1
|
Duffy AS, Eyo UB. Microglia and Astrocytes in Postnatal Neural Circuit Formation. Glia 2025; 73:232-250. [PMID: 39568399 DOI: 10.1002/glia.24650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
Over the past two decades, microglia and astrocytes have emerged as critical mediators of neural circuit formation. Particularly during the postnatal period, both glial subtypes play essential roles in orchestrating nervous system development through communication with neurons. These functions include regulating synapse elimination, modulating neuronal density and activity, mediating synaptogenesis, facilitating axon guidance and organization, and actively promoting neuronal survival. Despite the vital roles of both microglia and astrocytes in ensuring homeostatic brain development, the extent to which the postnatal functions of these cells are regulated by sex and the manner in which these glial cells communicate with one another to coordinate nervous system development remain less well understood. Here, we review the critical functions of both microglia and astrocytes independently and synergistically in mediating neural circuit formation, focusing our exploration on the postnatal period from birth to early adulthood.
Collapse
Affiliation(s)
- Abigayle S Duffy
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| | - Ukpong B Eyo
- Brain Immunology and Glia Center, University of Virginia, Charlottesville, Virginia, USA
- Department of Neuroscience, University of Virginia, Charlottesville, Virginia, USA
- Neuroscience Graduate Program, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
2
|
Leana-Sandoval G, Kolli AV, Sandoval MA, Saavedra E, Li KH, Chen LY, Burlingame AL, Ramírez-Franco J, Díaz-Alonso J. The VGCC auxiliary subunit α2δ1 is an extracellular GluA1 interactor and regulates LTP, spatial memory, and seizure susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626379. [PMID: 39677598 PMCID: PMC11642997 DOI: 10.1101/2024.12.02.626379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Activity-dependent synaptic accumulation of AMPA receptors (AMPARs) and subsequent long-term synaptic strengthening underlie different forms of learning and memory. The AMPAR subunit GluA1 amino-terminal domain is essential for synaptic docking of AMPAR during LTP, but the precise mechanisms involved are not fully understood. Using unbiased proteomics, we identified the epilepsy and intellectual disability-associated VGCC auxiliary subunit α2δ1 as a candidate extracellular AMPAR slot. Presynaptic α2δ1 deletion in CA3 affects synaptic AMPAR incorporation during long-term potentiation, but not basal synaptic transmission, at CA1 synapses. Consistently, mice lacking α2δ1 in CA3 display a specific impairment in CA1-dependent spatial memory, but not in memory tests involving other cortical regions. Decreased seizure susceptibility in mice lacking α2δ1 in CA3 suggests a regulation of circuit excitability by α2δ1/AMPAR interactions. Our study sheds light on the regulation of activity-dependent AMPAR trafficking, and highlights the synaptic organizing roles of α2δ1.
Collapse
Affiliation(s)
- Gerardo Leana-Sandoval
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Ananth V. Kolli
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Matthew A. Sandoval
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Emily Saavedra
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Kathy H. Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lulu Y. Chen
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| | - Alma L. Burlingame
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jorge Ramírez-Franco
- Institut de Neurosciences de la Timone, Aix-Marseille Université (AMU) & CNRS, UMR7289, 13005, Marseille, France
| | - Javier Díaz-Alonso
- Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA
- Center for the Neurobiology of Learning and Memory, University of California at Irvine, CA, USA
| |
Collapse
|
3
|
Hasegawa T, Lee CYC, Hotchen AJ, Fleming A, Singh R, Suzuki K, Yuzaki M, Watanabe M, Birch MA, McCaskie AW, Lénárt N, Tóth K, Dénes Á, Liu Z, Ginhoux F, Richoz N, Clatworthy MR. Macrophages and nociceptor neurons form a sentinel unit around fenestrated capillaries to defend the synovium from circulating immune challenge. Nat Immunol 2024; 25:2270-2283. [PMID: 39587345 PMCID: PMC11588661 DOI: 10.1038/s41590-024-02011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 10/09/2024] [Indexed: 11/27/2024]
Abstract
A wide variety of systemic pathologies, including infectious and autoimmune diseases, are accompanied by joint pain or inflammation, often mediated by circulating immune complexes (ICs). How such stimuli access joints and trigger inflammation is unclear. Whole-mount synovial imaging revealed PV1+ fenestrated capillaries at the periphery of the synovium in the lining-sublining interface. Circulating ICs extravasated from these PV1+ capillaries, and nociceptor neurons and three distinct macrophage subsets formed a sentinel unit around them. Macrophages showed subset-specific responses to systemic IC challenge; LYVE1+CX3CR1+ macrophages orchestrated neutrophil recruitment and activated calcitonin gene-related peptide+ (CGRP+) nociceptor neurons via interleukin-1β. In contrast, major histocompatibility complex class II+CD11c+ (MHCII+CD11c+) and MHCII+CD11c- interstitial macrophages formed tight clusters around PV1+ capillaries in response to systemic immune stimuli, a feature enhanced by nociceptor-derived CGRP. Altogether, we identify the anatomical location of synovial PV1+ capillaries and subset-specific macrophage-nociceptor cross-talk that forms a blood-joint barrier protecting the synovium from circulating immune challenges.
Collapse
Affiliation(s)
- Tetsuo Hasegawa
- Molecular Immunity Unit, University of Cambridge, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
- Cambridge Institute for Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK.
| | - Colin Y C Lee
- Molecular Immunity Unit, University of Cambridge, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Andrew J Hotchen
- Molecular Immunity Unit, University of Cambridge, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Division of Trauma and Orthopaedic Surgery, Department of Surgery, University of Cambridge, Cambridge, UK
| | - Aaron Fleming
- Molecular Immunity Unit, University of Cambridge, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Rahul Singh
- Molecular Immunity Unit, University of Cambridge, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Kunimichi Suzuki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Mark A Birch
- Division of Trauma and Orthopaedic Surgery, Department of Surgery, University of Cambridge, Cambridge, UK
| | - Andrew W McCaskie
- Division of Trauma and Orthopaedic Surgery, Department of Surgery, University of Cambridge, Cambridge, UK
| | - Nikolett Lénárt
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Krisztina Tóth
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Nathan Richoz
- Molecular Immunity Unit, University of Cambridge, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge, Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
4
|
Ding M, Li D, Zhang J, Liu Q. TAF15 Overexpression Impairs Memory in Mice by Inhibiting the Transcription of Npas4. Neurosci Bull 2024; 40:1937-1942. [PMID: 39117935 PMCID: PMC11625027 DOI: 10.1007/s12264-024-01273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/14/2024] [Indexed: 08/10/2024] Open
Affiliation(s)
- Meijie Ding
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230001, China
- Neurodegenerative Disorder Research Center, Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230027, China
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, 230027, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230001, China.
- Neurodegenerative Disorder Research Center, Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230027, China.
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, 230027, China.
| | - Juan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230001, China.
- Neurodegenerative Disorder Research Center, Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230027, China.
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, 230027, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230001, China.
- Neurodegenerative Disorder Research Center, Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 230027, China.
- CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, 230027, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
5
|
Ning L, Shen R, Xie B, Jiang Y, Geng X, Dong W. AMPA receptors in Alzheimer disease: Pathological changes and potential therapeutic targets. J Neuropathol Exp Neurol 2024; 83:895-906. [PMID: 39235983 DOI: 10.1093/jnen/nlae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024] Open
Abstract
Alzheimer disease (AD) is a prevalent neurodegenerative disorder that affects synapses and leads to progressive cognitive decline. The role of N-methyl-D-aspartic acid (NMDA) receptors in the pathogenesis of AD is well-established as they contribute to excitotoxicity and neurodegeneration in the pathological process of extrasynaptic glutamate concentration. However, the therapeutic potential of the NMDA receptor antagonist memantine in rescuing synaptic damage is limited. Research indicates that α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors also play a significant role in AD. Abnormal transcription, expression, and localization of AMPA receptors lead to synaptic dysfunction and damage, contributing to early cognitive impairment in AD patients. Understanding the impact of AMPA receptors on AD pathogenesis and exploring the potential for the development of AMPA receptor-targeting drugs are crucial. This review aims to consolidate recent research findings on AMPA receptors in AD, elucidate the current state of AMPA receptor research and lay the foundation for future basic research and drug development.
Collapse
Affiliation(s)
- Luying Ning
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Rongjing Shen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, Institute of Epigenetics and Brain Science, Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yong Jiang
- Laboratory of Neurological Diseases and Brain Function, Institute of Epigenetics and Brain Science, Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Xiaoqi Geng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Dong
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
6
|
Pascual-Caro C, de Juan-Sanz J. Monitoring of activity-driven trafficking of endogenous synaptic proteins through proximity labeling. PLoS Biol 2024; 22:e3002860. [PMID: 39466808 PMCID: PMC11542813 DOI: 10.1371/journal.pbio.3002860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 11/07/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
To enable transmission of information in the brain, synaptic vesicles fuse to presynaptic membranes, liberating their content and exposing transiently a myriad of vesicular transmembrane proteins. However, versatile methods for quantifying the synaptic translocation of endogenous proteins during neuronal activity remain unavailable, as the fast dynamics of synaptic vesicle cycling difficult specific isolation of trafficking proteins during such a transient surface exposure. Here, we developed a novel approach using synaptic cleft proximity labeling to capture and quantify activity-driven trafficking of endogenous synaptic proteins at the synapse. We show that accelerating cleft biotinylation times to match the fast dynamics of vesicle exocytosis allows capturing endogenous proteins transiently exposed at the synaptic surface during neural activity, enabling for the first time the study of the translocation of nearly every endogenous synaptic protein. As proof-of-concept, we further applied this technology to obtain direct evidence of the surface translocation of noncanonical trafficking proteins, such as ATG9A and NPTX1, which had been proposed to traffic during activity but for which direct proof had not yet been shown. The technological advancement presented here will facilitate future studies dissecting the molecular identity of proteins exocytosed at the synapse during activity, helping to define the molecular machinery that sustains neurotransmission in the mammalian brain.
Collapse
Affiliation(s)
- Carlos Pascual-Caro
- Paris Brain Institute (ICM). Sorbonne University, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Jaime de Juan-Sanz
- Paris Brain Institute (ICM). Sorbonne University, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Paris, France
| |
Collapse
|
7
|
Mialon M, Patrash L, Weinreb A, Özkan E, Bessereau JL, Pinan-Lucarre B. A trans-synaptic IgLON adhesion molecular complex directly contacts and clusters a nicotinic receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611427. [PMID: 39314492 PMCID: PMC11418930 DOI: 10.1101/2024.09.05.611427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The localization and clustering of neurotransmitter receptors at appropriate postsynaptic sites is a key step in the control of synaptic transmission. Here, we identify a novel paradigm for the synaptic localization of an ionotropic acetylcholine receptor (AChR) based on the direct interaction of its extracellular domain with a cell adhesion molecule of the IgLON family. Our results show that RIG-5 and ZIG-8, which encode the sole IgLONs in C. elegans, are tethered in the pre- and postsynaptic membranes, respectively, and interact in vivo through their first immunoglobulin-like (Ig) domains. In addition, ZIG-8 traps ACR-16 via a direct cis- interaction between the ZIG-8 Ig2 domain and the base of the large extracellular AChR domain. Such mechanism has never been reported, but all these molecules are conserved during evolution. Similar interactions may directly couple Ig superfamily adhesion molecules and members of the large family of Cys-loop ionotropic receptors, including AChRs, in the mammalian nervous system, and may be relevant in the context of IgLON-associated brain diseases.
Collapse
|
8
|
Sumino A, Sumikama T, Zhao Y, Flechsig H, Umeda K, Kodera N, Konno H, Hattori M, Shibata M. High-Speed Atomic Force Microscopy Reveals Fluctuations and Dimer Splitting of the N-Terminal Domain of GluA2 Ionotropic Glutamate Receptor-Auxiliary Subunit Complex. ACS NANO 2024; 18:25018-25035. [PMID: 39180186 DOI: 10.1021/acsnano.4c06295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazole propionic acid glutamate receptors (AMPARs) enable rapid excitatory synaptic transmission by localizing to the postsynaptic density of glutamatergic spines. AMPARs possess large extracellular N-terminal domains (NTDs), which are crucial for AMPAR clustering at synaptic sites. However, the dynamics of NTDs and the molecular mechanism governing their synaptic clustering remain elusive. Here, we employed high-speed atomic force microscopy (HS-AFM) to directly visualize the conformational dynamics of NTDs in the GluA2 subunit complexed with TARP γ2 in lipid environments. HS-AFM videos of GluA2-γ2 in the resting and activated/open states revealed fluctuations in NTD dimers. Conversely, in the desensitized/closed state, the two NTD dimers adopted a separated conformation with less fluctuation. Notably, we observed individual NTD dimers transitioning into monomers, with extended monomeric states in the activated/open state. Molecular dynamics simulations provided further support, confirming the energetic stability of the monomeric NTD states within lipids. This NTD-dimer splitting resulted in subunit exchange between the receptors and increased the number of interaction sites with synaptic protein neuronal pentraxin 1 (NP1). Moreover, our HS-AFM studies revealed that NP1 forms a ring-shaped octamer through N-terminal disulfide bonds and binds to the tip of the NTD. These findings suggest a molecular mechanism in which NP1, upon forming an octamer, is secreted into the synaptic region and binds to the tip of the GluA2 NTD, thereby bridging and clustering multiple AMPARs. Thus, our findings illuminate the critical role of NTD dynamics in the synaptic clustering of AMPARs and contribute valuable insights into the fundamental processes of synaptic transmission.
Collapse
Affiliation(s)
- Ayumi Sumino
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Takashi Sumikama
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Yimeng Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, and Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Yangpu District, Shanghai 200438, China
- Human Phenome Institute, Fudan University, Yangpu District, Shanghai 200438, China
| | - Holger Flechsig
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenichi Umeda
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroki Konno
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| | - Motoyuki Hattori
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, and Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Yangpu District, Shanghai 200438, China
| | - Mikihiro Shibata
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
9
|
Xing M, Yang X, Jin S, Xu X. Inhibition of neuronal pentraxin 2 relieved epileptic seizure via reducing GluA1 phosphorylation. Cell Biochem Funct 2024; 42:e4003. [PMID: 38597235 DOI: 10.1002/cbf.4003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
Neuronal pentraxin 2 (Nptx2), a member of the synaptic protein family linked to excitatory synaptic formation, is found to be upregulated in epileptic mice, yet its role in epilepsy has been unclear. In vivo, we constructed a mouse model of epilepsy by using kainic acid induction. In vitro experiments, a Mg2+-free medium was used to induce epileptiform discharges in neurons. The results showed that the Nptx2 was upregulated in epileptic mice. Moreover, Nptx2 knockdown reduced the number of seizures and seizure duration. Knocking down Nptx2 not only reduced the number and duration of seizures but also showed a decrease in electroencephalogram amplitude. Behavioral tests indicated improvements in learning and memory abilities after Nptx2 knockdown. The Nissl staining and Timms staining revealed that Nptx2 silencing mitigated epilepsy-induced brain damage. The immunofluorescence staining revealed that Nptx2 absence resulted in a reduction of apoptosis. Nptx2 knockdown reduced Bax, cleaved caspase3, and cleaved caspase9 expression, while increased Bcl-2 expression. Notably, Nptx2 knockdown inhibited GluA1 phosphorylation at the S831 site and reduced the GluA1 membrane expression. The PSD95 expression declined in the epilepsy model, while the Nptx2 knockdown reversed it. Collectively, our study indicated that Nptx2 silencing not only alleviated brain damage and neuron apoptosis but also improved learning and memory ability in epileptic mice, suggesting Nptx2 as a promising target for epilepsy treatment.
Collapse
Affiliation(s)
- Mengnan Xing
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinlei Yang
- Animal Laboratory Center, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sinan Jin
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangping Xu
- Department of Pediatrics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
10
|
Zhou J, Li X, Wang X, Yang Y, Nai A, Shi H, Zhao J, Zhang J, Ding S, Han Y, Liu Q, Zhang L, Chen T, Liu B, Yue W, Lv L, Li W. Levels of neuronal pentraxin 2 in plasma is associated with cognitive function in patients with schizophrenia. Psychopharmacology (Berl) 2024; 241:865-874. [PMID: 38191677 DOI: 10.1007/s00213-023-06515-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024]
Abstract
RATIONALE The precise diagnosis and treatment of cognitive impairment remains a major challenge in the field of schizophrenia (SCZ) research. Synaptic dysfunction and loss are thought to be closely related to the occurrence and development of SCZ and may be involved in cognitive dysfunction. OBJECTIVES The purpose of this study was to investigate whether neuronal pentraxins (NPTXs) plays a role in the etiology of SCZ and provide evidence of its possible therapeutic value a new target for drug development. METHODS We recruited 275 participants, of whom 148 were SCZ from psychiatric hospital and 127 healthy control (HC) subjects from communities. Plasma concentrations of NPTXs were measured in HC and SCZ at baseline and after 8 weeks of antipsychotic treatment. The MATRICS Cognitive Consensus Battery was used to evaluate cognitive function. Furthermore, the brain is parcellated into 246 subregions using the Brainnetome atlas, and we extracted regional white matter volumes from magnetic resonance images of the SCZ groups. RESULTS Plasma NPTX2 levels were significantly lower in SCZ compared with HC subjects, but were significantly raised in SCZ after 8 weeks of antipsychotic treatment compared to baseline. In addition, baseline plasma NPTX2 levels were positively correlated with cognitive performance. CONCLUSIONS These findings indicate that NPTX2 may reveal novel aspects of disease etiology and act as a promising target for new drug development.
Collapse
Affiliation(s)
- Jiahui Zhou
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Xiaojing Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Xiujuan Wang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yongfeng Yang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Aoyang Nai
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Han Shi
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jingyuan Zhao
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jianhong Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Shuang Ding
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yong Han
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Qing Liu
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Luwen Zhang
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Tengfei Chen
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Weihua Yue
- Institute of Mental Health, Peking University, Beijing, China
- Key Laboratory for Mental Health, Ministry of Health, Beijing, China
| | - Luxian Lv
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China.
| | - Wenqiang Li
- Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China.
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, China.
- International Joint Research Laboratory for Psychiatry and Neuroscience of Henan, Xinxiang, China.
| |
Collapse
|
11
|
El Hayek L, DeVries D, Gogate A, Aiken A, Kaur K, Chahrour MH. Disruption of the autism gene and chromatin regulator KDM5A alters hippocampal cell identity. SCIENCE ADVANCES 2023; 9:eadi0074. [PMID: 37992166 PMCID: PMC10664992 DOI: 10.1126/sciadv.adi0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/25/2023] [Indexed: 11/24/2023]
Abstract
Chromatin regulation plays a pivotal role in establishing and maintaining cellular identity and is one of the top pathways disrupted in autism spectrum disorder (ASD). The hippocampus, composed of distinct cell types, is often affected in patients with ASD. However, the specific hippocampal cell types and their transcriptional programs that are dysregulated in ASD are unknown. Using single-nucleus RNA sequencing, we show that the ASD gene, lysine demethylase 5A (KDM5A), regulates the development of specific subtypes of excitatory and inhibitory neurons. We found that KDM5A is essential for establishing hippocampal cell identity by controlling a differentiation switch early in development. Our findings define a role for the chromatin regulator KDM5A in establishing hippocampal cell identity and contribute to the emerging convergent mechanisms across ASD.
Collapse
Affiliation(s)
- Lauretta El Hayek
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Darlene DeVries
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashlesha Gogate
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ariel Aiken
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kiran Kaur
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Maria H. Chahrour
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
12
|
Nakayama M, Nishimura O, Nishimura Y, Kitaichi M, Kuraku S, Sone M, Hama C. Control of Synaptic Levels of Nicotinic Acetylcholine Receptor by the Sequestering Subunit Dα5 and Secreted Scaffold Protein Hig. J Neurosci 2023; 43:3989-4004. [PMID: 37117011 PMCID: PMC10255049 DOI: 10.1523/jneurosci.2243-21.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 04/30/2023] Open
Abstract
The presentation of nicotinic acetylcholine receptors (nAChRs) on synaptic membranes is crucial for generating cholinergic circuits, some of which are associated with memory function and neurodegenerative disorders. Although the physiology and structure of nAChR, a cation channel comprising five subunits, have been extensively studied, little is known about how the receptor levels in interneuronal synapses are determined and which nAChR subunits participate in the regulatory process in cooperation with synaptic cleft matrices and intracellular proteins. By a genetic screen of Drosophila, we identified mutations in the nAChR subunit Dα5 gene as suppressors that restored the mutant phenotypes of hig, which encodes a secretory matrix protein localized to cholinergic synaptic clefts in the brain. Only the loss of function of Dα5 among the 10 nAChR subunits suppressed hig mutant phenotypes in both male and female flies. Dα5 behaved as a lethal factor when Hig was defective; loss of Dα5 in hig mutants rescued lethality, upregulating Dα6 synaptic levels. By contrast, levels of Dα5, Dα6, and Dα7 subunits were all reduced in hig mutants. These three subunits have distinct properties for interaction with Hig or trafficking, as confirmed by chimeric subunit experiments. Notably, the chimeric Dα5 protein, which has the extracellular sequences that display no positive interaction with Hig, exhibited abnormal distribution and lethality even in the presence of Hig. We propose that the sequestering subunit Dα5 functions by reducing synaptic levels of nAChR through internalization, and this process is blocked by Hig, which tethers Dα5 to the synaptic cleft matrix.SIGNIFICANCE STATEMENT Because the cholinergic synapse is one of the major synapses that generate various brain functions, numerous studies have sought to reveal the physiology and structure of the nicotinic acetylcholine receptor (nAChR). However, little is known about how synaptic levels of nAChR are controlled and which nAChR subunits participate in the regulatory process in cooperation with synaptic cleft matrices. By a genetic screen of Drosophila, we identified mutations in the nAChR subunit Dα5 gene as suppressors that restored the mutant phenotypes of hig, which encodes a secretory matrix protein localized to cholinergic synaptic clefts. Our data indicate that Dα5 functions in reducing synaptic levels of nAChR, and this process is blocked by Hig, which tethers Dα5 to the synaptic cleft matrix.
Collapse
Affiliation(s)
- Minoru Nakayama
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
- Faculty of Science, Toho University, Funabashi 274-8510, Japan
| | - Osamu Nishimura
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, RIKEN, Kobe 650-0047, Japan
| | - Yuhi Nishimura
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Miwa Kitaichi
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research, RIKEN, Kobe 650-0047, Japan
| | - Masaki Sone
- Faculty of Science, Toho University, Funabashi 274-8510, Japan
| | - Chihiro Hama
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan
| |
Collapse
|
13
|
Zhou J, Wade SD, Graykowski D, Xiao MF, Zhao B, Giannini LAA, Hanson JE, van Swieten JC, Sheng M, Worley PF, Dejanovic B. The neuronal pentraxin Nptx2 regulates complement activity and restrains microglia-mediated synapse loss in neurodegeneration. Sci Transl Med 2023; 15:eadf0141. [PMID: 36989373 PMCID: PMC10467038 DOI: 10.1126/scitranslmed.adf0141] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/28/2023] [Indexed: 03/31/2023]
Abstract
Complement overactivation mediates microglial synapse elimination in neurological diseases such as Alzheimer's disease (AD) and frontotemporal dementia (FTD), but how complement activity is regulated in the brain remains largely unknown. We identified that the secreted neuronal pentraxin Nptx2 binds complement C1q and thereby regulates its activity in the brain. Nptx2-deficient mice show increased complement activity, C1q-dependent microglial synapse engulfment, and loss of excitatory synapses. In a neuroinflammation culture model and in aged TauP301S mice, adeno-associated virus (AAV)-mediated neuronal overexpression of Nptx2 was sufficient to restrain complement activity and ameliorate microglia-mediated synapse loss. Analysis of human cerebrospinal fluid (CSF) samples from a genetic FTD cohort revealed reduced concentrations of Nptx2 and Nptx2-C1q protein complexes in symptomatic patients, which correlated with elevated C1q and activated C3. Together, these results show that Nptx2 regulates complement activity and microglial synapse elimination in the brain and that diminished Nptx2 concentrations might exacerbate complement-mediated neurodegeneration in patients with FTD.
Collapse
Affiliation(s)
- Jiechao Zhou
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | - Sarah D. Wade
- Broad Institute of MIT and Harvard, Cambridge, 02142, USA
| | | | - Mei-Fang Xiao
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | - Binhui Zhao
- Broad Institute of MIT and Harvard, Cambridge, 02142, USA
| | - Lucia A. A. Giannini
- Alzheimer Center, Department of Neurology, Erasmus University Medical Center, Rotterdam, 3015 GD, Netherlands
| | | | - John C. van Swieten
- Alzheimer Center, Department of Neurology, Erasmus University Medical Center, Rotterdam, 3015 GD, Netherlands
| | - Morgan Sheng
- Broad Institute of MIT and Harvard, Cambridge, 02142, USA
| | - Paul F. Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, 21205, USA
| | | |
Collapse
|
14
|
Mice deficient in synaptic protease neurotrypsin show impaired spaced long-term potentiation and blunted learning-induced modulation of dendritic spines. Cell Mol Life Sci 2023; 80:82. [PMID: 36871239 PMCID: PMC9986217 DOI: 10.1007/s00018-023-04720-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 01/21/2023] [Accepted: 02/06/2023] [Indexed: 03/06/2023]
Abstract
Neurotrypsin (NT) is a neuronal trypsin-like serine protease whose mutations cause severe mental retardation in humans. NT is activated in vitro by Hebbian-like conjunction of pre- and postsynaptic activities, which promotes the formation of dendritic filopodia via proteolytic cleavage of the proteoglycan agrin. Here, we investigated the functional importance of this mechanism for synaptic plasticity, learning, and extinction of memory. We report that juvenile neurotrypsin-deficient (NT-/-) mice exhibit impaired long-term potentiation induced by a spaced stimulation protocol designed to probe the generation of new filopodia and their conversion into functional synapses. Behaviorally, juvenile NT-/- mice show impaired contextual fear memory and have a sociability deficit. The latter persists in aged NT-/- mice, which, unlike juvenile mice, show normal recall but impaired extinction of contextual fear memories. Structurally, juvenile mutants exhibit reduced spine density in the CA1 region, fewer thin spines, and no modulation in the density of dendritic spines following fear conditioning and extinction in contrast to wild-type littermates. The head width of thin spines is reduced in both juvenile and aged NT-/- mice. In vivo delivery of adeno-associated virus expressing an NT-generated fragment of agrin, agrin-22, but not a shorter agrin-15, elevates the spine density in NT-/- mice. Moreover, agrin-22 co-aggregates with pre- and postsynaptic markers and increases the density and size of presynaptic boutons and presynaptic puncta, corroborating the view that agrin-22 supports the synaptic growth.
Collapse
|
15
|
Nilsson J, Constantinescu J, Nellgård B, Jakobsson P, Brum WS, Gobom J, Forsgren L, Dalla K, Constantinescu R, Zetterberg H, Hansson O, Blennow K, Bäckström D, Brinkmalm A. Cerebrospinal Fluid Biomarkers of Synaptic Dysfunction are Altered in Parkinson's Disease and Related Disorders. Mov Disord 2023; 38:267-277. [PMID: 36504237 DOI: 10.1002/mds.29287] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Synaptic dysfunction and degeneration are central contributors to the pathogenesis and progression of parkinsonian disorders. Therefore, identification and validation of biomarkers reflecting pathological synaptic alterations are greatly needed and could be used in prognostic assessment and to monitor treatment effects. OBJECTIVE To explore candidate biomarkers of synaptic dysfunction in Parkinson's disease (PD) and related disorders. METHODS Mass spectrometry was used to quantify 15 synaptic proteins in two clinical cerebrospinal fluid (CSF) cohorts, including PD (n1 = 51, n2 = 101), corticobasal degeneration (CBD) (n1 = 11, n2 = 3), progressive supranuclear palsy (PSP) (n1 = 22, n2 = 21), multiple system atrophy (MSA) (n1 = 31, n2 = 26), and healthy control (HC) (n1 = 48, n2 = 30) participants, as well as Alzheimer's disease (AD) (n2 = 23) patients in the second cohort. RESULTS Across both cohorts, lower levels of the neuronal pentraxins (NPTX; 1, 2, and receptor) were found in PD, MSA, and PSP, compared with HC. In MSA and PSP, lower neurogranin, AP2B1, and complexin-2 levels compared with HC were observed. In AD, levels of 14-3-3 zeta/delta, beta- and gamma-synuclein were higher compared with the parkinsonian disorders. Lower pentraxin levels in PD correlated with Mini-Mental State Exam scores and specific cognitive deficits (NPTX2; rho = 0.25-0.32, P < 0.05) and reduced dopaminergic pre-synaptic integrity as measured by DaTSCAN (NPTX2; rho = 0.29, P = 0.023). Additionally, lower levels were associated with the progression of postural imbalance and gait difficulty symptoms (All NPTX; β-estimate = -0.025 to -0.038, P < 0.05) and cognitive decline (NPTX2; β-estimate = 0.32, P = 0.021). CONCLUSIONS These novel findings show different alterations of synaptic proteins in parkinsonian disorders compared with AD and HC. The neuronal pentraxins may serve as prognostic CSF biomarkers for both cognitive and motor symptom progression in PD. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Johanna Nilsson
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Julius Constantinescu
- Department of Neurology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Bengt Nellgård
- Department of Anesthesiology and Intensive Care, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Protik Jakobsson
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Wagner S Brum
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Johan Gobom
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Lars Forsgren
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Keti Dalla
- Department of Anesthesiology and Intensive Care, Institute of Clinical Sciences, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Radu Constantinescu
- Department of Neurology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute at UCL, London, United Kingdom.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, United Kingdom.,Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.,Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - David Bäckström
- Department of Clinical Science, Neurosciences, Umeå University, Umeå, Sweden
| | - Ann Brinkmalm
- Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
16
|
Takahashi H, Yamamoto T, Tsuboi A. Molecular mechanisms underlying activity-dependent ischemic tolerance in the brain. Neurosci Res 2023; 186:3-9. [PMID: 36244569 DOI: 10.1016/j.neures.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Ischemic stroke is one of the leading causes of death and disability worldwide. The inhibition of cerebral blood flow triggers intertwined pathological events, resulting in cell death and loss of brain function. Interestingly, animals pre-exposed to short-term ischemia can tolerate subsequent severe ischemia. This phenomenon is called ischemic tolerance and is also triggered by other noxious stimuli. However, whether short-term exposure to non-noxious stimuli can induce ischemic tolerance remains unknown. Recently, we found that pre-exposing mice to an enriched environment for 40 min is sufficient to facilitate cell survival after a subsequent stroke. The neuroprotective process depends on the neuronal activity soon before stroke, of which the activity-dependent transcription factor Npas4 is essential. Excessive Ca2+ influx triggers Npas4 expression in ischemic neurons, leading to the activation of neuroprotective programs. Pre-induction of Npas4 in the normal brain effectively supports cell survival after stroke. Furthermore, our study revealed that Npas4 regulates L-type voltage-gated Ca2+ channels through expression of the small Ras-like GTPase Gem in ischemic neurons. Ischemic tolerance is a good model for understanding how to promote neuroprotective mechanisms in the normal and injured brain. Here, we highlight activity-dependent ischemic tolerance and discuss its role in promoting neuroprotection against stroke.
Collapse
Affiliation(s)
- Hiroo Takahashi
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan.
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, Kagawa 761-0793, Japan
| | - Akio Tsuboi
- Dynamic Brain Network Laboratory, Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| |
Collapse
|
17
|
Barman B, Kushwaha A, Thakur MK. Muscarinic Acetylcholine Receptors-Mediated Activation of PKC Restores the Hippocampal Immediate Early Gene Expression and CREB Phosphorylation in Scopolamine-Induced Amnesic Mice. Mol Neurobiol 2022; 59:5722-5733. [DOI: 10.1007/s12035-022-02940-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/23/2022] [Indexed: 10/17/2022]
|
18
|
Bousiges O, Blanc F. Biomarkers of Dementia with Lewy Bodies: Differential Diagnostic with Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23126371. [PMID: 35742814 PMCID: PMC9223587 DOI: 10.3390/ijms23126371] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Dementia with Lewy Bodies (DLB) is a common form of cognitive neurodegenerative disease. Only one third of patients are correctly diagnosed due to the clinical similarity mainly with Alzheimer’s disease (AD). In this review, we evaluate the interest of different biomarkers: cerebrospinal fluid (CSF), brain MRI, FP-CIT SPECT, MIBG SPECT, PET by focusing more specifically on differential diagnosis between DLB and AD. FP-CIT SPECT is of high interest to discriminate DLB and AD, but not at the prodromal stage (i.e., MCI). MIBG SPECT with decreased cardiac sympathetic activity, perfusion SPECT with occipital hypoperfusion, FDG PET with occipital hypometabolism and cingulate island signs are of interest at the dementia stage but with a lower validity. Brain MRI has shown differences in group study with lower grey matter concentration of the Insula in prodromal DLB, but its interest in clinical routines is not demonstrated. Concerning CSF biomarkers, many studies have already examined the relevance of AD biomarkers but also alpha-synuclein assays in DLB, so we will focus as comprehensively as possible on other biomarkers (especially those that do not appear to be directly related to synucleinopathy) that may be of interest in the differential diagnosis between AD and DLB. Furthermore, we would like to highlight the growing interest in CSF synuclein RT-QuIC, which seems to be an excellent discrimination tool but its application in clinical routine remains to be demonstrated, given the non-automation of the process.
Collapse
Affiliation(s)
- Olivier Bousiges
- Laboratory of Biochemistry and Molecular Biology, University Hospital of Strasbourg, 67000 Strasbourg, France
- Team IMIS, ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg and CNRS, 67000 Strasbourg, France;
- CM2R (Research and Resources Memory Centre), Geriatrics Department, Day Hospital and Cognitive-Behavioral Unit University Hospitals of Strasbourg, 67000 Strasbourg, France
- Correspondence:
| | - Frédéric Blanc
- Team IMIS, ICube Laboratory UMR 7357 and FMTS (Fédération de Médecine Translationnelle de Strasbourg), University of Strasbourg and CNRS, 67000 Strasbourg, France;
- CM2R (Research and Resources Memory Centre), Geriatrics Department, Day Hospital and Cognitive-Behavioral Unit University Hospitals of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
19
|
Coutelier M, Jacoupy M, Janer A, Renaud F, Auger N, Saripella GV, Ancien F, Pucci F, Rooman M, Gilis D, Larivière R, Sgarioto N, Valter R, Guillot-Noel L, Le Ber I, Sayah S, Charles P, Nümann A, Pauly MG, Helmchen C, Deininger N, Haack TB, Brais B, Brice A, Trégouët DA, El Hachimi KH, Shoubridge EA, Durr A, Stevanin G. NPTX1 mutations trigger endoplasmic reticulum stress and cause autosomal dominant cerebellar ataxia. Brain 2022; 145:1519-1534. [PMID: 34788392 DOI: 10.1093/brain/awab407] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 09/25/2021] [Accepted: 10/10/2021] [Indexed: 11/14/2022] Open
Abstract
With more than 40 causative genes identified so far, autosomal dominant cerebellar ataxias exhibit a remarkable genetic heterogeneity. Yet, half the patients are lacking a molecular diagnosis. In a large family with nine sampled affected members, we performed exome sequencing combined with whole-genome linkage analysis. We identified a missense variant in NPTX1, NM_002522.3:c.1165G>A: p.G389R, segregating with the phenotype. Further investigations with whole-exome sequencing and an amplicon-based panel identified four additional unrelated families segregating the same variant, for whom a common founder effect could be excluded. A second missense variant, NM_002522.3:c.980A>G: p.E327G, was identified in a fifth familial case. The NPTX1-associated phenotype consists of a late-onset, slowly progressive, cerebellar ataxia, with downbeat nystagmus, cognitive impairment reminiscent of cerebellar cognitive affective syndrome, myoclonic tremor and mild cerebellar vermian atrophy on brain imaging. NPTX1 encodes the neuronal pentraxin 1, a secreted protein with various cellular and synaptic functions. Both variants affect conserved amino acid residues and are extremely rare or absent from public databases. In COS7 cells, overexpression of both neuronal pentraxin 1 variants altered endoplasmic reticulum morphology and induced ATF6-mediated endoplasmic reticulum stress, associated with cytotoxicity. In addition, the p.E327G variant abolished neuronal pentraxin 1 secretion, as well as its capacity to form a high molecular weight complex with the wild-type protein. Co-immunoprecipitation experiments coupled with mass spectrometry analysis demonstrated abnormal interactions of this variant with the cytoskeleton. In agreement with these observations, in silico modelling of the neuronal pentraxin 1 complex evidenced a destabilizing effect for the p.E327G substitution, located at the interface between monomers. On the contrary, the p.G389 residue, located at the protein surface, had no predictable effect on the complex stability. Our results establish NPTX1 as a new causative gene in autosomal dominant cerebellar ataxias. We suggest that variants in NPTX1 can lead to cerebellar ataxia due to endoplasmic reticulum stress, mediated by ATF6, and associated to a destabilization of NP1 polymers in a dominant-negative manner for one of the variants.
Collapse
Affiliation(s)
- Marie Coutelier
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Maxime Jacoupy
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
- Department of Human Genetics, McGill University, H3A 0C7 Montreal, Canada
- Montreal Neurological Institute, McGill University, H3A 2B4 Montreal, Canada
| | - Alexandre Janer
- Department of Human Genetics, McGill University, H3A 0C7 Montreal, Canada
- Montreal Neurological Institute, McGill University, H3A 2B4 Montreal, Canada
| | - Flore Renaud
- CNRS UMR 9019, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France
- Neurogenetics team, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres (PSL) Research University, 75014, Paris, France
| | - Nicolas Auger
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
- Neurogenetics team, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres (PSL) Research University, 75014, Paris, France
| | - Ganapathi-Varma Saripella
- ICAN Institute, Pitié-Salpêtrière University Hospital, INSERM, Sorbonne Université, 75013 Paris, France
| | - François Ancien
- Computational Biology and Bioinformatics, Université libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Fabrizio Pucci
- Computational Biology and Bioinformatics, Université libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Marianne Rooman
- Computational Biology and Bioinformatics, Université libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Dimitri Gilis
- Computational Biology and Bioinformatics, Université libre de Bruxelles, 1050 Bruxelles, Belgium
| | - Roxanne Larivière
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, H3A 2B4 Montreal, Canada
| | - Nicolas Sgarioto
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, H3A 2B4 Montreal, Canada
| | - Rémi Valter
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
- Neurogenetics team, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres (PSL) Research University, 75014, Paris, France
| | - Léna Guillot-Noel
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
- Neurogenetics team, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres (PSL) Research University, 75014, Paris, France
| | - Isabelle Le Ber
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Sabrina Sayah
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Perrine Charles
- Department of Genetics, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Astrid Nümann
- Department of Neurology, Charité University Hospital Berlin, 10117 Berlin, Germany
| | - Martje G Pauly
- Department of Neurology, University Hospital Schleswig Holstein Campus Luebeck, 23562 Luebeck, Germany
- Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany
| | - Christoph Helmchen
- Department of Neurology, University Hospital Schleswig Holstein Campus Luebeck, 23562 Luebeck, Germany
| | - Natalie Deininger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tuebingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tuebingen, Germany
- Centre for Rare Diseases, University of Tübingen, 72076 Tuebingen, Germany
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, H3A 2B4 Montreal, Canada
| | - Alexis Brice
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - David-Alexandre Trégouët
- ICAN Institute, Pitié-Salpêtrière University Hospital, INSERM, Sorbonne Université, 75013 Paris, France
- Université de Bordeaux, INSERM U1219, Bordeaux Population Health Research Center, 33076 Bordeaux, France
| | - Khalid H El Hachimi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
- Neurogenetics team, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres (PSL) Research University, 75014, Paris, France
| | - Eric A Shoubridge
- Department of Human Genetics, McGill University, H3A 0C7 Montreal, Canada
- Montreal Neurological Institute, McGill University, H3A 2B4 Montreal, Canada
| | - Alexandra Durr
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
| | - Giovanni Stevanin
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U 1127, CNRS UMR 7225, APHP, Pitié-Salpêtrière University Hospital, 75013 Paris, France
- Neurogenetics team, Ecole Pratique des Hautes Etudes (EPHE), Paris Sciences Lettres (PSL) Research University, 75014, Paris, France
| |
Collapse
|
20
|
Kanehisa K, Koga K, Maejima S, Shiraishi Y, Asai K, Shiratori-Hayashi M, Xiao MF, Sakamoto H, Worley PF, Tsuda M. Neuronal pentraxin 2 is required for facilitating excitatory synaptic inputs onto spinal neurons involved in pruriceptive transmission in a model of chronic itch. Nat Commun 2022; 13:2367. [PMID: 35501343 PMCID: PMC9061767 DOI: 10.1038/s41467-022-30089-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 04/14/2022] [Indexed: 11/08/2022] Open
Abstract
An excitatory neuron subset in the spinal dorsal horn (SDH) that expresses gastrin-releasing peptide receptors (GRPR) is critical for pruriceptive transmission. Here, we show that glutamatergic excitatory inputs onto GRPR+ neurons are facilitated in mouse models of chronic itch. In these models, neuronal pentraxin 2 (NPTX2), an activity-dependent immediate early gene product, is upregulated in the dorsal root ganglion (DRG) neurons. Electron microscopy reveals that NPTX2 is present at presynaptic terminals connected onto postsynaptic GRPR+ neurons. NPTX2-knockout prevents the facilitation of synaptic inputs to GRPR+ neurons, and repetitive scratching behavior. DRG-specific NPTX2 expression rescues the impaired behavioral phenotype in NPTX2-knockout mice. Moreover, ectopic expression of a dominant-negative form of NPTX2 in DRG neurons reduces chronic itch-like behavior in mice. Our findings indicate that the upregulation of NPTX2 expression in DRG neurons contributes to the facilitation of glutamatergic inputs onto GRPR+ neurons under chronic itch-like conditions, providing a potential therapeutic target.
Collapse
Affiliation(s)
- Kensho Kanehisa
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Keisuke Koga
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Neurophysiology, Hyogo College of Medicine, Nishinomiya, Hyogo, 663-8501, Japan
| | - Sho Maejima
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, 130-17 Kashino, Ushimado, Setouchi, 701-4303, Japan
| | - Yuto Shiraishi
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Konatsu Asai
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Miho Shiratori-Hayashi
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Mei-Fang Xiao
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States
| | - Hirotaka Sakamoto
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, 130-17 Kashino, Ushimado, Setouchi, 701-4303, Japan
| | - Paul F Worley
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, United States
| | - Makoto Tsuda
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
21
|
Ju L, Yang J, Zhu T, Liu P, Yang J. BDNF-TrkB signaling-mediated upregulation of Narp is involved in the antidepressant-like effects of (2R,6R)-hydroxynorketamine in a chronic restraint stress mouse model. BMC Psychiatry 2022; 22:182. [PMID: 35291971 PMCID: PMC8922900 DOI: 10.1186/s12888-022-03838-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 03/07/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Preclinical studies have indicated that the ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) is a rapid-acting antidepressant drug with limited dissociation properties and low abuse potential. However, its effects and molecular mechanisms remain unclear. In this work, we examined the involvement of brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB) and Narp in the antidepressant-like actions of (2R,6R)-HNK in a chronic restraint stress (CRS) mouse model. METHODS C57BL/6 male mice were subjected to CRS for 8 h per day for 14 consecutive days. Open field, forced swimming, novelty suppressed feeding, and tail suspension tests were performed after administering (2R,6R)-HNK (10 mg/kg), a combination of (2R,6R)-HNK and NBQX (an alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor antagonist; 10 mg/kg), or a combination of (2R,6R)-HNK and ANA-12 (a TrkB receptor antagonist; 0.5 mg/kg). The mRNA levels of Bdnf and Narp in the hippocampus were determined by quantitative reverse transcription-PCR (qRT-PCR). Western blotting was used to determine the hippocampal protein levels of GluA1, GluA2, BDNF, Narp, PSD95, and synaptophysin, as well as the p-TrkB/TrkB protein ratio. RESULTS (2R,6R)-HNK had rapid antidepressant-like effects in CRS mice. Furthermore, (2R,6R)-HNK significantly ameliorated CRS-induced downregulation of GluA1, GluA2, BDNF, Narp, PSD95, and the p-TrkB/TrkB protein ratio in the hippocampus. The effects of (2R,6R)-HNK were blocked by combinations with NBQX or ANA-12. CONCLUSION BDNF-TrkB signaling-mediated upregulation of Narp in the hippocampus may play a key role in the antidepressant-like effect of (2R,6R)-HNK in the CRS model of depression.
Collapse
Affiliation(s)
- Lingsha Ju
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiaojiao Yang
- Department of Anesthesiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Tingting Zhu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Panmiao Liu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jianjun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
22
|
Gómez de San José N, Massa F, Halbgebauer S, Oeckl P, Steinacker P, Otto M. Neuronal pentraxins as biomarkers of synaptic activity: from physiological functions to pathological changes in neurodegeneration. J Neural Transm (Vienna) 2022; 129:207-230. [PMID: 34460014 PMCID: PMC8866268 DOI: 10.1007/s00702-021-02411-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/17/2021] [Indexed: 12/22/2022]
Abstract
The diagnosis of neurodegenerative disorders is often challenging due to the lack of diagnostic tools, comorbidities and shared pathological manifestations. Synaptic dysfunction is an early pathological event in many neurodegenerative disorders, but the underpinning mechanisms are still poorly characterised. Reliable quantification of synaptic damage is crucial to understand the pathophysiology of neurodegeneration, to track disease status and to obtain prognostic information. Neuronal pentraxins (NPTXs) are extracellular scaffolding proteins emerging as potential biomarkers of synaptic dysfunction in neurodegeneration. They are a family of proteins involved in homeostatic synaptic plasticity by recruiting post-synaptic receptors into synapses. Recent research investigates the dynamic changes of NPTXs in the cerebrospinal fluid (CSF) as an expression of synaptic damage, possibly related to cognitive impairment. In this review, we summarise the available data on NPTXs structure and expression patterns as well as on their contribution in synaptic function and plasticity and other less well-characterised roles. Moreover, we propose a mechanism for their involvement in synaptic damage and neurodegeneration and assess their potential as CSF biomarkers for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Federico Massa
- Department of Neurology, University of Ulm, Ulm, Germany
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | | | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE E.V.), Ulm, Germany
| | | | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany.
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany.
| |
Collapse
|
23
|
Cervantes González A, Belbin O. Fluid markers of synapse degeneration in synucleinopathies. J Neural Transm (Vienna) 2022; 129:187-206. [PMID: 35147800 DOI: 10.1007/s00702-022-02467-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/20/2022] [Indexed: 01/06/2023]
Abstract
The abnormal accumulation of α-synuclein in the brain is a common feature of Parkinson's disease (PD), PD dementia (PDD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), and synucleinopathies that present with overlapping but distinct clinical symptoms that include motor and cognitive deficits. Synapse degeneration is the crucial neuropathological event in these synucleinopathies and the neuropathological correlate of connectome dysfunction. The cognitive and motor deficits resulting from the connectome dysfunction are currently measured by scalar systems that are limited in their sensitivity and largely subjective. Ideally, a marker of synapse degeneration would correlate with measures of cognitive or motor impairment, and could therefore be used as a more objective, surrogate biomarker of the core clinical features of these diseases. Furthermore, an objective surrogate biomarker that can detect and monitor the progression of synapse degeneration would improve patient management and clinical trial design, and could provide a measure of therapeutic response. Here, we review the published findings relating to candidate biomarkers of synapse degeneration in PD, PDD, DLB, and MSA patient-derived biofluids and discuss the findings in the context of the mechanisms associated with α-synuclein-mediated synapse degeneration. Understanding these mechanisms is essential not only for discovery of biomarkers, but also to improve our understanding of the earliest changes in disease pathogenesis of synucleinopathies.
Collapse
Affiliation(s)
- Alba Cervantes González
- Neurology Department, Biomedical Research Institute Sant Pau (IIB Sant Pau) and Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Olivia Belbin
- Neurology Department, Biomedical Research Institute Sant Pau (IIB Sant Pau) and Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau, 08025, Barcelona, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| |
Collapse
|
24
|
Pineles B, Mani A, Sura L, Rossignol C, Albayram M, Weiss MD, Goetzl L. Neuronal exosome proteins: novel biomarkers for predicting neonatal response to therapeutic hypothermia. Arch Dis Child Fetal Neonatal Ed 2022; 107:60-64. [PMID: 34021027 DOI: 10.1136/archdischild-2020-321096] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Central nervous system (CNS) derived exosomes can be purified from peripheral blood and have been used widely in adult neurological disease. Application to neonatal neurological disease deserves investigation in the setting of hypoxic-ischaemic encephalopathy (HIE). DESIGN Observational cohort. SETTING Level III neonatal intensive care unit. PARTICIPANTS Term/near-term neonates undergoing therapeutic hypothermia (TH) for HIE. INTERVENTIONS Blood samples were collected at 0-6, 12, 24, 48 and 96 hours of life. MAIN OUTCOMES AND MEASURES CNS exosomes were purified from serum using previously described methods. Biomarker protein levels were quantified using standard ELISA methods and normalised to exosome marker CD-81. The slope of change for biomarker levels was calculated for each time interval. Our primary outcome was MRI basal ganglia/watershed score of ≥3. RESULTS 26 subjects were included (umbilical artery pH range 6.6-7.29; 35% seizures). An increasing MRI injury score was significantly associated with decreasing levels of synaptopodin between 0-6 and 12 hours (p=0.03) and increasing levels of lipocalin-2 (NGAL) between 12 and 48 hours (p<0.0001). Neuronal pentraxin was not significant. The negative predictive values for increasing synaptopodin and decreasing NGAL was 70.0% and 90.9%, respectively. CONCLUSIONS AND RELEVANCE Our results indicate that CNS exosome cargo has the potential to act as biomarkers of the severity of brain injury and response to TH as well as quantify pharmacological response to neuroactive therapeutic/adjuvant agents. Rigorous prospective trials are critical to evaluate potential clinical use of exosome biomarkers.
Collapse
Affiliation(s)
- Beth Pineles
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of Texas Health Science Center at Houston John P and Katherine G McGovern Medical School, Houston, Texas, USA
| | - Arunmani Mani
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of Texas Health Science Center at Houston John P and Katherine G McGovern Medical School, Houston, Texas, USA
| | - Livia Sura
- Department of Pediatrics, University of Florida Health Science Center, Gainesville, Florida, USA
| | - Candace Rossignol
- Department of Pediatrics, University of Florida Health Science Center, Gainesville, Florida, USA
| | - Mehmet Albayram
- Department of Radiology, University of Florida Health Science Center, Gainesville, Florida, USA
| | - Michael David Weiss
- Department of Pediatrics, University of Florida Health Science Center, Gainesville, Florida, USA
| | - Laura Goetzl
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of Texas Health Science Center at Houston John P and Katherine G McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
25
|
Xiao MF, Roh SE, Zhou J, Chien CC, Lucey BP, Craig MT, Hayes LN, Coughlin JM, Leweke FM, Jia M, Xu D, Zhou W, Conover Talbot C, Arnold DB, Staley M, Jiang C, Reti IM, Sawa A, Pelkey KA, McBain CJ, Savonenko A, Worley PF. A biomarker-authenticated model of schizophrenia implicating NPTX2 loss of function. SCIENCE ADVANCES 2021; 7:eabf6935. [PMID: 34818031 PMCID: PMC8612534 DOI: 10.1126/sciadv.abf6935] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 10/05/2021] [Indexed: 05/27/2023]
Abstract
Schizophrenia is a polygenetic disorder whose clinical onset is often associated with behavioral stress. Here, we present a model of disease pathogenesis that builds on our observation that the synaptic immediate early gene NPTX2 is reduced in cerebrospinal fluid of individuals with recent onset schizophrenia. NPTX2 plays an essential role in maintaining excitatory homeostasis by adaptively enhancing circuit inhibition. NPTX2 function requires activity-dependent exocytosis and dynamic shedding at synapses and is coupled to circadian behavior. Behavior-linked NPTX2 trafficking is abolished by mutations that disrupt select activity-dependent plasticity mechanisms of excitatory neurons. Modeling NPTX2 loss of function results in failure of parvalbumin interneurons in their adaptive contribution to behavioral stress, and animals exhibit multiple neuropsychiatric domains. Because the genetics of schizophrenia encompasses diverse proteins that contribute to excitatory synapse plasticity, the identified vulnerability of NPTX2 function can provide a framework for assessing the impact of genetics and the intersection with stress.
Collapse
Affiliation(s)
- Mei-Fang Xiao
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seung-Eon Roh
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiechao Zhou
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chun-Che Chien
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brendan P. Lucey
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Michael T. Craig
- Institute of Biomedical & Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Lindsay N. Hayes
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jennifer M. Coughlin
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - F. Markus Leweke
- Central Institute of Mental Health, Department of Psychiatry and Psychotherapy, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Youth Mental Health Team, Brain and Mind Centre, Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Min Jia
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Desheng Xu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - C. Conover Talbot
- Transcriptomics and Deep Sequencing Core Facility, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Don B. Arnold
- Department of Biology, Section of Molecular and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Melissa Staley
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cindy Jiang
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Irving M. Reti
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Akira Sawa
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Kenneth A. Pelkey
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Chris J. McBain
- Program in Developmental Neurobiology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Alena Savonenko
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Paul F. Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Wang J, Rattner A, Nathans J. A transcriptome atlas of the mouse iris at single-cell resolution defines cell types and the genomic response to pupil dilation. eLife 2021; 10:e73477. [PMID: 34783308 PMCID: PMC8594943 DOI: 10.7554/elife.73477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 01/02/2023] Open
Abstract
The iris controls the level of retinal illumination by controlling pupil diameter. It is a site of diverse ophthalmologic diseases and it is a potential source of cells for ocular auto-transplantation. The present study provides foundational data on the mouse iris based on single nucleus RNA sequencing. More specifically, this work has (1) defined all of the major cell types in the mouse iris and ciliary body, (2) led to the discovery of two types of iris stromal cells and two types of iris sphincter cells, (3) revealed the differences in cell type-specific transcriptomes in the resting vs. dilated states, and (4) identified and validated antibody and in situ hybridization probes that can be used to visualize the major iris cell types. By immunostaining for specific iris cell types, we have observed and quantified distortions in nuclear morphology associated with iris dilation and clarified the neural crest contribution to the iris by showing that Wnt1-Cre-expressing progenitors contribute to nearly all iris cell types, whereas Sox10-Cre-expressing progenitors contribute only to stromal cells. This work should be useful as a point of reference for investigations of iris development, disease, and pharmacology, for the isolation and propagation of defined iris cell types, and for iris cell engineering and transplantation.
Collapse
Affiliation(s)
- Jie Wang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical Institute, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimoreUnited States
- Department of Ophthalmology, Johns Hopkins University School of MedicineBaltimoreUnited States
| |
Collapse
|
27
|
Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell'Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev 2021; 73:298-487. [PMID: 34753794 PMCID: PMC8626789 DOI: 10.1124/pharmrev.120.000131] [Citation(s) in RCA: 350] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.
Collapse
Affiliation(s)
- Kasper B Hansen
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Lonnie P Wollmuth
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Derek Bowie
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hiro Furukawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Frank S Menniti
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Alexander I Sobolevsky
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Geoffrey T Swanson
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Sharon A Swanger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Ingo H Greger
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Terunaga Nakagawa
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chris J McBain
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Vasanthi Jayaraman
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chian-Ming Low
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Mark L Dell'Acqua
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Jeffrey S Diamond
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Chad R Camp
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Riley E Perszyk
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Hongjie Yuan
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| | - Stephen F Traynelis
- Center for Structural and Functional Neuroscience, Center for Biomolecular Structure and Dynamics, Division of Biological Sciences, University of Montana, Missoula, MT (K.B.H.); Department of Neurobiology and Behavior, Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY (L.P.W.); Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada (D.B.); WM Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY (H.F.); MindImmune Therapeutics, Inc., The George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI (F.S.M.); Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY (A.I.S.); Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL (G.T.S.); Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Tech, Roanoke, VA and Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA (S.A.S.); Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom (I.H.G.); Department of Molecular Physiology and Biophysics, Center for Structural Biology, Vanderbilt Brain Institute, Vanderbilt University, School of Medicine, Nashville, TN (T.N.); Eunice Kennedy Shriver National Institute of Child Health and Human Development (C.J.M.), and Synaptic Physiology Section, NINDS Intramural Research Program, National Institutes of Health, Bethesda, MD (J.S.D.); Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX (V.J.); Department of Pharmacology, Department of Anaesthesia, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore (C.-M.L.); Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO (M.L.D.); and Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA (C.R.C., R.E.P., H.Y., S.F.T.)
| |
Collapse
|
28
|
Díaz-Alonso J, Nicoll RA. AMPA receptor trafficking and LTP: Carboxy-termini, amino-termini and TARPs. Neuropharmacology 2021; 197:108710. [PMID: 34271016 PMCID: PMC9122021 DOI: 10.1016/j.neuropharm.2021.108710] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/28/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022]
Abstract
AMPA receptors (AMPARs) are fundamental elements in excitatory synaptic transmission and synaptic plasticity in the CNS. Long term potentiation (LTP), a form of synaptic plasticity which contributes to learning and memory formation, relies on the accumulation of AMPARs at the postsynapse. This phenomenon requires the coordinated recruitment of different elements in the AMPAR complex. Based on recent research reviewed herein, we propose an updated AMPAR trafficking and LTP model which incorporates both extracellular as well as intracellular mechanisms. This article is part of the special Issue on 'Glutamate Receptors - AMPA receptors'.
Collapse
Affiliation(s)
- Javier Díaz-Alonso
- Department of Anatomy and Neurobiology, USA; Center for the Neurobiology of Learning and Memory, University of California at Irvine, USA.
| | - Roger A Nicoll
- Departments of Cellular and Molecular Pharmacology, USA; Physiology, University of California at San Francisco, USA.
| |
Collapse
|
29
|
Vitamin B 12-folic acid supplementation regulates neuronal immediate early gene expression and improves hippocampal dendritic arborization and memory in old male mice. Neurochem Int 2021; 150:105181. [PMID: 34509560 DOI: 10.1016/j.neuint.2021.105181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 01/19/2023]
Abstract
As the relationship among diet, brain aging and memory is complex, it provides ample opportunity for research in multiple directions including behaviour, epigenetics and neuroplasticity. Nutritional deficiencies together with genetic and environmental factors are the major cause of many age-associated pathologies including memory loss. A compromised vitamin B12-folate status in older people is highly prevalent worldwide. Researchers have established a close association between the adequate level of B12-folate and the maintenance of cognitive brain functions. One of the main reasons for age-associated memory loss is downregulation of neuronal immediate early genes (nIEGs). Therefore, we hypothesize here that vitamin B12-folic acid supplementation in old mice can improve memory by altering the expression status of nIEGs. To check this, 72-week-old male Swiss albino mice were orally administered with 2 μg of vitamin B12 and 22 μg of folic acid/mouse/day for eight weeks. Such supplementation improved recognition memory in old and altered the expression of nIEGs. The expression of nIEGs was further found to be regulated by changes in DNA methylation at their promoter regions and CREB phosphorylation (pCREB). In addition, Golgi-Cox staining showed significant improvement in dendritic length, number of branching points and spine density of hippocampal CA1 pyramidal neurons by B12-folic acid supplementation. Taken together, these findings suggest that vitamin B12-folic acid supplementation regulates nIEGs expression and improves dendritic arborization of hippocampal neurons and memory in old male mice.
Collapse
|
30
|
Sinsky J, Pichlerova K, Hanes J. Tau Protein Interaction Partners and Their Roles in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2021; 22:9207. [PMID: 34502116 PMCID: PMC8431036 DOI: 10.3390/ijms22179207] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Tau protein plays a critical role in the assembly, stabilization, and modulation of microtubules, which are important for the normal function of neurons and the brain. In diseased conditions, several pathological modifications of tau protein manifest. These changes lead to tau protein aggregation and the formation of paired helical filaments (PHF) and neurofibrillary tangles (NFT), which are common hallmarks of Alzheimer's disease and other tauopathies. The accumulation of PHFs and NFTs results in impairment of physiological functions, apoptosis, and neuronal loss, which is reflected as cognitive impairment, and in the late stages of the disease, leads to death. The causes of this pathological transformation of tau protein haven't been fully understood yet. In both physiological and pathological conditions, tau interacts with several proteins which maintain their proper function or can participate in their pathological modifications. Interaction partners of tau protein and associated molecular pathways can either initiate and drive the tau pathology or can act neuroprotective, by reducing pathological tau proteins or inflammation. In this review, we focus on the tau as a multifunctional protein and its known interacting partners active in regulations of different processes and the roles of these proteins in Alzheimer's disease and tauopathies.
Collapse
Affiliation(s)
| | | | - Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia; (J.S.); (K.P.)
| |
Collapse
|
31
|
Watson JF, Pinggera A, Ho H, Greger IH. AMPA receptor anchoring at CA1 synapses is determined by N-terminal domain and TARP γ8 interactions. Nat Commun 2021; 12:5083. [PMID: 34426577 PMCID: PMC8382838 DOI: 10.1038/s41467-021-25281-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/02/2021] [Indexed: 12/30/2022] Open
Abstract
AMPA receptor (AMPAR) abundance and positioning at excitatory synapses regulates the strength of transmission. Changes in AMPAR localisation can enact synaptic plasticity, allowing long-term information storage, and is therefore tightly controlled. Multiple mechanisms regulating AMPAR synaptic anchoring have been described, but with limited coherence or comparison between reports, our understanding of this process is unclear. Here, combining synaptic recordings from mouse hippocampal slices and super-resolution imaging in dissociated cultures, we compare the contributions of three AMPAR interaction domains controlling transmission at hippocampal CA1 synapses. We show that the AMPAR C-termini play only a modulatory role, whereas the extracellular N-terminal domain (NTD) and PDZ interactions of the auxiliary subunit TARP γ8 are both crucial, and each is sufficient to maintain transmission. Our data support a model in which γ8 accumulates AMPARs at the postsynaptic density, where the NTD further tunes their positioning. This interplay between cytosolic (TARP γ8) and synaptic cleft (NTD) interactions provides versatility to regulate synaptic transmission and plasticity.
Collapse
Affiliation(s)
- Jake F Watson
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
- IST Austria, Am Campus 1, Klosterneuburg, Austria
| | - Alexandra Pinggera
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
| | - Hinze Ho
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Ingo H Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, United Kingdom.
| |
Collapse
|
32
|
Kamimura K. Roles of Glypican and Heparan Sulfate at the Synapses. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2017.1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Keisuke Kamimura
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science
| |
Collapse
|
33
|
Kamimura K. Roles of Glypican and Heparan Sulfate at the Synapses. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2017.1j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Keisuke Kamimura
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science
| |
Collapse
|
34
|
Matthews PM, Pinggera A, Kampjut D, Greger IH. Biology of AMPA receptor interacting proteins - From biogenesis to synaptic plasticity. Neuropharmacology 2021; 197:108709. [PMID: 34271020 DOI: 10.1016/j.neuropharm.2021.108709] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/19/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022]
Abstract
AMPA-type glutamate receptors mediate the majority of excitatory synaptic transmission in the central nervous system. Their signaling properties and abundance at synapses are both crucial determinants of synapse efficacy and plasticity, and are therefore under sophisticated control. Unique to this ionotropic glutamate receptor (iGluR) is the abundance of interacting proteins that contribute to its complex regulation. These include transient interactions with the receptor cytoplasmic tail as well as the N-terminal domain locating to the synaptic cleft, both of which are involved in AMPAR trafficking and receptor stabilization at the synapse. Moreover, an array of transmembrane proteins operate as auxiliary subunits that in addition to receptor trafficking and stabilization also substantially impact AMPAR gating and pharmacology. Here, we provide an overview of the catalogue of AMPAR interacting proteins, and how they contribute to the complex biology of this central glutamate receptor.
Collapse
Affiliation(s)
- Peter M Matthews
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Alexandra Pinggera
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Domen Kampjut
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Ingo H Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
35
|
Wang T, Zhu X, Yi H, Gu J, Liu S, Izenwasser S, Lemmon VP, Roy S, Hao S. Viral vector-mediated gene therapy for opioid use disorders. Exp Neurol 2021; 341:113710. [PMID: 33781732 DOI: 10.1016/j.expneurol.2021.113710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/26/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
Chronic exposure to opioids typically results in adverse consequences. Opioid use disorder (OUD) is a disease of the CNS with behavioral, psychological, neurobiological, and medical manifestations. OUD induces a variety of changes of neurotransmitters/neuropeptides in the nervous system. Existing pharmacotherapy, such as opioid maintenance therapy (OMT) is the mainstay for the treatment of OUD, however, current opioid replacement therapy is far from effective for the majority of patients. Pharmacological therapy for OUD has been challenging for many reasons including debilitating side-effects. Therefore, developing an effective, non-pharmacological approach would be a critical advancement in improving and expanding treatment for OUD. Viral vector mediated gene therapy provides a potential new approach for treating opioid abused patients. Gene therapy can supply targeting gene products directly linked to the mechanisms of OUD to restore neurotransmitter and/or neuropeptides imbalance, and avoid the off-target effects of systemic administration of drugs. The most commonly used viral vectors in rodent studies of treatment of opioid-used disorder are based on recombinant adenovirus (AV), adeno-associated virus (AAV), lentiviral (LV) vectors, and herpes simplex virus (HSV) vectors. In this review, we will focus on the recent progress of viral vector mediated gene therapy in OUD, especially morphine tolerance and withdrawal.
Collapse
Affiliation(s)
- Tao Wang
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Xun Zhu
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Hyun Yi
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Jun Gu
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Shue Liu
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Sari Izenwasser
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Vance P Lemmon
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States of America
| | - Shuanglin Hao
- Department of Anesthesiology, Perioperative Medicine & Pain Management, University of Miami Miller School of Medicine, Miami, FL, United States of America.
| |
Collapse
|
36
|
Lantz CL, Quinlan EM. High-Frequency Visual Stimulation Primes Gamma Oscillations for Visually Evoked Phase Reset and Enhances Spatial Acuity. Cereb Cortex Commun 2021; 2:tgab016. [PMID: 33997786 PMCID: PMC8110461 DOI: 10.1093/texcom/tgab016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 11/12/2022] Open
Abstract
The temporal frequency of sensory stimulation is a decisive factor in the plasticity of perceptual detection thresholds. However, surprisingly little is known about how distinct temporal parameters of sensory input differentially recruit activity of neuronal circuits in sensory cortices. Here we demonstrate that brief repetitive visual stimulation induces long-term plasticity of visual responses revealed 24 h after stimulation and that the location and generalization of visual response plasticity is determined by the temporal frequency of the visual stimulation. Brief repetitive low-frequency stimulation (2 Hz) is sufficient to induce a visual response potentiation that is expressed exclusively in visual cortex layer 4 and in response to a familiar stimulus. In contrast, brief, repetitive high-frequency stimulation (HFS, 20 Hz) is sufficient to induce a visual response potentiation that is expressed in all cortical layers and transfers to novel stimuli. HFS induces a long-term suppression of the activity of fast-spiking interneurons and primes ongoing gamma oscillatory rhythms for phase reset by subsequent visual stimulation. This novel form of generalized visual response enhancement induced by HFS is paralleled by an increase in visual acuity, measured as improved performance in a visual detection task.
Collapse
Affiliation(s)
- Crystal L Lantz
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | | |
Collapse
|
37
|
Libiger O, Shaw LM, Watson MH, Nairn AC, Umaña KL, Biarnes MC, Canet-Avilés RM, Jack CR, Breton YA, Cortes L, Chelsky D, Spellman DS, Baker SA, Raghavan N, Potter WZ. Longitudinal CSF proteomics identifies NPTX2 as a prognostic biomarker of Alzheimer's disease. Alzheimers Dement 2021; 17:1976-1987. [PMID: 33984181 PMCID: PMC9222372 DOI: 10.1002/alz.12353] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
Introduction: Biomarkers that reflect pathologic processes affecting neuronal function during preclinical and early stages of Alzheimer's disease (AD) are needed to aid drug development. Methods: A targeted, stable isotope, quantitative mass spectrometry‐based investigation of longitudinal changes in concentrations of previously identified candidate biomarkers was performed in cerebrospinal fluid (CSF) of Alzheimer's Disease Neuroimaging Initiative participants who were classified as cognitively normal (CN; n = 76) or with mild cognitive impairment (MCI; n = 111) at baseline. Results: Of the candidate biomarkers, the CSF concentration of neuronal pentraxin 2 (NPTX2), a protein involved in synaptic function, exhibited rates of change that were significantly different between three comparison groups (i.e., CN vs. MCI participants; AD pathology positive vs. negative defined by phosphorylated tau181/amyloid beta1‐42 ratio; and clinical progressors vs. non‐progressors). The rate of change of NPTX2 also significantly correlated with declining cognition. Discussion: CSF NPTX2 concentration is a strong prognostic biomarker candidate of accelerated cognitive decline with potential use as a therapeutic target.
Collapse
Affiliation(s)
- Ondrej Libiger
- Janssen Research and Development, San Diego, California, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Angus C Nairn
- Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kelly L Umaña
- Foundation for the National Institutes of Health, North Bethesda, Maryland, USA
| | - Michael C Biarnes
- Foundation for the National Institutes of Health, North Bethesda, Maryland, USA
| | - Rosa M Canet-Avilés
- Foundation for the National Institutes of Health, North Bethesda, Maryland, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | | | | | - Susan A Baker
- Janssen Research and Development, Titusville, New Jersey, USA
| | | | | | | | | |
Collapse
|
38
|
Heinrich IA, Freitas AE, Wolin IAV, Nascimento APM, Walz R, Rodrigues ALS, Leal RB. Neuronal activity regulated pentraxin (narp) and GluA4 subunit of AMPA receptor may be targets for fluoxetine modulation. Metab Brain Dis 2021; 36:711-722. [PMID: 33528752 DOI: 10.1007/s11011-021-00675-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/22/2021] [Indexed: 12/28/2022]
Abstract
Fluoxetine is the foremost prescribed antidepressant. Drugs acting on monoaminergic system may also regulate glutamatergic system. Indeed, the investigation of proteins associated with this system, such as Narp (neuronal activity-dependent pentraxin) and GluA4 subunit of AMPA receptor may reveal poorly explored modulations triggered by conventional antidepressants. This study aimed to uncover neurochemical mechanisms underlying the chronic fluoxetine treatment, mainly by evaluating these protein targets in the prefrontal cortex and in the hippocampus. Mice received a daily administration of fluoxetine (0.1, 1 or 10 mg/kg, p.o.) or potable water (vehicle group) for 21 days. These animals were submitted to the forced swim test (FST) to verify antidepressant-like responses and the open-field test (OFT) to assess locomotor activity. Modulation of signaling proteins was analyzed by western blot. Chronic treatment with fluoxetine (1 and 10 mg/kg) was effective, since it reduced the immobility time in the FST, without altering locomotor activity. Fluoxetine 10 mg/kg increased CREB phosphorylation and BDNF expression in the prefrontal cortex and hippocampus. Noteworthy, in the hippocampus fluoxetine also promoted Akt activation and augmented Narp expression. In the prefrontal cortex, a significant decrease in the expression of the GluA4 subunit and Narp were observed following fluoxetine administration (10 mg/kg). The results provide evidence of novel molecular targets potentially involved in the antidepressant effects of fluoxetine, since in mature rodents Narp and GluA4 are mainly expressed in the GABAergic parvalbumin-positive (PV+) interneurons. This may bring new insights into the molecular elements involved in the mechanisms underlying the antidepressant effects of fluoxetine.
Collapse
Affiliation(s)
- Isabella A Heinrich
- Graduate Program in Neuroscience, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil
| | - Andiara E Freitas
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil
- Graduate Program in Biochemistry, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil
| | - Ingrid A V Wolin
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil
- Graduate Program in Biochemistry, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil
| | - Ana Paula M Nascimento
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil
- Graduate Program in Biochemistry, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil
| | - Roger Walz
- Graduate Program in Neuroscience, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil
- Department of Clinical Medicine, Center of Health Sciences, University Hospital, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil
- Center of Applied Neuroscience (CeNAp), University Hospital, Federal University of Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Ana Lúcia S Rodrigues
- Graduate Program in Neuroscience, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil
- Graduate Program in Biochemistry, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil
| | - Rodrigo B Leal
- Graduate Program in Neuroscience, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil.
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil.
- Graduate Program in Biochemistry, Federal University of Santa Catarina, Campus Universitário, Trindade, Florianópolis, 88040-900, SC, Brazil.
| |
Collapse
|
39
|
Mascio G, Bucci D, Notartomaso S, Liberatore F, Antenucci N, Scarselli P, Imbriglio T, Caruso S, Gradini R, Cannella M, Di Menna L, Bruno V, Battaglia G, Nicoletti F. Perineuronal nets are under the control of type-5 metabotropic glutamate receptors in the developing somatosensory cortex. Transl Psychiatry 2021; 11:109. [PMID: 33597513 PMCID: PMC7889908 DOI: 10.1038/s41398-021-01210-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/14/2022] Open
Abstract
mGlu5 metabotropic glutamate receptors are highly functional in the early postnatal life, and regulate developmental plasticity of parvalbumin-positive (PV+) interneurons in the cerebral cortex. PV+ cells are enwrapped by perineuronal nets (PNNs) at the closure of critical windows of cortical plasticity. Changes in PNNs have been associated with neurodevelopmental disorders. We found that the number of Wisteria Fluoribunda Agglutinin (WFA)+ PNNs and the density of WFA+/PV+ cells were largely increased in the somatosensory cortex of mGlu5-/- mice at PND16. An increased WFA+ PNN density was also observed after pharmacological blockade of mGlu5 receptors in the first two postnatal weeks. The number of WFA+ PNNs in mGlu5-/- mice was close to a plateau at PND16, whereas continued to increase in wild-type mice, and there was no difference between the two genotypes at PND21 and PND60. mGlu5-/- mice at PND16 showed increases in the transcripts of genes involved in PNN formation and a reduced expression and activity of type-9 matrix metalloproteinase in the somatosensory cortex suggesting that mGlu5 receptors control both PNN formation and degradation. Finally, unilateral whisker stimulation from PND9 to PND16 enhanced WFA+ PNN density in the contralateral somatosensory cortex only in mGlu5+/+ mice, whereas whisker trimming from PND9 to PND16 reduced WFA+ PNN density exclusively in mGlu5-/- mice, suggesting that mGlu5 receptors shape the PNN response to sensory experience. These findings disclose a novel undescribed mechanism of PNN regulation, and lay the groundwork for the study of mGlu5 receptors and PNNs in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Giada Mascio
- grid.419543.e0000 0004 1760 3561IRCCS Neuromed, Pozzilli, Italy
| | - Domenico Bucci
- grid.419543.e0000 0004 1760 3561IRCCS Neuromed, Pozzilli, Italy
| | | | | | - Nico Antenucci
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | | | | | - Stefano Caruso
- grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Roberto Gradini
- grid.7841.aDepartment of Experimental Medicine, Sapienza University, Rome, Italy
| | - Milena Cannella
- grid.419543.e0000 0004 1760 3561IRCCS Neuromed, Pozzilli, Italy
| | - Luisa Di Menna
- grid.419543.e0000 0004 1760 3561IRCCS Neuromed, Pozzilli, Italy
| | - Valeria Bruno
- grid.419543.e0000 0004 1760 3561IRCCS Neuromed, Pozzilli, Italy ,grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Giuseppe Battaglia
- grid.419543.e0000 0004 1760 3561IRCCS Neuromed, Pozzilli, Italy ,grid.7841.aDepartment of Physiology and Pharmacology, Sapienza University, Rome, Italy
| | - Ferdinando Nicoletti
- IRCCS Neuromed, Pozzilli, Italy. .,Department of Physiology and Pharmacology, Sapienza University, Rome, Italy.
| |
Collapse
|
40
|
Kamimura K, Maeda N. Glypicans and Heparan Sulfate in Synaptic Development, Neural Plasticity, and Neurological Disorders. Front Neural Circuits 2021; 15:595596. [PMID: 33679334 PMCID: PMC7928303 DOI: 10.3389/fncir.2021.595596] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are components of the cell surface and extracellular matrix, which bear long polysaccharides called heparan sulfate (HS) attached to the core proteins. HSPGs interact with a variety of ligand proteins through the HS chains, and mutations in HSPG-related genes influence many biological processes and cause various diseases. In particular, recent findings from vertebrate and invertebrate studies have raised the importance of glycosylphosphatidylinositol-anchored HSPGs, glypicans, as central players in the development and functions of synapses. Glypicans are important components of the synapse-organizing protein complexes and serve as ligands for leucine-rich repeat transmembrane neuronal proteins (LRRTMs), leukocyte common antigen-related (LAR) family receptor protein tyrosine phosphatases (RPTPs), and G-protein-coupled receptor 158 (GPR158), regulating synapse formation. Many of these interactions are mediated by the HS chains of glypicans. Neurexins (Nrxs) are also synthesized as HSPGs and bind to some ligands in common with glypicans through HS chains. Therefore, glypicans and Nrxs may act competitively at the synapses. Furthermore, glypicans regulate the postsynaptic expression levels of ionotropic glutamate receptors, controlling the electrophysiological properties and non-canonical BMP signaling of synapses. Dysfunctions of glypicans lead to failures in neuronal network formation, malfunction of synapses, and abnormal behaviors that are characteristic of neurodevelopmental disorders. Recent human genetics revealed that glypicans and HS are associated with autism spectrum disorder, neuroticism, and schizophrenia. In this review, we introduce the studies showing the roles of glypicans and HS in synapse formation, neural plasticity, and neurological disorders, especially focusing on the mouse and Drosophila as potential models for human diseases.
Collapse
Affiliation(s)
- Keisuke Kamimura
- Developmental Neuroscience Project, Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| | - Nobuaki Maeda
- Developmental Neuroscience Project, Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Setagaya, Japan
| |
Collapse
|
41
|
Kovács RÁ, Vadászi H, Bulyáki É, Török G, Tóth V, Mátyás D, Kun J, Hunyadi-Gulyás É, Fedor FZ, Csincsi Á, Medzihradszky K, Homolya L, Juhász G, Kékesi KA, Józsi M, Györffy BA, Kardos J. Identification of Neuronal Pentraxins as Synaptic Binding Partners of C1q and the Involvement of NP1 in Synaptic Pruning in Adult Mice. Front Immunol 2021; 11:599771. [PMID: 33628204 PMCID: PMC7897678 DOI: 10.3389/fimmu.2020.599771] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Elements of the immune system particularly that of innate immunity, play important roles beyond their traditional tasks in host defense, including manifold roles in the nervous system. Complement-mediated synaptic pruning is essential in the developing and healthy functioning brain and becomes aberrant in neurodegenerative disorders. C1q, component of the classical complement pathway, plays a central role in tagging synapses for elimination; however, the underlying molecular mechanisms and interaction partners are mostly unknown. Neuronal pentraxins (NPs) are involved in synapse formation and plasticity, moreover, NP1 contributes to cell death and neurodegeneration under adverse conditions. Here, we investigated the potential interaction between C1q and NPs, and its role in microglial phagocytosis of synapses in adult mice. We verified in vitro that NPs interact with C1q, as well as activate the complement system. Flow cytometry, immunostaining and co-immunoprecipitation showed that synapse-bound C1q colocalizes and interacts with NPs. High-resolution confocal microscopy revealed that microglia-surrounded C1q-tagged synapses are NP1 positive. We have also observed the synaptic occurrence of C4 suggesting that activation of the classical pathway cannot be ruled out in synaptic plasticity in healthy adult animals. In summary, our results indicate that NPs play a regulatory role in the synaptic function of C1q. Whether this role can be intensified upon pathological conditions, such as in Alzheimer’s disease, is to be disclosed.
Collapse
Affiliation(s)
- Réka Á Kovács
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Henrietta Vadászi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Bulyáki
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - György Török
- Molecular Cell Biology Research Group, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary.,Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Vilmos Tóth
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dominik Mátyás
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Judit Kun
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Éva Hunyadi-Gulyás
- Laboratory of Proteomics Research, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - Flóra Zsófia Fedor
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Doctoral School of Chemical Engineering and Material Sciences, Pannon University, Veszprém, Hungary
| | - Ádám Csincsi
- Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Katalin Medzihradszky
- Laboratory of Proteomics Research, Biological Research Centre, Eötvös Loránd Research Network (ELKH), Szeged, Hungary
| | - László Homolya
- Molecular Cell Biology Research Group, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences Centre of Excellence, Budapest, Hungary
| | - Gábor Juhász
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Katalin A Kékesi
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Department of Physiology and Neurobiology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Mihály Józsi
- Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Balázs A Györffy
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.,Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
42
|
Wang R, Man Y, Zhou M, Zhu Y, Wang L, Yang J. Neuropathic pain-induced cognitive dysfunction and down-regulation of neuronal pentraxin 2 in the cortex and hippocampus. Neuroreport 2021; 32:274-283. [PMID: 33512875 PMCID: PMC7870040 DOI: 10.1097/wnr.0000000000001584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/08/2020] [Indexed: 10/29/2022]
Abstract
Evidence from both basic and clinical science suggests that neuropathic pain can induce cognitive dysfunction. However, these results are mainly based on a series of behavioral tests, there is a lack of quantitative variables to indicate cognitive impairment. Neuronal activity-regulated pentraxin (NPTX2) is a ubiquitously expressed, secreted protein in the nervous system. NPTX2 has been implicated to be involved in a variety of neuropathic diseases including Parkinson's disease, ischemia, and Alzheimer's disease. In a mouse model of chronic pain, NPTX2 is involved in the regulation of inflammatory responses. Here, we employ a variety of behavioral approaches to demonstrate that mice with chronic neuropathic pain have cognitive impairment and exhibit an increased anxiety response. The expression of NPTX2, but not NPTX1, was down-regulated in the hippocampus and cortex after chronic neuropathic pain exposure. The modulation effect of NPTX2 on cognitive function was also verified by behavioral tests using Nptx2 knock-out mice. Above all, we conclude that downregulation of NPTX2 induced by neuropathic pain may serve as an indicator of a progressive cognitive dysfunction during the induction and maintenance of spared nerve injury.
Collapse
Affiliation(s)
- Rongguo Wang
- Department of Anesthesiology, Intensive Care Medicine and Pain Medicine, First Affiliated Hospital of Soochow University, Suzhou
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, China
| | - Yuanyuan Man
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, China
| | - Meiyan Zhou
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, China
| | - Yangzi Zhu
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, China
| | - Liwei Wang
- Department of Anesthesiology, Xuzhou Central Hospital, Xuzhou, China
| | - Jianping Yang
- Department of Anesthesiology, Intensive Care Medicine and Pain Medicine, First Affiliated Hospital of Soochow University, Suzhou
| |
Collapse
|
43
|
Siedlecki-Wullich D, Miñano-Molina AJ, Rodríguez-Álvarez J. microRNAs as Early Biomarkers of Alzheimer's Disease: A Synaptic Perspective. Cells 2021; 10:113. [PMID: 33435363 PMCID: PMC7827653 DOI: 10.3390/cells10010113] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Pathogenic processes underlying Alzheimer's disease (AD) affect synaptic function from initial asymptomatic stages, long time before the onset of cognitive decline and neurodegeneration. Therefore, reliable biomarkers enabling early AD diagnosis and prognosis are needed to maximize the time window for therapeutic interventions. MicroRNAs (miRNAs) have recently emerged as promising cost-effective and non-invasive biomarkers for AD, since they can be readily detected in different biofluids, including cerebrospinal fluid (CSF) and blood. Moreover, a growing body of evidence indicates that miRNAs regulate synaptic homeostasis and plasticity processes, suggesting that they may be involved in early synaptic dysfunction during AD. Here, we review the current literature supporting a role of miRNAs during early synaptic deficits in AD, including recent studies evaluating their potential as AD biomarkers. Besides targeting genes related to Aβ and tau metabolism, several miRNAs also regulate synaptic-related proteins and transcription factors implicated in early synaptic deficits during AD. Furthermore, individual miRNAs and molecular signatures have been found to distinguish between prodromal AD and healthy controls. Overall, these studies highlight the relevance of considering synaptic-related miRNAs as potential biomarkers of early AD stages. However, further validation studies in large cohorts, including longitudinal studies, as well as implementation of standardized protocols, are needed to establish miRNA-based biomarkers as reliable diagnostic and prognostic tools.
Collapse
Affiliation(s)
- Dolores Siedlecki-Wullich
- Department Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (A.J.M.-M.); (J.R.-Á.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 528031 Madrid, Spain
| | - Alfredo J. Miñano-Molina
- Department Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (A.J.M.-M.); (J.R.-Á.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 528031 Madrid, Spain
| | - José Rodríguez-Álvarez
- Department Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (A.J.M.-M.); (J.R.-Á.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 528031 Madrid, Spain
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| |
Collapse
|
44
|
Lambracht-Washington D, Fu M, Hynan LS, Rosenberg RN. Changes in the brain transcriptome after DNA Aβ42 trimer immunization in a 3xTg-AD mouse model. Neurobiol Dis 2021; 148:105221. [PMID: 33316368 PMCID: PMC7845550 DOI: 10.1016/j.nbd.2020.105221] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/23/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) has been associated with accumulation of amyloid beta (Aβ) peptides in brain, and immunotherapy targeting Aβ provides potential for AD prevention. We have used a DNA Aβ42 trimer construct for immunization of 3xTg-AD mice and found previously significant reduction of amyloid and tau pathology due to the immunotherapy. We show here that DNA Aβ42 immunized 3xTg-AD mice showed better performance in nest building activities and had a higher 24 months survival rate compared to the non-treated AD controls. The analysis of differently expressed genes in brains from 24 months old mice showed significant increases transcript levels between non-immunized AD mice and wild-type controls for genes involved in microglia and astrocyte function, cytokine and inflammatory signaling, apoptosis, the innate and adaptive immune response and are consistent with an inflammatory phenotype in AD. Most of these upregulated genes were downregulated in the DNA Aβ42 immunized 3xTg-AD mice due to the vaccine. Transcript numbers for the immediate early genes, Arc, Bdnf, Homer1, Egr1 and cfos, involved in neuronal and neurotransmission pathways which were much lower in the non-immunized 3xTg-AD mice, were restored to wild-type mouse brain levels in DNA Aβ42 immunized 3xTg-AD mice indicating positive effects of DNA Aβ42 immunotherapy on synapse stability and plasticity. The immune response after immunization is complex, but the multitude of changes after DNA Aβ42 immunization shows that this response moves beyond the amyloid hypothesis and into direction of disease prevention.
Collapse
Affiliation(s)
- Doris Lambracht-Washington
- Department of Neurology, UT Southwestern Medical Center Dallas, USA; Doris Lambracht Washington, UT Southwestern Medical Center Dallas, Department of Neurology , 5323 Harry Hines Blvd, Dallas, TX 75390-8813, USA.
| | - Min Fu
- Department of Neurology, UT Southwestern Medical Center Dallas, USA.
| | - Linda S Hynan
- Departments of Population and Data Sciences (Biostatistics) & Psychiatry, UT Southwestern Medical Center Dallas, USA.
| | - Roger N Rosenberg
- Department of Neurology, UT Southwestern Medical Center Dallas, USA.
| |
Collapse
|
45
|
Pathologically Decreased CSF Levels of Synaptic Marker NPTX2 in DLB Are Correlated with Levels of Alpha-Synuclein and VGF. Cells 2020; 10:cells10010038. [PMID: 33383752 PMCID: PMC7824459 DOI: 10.3390/cells10010038] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/31/2022] Open
Abstract
Background: Dementia with Lewy bodies (DLB) is a neurodegenerative disease where synaptic loss and reduced synaptic integrity are important neuropathological substrates. Neuronal Pentraxin 2(NPTX2) is a synaptic protein that drives the GABAergic inhibitory circuit. Our aim was to examine if NPTX2 cerebral spinal fluid (CSF) levels in DLB patients were altered and how these levels related to other synaptic protein levels and to cognitive function and decline. Methods: NPTX2, VGF, and α-synuclein levels were determined in CSF of cognitive healthy (n = 27), DLB (n = 48), and AD (n = 20) subjects. Multiple cognitive domains were tested, and data were compared using linear models. Results: Decreased NPTX2 levels were observed in DLB (median = 474) and AD (median = 453) compared to cognitive healthy subjects (median = 773). Strong correlations between NPTX2, VGF, and α-synuclein were observed dependent on diagnosis. Combined, these markers had a high differentiating power between DLB and cognitive healthy subjects (AUC = 0.944). Clinically, NPTX2 levels related to global cognitive function and cognitive decline in the visual spatial domain. Conclusion: NPTX2 CSF levels were reduced in DLB and closely correlated to decreased VGF and α-synuclein CSF levels. CSF NPTX2 levels in DLB related to decreased functioning in the visual spatial domain.
Collapse
|
46
|
Ma QL, Zhu C, Morselli M, Su T, Pelligrini M, Lu Z, Jones M, Denver P, Castro D, Gu X, Relampagos F, Caoili K, Teter B, Frautschy SA, Cole GM. The Novel Omega-6 Fatty Acid Docosapentaenoic Acid Positively Modulates Brain Innate Immune Response for Resolving Neuroinflammation at Early and Late Stages of Humanized APOE-Based Alzheimer's Disease Models. Front Immunol 2020; 11:558036. [PMID: 33178186 PMCID: PMC7596305 DOI: 10.3389/fimmu.2020.558036] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/27/2020] [Indexed: 12/21/2022] Open
Abstract
Neuroinflammation plays a crucial role in the development and progression of Alzheimer's disease (AD), in which activated microglia are found to be associated with neurodegeneration. However, there is limited evidence showing how neuroinflammation and activated microglia are directly linked to neurodegeneration in vivo. Besides, there are currently no effective anti-inflammatory drugs for AD. In this study, we report on an effective anti-inflammatory lipid, linoleic acid (LA) metabolite docosapentaenoic acid (DPAn-6) treatment of aged humanized EFAD mice with advanced AD pathology. We also report the associations of neuroinflammatory and/or activated microglial markers with neurodegeneration in vivo. First, we found that dietary LA reduced proinflammatory cytokines of IL1-β, IL-6, as well as mRNA expression of COX2 toward resolving neuroinflammation with an increase of IL-10 in adult AD models E3FAD and E4FAD mice. Brain fatty acid assays showed a five to six-fold increase in DPAn-6 by dietary LA, especially more in E4FAD mice, when compared to standard diet. Thus, we tested DPAn-6 in aged E4FAD mice. After DPAn-6 was administered to the E4FAD mice by oral gavage for three weeks, we found that DPAn-6 reduced microgliosis and mRNA expressions of inflammatory, microglial, and caspase markers. Further, DPAn-6 increased mRNA expressions of ADCYAP1, VGF, and neuronal pentraxin 2 in parallel, all of which were inversely correlated with inflammatory and microglial markers. Finally, both LA and DPAn-6 directly reduced mRNA expression of COX2 in amyloid-beta42 oligomer-challenged BV2 microglial cells. Together, these data indicated that DPAn-6 modulated neuroinflammatory responses toward resolution and improvement of neurodegeneration in the late stages of AD models.
Collapse
Affiliation(s)
- Qiu-Lan Ma
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States.,Geriatric Research and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, West Los Angeles VA Medical Center, Los Angeles, CA, United States
| | - Cansheng Zhu
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States.,Geriatric Research and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, West Los Angeles VA Medical Center, Los Angeles, CA, United States.,Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States.,Institute for Quantitative and Computational Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Trent Su
- Institute for Quantitative and Computational Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Matteo Pelligrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA, United States.,Institute for Quantitative and Computational Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mychica Jones
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States.,Geriatric Research and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, West Los Angeles VA Medical Center, Los Angeles, CA, United States
| | - Paul Denver
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States.,Geriatric Research and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, West Los Angeles VA Medical Center, Los Angeles, CA, United States
| | - Daniel Castro
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States.,Geriatric Research and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, West Los Angeles VA Medical Center, Los Angeles, CA, United States
| | - Xuelin Gu
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States.,Geriatric Research and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, West Los Angeles VA Medical Center, Los Angeles, CA, United States
| | - Frances Relampagos
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States.,Geriatric Research and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, West Los Angeles VA Medical Center, Los Angeles, CA, United States
| | - Kaitlin Caoili
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States.,Geriatric Research and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, West Los Angeles VA Medical Center, Los Angeles, CA, United States
| | - Bruce Teter
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States.,Geriatric Research and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, West Los Angeles VA Medical Center, Los Angeles, CA, United States
| | - Sally A Frautschy
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States.,Geriatric Research and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, West Los Angeles VA Medical Center, Los Angeles, CA, United States.,Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gregory M Cole
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States.,Geriatric Research and Clinical Center, Greater Los Angeles Veterans Affairs Healthcare System, West Los Angeles VA Medical Center, Los Angeles, CA, United States.,Department of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
47
|
Fossati G, Matteoli M, Menna E. Astrocytic Factors Controlling Synaptogenesis: A Team Play. Cells 2020; 9:E2173. [PMID: 32993090 PMCID: PMC7600026 DOI: 10.3390/cells9102173] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Astrocytes are essential players in brain circuit development and homeostasis, controlling many aspects of synapse formation, function, plasticity and elimination both during development and adulthood. Accordingly, alterations in astrocyte morphogenesis and physiology may severely affect proper brain development, causing neurological or neuropsychiatric conditions. Recent findings revealed a huge astrocyte heterogeneity among different brain areas, which is likely at the foundation of the different synaptogenic potential of these cells in selected brain regions. This review highlights recent findings on novel mechanisms that regulate astrocyte-mediated synaptogenesis during development, and the control of synapse number in the critical period or upon synaptic plasticity.
Collapse
Affiliation(s)
- Giuliana Fossati
- Humanitas Clinical and Research Center—IRCCS—NeuroCenter, via Manzoni 56, 20089 Rozzano, Milan, Italy; (G.F.); (M.M.)
| | - Michela Matteoli
- Humanitas Clinical and Research Center—IRCCS—NeuroCenter, via Manzoni 56, 20089 Rozzano, Milan, Italy; (G.F.); (M.M.)
- CNR, Department of Biomedical Sciences, Institute of Neuroscience—URT Humanitas, via Manzoni 56, 20089 Rozzano, Italy
| | - Elisabetta Menna
- Humanitas Clinical and Research Center—IRCCS—NeuroCenter, via Manzoni 56, 20089 Rozzano, Milan, Italy; (G.F.); (M.M.)
- CNR, Department of Biomedical Sciences, Institute of Neuroscience—URT Humanitas, via Manzoni 56, 20089 Rozzano, Italy
| |
Collapse
|
48
|
Suzuki K, Elegheert J, Song I, Sasakura H, Senkov O, Matsuda K, Kakegawa W, Clayton AJ, Chang VT, Ferrer-Ferrer M, Miura E, Kaushik R, Ikeno M, Morioka Y, Takeuchi Y, Shimada T, Otsuka S, Stoyanov S, Watanabe M, Takeuchi K, Dityatev A, Aricescu AR, Yuzaki M. A synthetic synaptic organizer protein restores glutamatergic neuronal circuits. Science 2020; 369:369/6507/eabb4853. [PMID: 32855309 PMCID: PMC7116145 DOI: 10.1126/science.abb4853] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022]
Abstract
Neuronal synapses undergo structural and functional changes throughout life, which are essential for nervous system physiology. However, these changes may also perturb the excitatory-inhibitory neurotransmission balance and trigger neuropsychiatric and neurological disorders. Molecular tools to restore this balance are highly desirable. Here, we designed and characterized CPTX, a synthetic synaptic organizer combining structural elements from cerebellin-1 and neuronal pentraxin-1. CPTX can interact with presynaptic neurexins and postsynaptic AMPA-type ionotropic glutamate receptors and induced the formation of excitatory synapses both in vitro and in vivo. CPTX restored synaptic functions, motor coordination, spatial and contextual memories, and locomotion in mouse models for cerebellar ataxia, Alzheimer's disease, and spinal cord injury, respectively. Thus, CPTX represents a prototype for structure-guided biologics that can efficiently repair or remodel neuronal circuits.
Collapse
Affiliation(s)
- Kunimichi Suzuki
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Jonathan Elegheert
- Division of Structural Biology, University of Oxford, Oxford OX3 7BN, UK
| | - Inseon Song
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Hiroyuki Sasakura
- Department of Medical Cell Biology, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Oleg Senkov
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Keiko Matsuda
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Wataru Kakegawa
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Amber J Clayton
- Division of Structural Biology, University of Oxford, Oxford OX3 7BN, UK
| | - Veronica T Chang
- Division of Structural Biology, University of Oxford, Oxford OX3 7BN, UK
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Maura Ferrer-Ferrer
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Eriko Miura
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Rahul Kaushik
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
| | - Masashi Ikeno
- Department of Medical Cell Biology, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Yuki Morioka
- Department of Medical Cell Biology, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Yuka Takeuchi
- Department of Medical Cell Biology, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Tatsuya Shimada
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shintaro Otsuka
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Stoyan Stoyanov
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Kosei Takeuchi
- Department of Medical Cell Biology, School of Medicine, Aichi Medical University, Aichi, Japan
| | - Alexander Dityatev
- Molecular Neuroplasticity, German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), 39106 Magdeburg, Germany
- Medical Faculty, Otto von Guericke University, 39120 Magdeburg, Germany
| | - A Radu Aricescu
- Division of Structural Biology, University of Oxford, Oxford OX3 7BN, UK.
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo 160-8582, Japan.
| |
Collapse
|
49
|
Wei M, Wang M, Wang J, Su F, Wang Y, Sun M, Wang S, Liu M, Wang H, Lu M, Li W, Gong Y, Yang L, Zhang C. PORCN Negatively Regulates AMPAR Function Independently of Subunit Composition and the Amino-Terminal and Carboxy-Terminal Domains of AMPARs. Front Cell Dev Biol 2020; 8:829. [PMID: 32984326 PMCID: PMC7477090 DOI: 10.3389/fcell.2020.00829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/04/2020] [Indexed: 11/13/2022] Open
Abstract
Most fast excitatory synaptic transmissions in the mammalian brain are mediated by α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs), which are ligand-gated cation channels. The membrane expression level of AMPARs is largely determined by auxiliary subunits in AMPAR macromolecules, including porcupine O-acyltransferase (PORCN), which negatively regulates AMPAR trafficking to the plasma membrane. However, whether PORCN-mediated regulation depends on AMPAR subunit composition or particular regions of a subunit has not been determined. We systematically examined the effects of PORCN on the ligand-gated current and surface expression level of GluA1, GluA2, and GluA3 AMPAR subunits, alone and in combination, as well as the PORCN-GluA interaction in heterologous HEK293T cells. PORCN inhibited glutamate-induced currents and the surface expression of investigated GluA AMPAR subunits in a subunit-independent manner. These inhibitory effects required neither the amino-terminal domain (ATD) nor the carboxy-terminal domain (CTD) of GluA subunits. In addition, PORCN interacted with AMPARs independently of their ATD or CTD. Thus, the functional inhibition of AMPARs by PORCN in transfected heterologous cells was independent of the ATD, CTD, and subunit composition of AMPARs.
Collapse
Affiliation(s)
- Mengping Wei
- PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences, Peking University, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Meng Wang
- Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Jue Wang
- Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Feng Su
- Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yangzhen Wang
- Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Meng Sun
- Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Shanshan Wang
- PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences, Peking University, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Mengna Liu
- PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences, Peking University, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Hongyi Wang
- Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Mingyang Lu
- Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Wei Li
- Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yutian Gong
- Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Lei Yang
- Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Chen Zhang
- PKU-IDG/McGovern Institute for Brain Research, School of Life Sciences, Peking University, Beijing, China.,Beijing Key Laboratory of Neural Regeneration and Repair, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
50
|
van Steenoven I, Koel-Simmelink MJA, Vergouw LJM, Tijms BM, Piersma SR, Pham TV, Bridel C, Ferri GL, Cocco C, Noli B, Worley PF, Xiao MF, Xu D, Oeckl P, Otto M, van der Flier WM, de Jong FJ, Jimenez CR, Lemstra AW, Teunissen CE. Identification of novel cerebrospinal fluid biomarker candidates for dementia with Lewy bodies: a proteomic approach. Mol Neurodegener 2020; 15:36. [PMID: 32552841 PMCID: PMC7301448 DOI: 10.1186/s13024-020-00388-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Diagnosis of dementia with Lewy bodies (DLB) is challenging, largely due to a lack of diagnostic tools. Cerebrospinal fluid (CSF) biomarkers have been proven useful in Alzheimer's disease (AD) diagnosis. Here, we aimed to identify novel CSF biomarkers for DLB using a high-throughput proteomic approach. METHODS We applied liquid chromatography/tandem mass spectrometry with label-free quantification to identify biomarker candidates to individual CSF samples from a well-characterized cohort comprising patients with DLB (n = 20) and controls (n = 20). Validation was performed using (1) the identical proteomic workflow in an independent cohort (n = 30), (2) proteomic data from patients with related neurodegenerative diseases (n = 149) and (3) orthogonal techniques in an extended cohort consisting of DLB patients and controls (n = 76). Additionally, we utilized random forest analysis to identify the subset of candidate markers that best distinguished DLB from all other groups. RESULTS In total, we identified 1995 proteins. In the discovery cohort, 69 proteins were differentially expressed in DLB compared to controls (p < 0.05). Independent cohort replication confirmed VGF, SCG2, NPTX2, NPTXR, PDYN and PCSK1N as candidate biomarkers for DLB. The downregulation of the candidate biomarkers was somewhat more pronounced in DLB in comparison with related neurodegenerative diseases. Using random forest analysis, we identified a panel of VGF, SCG2 and PDYN to best differentiate between DLB and other clinical groups (accuracy: 0.82 (95%CI: 0.75-0.89)). Moreover, we confirmed the decrease of VGF and NPTX2 in DLB by ELISA and SRM methods. Low CSF levels of all biomarker candidates, except PCSK1N, were associated with more pronounced cognitive decline (0.37 < r < 0.56, all p < 0.01). CONCLUSION We identified and validated six novel CSF biomarkers for DLB. These biomarkers, particularly when used as a panel, show promise to improve diagnostic accuracy and strengthen the importance of synaptic dysfunction in the pathophysiology of DLB.
Collapse
Affiliation(s)
- Inger van Steenoven
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Marleen J. A. Koel-Simmelink
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Leonie J. M. Vergouw
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Betty M. Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Sander R. Piersma
- OncoProteomics Laboratory, Department of Medical Oncology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Thang V. Pham
- OncoProteomics Laboratory, Department of Medical Oncology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Claire Bridel
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gian-Luca Ferri
- NEF-laboratory, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Cristina Cocco
- NEF-laboratory, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Barbara Noli
- NEF-laboratory, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Paul F. Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Mei-Fang Xiao
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Desheng Xu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Patrick Oeckl
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Markus Otto
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Wiesje M. van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Frank Jan de Jong
- Alzheimer Center Erasmus MC, Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Connie R. Jimenez
- OncoProteomics Laboratory, Department of Medical Oncology, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Afina W. Lemstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081 HV Amsterdam, The Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|