10/2018] [Indexed: 12/11/2022] Open
Abstract
Many studies indicate that parental exposure to an electromagnetic field (EMF) can cause long-term toxicity to the health of the offspring. While concerns have been focused on maternal influence, much less is known regarding the effects of paternal factors. Electromagnetic pulse (EMP) is a special and widely used type of EMF. The present study was designed to investigate the effects of paternal EMP exposure on the reproductive endocrine function of the male rat offspring. Male Sprague Dawley rats were randomly exposed to EMP at 200 kV m-1 for 0, 100 or 400 pulses before mating. The adult male offspring were sacrificed and the structural changes of testes, levels of serum steroid hormones, sperm characteristics, reproductive behaviors, content of the reproductive endocrine-related neurotransmitter GABA and expression of the GABAA receptor were analyzed. The results showed that paternal exposure induced a decrease of testosterone (T), sperm quantity and acrosin activity in the male offspring (p < 0.05). It did not show significant changes in the structure of testes, sperm deformity frequency and reproductive behaviors compared with the sham-exposed group. The content of GABA and the protein and mRNA expression of the hypothalamic GABAA receptor protein increased in the EMP exposure group (p < 0.05). In conclusion, our study shows that under these experimental conditions EMP had a certain degree of influence on the reproductive endocrine function of the male rat offspring, and the hypothalamic GABAA receptor may be involved in the reproductive toxicity of the male offspring.
Collapse
Affiliation(s)
- Ming-Juan Yang
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
- Center for Infectious Disease Control , Institute of Disease Control and Prevention , PLA , Beijing , China
| | - Hai-Yang Lang
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Xia Miao
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Hai-Qiang Liu
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Yan-Jun Zhang
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Ya-Feng Wang
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Yong-Bin Chen
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Jun-Ye Liu
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Li-Hua Zeng
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| | - Guo-Zhen Guo
- Department of Radiation Medicine , Faculty of Preventive Medicine , The Fourth Military Medical University , Xi'an , Shaanxi , China . ; ; ; ; Tel: +86-29-84774873
| |
Collapse
|
5
|
The morphological and biochemical investigation of prenatal electromagnetic wave effects on urinary bladder in rats. MARMARA MEDICAL JOURNAL 2017. [DOI: 10.5472/marumj.370642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
Miao X, Wang Y, Lang H, Lin Y, Guo Q, Yang M, Guo J, Zhang Y, Zhang J, Liu J, Liu Y, Zeng L, Guo G. Preventing Electromagnetic Pulse Irradiation Damage on Testis Using Selenium-rich Cordyceps Fungi. A Preclinical Study in Young Male Mice. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2017; 21:81-89. [PMID: 28186865 DOI: 10.1089/omi.2016.0151] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Networked 21st century society, globalization, and communications technologies are paralleled by the rise of electromagnetic energy intensity in our environments and the growing pressure of the environtome on human biology and health. The latter is the entire complement of environmental factors, including the electromagnetic energy and the technologies that generate them, enacting on the digital citizen in the new century. Electromagnetic pulse (EMP) irradiation might have serious damaging effects not only on electronic equipment but also in the whole organism and reproductive health, through nonthermal effects and oxidative stress. We sought to determine whether EMP exposure (1) induces biological damage on reproductive health and (2) the extent to which selenium-rich Cordyceps fungi (daily coadministration) offer protection on the testicles and spermatozoa. In a preclinical randomized study, 3-week-old male BALB/c mice were repeatedly exposed to EMP (peak intensity 200 kV/m, pulse edge 3.5 ns, pulse width 15 ns, 0.1 Hz, and 400 pulses/day) 5 days per week for four consecutive weeks, with or without coadministration of daily selenium-rich Cordyceps fungi (100 mg/kg). Testicular index and spermatozoa formation were measured at baseline and 1, 7, 14, 28, and 60 day time points after EMP exposure. The group without Cordyceps cotreatment displayed decreased spermatozoa formation, shrunk seminiferous tubule diameters, and diminished antioxidative capacity at 28 and 60 days after exposure (p < 0.05). The Cordyceps daily cotreatment alleviated the testicular damage by EMP exposure, increased spermatozoa formation, and reduced apoptotic spermatogenic cells. These observations warrant further preclinical and clinical studies as an innovative approach for potential protection against electromagnetic radiation in the current age of networked society and digital citizenship.
Collapse
Affiliation(s)
- Xia Miao
- 1 Department of Radiation Medicine, Fourth Military Medical University , Xi'an, P.R. China
| | - Yafeng Wang
- 2 Health and Epidemic Prevention Team, Navy General Hospital , Beijing, P.R. China
| | - Haiyang Lang
- 1 Department of Radiation Medicine, Fourth Military Medical University , Xi'an, P.R. China
| | - Yanyun Lin
- 1 Department of Radiation Medicine, Fourth Military Medical University , Xi'an, P.R. China
| | - Qiyan Guo
- 1 Department of Radiation Medicine, Fourth Military Medical University , Xi'an, P.R. China
| | - Mingjuan Yang
- 3 Insititute of Disease Control and Prevention , Academy of Military Science, Beijing, P.R. China
| | - Juan Guo
- 1 Department of Radiation Medicine, Fourth Military Medical University , Xi'an, P.R. China
| | - Yanjun Zhang
- 4 Department of Radiotherapy, Tangdu Hospital, Fourth Military Medical University , Xi'an, P.R. China
| | - Jie Zhang
- 1 Department of Radiation Medicine, Fourth Military Medical University , Xi'an, P.R. China
| | - Junye Liu
- 1 Department of Radiation Medicine, Fourth Military Medical University , Xi'an, P.R. China
| | - Yaning Liu
- 5 Central Laboratory, General Hospital of the Air Force , Beijing, P.R. China
| | - Lihua Zeng
- 1 Department of Radiation Medicine, Fourth Military Medical University , Xi'an, P.R. China
| | - Guozhen Guo
- 1 Department of Radiation Medicine, Fourth Military Medical University , Xi'an, P.R. China
| |
Collapse
|
7
|
Kıvrak EG, Yurt KK, Kaplan AA, Alkan I, Altun G. Effects of electromagnetic fields exposure on the antioxidant defense system. J Microsc Ultrastruct 2017; 5:167-176. [PMID: 30023251 PMCID: PMC6025786 DOI: 10.1016/j.jmau.2017.07.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/19/2017] [Accepted: 07/26/2017] [Indexed: 11/28/2022] Open
Abstract
Technological devices have become essential components of daily life. However, their deleterious effects on the body, particularly on the nervous system, are well known. Electromagnetic fields (EMF) have various chemical effects, including causing deterioration in large molecules in cells and imbalance in ionic equilibrium. Despite being essential for life, oxygen molecules can lead to the generation of hazardous by-products, known as reactive oxygen species (ROS), during biological reactions. These reactive oxygen species can damage cellular components such as proteins, lipids and DNA. Antioxidant defense systems exist in order to keep free radical formation under control and to prevent their harmful effects on the biological system. Free radical formation can take place in various ways, including ultraviolet light, drugs, lipid oxidation, immunological reactions, radiation, stress, smoking, alcohol and biochemical redox reactions. Oxidative stress occurs if the antioxidant defense system is unable to prevent the harmful effects of free radicals. Several studies have reported that exposure to EMF results in oxidative stress in many tissues of the body. Exposure to EMF is known to increase free radical concentrations and traceability and can affect the radical couple recombination. The purpose of this review was to highlight the impact of oxidative stress on antioxidant systems. Abbreviations: EMF, electromagnetic fields; RF, radiofrequency; ROS, reactive oxygen species; GSH, glutathione; GPx, glutathione peroxidase; GR, glutathione reductase; GST, glutathione S-transferase; CAT, catalase; SOD, superoxide dismutase; HSP, heat shock protein; EMF/RFR, electromagnetic frequency and radiofrequency exposures; ELF-EMFs, exposure to extremely low frequency; MEL, melatonin; FA, folic acid; MDA, malondialdehyde.
Collapse
Affiliation(s)
- Elfide Gizem Kıvrak
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Kıymet Kübra Yurt
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Arife Ahsen Kaplan
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Işınsu Alkan
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Gamze Altun
- Department of Histology and Embryology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
8
|
GSM 900 MHz Microwave Radiation-Induced Alterations of Insulin Level and Histopathological Changes of Liver and Pancreas in Rat. J Biomed Phys Eng 2016; 6:235-242. [PMID: 28144593 PMCID: PMC5219574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 10/26/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND The rapidly increasing use of mobile phones has led to public concerns about possible health effects of these popular communication devices. This study is an attempt to investigate the effects of radiofrequency (RF) radiation produced by GSM mobile phones on the insulin release in rats. METHODS Forty two female adult Sprague Dawley rats were randomly divided into 4 groups. Group1 were exposed to RF radiation 6 hours per day for 7 days. Group 2 received sham exposure (6 hours per day for 7 days). Groups 3 and 4 received RF radiation 3 hours per day for 7 days and sham exposure (3 hours per day), respectively. The specific absorption rate (SAR) of RF was 2.0 W/kg. RESULTS Our results showed that RF radiations emitted from mobile phone could not alter insulin release in rats. However, mild to severe inflammatory changes in the portal spaces of the liver of rats as well as damage in the cells of islet of Langerhans were observed. These changes were linked with the duration of the exposures. CONCLUSION RF exposure can induce inflammatory changes in the liver as well causing damage in the cells of islet of Langerhans.
Collapse
|
9
|
Chauhan P, Verma HN, Sisodia R, Kesari KK. Microwave radiation (2.45 GHz)-induced oxidative stress: Whole-body exposure effect on histopathology of Wistar rats. Electromagn Biol Med 2016; 36:20-30. [PMID: 27362544 DOI: 10.3109/15368378.2016.1144063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Man-made microwave and radiofrequency (RF) radiation technologies have been steadily increasing with the growing demand of electronic appliances such as microwave oven and cell phones. These appliances affect biological systems by increasing free radicals, thus leading to oxidative damage. The aim of this study was to explore the effect of 2.45 GHz microwave radiation on histology and the level of lipid peroxide (LPO) in Wistar rats. Sixty-day-old male Wistar rats with 180 ± 10 g body weight were used for this study. Animals were divided into two groups: sham exposed (control) and microwave exposed. These animals were exposed for 2 h a day for 35 d to 2.45 GHz microwave radiation (power density, 0.2 mW/cm2). The whole-body specific absorption rate (SAR) was estimated to be 0.14 W/kg. After completion of the exposure period, rats were sacrificed, and brain, liver, kidney, testis and spleen were stored/preserved for determination of LPO and histological parameters. Significantly high level of LPO was observed in the liver (p < 0.001), brain (p < 0.004) and spleen (p < 0.006) in samples from rats exposed to microwave radiation. Also histological changes were observed in the brain, liver, testis, kidney and spleen after whole-body microwave exposure, compared to the control group. Based on the results obtained in this study, we conclude that exposure to microwave radiation 2 h a day for 35 d can potentially cause histopathology and oxidative changes in Wistar rats. These results indicate possible implications of such exposure on human health.
Collapse
Affiliation(s)
- Parul Chauhan
- a Department of Engineering and Technology , Jaipur National University , Jaipur , India
| | - H N Verma
- a Department of Engineering and Technology , Jaipur National University , Jaipur , India
| | - Rashmi Sisodia
- b Department of Zoology , University of Rajasthan , Jaipur , India
| | - Kavindra Kumar Kesari
- a Department of Engineering and Technology , Jaipur National University , Jaipur , India.,c Department of Environmental Sciences , University of Eastern Finland , Kuopio , Finland
| |
Collapse
|
10
|
Histological and histochemical study of the protective role of rosemary extract against harmful effect of cell phone electromagnetic radiation on the parotid glands. Acta Histochem 2016; 118:478-85. [PMID: 27155802 DOI: 10.1016/j.acthis.2016.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 11/20/2022]
Abstract
Electromagnetic fields (EMFs) are a class of non-ionizing radiation (NIR) that is emitted from mobile phone. It may have hazardous effects on parotid glands. So, we aimed to investigate the histological and histochemical changes of the parotid glands of rats exposed to mobile phone and study the possible protective role of rosemary against its harmful effect. Forty adult male albino rats were used in this study. They were classified into 4 equal groups. Group I (control), group II (control receiving rosemary), group III (mobile phone exposed group) and group IV (mobile exposed, rosemary treated group). Parotid glands were dissected out for histological and histochemical study. Moreover, measurement of oxidative stress markers; malondialdehyde (MDA) and total antioxidant capacity (TAC) was done. The results of this study revealed that rosemary has protective effect through improving the histological and histochemical picture of the parotid gland in addition of its antioxidant effect. It could be concluded from the current study, that exposure of parotid gland of rat models to electromagnetic radiation of mobile phone resulted in structural changes at the level of light and electron microscopic examination which could be explained by oxidative stress effect of mobile phone. Rosemary could play a protective role against this harmful effect through its antioxidant activity.
Collapse
|
11
|
Cheng K, Ren DQ, Yi J, Zhou XG, Yang WQ, Chen YB, Li YQ, Huang XF, Zeng GY. Pulsed electromagnetic wave exposure induces ultrastructural damage and upregulated expression of heat shock protein 70 in the rat adenohypophysis. Mol Med Rep 2015; 12:2175-80. [PMID: 25891763 DOI: 10.3892/mmr.2015.3627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 09/04/2014] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to investigate the ultrastructural damage and the expression of heat shock protein 70 (HSP70) in the rat adenohypophysis following pulsed electromagnetic wave (PEMW) exposure. The rats were randomly divided into four groups: Sham PEMW exposure, 1 x 10(4) pulses of PEMW exposure, 1 x 10(5) pulses of PEMW exposure and 3 x 10(5) pulses of PEMW exposure. Whole body radiation of 1 x 10(4) pulses, 1 x 10(5) pulses and 3 x 10(5) pulses of PEMW were delivered with a field strength of 100 kV/m. The rats in each group (n=6 in each) were sacrificed 12, 24, 48 and 96 h after PEMW exposure. Transmission electron microscopy was then used to detect the ultrastructural changes and immunocytochemistry was used to examine the expression of HSP70. Cellular damage, including mitochondrial vacuolation occurred as early as 12 h after PEMW exposure.More severe cellular damages, including cell degeneration and necrosis, occurred 24 and 48 h after PEMW exposure. The PEMW-induced cellular damage increased as the number of PEMW pulses increased. In addition, the expression of HSP70 significantly increased following PEMW exposure and peaked after 12 h. These findings suggested that PEMW induced ultrastructural damages in the rat adenohypophysis and that HSP70 may have contributed to the PEMW-induced adenohypophyseal damage.
Collapse
Affiliation(s)
- Kang Cheng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Dong-Qing Ren
- Department of Radiation Medicine and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jun Yi
- Department of Endocrine Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiao-Guang Zhou
- Department of Urology, Bayi Children's Hospital Affiliated to People's Liberation Army General Hospital, Beijing 100700, P.R. China
| | - Wen-Qing Yang
- Lintong Sanatorium of Chinese PLA Lanzhou Command, Xi'an, Shaanxi 710600, P.R. China
| | - Yong-Bin Chen
- Department of Radiation Medicine and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yong-Qiang Li
- Electron Microscopy Center, Faculty of Preclinical Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Xiao-Feng Huang
- Electron Microscopy Center, Faculty of Preclinical Medicine, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Gui-Ying Zeng
- Department of Radiation Medicine and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
12
|
Almášiová V, Holovská K, Cigánková V, Račeková E, Fabianová K, Martončíková M. Structural and ultrastructural study of rat testes influenced by electromagnetic radiation. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:747-750. [PMID: 24839928 DOI: 10.1080/15287394.2014.890988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This study was conducted to investigate the influence of whole-body electromagnetic radiation (EMR) on testicular parenchyma of Wistar rats. Sexually mature rats were subjected to pulsed electromagnetic field at frequency of 2.45 GHz and mean power density 2.8 mW/cm(2) by 3-h daily applications for 3 wk. Tissue samples were obtained 3 h after the last irradiation and processed by histological techniques for light and transmission electron microscopy. Testes showed apparent degenerative changes of seminiferous epithelium. The seminiferous tubules were mostly irregular in shape, and seminiferous epithelium contained a number of empty spaces of different size. Subsequently, groups of sloughed epithelial cells were often found inside the lumina of tubules. Except for relatively unchanged Sertoli cells, some locations of basal compartment of seminiferous epithelium contained shriveled Sertoli cells with dark cytoplasm. These areas showed degenerative features including necrotizing and shriveled spermatogonia surrounded by empty irregular spaces, and undulating basement membrane. The intertubular spaces were enlarged but interstitial Leydig cells did not show any marked morphological changes. Evidence demonstrates the adverse effects of EMR on testicular parenchyma in rats.
Collapse
Affiliation(s)
- Viera Almášiová
- a Department of Anatomy, Histology and Physiology , University of Veterinary Medicine and Pharmacy , Košice , Slovak Republic
| | | | | | | | | | | |
Collapse
|
13
|
Luo Y, Wang X, Chen Y, Xu S, Ding G, Shi C. Effects of electromagnetic radiation on morphology and TGF-β3 expression in mouse testicular tissue. Toxicology 2013; 310:8-14. [PMID: 23707491 DOI: 10.1016/j.tox.2013.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/09/2013] [Accepted: 05/10/2013] [Indexed: 11/27/2022]
Abstract
Exposure to electromagnetic pulses in certain doses may lead to increase in the permeability of the blood testes barrier (BTB) in mice, which in turn affects spermatogenesis, penetration and spermiation. TGF-β3 is a key molecule involved in BTB permeability via regulation of tight junction proteins, and it participates in regulating spermatogenesis, synthesis of steroids and production of the extracellular matrix in testicular tissue. Therefore, it is hypothesized that TGF-β3 plays important roles in electromagnetic pulse (EMP)-induced changes in BTB permeability. In the present study, we carried out whole-body irradiation on mice using EMP of different intensities. No obvious pathological changes or significant increase in apoptosis was detected in testicular tissues after exposure to 100 and 200 pulses of intensity 200kV/m; however, with 400 pulses we observed the degeneration and shrinkage of testicular tissues along with a significant increase in apoptotic rate. Moreover, in the 100- and 200-EMP groups, a non-significant increase in TGF-β3 mRNA and protein expression was observed, whereas in the 400-EMP group a significant increase was observed (P<0.05). These results indicate that increase in the apoptotic rate of testicular tissues and increase in TGF-β3 expression may be one of the mechanisms for EMP-induced increase in BTB permeability in mice.
Collapse
Affiliation(s)
- Yaning Luo
- Department of Gynaecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710038, China
| | | | | | | | | | | |
Collapse
|
14
|
Meena R, Kumari K, Kumar J, Rajamani P, Verma HN, Kesari KK. Therapeutic approaches of melatonin in microwave radiations-induced oxidative stress-mediated toxicity on male fertility pattern of Wistar rats. Electromagn Biol Med 2013; 33:81-91. [DOI: 10.3109/15368378.2013.781035] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Jin YB, Choi HD, Kim BC, Pack JK, Kim N, Lee YS. Effects of simultaneous combined exposure to CDMA and WCDMA electromagnetic fields on serum hormone levels in rats. JOURNAL OF RADIATION RESEARCH 2013; 54:430-437. [PMID: 23239176 PMCID: PMC3650745 DOI: 10.1093/jrr/rrs120] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 11/19/2012] [Accepted: 11/20/2012] [Indexed: 06/01/2023]
Abstract
Despite more than a decade of research on the endocrine system, there have been no published studies about the effects of concurrent exposure of radiofrequency electromagnetic fields (RF-EMF) on this system. The present study investigated the several parameters of the endocrine system including melatonin, thyroid stimulating hormone, stress hormone and sex hormone after code division multiple access (CDMA, 849 MHz) and wideband code division multiple access (WCDMA, 1.95 GHz) signals for simultaneous exposure in rats. Sprague-Dawley rats were exposed to RF-EMF signals for 45 min/day, 5 days/week for up to 8 weeks. The whole-body average specific absorption rate (SAR) of CDMA or WCDMA was 2.0 W/kg (total 4.0 W/kg). At 4 and 8 weeks after the experiment began, each experimental group's 40 rats (male 20, female 20) were autopsied. Exposure for 8 weeks to simultaneous CDMA and WCDMA RF did not affect serum levels in rats of melatonin, thyroid stimulating hormone (TSH), triiodothyronine (T3) and thyroxin (T4), adrenocorticotropic hormone (ACTH) and sex hormones (testosterone and estrogen) as assessed by the ELISA method.
Collapse
Affiliation(s)
- Yeung Bae Jin
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul 139-706, Korea
| | - Hyung-Do Choi
- Electromagnetic Engineering Team, Radio Technology Research Department, Electronics and Telecommunications Research Institute (ETRI), Daejon 305-350, Korea
| | - Byung Chan Kim
- Electromagnetic Engineering Team, Radio Technology Research Department, Electronics and Telecommunications Research Institute (ETRI), Daejon 305-350, Korea
| | - Jeong-Ki Pack
- Department of Radio Sciences and Engineering, College of Engineering, Chungnam National University, Daejon 305-764, Korea
| | - Nam Kim
- School of Electrical and Computer Engineering, Chungbuk National University, Cheongju 361-763, Korea
| | - Yun-Sil Lee
- College of Pharmacy and Division of Life and Pharmaceutical Sciences, Ewha Women's University, Seoul 120-750, Korea
| |
Collapse
|
16
|
Effects of electromagnetic pulse irradiation on the mouse blood-testicle barrier. Urology 2012; 80:225.e1-6. [PMID: 22748892 DOI: 10.1016/j.urology.2012.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Revised: 03/09/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVE To investigate the effects of electromagnetic pulse irradiation on the mouse blood-testicle barrier (BTB) and spermatogenesis. METHODS After whole body irradiation with 400 kV/m electromagnetic pulse irradiation, the mouse testicles and BTB permeability were observed using hematoxylin-eosin, Evans blue, and lanthanum nitrate as tracers. The expression of the BTB tight junction protein occludin was examined using real-time polymerase chain reaction and Western blotting. RESULTS At 1, 7, and 14 days after irradiation, the BTB structure was damaged, the BTB permeability was significantly increased, numerous apoptotic or necrotic spermatogenic cells were found in the lumen, and the mRNA and protein expression levels of occludin were markedly decreased. The BTB structure and occludin expression levels had gradually recovered by 21 and 28 days after irradiation. CONCLUSION Electromagnetic pulse irradiation damaged the structure and function of mouse BTB, resulting in apoptosis or necrosis of the spermatogenic cells.
Collapse
|
17
|
Al-Damegh MA. Rat testicular impairment induced by electromagnetic radiation from a conventional cellular telephone and the protective effects of the antioxidants vitamins C and E. Clinics (Sao Paulo) 2012; 67:785-92. [PMID: 22892924 PMCID: PMC3400170 DOI: 10.6061/clinics/2012(07)14] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/07/2012] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE The aim of this study was to investigate the possible effects of electromagnetic radiation from conventional cellular phone use on the oxidant and antioxidant status in rat blood and testicular tissue and determine the possible protective role of vitamins C and E in preventing the detrimental effects of electromagnetic radiation on the testes. MATERIALS AND METHODS The treatment groups were exposed to an electromagnetic field, electromagnetic field plus vitamin C (40 mg/kg/day) or electromagnetic field plus vitamin E (2.7 mg/kg/day). All groups were exposed to the same electromagnetic frequency for 15, 30, and 60 min daily for two weeks. RESULTS There was a significant increase in the diameter of the seminiferous tubules with a disorganized seminiferous tubule sperm cycle interruption in the electromagnetism-exposed group. The serum and testicular tissue conjugated diene, lipid hydroperoxide, and catalase activities increased 3-fold, whereas the total serum and testicular tissue glutathione and glutathione peroxidase levels decreased 3-5 fold in the electromagnetism-exposed animals. CONCLUSION Our results indicate that the adverse effect of the generated electromagnetic frequency had a negative impact on testicular architecture and enzymatic activity. This finding also indicated the possible role of vitamins C and E in mitigating the oxidative stress imposed on the testes and restoring normality to the testes.
Collapse
Affiliation(s)
- Mona Abdullah Al-Damegh
- Department of Biology, College of Science and Arts, Onaizah, Qassim University, Kingdom of Saudi Arabia.
| |
Collapse
|
18
|
Chen YB, Li J, Liu JY, Zeng LH, Wan Y, Li YR, Ren D, Guo GZ. Effect of Electromagnetic Pulses (EMP) on associative learning in mice and a preliminary study of mechanism. Int J Radiat Biol 2011; 87:1147-54. [PMID: 21929296 DOI: 10.3109/09553002.2011.584937] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate the effects of electromagnetic pulses (EMP) on associative learning in mice and test a preliminary mechanism for these effects. MATERIALS AND METHODS A tapered parallel plate gigahertz transverse electromagnetic (GTEM) cell with a flared rectangular coaxial transmission line was used to expose male BALB/c mice to EMP (peak-intensity 400 kV/m, rise-time 10 ns, pulse-width 350 ns, 0.5 Hz and total 200 pulses). Concurrent sham-exposed mice were used as a control. Associative learning, oxidative stress in the brain, serum chemistry and the protective action of tocopherol monoglucoside (TMG) in mice were measured, respectively. RESULTS (1) Twelve hour and 1 day post EMP exposure associative learning was reduced significantly compared with sham control (p<0.05) but recovered at 2 d post EMP exposure. (2) Compared with the sham control, lipid peroxidation of brain tissue and chemiluminescence (CL) intensity increased significantly (p<0.05), while the activity of the antioxidant enzymes Superoxide Dismutase [SOD], Glutathione [GSH], Glutathione Peroxidase [GSH-Px], Catalase [CAT]) decreased significantly (p<0.05) at 3 h, 6 h, 12 h and 1 d post EMP exposure. All these parameters recovered at 2 d post EMP exposure. (3) No significant differences between the sham control group and EMP exposed group were observed in serum cholesterol and triglycerides. (4) Pretreatment of mice with TMG showed protective effects to EMP exposure. CONCLUSIONS EMP exposure significantly decreased associative learning in mice and TMG acted as an effective protective agent from EMP exposure. This mechanism could involve an increase of oxidative stress in brain by EMP exposure.
Collapse
Affiliation(s)
- Yong Bin Chen
- Fourth Military Medical University, Department of Radiation Medicine, Xi'an, PR China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Imai N, Kawabe M, Hikage T, Nojima T, Takahashi S, Shirai T. Effects on rat testis of 1.95-GHz W-CDMA for IMT-2000 cellular phones. Syst Biol Reprod Med 2011; 57:204-9. [DOI: 10.3109/19396368.2010.544839] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Testicular development evaluation in rats exposed to 60 Hz and 1 mT electromagnetic field. J Appl Toxicol 2010; 31:223-30. [DOI: 10.1002/jat.1584] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Revised: 07/14/2010] [Accepted: 07/22/2010] [Indexed: 11/07/2022]
|
21
|
Wang XW, Ding GR, Shi CH, Zeng LH, Liu JY, Li J, Zhao T, Chen YB, Guo GZ. Mechanisms involved in the blood-testis barrier increased permeability induced by EMP. Toxicology 2010; 276:58-63. [PMID: 20633596 DOI: 10.1016/j.tox.2010.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/01/2010] [Accepted: 07/03/2010] [Indexed: 11/29/2022]
Abstract
The blood-testis barrier (BTB) plays an important role in male reproductive system. Lots of environmental stimulations can increase the permeability of BTB and then result in antisperm antibody (AsAb) generation, which is a key step in male immune infertility. Here we reported the results of male mice exposed to electromagnetic pulse (EMP) by measuring the expression of tight-junction-associated proteins (ZO-1 and Occludin), vimentin microfilaments, and transforming growth factor-beta (TGF-beta3) as well as AsAb level in serum. Male BALB/c mice were sham exposed or exposed to EMP at two different intensities (200kV/m and 400kV/m) for 200 pulses. The testes were collected at different time points after EMP exposure. Immunofluorescence histocytochemistry, western blotting, laser confocal microscopy and RT-PCR were used in this study. Compared with sham group, the expression of ZO-1 and TGF-beta3 significantly decreased accompanied with unevenly stained vimentin microfilaments and increased serum AsAb levels in EMP-exposed mice. These results suggest a potential BTB injury and immune infertility in male mice exposed to a certain intensity of EMP.
Collapse
Affiliation(s)
- Xiao-Wu Wang
- Department of Radiation Medicine, Faculty of Preventive Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chen YB, Li J, Qi Y, Miao X, Zhou Y, Ren D, Guo GZ. The effects of electromagnetic pulses (EMP) on the bioactivity of insulin and a preliminary study of mechanism. Int J Radiat Biol 2010; 86:22-6. [DOI: 10.3109/09553000903264499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
23
|
Desai NR, Kesari KK, Agarwal A. Pathophysiology of cell phone radiation: oxidative stress and carcinogenesis with focus on male reproductive system. Reprod Biol Endocrinol 2009; 7:114. [PMID: 19849853 PMCID: PMC2776019 DOI: 10.1186/1477-7827-7-114] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 10/22/2009] [Indexed: 11/10/2022] Open
Abstract
Hazardous health effects stemming from exposure to radiofrequency electromagnetic waves (RF-EMW) emitted from cell phones have been reported in the literature. However, the cellular target of RF-EMW is still controversial. This review identifies the plasma membrane as a target of RF-EMW. In addition, the effects of RF-EMW on plasma membrane structures (i.e. NADH oxidase, phosphatidylserine, ornithine decarboxylase) and voltage-gated calcium channels are discussed. We explore the disturbance in reactive oxygen species (ROS) metabolism caused by RF-EMW and delineate NADH oxidase mediated ROS formation as playing a central role in oxidative stress (OS) due to cell phone radiation (with a focus on the male reproductive system). This review also addresses: 1) the controversial effects of RF-EMW on mammalian cells and sperm DNA as well as its effect on apoptosis, 2) epidemiological, in vivo animal and in vitro studies on the effect of RF-EMW on male reproductive system, and 3) finally, exposure assessment and dosimetry by computational biomodeling.
Collapse
Affiliation(s)
- Nisarg R Desai
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute and Obstetrics and Gynecology and Women's Health Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Internal Medicine, Staten Island University Hospital, Staten Island, New York, USA
| | - Kavindra K Kesari
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ashok Agarwal
- Center for Reproductive Medicine, Glickman Urological and Kidney Institute and Obstetrics and Gynecology and Women's Health Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
24
|
Ding GR, Li KC, Wang XW, Zhou YC, Qiu LB, Tan J, Xu SL, Guo GZ. Effect of electromagnetic pulse exposure on brain micro vascular permeability in rats. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2009; 22:265-268. [PMID: 19725471 DOI: 10.1016/s0895-3988(09)60055-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
OBJECTIVE To observe the effect of electromagnetic pulse (EMP) exposure on cerebral micro vascular permeability in rats. METHODS The whole-body of male Sprague-Dawley rats were exposed or sham exposed to 200 pulses or 400 pulses (1 Hz) of EMP at 200 kV/m. At 0.5, 1, 3, 6, and 12 h after EMP exposure, the permeability of cerebral micro vascular was detected by transmission electron microscopy and immunohistochemistry using lanthanum nitrate and endogenous albumin as vascular tracers, respectively. RESULTS The lanthanum nitrate tracer was limited to the micro vascular lumen with no lanthanum nitrate or albumin tracer extravasation in control rat brain. After EMP exposure, the lanthanum nitrate ions reached the tight junction, basal lamina and pericapillary tissue. Similarly, the albumin immunopositive staining was identified in pericapillary tissue. The changes in brain micro vascular permeability were transient, the leakage of micro vascular vessels appeared at 1 h, and reached its peak at 3 h, and nearly recovered at 12 h, after EMP exposure. In addition, the leakage of micro vascular was more obvious after exposure of EMP at 400 pulses than after exposure of EMP at 200 pulses. CONCLUSION Exposure to 200 and 400 pulses (1 Hz) of EMP at 200 kV/m can increase cerebral micro vascular permeability in rats, which is recoverable.
Collapse
Affiliation(s)
- Gui-Rong Ding
- Department of Radiation Medicine, Faculty of Preventive Medicine, Fourth Military Medical University, Xi'an 710032, Shaanxi, China
| | | | | | | | | | | | | | | |
Collapse
|