1
|
Huang Y, Chen SR, Pan HL. α2δ-1-Linked NMDA and AMPA Receptors in Neuropathic Pain and Gabapentinoid Action. J Neurochem 2025; 169:e70064. [PMID: 40191897 PMCID: PMC11995887 DOI: 10.1111/jnc.70064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 04/16/2025]
Abstract
Chronic neuropathic pain is a debilitating condition that presents a significant therapeutic challenge. Unlike nociceptive pain, neuropathic pain is predominantly driven by glutamate NMDA receptors (NMDARs) and/or Ca2+-permeable AMPA receptors (CP-AMPARs) at synapses between primary afferent nerves and excitatory neurons in the spinal dorsal horn. The α2δ-1 protein, encoded by Cacna2d1 and historically recognized as a subunit of voltage-activated Ca2+ channels, is the primary target of gabapentinoids, such as gabapentin and pregabalin, which are widely prescribed for neuropathic pain and epilepsy. However, gabapentinoids have minimal effects on Ca2+ channel activity. Recent studies reveal that α2δ-1 plays a pivotal role in amplifying nociceptive input to the spinal cord in neuropathic pain. This action is mediated through its dynamic physical interactions with phosphorylated NMDARs and GluA1/GluA2 subunits via its intrinsically disordered C-terminal region. α2δ-1 not only promotes synaptic trafficking of NMDARs but also disrupts heteromeric assembly of GluA1/GluA2 subunits in the spinal dorsal horn. The central function of α2δ-1 is to elevate intracellular Ca2+ concentrations at both presynaptic and postsynaptic sites, augmenting nociceptive transmission. Consequently, α2δ-1 serves as a dual regulator coordinating synaptic expression of NMDARs and GluA1 homomeric CP-AMPARs, a function that underlies the therapeutic actions of gabapentinoids. By inhibiting α2δ-1, gabapentinoids reduce the hyperactivity of synaptic α2δ-1-bound NMDARs and CP-AMPARs, thereby dampening the excessive excitatory synaptic transmission characteristic of neuropathic pain. These newly identified roles of α2δ-1 in orchestrating glutamatergic synaptic plasticity suggest that gabapentinoids could be repurposed for treating other neurological disorders involving dysregulated synaptic NMDARs and CP-AMPARs.
Collapse
Affiliation(s)
- Yuying Huang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
2
|
Aguado C, Badesso S, Martínez-Hernández J, Martín-Belmonte A, Alfaro-Ruiz R, Fernández M, Moreno-Martínez AE, Cuadrado-Tejedor M, García-Osta A, Luján R. Resilience to structural and molecular changes in excitatory synapses in the hippocampus contributes to cognitive function recovery in Tg2576 mice. Neural Regen Res 2024; 19:2068-2074. [PMID: 38227537 DOI: 10.4103/1673-5374.390963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 11/18/2023] [Indexed: 01/17/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202409000-00040/figure1/v/2024-01-16T170235Z/r/image-tiff Plaques of amyloid-β (Aβ) and neurofibrillary tangles are the main pathological characteristics of Alzheimer's disease (AD). However, some older adult people with AD pathological hallmarks can retain cognitive function. Unraveling the factors that lead to this cognitive resilience to AD offers promising prospects for identifying new therapeutic targets. Our hypothesis focuses on the contribution of resilience to changes in excitatory synapses at the structural and molecular levels, which may underlie healthy cognitive performance in aged AD animals. Utilizing the Morris Water Maze test, we selected resilient (asymptomatic) and cognitively impaired aged Tg2576 mice. While the enzyme-linked immunosorbent assay showed similar levels of Aβ42 in both experimental groups, western blot analysis revealed differences in tau pathology in the pre-synaptic supernatant fraction. To further investigate the density of synapses in the hippocampus of 16-18 month-old Tg2576 mice, we employed stereological and electron microscopic methods. Our findings indicated a decrease in the density of excitatory synapses in the stratum radiatum of the hippocampal CA1 in cognitively impaired Tg2576 mice compared with age-matched resilient Tg2576 and non-transgenic controls. Intriguingly, through quantitative immunoelectron microscopy in the hippocampus of impaired and resilient Tg2576 transgenic AD mice, we uncovered differences in the subcellular localization of glutamate receptors. Specifically, the density of GluA1, GluA2/3, and mGlu5 in spines and dendritic shafts of CA1 pyramidal cells in impaired Tg2576 mice was significantly reduced compared with age-matched resilient Tg2576 and non-transgenic controls. Notably, the density of GluA2/3 in resilient Tg2576 mice was significantly increased in spines but not in dendritic shafts compared with impaired Tg2576 and non-transgenic mice. These subcellular findings strongly support the hypothesis that dendritic spine plasticity and synaptic machinery in the hippocampus play crucial roles in the mechanisms of cognitive resilience in Tg2576 mice.
Collapse
Affiliation(s)
- Carolina Aguado
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Department of Medical Sciences, Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| | - Sara Badesso
- Gene Therapy for Neurological Disease Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - José Martínez-Hernández
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Department of Medical Sciences, Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| | - Alejandro Martín-Belmonte
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Rocío Alfaro-Ruiz
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Department of Medical Sciences, Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| | - Miriam Fernández
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Department of Medical Sciences, Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| | - Ana Esther Moreno-Martínez
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Department of Medical Sciences, Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| | - Mar Cuadrado-Tejedor
- Gene Therapy for Neurological Disease Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| | - Ana García-Osta
- Gene Therapy for Neurological Disease Program, Center for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Department of Medical Sciences, Facultad de Medicina, Universidad de Castilla-La Mancha, Campus Biosanitario, Albacete, Spain
| |
Collapse
|
3
|
Huang 黄玉莹 Y, Shao 邵建英 JY, Chen 陈红 H, Zhou 周京京 JJ, Chen 陈少瑞 SR, Pan 潘惠麟 HL. Calcineurin and CK2 Reciprocally Regulate Synaptic AMPA Receptor Phenotypes via α2δ-1 in Spinal Excitatory Neurons. J Neurosci 2024; 44:e0392242024. [PMID: 38886057 PMCID: PMC11255431 DOI: 10.1523/jneurosci.0392-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/08/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024] Open
Abstract
Calcineurin inhibitors, such as cyclosporine and tacrolimus (FK506), are commonly used immunosuppressants for preserving transplanted organs and tissues. However, these drugs can cause severe and persistent pain. GluA2-lacking, calcium-permeable AMPA receptors (CP-AMPARs) are implicated in various neurological disorders, including neuropathic pain. It is unclear whether and how constitutive calcineurin, a Ca2+/calmodulin protein phosphatase, controls synaptic CP-AMPARs. In this study, we found that blocking CP-AMPARs with IEM-1460 markedly reduced the amplitude of AMPAR-EPSCs in excitatory neurons expressing vesicular glutamate transporter-2 (VGluT2), but not in inhibitory neurons expressing vesicular GABA transporter, in the spinal cord of FK506-treated male and female mice. FK506 treatment also caused an inward rectification in the current-voltage relationship of AMPAR-EPSCs specifically in VGluT2 neurons. Intrathecal injection of IEM-1460 rapidly alleviated pain hypersensitivity in FK506-treated mice. Furthermore, FK506 treatment substantially increased physical interaction of α2δ-1 with GluA1 and GluA2 in the spinal cord and reduced GluA1/GluA2 heteromers in endoplasmic reticulum-enriched fractions of spinal cords. Correspondingly, inhibiting α2δ-1 with pregabalin, Cacna2d1 genetic knock-out, or disrupting α2δ-1-AMPAR interactions with an α2δ-1 C terminus peptide reversed inward rectification of AMPAR-EPSCs in spinal VGluT2 neurons caused by FK506 treatment. In addition, CK2 inhibition reversed FK506 treatment-induced pain hypersensitivity, α2δ-1 interactions with GluA1 and GluA2, and inward rectification of AMPAR-EPSCs in spinal VGluT2 neurons. Thus, the increased prevalence of synaptic CP-AMPARs in spinal excitatory neurons plays a major role in calcineurin inhibitor-induced pain hypersensitivity. Calcineurin and CK2 antagonistically regulate postsynaptic CP-AMPARs through α2δ-1-mediated GluA1/GluA2 heteromeric assembly in the spinal dorsal horn.
Collapse
Affiliation(s)
- Yuying Huang 黄玉莹
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jian-Ying Shao 邵建英
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hong Chen 陈红
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Jing-Jing Zhou 周京京
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Shao-Rui Chen 陈少瑞
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| | - Hui-Lin Pan 潘惠麟
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030
| |
Collapse
|
4
|
Xu QW, Larosa A, Wong TP. Roles of AMPA receptors in social behaviors. Front Synaptic Neurosci 2024; 16:1405510. [PMID: 39056071 PMCID: PMC11269240 DOI: 10.3389/fnsyn.2024.1405510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
As a crucial player in excitatory synaptic transmission, AMPA receptors (AMPARs) contribute to the formation, regulation, and expression of social behaviors. AMPAR modifications have been associated with naturalistic social behaviors, such as aggression, sociability, and social memory, but are also noted in brain diseases featuring impaired social behavior. Understanding the role of AMPARs in social behaviors is timely to reveal therapeutic targets for treating social impairment in disorders, such as autism spectrum disorder and schizophrenia. In this review, we will discuss the contribution of the molecular composition, function, and plasticity of AMPARs to social behaviors. The impact of targeting AMPARs in treating brain disorders will also be discussed.
Collapse
Affiliation(s)
- Qi Wei Xu
- Douglas Hospital Research Centre, Montreal, QC, Canada
| | - Amanda Larosa
- Douglas Hospital Research Centre, Montreal, QC, Canada
| | - Tak Pan Wong
- Douglas Hospital Research Centre, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| |
Collapse
|
5
|
Zhou JJ, Shao JY, Chen SR, Chen H, Pan HL. Calcineurin regulates synaptic Ca 2+-permeable AMPA receptors in hypothalamic presympathetic neurons via α2δ-1-mediated GluA1/GluA2 assembly. J Physiol 2024; 602:2179-2197. [PMID: 38630836 PMCID: PMC11096015 DOI: 10.1113/jp286081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/25/2024] [Indexed: 04/19/2024] Open
Abstract
Hypertension is a major adverse effect of calcineurin inhibitors, such as tacrolimus (FK506) and cyclosporine, used clinically as immunosuppressants. Calcineurin inhibitor-induced hypertension (CIH) is linked to augmented sympathetic output from the hypothalamic paraventricular nucleus (PVN). GluA2-lacking, Ca2+-permeable AMPA receptors (CP-AMPARs) are a key feature of glutamatergic synaptic plasticity, yet their role in CIH remains elusive. Here, we found that systemic administration of FK506 in rats significantly increased serine phosphorylation of GluA1 and GluA2 in PVN synaptosomes. Strikingly, FK506 treatment reduced GluA1/GluA2 heteromers in both synaptosomes and endoplasmic reticulum-enriched fractions from the PVN. Blocking CP-AMPARs with IEM-1460 induced a larger reduction of AMPAR-mediated excitatory postsynaptic current (AMPAR-EPSC) amplitudes in retrogradely labelled, spinally projecting PVN neurons in FK506-treated rats than in vehicle-treated rats. Furthermore, FK506 treatment shifted the current-voltage relationship of AMPAR-EPSCs from linear to inward rectification in labelled PVN neurons. FK506 treatment profoundly enhanced physical interactions of α2δ-1 with GluA1 and GluA2 in the PVN. Inhibiting α2δ-1 with gabapentin, α2δ-1 genetic knockout, or disrupting α2δ-1-AMPAR interactions with an α2δ-1 C terminus peptide restored GluA1/GluA2 heteromers in the PVN and diminished inward rectification of AMPAR-EPSCs in labelled PVN neurons induced by FK506 treatment. Additionally, microinjection of IEM-1460 or α2δ-1 C terminus peptide into the PVN reduced renal sympathetic nerve discharges and arterial blood pressure elevated in FK506-treated rats but not in vehicle-treated rats. Thus, calcineurin in the hypothalamus constitutively regulates AMPAR subunit composition and phenotypes by controlling GluA1/GluA2 interactions with α2δ-1. Synaptic CP-AMPARs in PVN presympathetic neurons contribute to augmented sympathetic outflow in CIH. KEY POINTS: Systemic treatment with the calcineurin inhibitor increases serine phosphorylation of synaptic GluA1 and GluA2 in the PVN. Calcineurin inhibition enhances the prevalence of postsynaptic Ca2+-permeable AMPARs in PVN presympathetic neurons. Calcineurin inhibition potentiates α2δ-1 interactions with GluA1 and GluA2, disrupting intracellular assembly of GluA1/GluA2 heterotetramers in the PVN. Blocking Ca2+-permeable AMPARs or α2δ-1-AMPAR interactions in the PVN attenuates sympathetic outflow augmented by the calcineurin inhibitor.
Collapse
Affiliation(s)
- Jing-Jing Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jian-Ying Shao
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
6
|
Francotte P, Bay Y, Goffin E, Colson T, Lesenfants C, Dorosz J, Laulumaa S, Fraikin P, de Tullio P, Beaufour C, Botez I, Pickering DS, Frydenvang K, Danober L, Kristensen AS, Kastrup JS, Pirotte B. Exploring thienothiadiazine dioxides as isosteric analogues of benzo- and pyridothiadiazine dioxides in the search of new AMPA and kainate receptor positive allosteric modulators. Eur J Med Chem 2024; 264:116036. [PMID: 38101041 DOI: 10.1016/j.ejmech.2023.116036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
The synthesis and biological evaluation on AMPA and kainate receptors of new examples of 3,4-dihydro-2H-1,2,4-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxides is described. The introduction of a cyclopropyl chain instead of an ethyl chain at the 4-position of the thiadiazine ring was found to dramatically improve the potentiator activity on AMPA receptors, with compound 32 (BPAM395) expressing in vitro activity on AMPARs (EC2x = 0.24 μM) close to that of the reference 4-cyclopropyl-substituted benzothiadiazine dioxide 10 (BPAM344). Interestingly, the 4-allyl-substituted thienothiadiazine dioxide 27 (BPAM307) emerged as the most promising compound on kainate receptors being a more effective potentiator than the 4-cyclopropyl-substituted thienothiadiazine dioxide 32 and supporting the view that the 4-allyl substitution of the thiadiazine ring could be more favorable than the 4-cyclopropyl substitution to induce marked activity on kainate receptors versus AMPA receptors. The thieno-analogue 36 (BPAM279) of the clinically tested S18986 (11) was selected for in vivo evaluation in mice as a cognitive enhancer due to a safer profile than 32 after massive per os drug administration. Compound 36 was found to increase the cognition performance in mice at low doses (1 mg/kg) per os suggesting that the compound was well absorbed after oral administration and able to reach the central nervous system. Finally, compound 32 was selected for co-crystallization with the GluA2-LBD (L504Y,N775S) and glutamate to examine the binding mode of thienothiadiazine dioxides within the allosteric binding site of the AMPA receptor. At the allosteric site, this compound established similar interactions as the previously reported BTD-type AMPA receptor modulators.
Collapse
Affiliation(s)
- Pierre Francotte
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Yasmin Bay
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen, Denmark
| | - Eric Goffin
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Thomas Colson
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Cindy Lesenfants
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Jerzy Dorosz
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen, Denmark
| | - Saara Laulumaa
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen, Denmark
| | - Pierre Fraikin
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Pascal de Tullio
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Caroline Beaufour
- Institut de Recherches et Développement Servier Paris-Saclay, 22 route 128, 91190, Gif-sur-Yvette, France
| | - Iuliana Botez
- Institut de Recherches et Développement Servier Paris-Saclay, 22 route 128, 91190, Gif-sur-Yvette, France
| | - Darryl S Pickering
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen, Denmark
| | - Karla Frydenvang
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen, Denmark
| | - Laurence Danober
- Institut de Recherches et Développement Servier Paris-Saclay, 22 route 128, 91190, Gif-sur-Yvette, France
| | - Anders Skov Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen, Denmark.
| | - Jette Sandholm Kastrup
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 162, DK-2100, Copenhagen, Denmark.
| | - Bernard Pirotte
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium.
| |
Collapse
|
7
|
Certain N, Gan Q, Bennett J, Hsieh H, Wollmuth LP. Differential regulation of tetramerization of the AMPA receptor glutamate-gated ion channel by auxiliary subunits. J Biol Chem 2023; 299:105227. [PMID: 37673338 PMCID: PMC10558804 DOI: 10.1016/j.jbc.2023.105227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023] Open
Abstract
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) auxiliary subunits are specialized, nontransient binding partners of AMPARs that modulate AMPAR channel gating properties and pharmacology, as well as their biogenesis and trafficking. The most well-characterized families of auxiliary subunits are transmembrane AMPAR regulatory proteins (TARPs), cornichon homologs (CNIHs), and the more recently discovered GSG1-L. These auxiliary subunits can promote or reduce surface expression of AMPARs (composed of GluA1-4 subunits) in neurons, thereby impacting their functional role in membrane signaling. Here, we show that CNIH-2 enhances the tetramerization of WT and mutant AMPARs, presumably by increasing the overall stability of the tetrameric complex, an effect that is mainly mediated by interactions with the transmembrane domain of the receptor. We also find CNIH-2 and CNIH-3 show receptor subunit-specific actions in this regard with CNIH-2 enhancing both GluA1 and GluA2 tetramerization, whereas CNIH-3 only weakly enhances GluA1 tetramerization. These results are consistent with the proposed role of CNIHs as endoplasmic reticulum cargo transporters for AMPARs. In contrast, TARP γ-2, TARP γ-8, and GSG1-L have no or negligible effect on AMPAR tetramerization. On the other hand, TARP γ-2 can enhance receptor tetramerization but only when directly fused with the receptor at a maximal stoichiometry. Notably, surface expression of functional AMPARs was enhanced by CNIH-2 to a greater extent than TARP γ-2, suggesting that this distinction aids in maturation and membrane expression. These experiments define a functional distinction between CNIHs and other auxiliary subunits in the regulation of AMPAR biogenesis.
Collapse
Affiliation(s)
- Noele Certain
- Graduate Program in Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, New York, USA
| | - Quan Gan
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, New York, USA
| | - Joseph Bennett
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, New York, USA
| | - Helen Hsieh
- Department of Surgery, Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, USA; Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, USA
| | - Lonnie P Wollmuth
- Department of Neurobiology & Behavior, Stony Brook University, Stony Brook, New York, USA; Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York, USA; Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|
8
|
Qneibi M, Jaradat N, Al-Maharik N, Hawash M, Issa L, Suboh S, Yahya L, Khait AA, Warasneh A, Bdir S. The effect of Lavandula Coronopifolia essential oil on the biophysical properties of desensitization and deactivation gating currents in ionotropic receptors. Sci Rep 2023; 13:8417. [PMID: 37225859 DOI: 10.1038/s41598-023-35698-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 05/22/2023] [Indexed: 05/26/2023] Open
Abstract
The rising incidence of cancer and the lack of effective therapeutic interventions for many neurological illnesses like Alzheimer's and epilepsy has prompted us to investigate the composition and effects of the Lavandula coronopifolia oil from Palestine on cancer cells and AMPA receptor subunits in the brain due to the vast range of beneficial properties of Lavandula coronopifolia essential oil (EO). GC/MS was used to analyze L. coronopifolia's EO chemistry. EO's cytotoxicity and biophysical effects on AMPA receptors were investigated using MTS and electrophysiological techniques. The GC-MS results revealed that L. coronopifolia EO has a high content of eucalyptol (77.23%), β-pinene (6.93%), and α-pinene (4.95%). The EO showed more significant antiproliferative selectivity activities against HepG2 cancer cell lines than HEK293T cell lines with IC50 values of 58.51 and 133.22 µg/mL, respectively. The EO of L. coronopifolia affected AMPA receptor kinetics (desensitization and deactivation) and preferred homomeric GluA1 and heteromeric GluA1/A2 receptors. These findings indicate the potential therapeutic use of L. coronopifolia EO in the selective treatment of HepG2 cancer cell lines and neurodegenerative diseases.
Collapse
Affiliation(s)
- Mohammad Qneibi
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Nidal Jaradat
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Nawaf Al-Maharik
- Department of Chemistry, Faculty of Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammed Hawash
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Linda Issa
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Shorooq Suboh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Leen Yahya
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Adan Abu Khait
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Amjaad Warasneh
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Sosana Bdir
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| |
Collapse
|
9
|
Goffin E, Fraikin P, Abboud D, de Tullio P, Beaufour C, Botez I, Hanson J, Danober L, Francotte P, Pirotte B. New insights in the development of positive allosteric modulators of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors belonging to 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides: Introduction of (mono/difluoro)methyl groups at the 2-position of the thiadiazine ring. Eur J Med Chem 2023; 250:115221. [PMID: 36863228 DOI: 10.1016/j.ejmech.2023.115221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/17/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
Positive allosteric modulators of the AMPA receptors (AMPAR PAMs) have been proposed as new drugs for the management of various neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, attention deficit hyperactivity disorder, depression, and schizophrenia. The present study explored new AMPAR PAMs belonging to 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides (BTDs) characterized by the presence of a short alkyl substituent at the 2-position of the heterocycle and by the presence or absence of a methyl group at the 3-position. The introduction of a monofluoromethyl or a difluoromethyl side chain at the 2-position instead of the methyl group was examined. 7-Chloro-4-cyclopropyl-2-fluoromethyl-3,4-dihydro-4H-1,2,4-benzothiadiazine 1,1-dioxide (15e) emerged as the most promising compound associating high in vitro potency on AMPA receptors, a favorable safety profile in vivo and a marked efficacy as a cognitive enhancer after oral administration in mice. Stability studies in aqueous medium suggested that 15e could be considered, at least in part, as a precursor of the corresponding 2-hydroxymethyl-substituted analogue and the known AMPAR modulator 7-chloro-4-cyclopropyl-3,4-dihydro-4H-1,2,4-benzothiadiazine 1,1-dioxide (3) devoid of an alkyl group at the 2-position.
Collapse
Affiliation(s)
- Eric Goffin
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Pierre Fraikin
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Dayana Abboud
- Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Avenue Hippocrate 1/11 (B34), B-4000, Liège, Belgium
| | - Pascal de Tullio
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Caroline Beaufour
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290, Croissy-sur-Seine, France
| | - Iuliana Botez
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290, Croissy-sur-Seine, France
| | - Julien Hanson
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium; Laboratory of Molecular Pharmacology, GIGA-Molecular Biology of Diseases, University of Liège, Avenue Hippocrate 1/11 (B34), B-4000, Liège, Belgium
| | - Laurence Danober
- Institut de Recherches Servier, 125 Chemin de Ronde, F-78290, Croissy-sur-Seine, France
| | - Pierre Francotte
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium
| | - Bernard Pirotte
- Center for Interdisciplinary Research on Medicines (CIRM) - Laboratory of Medicinal Chemistry, University of Liège, Avenue Hippocrate 15 (B36), B-4000, Liège, Belgium.
| |
Collapse
|
10
|
Alfaro-Ruiz R, Aguado C, Martín-Belmonte A, Moreno-Martínez AE, Merchán-Rubira J, Hernández F, Ávila J, Fukazawa Y, Luján R. Alteration in the Synaptic and Extrasynaptic Organization of AMPA Receptors in the Hippocampus of P301S Tau Transgenic Mice. Int J Mol Sci 2022; 23:13527. [PMID: 36362317 PMCID: PMC9656470 DOI: 10.3390/ijms232113527] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/26/2023] Open
Abstract
Tau pathology is a hallmark of Alzheimer's disease (AD) and other tauopathies, but how pathological tau accumulation alters the glutamate receptor dynamics driving synaptic dysfunction is unclear. Here, we determined the impact of tau pathology on AMPAR expression, density, and subcellular distribution in the hippocampus of P301S mice using immunoblot, histoblot, and quantitative SDS-digested freeze-fracture replica labeling (SDS-FRL). Histoblot and immunoblot showed differential regulation of GluA1 and GluA2 in the hippocampus of P301S mice. The GluA2 subunit was downregulated in the hippocampus at 3 months while both GluA1 and GluA2 subunits were downregulated at 10 months. However, the total amount of GluA1-4 was similar in P301S mice and in age-matched wild-type mice. Using quantitative SDS-FRL, we unraveled the molecular organization of GluA1-4 in various synaptic connections at a high spatial resolution on pyramidal cell spines and interneuron dendrites in the CA1 field of the hippocampus in 10-month-old P301S mice. The labeling density for GluA1-4 in the excitatory synapses established on spines was significantly reduced in P301S mice, compared to age-matched wild-type mice, in the strata radiatum and lacunosum-moleculare but unaltered in the stratum oriens. The density of synaptic GluA1-4 established on interneuron dendrites was significantly reduced in P301S mice in the three strata. The labeling density for GluA1-4 at extrasynaptic sites was significantly reduced in several postsynaptic compartments of CA1 pyramidal cells and interneurons in the three dendritic layers in P301S mice. Our data demonstrate that the progressive accumulation of phospho-tau is associated with alteration of AMPARs on the surface of different neuron types, including synaptic and extrasynaptic membranes, leading to a decline in the trafficking and synaptic transmission, thereby likely contributing to the pathological events taking place in AD.
Collapse
Affiliation(s)
- Rocio Alfaro-Ruiz
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006 Albacete, Spain
| | - Carolina Aguado
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006 Albacete, Spain
| | - Alejandro Martín-Belmonte
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006 Albacete, Spain
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Spain
- Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, 08907 L’Hospitalet de Llobregat, Spain
| | - Ana Esther Moreno-Martínez
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006 Albacete, Spain
| | | | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, ISCIII, 28049 Madrid, Spain
| | - Jesús Ávila
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, ISCIII, 28049 Madrid, Spain
| | - Yugo Fukazawa
- Division of Brain Structure and Function, Faculty of Medical Science, University of Fukui, Fukui 910-1193, Japan
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02006 Albacete, Spain
| |
Collapse
|
11
|
Chater TE, Goda Y. The Shaping of AMPA Receptor Surface Distribution by Neuronal Activity. Front Synaptic Neurosci 2022; 14:833782. [PMID: 35387308 PMCID: PMC8979068 DOI: 10.3389/fnsyn.2022.833782] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/25/2022] [Indexed: 12/29/2022] Open
Abstract
Neurotransmission is critically dependent on the number, position, and composition of receptor proteins on the postsynaptic neuron. Of these, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) are responsible for the majority of postsynaptic depolarization at excitatory mammalian synapses following glutamate release. AMPARs are continually trafficked to and from the cell surface, and once at the surface, AMPARs laterally diffuse in and out of synaptic domains. Moreover, the subcellular distribution of AMPARs is shaped by patterns of activity, as classically demonstrated by the synaptic insertion or removal of AMPARs following the induction of long-term potentiation (LTP) and long-term depression (LTD), respectively. Crucially, there are many subtleties in the regulation of AMPARs, and exactly how local and global synaptic activity drives the trafficking and retention of synaptic AMPARs of different subtypes continues to attract attention. Here we will review how activity can have differential effects on AMPAR distribution and trafficking along with its subunit composition and phosphorylation state, and we highlight some of the controversies and remaining questions. As the AMPAR field is extensive, to say the least, this review will focus primarily on cellular and molecular studies in the hippocampus. We apologise to authors whose work could not be cited directly owing to space limitations.
Collapse
|
12
|
Zhou JJ, Shao JY, Chen SR, Chen H, Pan HL. α2δ-1 Protein Promotes Synaptic Expression of Ca 2+ Permeable-AMPA Receptors by Inhibiting GluA1/GluA2 Heteromeric Assembly in the Hypothalamus in Hypertension. J Neurochem 2022; 161:40-52. [PMID: 35038178 DOI: 10.1111/jnc.15573] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/29/2021] [Accepted: 01/11/2022] [Indexed: 11/30/2022]
Abstract
Glutamate AMPA receptors (AMPARs) lacking GluA2 subunit are calcium permeable (CP-AMPARs), which are increased in the hypothalamic paraventricular nucleus (PVN) and maintain sympathetic outflow in hypertension. Here, we determined the role of α2δ-1, an NMDA receptor-interacting protein, in regulating synaptic CP-AMPARs in the hypothalamus in spontaneously hypertensive rats (SHR). Co-immunoprecipitation showed that levels of GluA1/GluA2, but not GluA2/GluA3, protein complexes in hypothalamic synaptosomes were reduced in SHR compared with Wistar-Kyoto rats (WKY). The level of GluA1/GluA2 heteromers in endoplasmic reticulum-enriched fractions of the hypothalamus was significantly lower in SHR than in WKY, which was restored by inhibiting α2δ-1 with gabapentin. Gabapentin also switched AMPAR-mediated excitatory postsynaptic currents (AMPAR-EPSCs) from inward rectifying to linear and attenuated the inhibitory effect of IEM-1460, a selective CP-AMPAR blocker, on AMPAR-EPSCs in spinally projecting PVN neurons in SHR. Furthermore, co-immunoprecipitation revealed that α2δ-1 directly interacted with GluA1 and GluA2 in the hypothalamus of rats and humans. Levels of α2δ-1/GluA1 and α2δ-1/GluA2 protein complexes in the hypothalamus were significantly greater in SHR than in WKY. Disrupting the α2δ-1-AMPAR interaction with an α2δ-1 C terminus peptide normalized GluA1/GluA2 heteromers in the endoplasmic reticulum of the hypothalamus diminished in SHR. In addition, α2δ-1 C terminus peptide diminished inward rectification of AMPAR-EPSCs and the inhibitory effect of IEM-1460 on AMPAR-EPSCs of PVN neurons in SHR. Thus, α2δ-1 augments synaptic CP-AMPARs by inhibiting GluA1/GluA2 heteromeric assembly in the hypothalamus in hypertension. These findings extend our understanding of the molecular basis of sustained sympathetic outflow in neurogenic hypertension.
Collapse
Affiliation(s)
- Jing-Jing Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jian-Ying Shao
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
13
|
Ge Y, Wang YT. GluA1-homomeric AMPA receptor in synaptic plasticity and neurological diseases. Neuropharmacology 2021; 197:108708. [PMID: 34274350 DOI: 10.1016/j.neuropharm.2021.108708] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/28/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022]
Abstract
Synaptic transmission is one of the fundamental processes that all brain functions are based on. Changes in the strength of synaptic transmission among neurons are crucial for information processing in the central nervous system. The α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype of ionotropic glutamate receptors (AMPARs) mediate the majority of the fast excitatory synaptic transmission in the mammalian brain. Rapid trafficking of AMPARs in and out of the postsynaptic membrane is proposed to be a major mechanism for synaptic plasticity, and learning and memory. Defects in the regulated AMPAR trafficking have been shown to be involved in the pathogenesis of certain psychiatric and neurodegenerative diseases. Studies accumulated in the past 30 years have provided a detailed molecular insight on how the trafficking of AMPARs is modulated in a subunit-specific manner. In particular, emerging evidence supports that the regulated expression and trafficking of Ca2+-permeable, GluA1-homomeric subtype of AMPARs mediates diverse types of synaptic plasticity, thereby playing critical roles in brain function and dysfunction. In this review, we will discuss the current knowledge of AMPAR subunit-specific trafficking, with a particular emphasis on the involvement of GluA1-homomeric receptor trafficking in synaptic plasticity and brain disorders.
Collapse
Affiliation(s)
- Yuan Ge
- Djavad Mowafaghian Centre for Brain Health and Department of Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada; Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC, V6T 2B5, Canada
| | - Yu Tian Wang
- Djavad Mowafaghian Centre for Brain Health and Department of Medicine, University of British Columbia, Vancouver, BC, V6T 2B5, Canada.
| |
Collapse
|
14
|
Chojnacki MR, Jayanthi S, Cadet JL. Methamphetamine pre-exposure induces steeper escalation of methamphetamine self-administration with consequent alterations in hippocampal glutamate AMPA receptor mRNAs. Eur J Pharmacol 2020; 889:173732. [PMID: 33220277 DOI: 10.1016/j.ejphar.2020.173732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 11/26/2022]
Abstract
Methamphetamine use disorder (MUD) is often modeled using rodent self-administration (SA) experiments. Noncontingent injections of a drug given to rodents before self-administration training can increase drug SA. In the present study, we injected methamphetamine before putting rats through methamphetamine SA to investigate SA escalation. We also measured consequent changes in the expression of glutamate receptors in the hippocampus. Experimental groups included rats that received the methamphetamine injection prior to self-administration (MM) and those that received a prior saline injection before they underwent methamphetamine SA (SM). After SA training, rats also underwent tests of relapse potentials at one day and one month after withdrawal from methamphetamine SA. We used qPCR to identify potential changes in mRNA expression of AMPA, NMDA, and mGluR glutamate receptors. MM rats showed greater escalated methamphetamine intake in comparison to SM animals. There were no differences in incubation of methamphetamine craving between the two groups. In the hippocampus, MM rats showed decreased levels of GluA2 and GluA3 mRNAs in comparison to controls and of GluN2c mRNA in comparison to SM rats. In addition, SM rats had increased mGluR3 mRNA levels in comparison to control and MM rats. These data implicate hippocampal glutamate receptors in the longterm effects of methamphetamine. Further studies are necessary to identify the specific role that changes in the expression of these receptors might play in escalated intake of methamphetamine by human users.
Collapse
Affiliation(s)
- Michael R Chojnacki
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Subramaniam Jayanthi
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD, 21224, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, DHHS/NIH/NIDA Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD, 21224, USA.
| |
Collapse
|
15
|
Dolgacheva LP, Tuleukhanov ST, Zinchenko VP. Participation of Ca2+-Permeable AMPA Receptors in Synaptic Plasticity. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2020. [DOI: 10.1134/s1990747820030046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
Subunit-selective iGluR antagonists can potentiate heteromeric receptor responses by blocking desensitization. Proc Natl Acad Sci U S A 2020; 117:25851-25858. [PMID: 32999066 DOI: 10.1073/pnas.2007471117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Ionotropic glutamate receptors (iGluRs) are key molecules for synaptic signaling in the central nervous system, which makes them promising drug targets. Intensive efforts are being devoted to the development of subunit-selective ligands, which should enable more precise pharmacologic interventions while limiting the effects on overall neuronal circuit function. However, many AMPA and kainate receptor complexes in vivo are heteromers composed of different subunits. Despite their importance, little is known about how subunit-selective ligands affect the gating of heteromeric iGluRs, namely their activation and desensitization properties. Using fast ligand application experiments, we studied the effects of competitive antagonists that block glutamate from binding at part of the four subunits. We found that UBP-310, a kainate receptor antagonist with high selectivity for GluK1 subunits, reduces the desensitization of GluK1/GluK2 heteromers and fully abolishes the desensitization of GluK1/GluK5 heteromers. This effect is mirrored by subunit-selective agonists and heteromeric receptors that contain binding-impaired subunits, as we show for both kainate and GluA2 AMPA receptors. These findings are consistent with a model in which incomplete agonist occupancy at the four receptor subunits can provide activation without inducing desensitization. However, we did not detect significant steady-state currents during UBP-310 dissociation from GluK1 homotetramers, indicating that antagonist dissociation proceeds in a nonuniform and cooperativity-driven manner, which disfavors nondesensitizing occupancy states. Besides providing mechanistic insights, these results have direct implications for the use of subunit-selective antagonists in neuroscience research and envisioned therapeutic interventions.
Collapse
|
17
|
Miraucourt LS, Accardi MV, Asin KE, Pugsley MK, Curtis MJ, Authier S. The application of electrophysiological methods to characterize AMPA receptors in dissociated adult rat and non-human primate cerebellar neurons for use in neuronal safety pharmacology assessments of the central nervous system. J Pharmacol Toxicol Methods 2020; 105:106883. [DOI: 10.1016/j.vascn.2020.106883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/15/2019] [Accepted: 05/21/2020] [Indexed: 11/25/2022]
|
18
|
Hayashi T. Post-translational palmitoylation of ionotropic glutamate receptors in excitatory synaptic functions. Br J Pharmacol 2020; 178:784-797. [PMID: 32159240 DOI: 10.1111/bph.15050] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/07/2020] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Abstract
In the mammalian CNS, glutamate is the major excitatory neurotransmitter. Ionotropic glutamate receptors (iGluRs) are responsible for the glutamate-mediated postsynaptic excitation of neurons. Regulation of glutamatergic synapses is critical for higher brain functions including neural communication, memory formation, learning, emotion, and behaviour. Many previous studies have shown that post-translational protein S-palmitoylation, the only reversible covalent attachment of lipid to protein, regulates synaptic expression, intracellular localization, and membrane trafficking of iGluRs and their scaffolding proteins in neurons. This modification mechanism is extremely conserved in the vertebrate lineages. The failure of appropriate palmitoylation-dependent regulation of iGluRs leads to hyperexcitability that reduces the maintenance of network stability, resulting in brain disorders, such as epileptic seizures. This review summarizes advances in the study of palmitoylation of iGluRs, especially AMPA receptors and NMDA receptors, and describes the current understanding of palmitoylation-dependent regulation of excitatory glutamatergic synapses. LINKED ARTICLES: This article is part of a themed issue on Neurochemistry in Japan. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.4/issuetoc.
Collapse
Affiliation(s)
- Takashi Hayashi
- Section of Cellular Biochemistry, Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), Kodaira, Tokyo, Japan
| |
Collapse
|
19
|
Coombs ID, Soto D, McGee TP, Gold MG, Farrant M, Cull-Candy SG. Homomeric GluA2(R) AMPA receptors can conduct when desensitized. Nat Commun 2019; 10:4312. [PMID: 31541113 PMCID: PMC6754398 DOI: 10.1038/s41467-019-12280-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/28/2019] [Indexed: 11/21/2022] Open
Abstract
Desensitization is a canonical property of ligand-gated ion channels, causing progressive current decline in the continued presence of agonist. AMPA-type glutamate receptors (AMPARs), which mediate fast excitatory signaling throughout the brain, exhibit profound desensitization. Recent cryo-EM studies of AMPAR assemblies show their ion channels to be closed in the desensitized state. Here we present evidence that homomeric Q/R-edited AMPARs still allow ions to flow when the receptors are desensitized. GluA2(R) expressed alone, or with auxiliary subunits (γ-2, γ-8 or GSG1L), generates large fractional steady-state currents and anomalous current-variance relationships. Our results from fluctuation analysis, single-channel recording, and kinetic modeling, suggest that the steady-state current is mediated predominantly by conducting desensitized receptors. When combined with crystallography this unique functional readout of a hitherto silent state enabled us to examine cross-linked cysteine mutants to probe the conformation of the desensitized ligand binding domain of functioning AMPAR complexes. AMPA-type glutamate receptors, which mediate fast excitatory signaling throughout the brain, exhibit profound desensitization, causing a progressive current decline in the continued presence of agonist. Here authors show that homomeric Q/R edited AMPARs still allow ions to flow when the receptors are desensitized.
Collapse
Affiliation(s)
- Ian D Coombs
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - David Soto
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.,Department of Biomedicine, Neurophysiology Laboratory, Medical School, Institute of Neurosciences, University of Barcelona, Casanova 143, 08036, Barcelona, Spain
| | - Thomas P McGee
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Matthew G Gold
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Mark Farrant
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Stuart G Cull-Candy
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
20
|
Ge Y, Tian M, Liu L, Wong TP, Gong B, Wu D, Cho T, Lin S, Kast J, Lu J, Wang YT. p97 regulates GluA1 homomeric AMPA receptor formation and plasma membrane expression. Nat Commun 2019; 10:4089. [PMID: 31501443 PMCID: PMC6733861 DOI: 10.1038/s41467-019-12096-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 08/21/2019] [Indexed: 01/10/2023] Open
Abstract
The α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid subtype glutamate receptors (AMPARs) mediate the fast excitatory synaptic transmission in the mammalian brain and are important for synaptic plasticity. In particular, the rapid insertion of the GluA1 homomeric (GluA1-homo) AMPARs into the postsynaptic membrane is considered to be critical in the expression of hippocampal CA1 long-term potentiation (LTP), which is important for certain forms of learning and memory. However, how the formation and trafficking of GluA1-homo AMPARs are regulated remains poorly understood. Here, we report that p97 specifically interacts with and promotes the formation of GluA1-homo AMPARs. The association with p97 retains GluA1-homo AMPARs in the intracellular compartment under basal conditions, and its dissociation allows GluA1-homo AMPARs to be rapidly inserted into the postsynaptic membrane shortly after LTP induction. Thus, our results shed lights into the molecular mechanisms by which p97 regulates GluA1-homo AMPARs formation and trafficking, thereby playing a critical role in mediating synaptic plasticity.
Collapse
Affiliation(s)
- Yuan Ge
- Djavad Mowafaghian Centre for Brain Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada, V6T 2B5. .,Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada, V6T 2B5.
| | - Meng Tian
- Djavad Mowafaghian Centre for Brain Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada, V6T 2B5
| | - Lidong Liu
- Djavad Mowafaghian Centre for Brain Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada, V6T 2B5
| | - Tak Pan Wong
- Djavad Mowafaghian Centre for Brain Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada, V6T 2B5.,Douglas Mental Health University Institute and Department of Psychiatry, McGill University, Montreal, QC, Canada, H4H 1R3
| | - Bo Gong
- Djavad Mowafaghian Centre for Brain Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada, V6T 2B5
| | - Dongchuan Wu
- Djavad Mowafaghian Centre for Brain Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada, V6T 2B5.,Translational Medicine Research Center, China Medical University Hospital, and Graduate Institutes of Immunology and Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Taesup Cho
- Djavad Mowafaghian Centre for Brain Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada, V6T 2B5.,Neurorive Inc., Seoul, Republic of Korea
| | - Shujun Lin
- Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Jürgen Kast
- Biomedical Research Centre, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Jie Lu
- Djavad Mowafaghian Centre for Brain Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada, V6T 2B5.
| | - Yu Tian Wang
- Djavad Mowafaghian Centre for Brain Health and Department of Medicine, University of British Columbia, Vancouver, BC, Canada, V6T 2B5. .,Translational Medicine Research Center, China Medical University Hospital, and Graduate Institutes of Immunology and Biomedical Sciences, China Medical University, Taichung, Taiwan.
| |
Collapse
|
21
|
Silva GM, Barcelos MP, Poiani JGC, Hage-Melim LIDS, da Silva CHTDP. Allosteric Modulators of Potential Targets Related to Alzheimer's Disease: a Review. ChemMedChem 2019; 14:1467-1483. [PMID: 31310701 DOI: 10.1002/cmdc.201900299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/05/2019] [Indexed: 12/15/2022]
Abstract
Among neurodegenerative disorders, Alzheimer's disease (AD) is the most common type of dementia, and there is an urgent need to discover new and efficacious forms of treatment for it. Pathological patterns of AD include cholinergic dysfunction, increased β-amyloid (Aβ) peptide concentration, the appearance of neurofibrillary tangles, among others, all of which are strongly associated with specific biological targets. Interactions observed between these targets and potential drug candidates in AD most often occur by competitive mechanisms driven by orthosteric ligands that sometimes result in the production of side effects. In this context, the allosteric mechanism represents a key strategy; this can be regarded as the selective modulation of such targets by allosteric modulators in an advantageous manner, as this may decrease the likelihood of side effects. The purpose of this review is to present an overview of compounds that act as allosteric modulators of the main biological targets related to AD.
Collapse
Affiliation(s)
- Guilherme Martins Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, Brazil.,Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14090-901, Ribeirão Preto, Brazil
| | - Mariana Pegrucci Barcelos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, Brazil.,Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14090-901, Ribeirão Preto, Brazil
| | - João Gabriel Curtolo Poiani
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, Brazil
| | - Lorane Izabel da Silva Hage-Melim
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, Brazil.,Departamento de Ciências Biológicas e da Saúde, Curso de Farmácia, Universidade Federal do Amapá, Rod. Juscelino Kubitschek, KM-02, 68903-419, Macapá, Brazil
| | - Carlos Henrique Tomich de Paula da Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, 14040-903, Ribeirão Preto, Brazil.,Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, 14090-901, Ribeirão Preto, Brazil
| |
Collapse
|
22
|
Fully Automated Synthesis and Evaluation of [
18
F]BPAM121: Potential of an AMPA Receptor Positive Allosteric Modulator as PET Radiotracer. ChemMedChem 2019; 14:788-795. [DOI: 10.1002/cmdc.201800816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/04/2019] [Indexed: 01/02/2023]
|
23
|
Summers KC, Bogard AS, Tavalin SJ. Preferential generation of Ca 2+-permeable AMPA receptors by AKAP79-anchored protein kinase C proceeds via GluA1 subunit phosphorylation at Ser-831. J Biol Chem 2019; 294:5521-5535. [PMID: 30737285 DOI: 10.1074/jbc.ra118.004340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 02/06/2019] [Indexed: 01/01/2023] Open
Abstract
AMPA-type glutamate receptors (AMPARs) mediate fast excitatory neurotransmission in the mammalian central nervous system. Preferential AMPAR subunit assembly favors heteromeric GluA1/GluA2 complexes. The presence of the GluA2 subunit generates Ca2+-impermeable (CI) AMPARs that have linear current-voltage (I-V) relationships. However, diverse forms of synaptic plasticity and pathophysiological conditions are associated with shifts from CI to inwardly rectifying, GluA2-lacking, Ca2+-permeable (CP) AMPARs on time scales ranging from minutes to days. These shifts have been linked to GluA1 phosphorylation at Ser-845, a protein kinase A (PKA)-targeted site within its intracellular C-terminal tail, often in conjunction with protein kinase A anchoring protein 79 (AKAP79; AKAP150 in rodents), which targets PKA to GluA1. However, AKAP79 may impact GluA1 phosphorylation at other sites by interacting with other signaling enzymes. Here, we evaluated the ability of AKAP79, its signaling components, and GluA1 phosphorylation sites to induce CP-AMPARs under conditions in which CI-AMPARs normally predominate. We found that GluA1 phosphorylation at Ser-831 is sufficient for the appearance of CP-AMPARs and that AKAP79-anchored protein kinase C (PKC) primarily drives the appearance of these receptors via this site. In contrast, other AKAP79-signaling components and C-terminal tail GluA1 phosphorylation sites exhibited a permissive role, limiting the extent to which AKAP79 promotes CP-AMPARs. This may reflect the need for these sites to undergo active phosphorylation/dephosphorylation cycles that control their residency within distinct subcellular compartments. These findings suggest that AKAP79, by orchestrating phosphorylation, represents a key to a GluA1 phosphorylation passcode, which allows the GluA1 subunit to escape GluA2 dominance and promote the appearance of CP-AMPARs.
Collapse
Affiliation(s)
- Kyle C Summers
- From the Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38103
| | - Amy S Bogard
- From the Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38103
| | - Steven J Tavalin
- From the Department of Pharmacology, University of Tennessee Health Science Center, Memphis, Tennessee 38103
| |
Collapse
|
24
|
Bowie D. Polyamine-mediated channel block of ionotropic glutamate receptors and its regulation by auxiliary proteins. J Biol Chem 2018; 293:18789-18802. [PMID: 30333231 DOI: 10.1074/jbc.tm118.003794] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Most excitatory neurotransmission in the mammalian brain is mediated by a family of plasma membrane-bound signaling proteins called ionotropic glutamate receptors (iGluRs). iGluRs assemble at central synapses as tetramers, forming a central ion-channel pore whose primary function is to rapidly transport Na+ and Ca2+ in response to binding the neurotransmitter l-glutamic acid. The pore of iGluRs is also accessible to bulkier cytoplasmic cations, such as the polyamines spermine, spermidine, and putrescine, which are drawn into the permeation pathway, but get stuck and block the movement of other ions. The degree of this polyamine-mediated channel block is highly regulated by processes that control the free cytoplasmic polyamine concentration, the membrane potential, or the iGluR subunit composition. Recently, an additional regulation by auxiliary proteins, most notably transmembrane AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor regulatory proteins (TARPs), cornichons, and neuropilin and tolloid-like proteins (NETOs), has been identified. Here, I review what we have learned of polyamine block of iGluRs and its regulation by auxiliary subunits. TARPs, cornichons, and NETOs attenuate the channel block by enabling polyamines to exit the pore. As a result, polyamine permeation occurs at more negative and physiologically relevant membrane potentials. The structural basis for enhanced polyamine transport remains unresolved, although alterations in both channel architecture and charge-screening mechanisms have been proposed. That auxiliary subunits can attenuate the polyamine block reveals an unappreciated impact of polyamine permeation in shaping the signaling properties of neuronal AMPA- and kainate-type iGluRs. Moreover, enhanced polyamine transport through iGluRs may have a role in regulating cellular polyamine levels.
Collapse
Affiliation(s)
- Derek Bowie
- From the Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec H3G 0B1, Canada
| |
Collapse
|
25
|
Kia A, McAvoy K, Krishnamurthy K, Trotti D, Pasinelli P. Astrocytes expressing ALS-linked mutant FUS induce motor neuron death through release of tumor necrosis factor-alpha. Glia 2018; 66:1016-1033. [PMID: 29380416 PMCID: PMC5873384 DOI: 10.1002/glia.23298] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 12/18/2017] [Accepted: 01/09/2018] [Indexed: 12/14/2022]
Abstract
Mutations in fused in sarcoma (FUS) are linked to amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease affecting both upper and lower motor neurons. While it is established that astrocytes contribute to the death of motor neurons in ALS, the specific contribution of mutant FUS (mutFUS) through astrocytes has not yet been studied. Here, we used primary astrocytes expressing a N‐terminally GFP tagged R521G mutant or wild‐type FUS (WTFUS) and show that mutFUS‐expressing astrocytes undergo astrogliosis, damage co‐cultured motor neurons via activation of an inflammatory response and produce conditioned medium (ACM) that is toxic to motor neurons in isolation. Time lapse imaging shows that motor neuron cultures exposed to mutFUS ACM, but not WTFUS ACM, undergo significant cell loss, which is preceded by progressive degeneration of neurites. We found that Tumor Necrosis Factor‐Alpha (TNFα) is secreted into ACM of mutFUS‐expressing astrocytes. Accordingly, mutFUS astrocyte‐mediated motor neuron toxicity is blocked by targeting soluble TNFα with neutralizing antibodies. We also found that mutant astrocytes trigger changes to motor neuron AMPA receptors (AMPAR) that render them susceptible to excitotoxicity and AMPAR‐mediated cell death. Our data provide the first evidence of astrocytic involvement in FUS‐ALS, identify TNFα as a mediator of this toxicity, and provide several potential therapeutic targets to protect motor neurons in FUS‐linked ALS.
Collapse
Affiliation(s)
- Azadeh Kia
- Jefferson Weinberg ALS Center, Vickie & Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, 19107
| | - Kevin McAvoy
- Jefferson Weinberg ALS Center, Vickie & Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, 19107
| | - Karthik Krishnamurthy
- Jefferson Weinberg ALS Center, Vickie & Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, 19107
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie & Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, 19107
| | - Piera Pasinelli
- Jefferson Weinberg ALS Center, Vickie & Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, 19107
| |
Collapse
|
26
|
Wen W, Lin CY, Niu L. R/G editing in GluA2R flop modulates the functional difference between GluA1 flip and flop variants in GluA1/2R heteromeric channels. Sci Rep 2017; 7:13654. [PMID: 29057893 PMCID: PMC5651858 DOI: 10.1038/s41598-017-13233-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/20/2017] [Indexed: 12/12/2022] Open
Abstract
In α-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA) receptors, RNA editing and alternative splicing generate sequence variants, and those variants, as in GluA2-4 AMPA receptor subunits, generally show different properties. Yet, earlier studies have shown that the alternatively spliced, flip and flop variants of GluA1 AMPA receptor subunit exhibit no functional difference in homomeric channel form. Using a laser-pulse photolysis technique, combined with whole-cell recording, we measured the rate of channel opening, among other kinetic properties, for a series of AMPA channels with different arginine/glycine (R/G) editing and flip/flop status. We find that R/G editing in the GluA2 subunit modulates the channel properties in both homomeric (GluA2Q) and complex (GluA2Q/2R and GluA1/2R) channel forms. However, R/G editing is only effective in flop channels. Specifically, editing at the R/G site on the GluA2R flop isoform accelerates the rate of channel opening and desensitization for GluA1/2R channels more pronouncedly with the GluA1 being in the flop form than in the flip form; yet R/G editing has no effect on either channel-closing rate or EC50. Our results suggest R/G editing via GluA2R serve as a regulatory mechanism to modulate the function of GluA2R-containing, native receptors involved in fast excitatory synaptic transmission.
Collapse
Affiliation(s)
- Wei Wen
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York, 12222, United States
| | - Chi-Yen Lin
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York, 12222, United States
| | - Li Niu
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York, 12222, United States.
| |
Collapse
|
27
|
Zhang W, Eibl C, Weeks AM, Riva I, Li YJ, Plested AJR, Howe JR. Unitary Properties of AMPA Receptors with Reduced Desensitization. Biophys J 2017; 113:2218-2235. [PMID: 28863863 DOI: 10.1016/j.bpj.2017.07.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/20/2017] [Accepted: 07/25/2017] [Indexed: 01/24/2023] Open
Abstract
Wild-type AMPA receptors display a characteristic rapidly desensitizing phenotype. Many studies point to the dimer interface between pairs of extracellular ligand binding domains as the key region controlling the rate at which the receptors desensitize. However, mutations at the extracellular end of the pore-forming regions (near the putative ion channel gate) have also been shown to alter desensitization. Here we report the behavior of single GluA4 receptors carrying one of two mutations that greatly reduce desensitization at the level of ensemble currents: the dimer interface mutation L484Y and the Lurcher mutation (A623T, GluA4-Lc) in the extracellular end of M3 (the second true transmembrane helix). Analysis of unitary currents in patches with just one active receptor showed that each mutation greatly prolongs bursts of openings without prolonging the apparent duration of individual openings. Each mutation decreases the frequency with which individual receptors visit desensitized states, but both mutant receptors still desensitize multiple times per second. Cyclothiazide (CTZ) reduced desensitization of wild-type receptors and both types of mutant receptor. Analysis of shut-time distributions revealed a form of short-lived desensitization that was resistant to CTZ and was especially prominent for GluA4-Lc receptors. Despite reducing desensitization of GluA4 L484Y receptors, CTZ decreased the amplitude of ensemble currents through GluA2 and GluA4 LY receptor mutants. Single-channel analysis and comparison of the GluA2 L483Y ligand binding domain dimer in complex with glutamate with and without CTZ is consistent with the conclusion that CTZ binding to the dimer interface prevents effects of the LY mutation to modulate receptor activation, resulting in a reduction in the prevalence of large-conductance substates that accounts for the decrease in ensemble current amplitudes. Together, the results show that similar nondesensitizing AMPA-receptor phenotypes of population currents can arise from distinct underlying molecular mechanisms that produce different types of unitary activity.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut.
| | - Clarissa Eibl
- Leibniz-Institut für Molekulare Pharmakologie and Cluster of Excellence, NeuroCure, Charité Universitätsmedizin, Berlin, Germany; Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, Berlin, Germany
| | - Autumn M Weeks
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut
| | - Irene Riva
- Leibniz-Institut für Molekulare Pharmakologie and Cluster of Excellence, NeuroCure, Charité Universitätsmedizin, Berlin, Germany; Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, Berlin, Germany
| | - Yan-Jun Li
- Department of Pharmacology, Institution of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, Hebei, China; State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Andrew J R Plested
- Leibniz-Institut für Molekulare Pharmakologie and Cluster of Excellence, NeuroCure, Charité Universitätsmedizin, Berlin, Germany; Institute of Biology, Cellular Biophysics, Humboldt Universität zu Berlin, Berlin, Germany
| | - James R Howe
- Department of Pharmacology, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
28
|
Jaremko WJ, Huang Z, Wen W, Wu A, Karl N, Niu L. Identification and characterization of RNA aptamers: A long aptamer blocks the AMPA receptor and a short aptamer blocks both AMPA and kainate receptors. J Biol Chem 2017; 292:7338-7347. [PMID: 28325839 PMCID: PMC5418036 DOI: 10.1074/jbc.m116.774752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/17/2017] [Indexed: 11/06/2022] Open
Abstract
AMPA and kainate receptors, along with NMDA receptors, represent different subtypes of glutamate ion channels. AMPA and kainate receptors share a high degree of sequence and structural similarities, and excessive activity of these receptors has been implicated in neurological diseases such as epilepsy. Therefore, blocking detrimental activity of both receptor types could be therapeutically beneficial. Here, we report the use of an in vitro evolution approach involving systematic evolution of ligands by exponential enrichment with a single AMPA receptor target (i.e. GluA1/2R) to isolate RNA aptamers that can potentially inhibit both AMPA and kainate receptors. A full-length or 101-nucleotide (nt) aptamer selectively inhibited GluA1/2R with a KI of ∼5 μm, along with GluA1 and GluA2 AMPA receptor subunits. Of note, its shorter version (55 nt) inhibited both AMPA and kainate receptors. In particular, this shorter aptamer blocked equally potently the activity of both the GluK1 and GluK2 kainate receptors. Using homologous binding and whole-cell recording assays, we found that an RNA aptamer most likely binds to the receptor's regulatory site and inhibits it noncompetitively. Our results suggest the potential of using a single receptor target to develop RNA aptamers with dual activity for effectively blocking both AMPA and kainate receptors.
Collapse
Affiliation(s)
- William J Jaremko
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Zhen Huang
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Wei Wen
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Andrew Wu
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Nicholas Karl
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Li Niu
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| |
Collapse
|
29
|
Greger IH, Watson JF, Cull-Candy SG. Structural and Functional Architecture of AMPA-Type Glutamate Receptors and Their Auxiliary Proteins. Neuron 2017; 94:713-730. [DOI: 10.1016/j.neuron.2017.04.009] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 12/20/2022]
|
30
|
Ishida K, Kotake Y, Sanoh S, Ohta S. Lead-Induced ERK Activation Is Mediated by GluR2 Non-containing AMPA Receptor in Cortical Neurons. Biol Pharm Bull 2017; 40:303-309. [PMID: 28250271 DOI: 10.1248/bpb.b16-00784] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lead is a persistent environmental pollutant and exposure to high environmental levels causes various deleterious toxicities, especially to the central nervous system (CNS). The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor that is devoid of the glutamate receptor 2 (GluR2) subunit is Ca2+-permeable, which increases the neuronal vulnerability to excitotoxicity. We have previously reported that long-term exposure of rat cortical neurons to lead acetate induces decrease of GluR2 expression. However, it is not clarified whether lead-induced GluR2 decrease is involved in neurotoxicity. Therefore, we investigated the contribution of GluR2 non-containing AMPA receptor to lead-induced neurotoxic events. Although the expression of four AMPA receptor subunits (GluR1, GluR2, GluR3, and GluR4) was decreased by lead exposure, the decrease in GluR2 expression was remarkable among four subunits. Lead-induced neuronal cell death was rescued by three glutamate receptor antagonists, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, a non-selective AMPA receptor blocker), MK-801 (N-methyl-D-aspartate (NMDA) receptor blocker), and 1-naphthyl acetyl spermine (NAS, a specific Ca2+-permeable AMPA receptor blocker). Lead exposure activated extracellular signal-regulated protein kinase (ERK) 1/2, which was significantly ameliorated by CNQX. In addition, lead exposure activated p38 mitogen-activated protein kinase (MAPK p38), and protein kinase C (PKC), which was partially ameliorated by CNQX. Our findings indicate that Ca2+-permeable AMPA receptors resulting from GluR2 decrease may be involved in lead-induced neurotoxicity.
Collapse
Affiliation(s)
- Keishi Ishida
- Graduate School of Biomedical and Health Sciences, Hiroshima University
| | | | | | | |
Collapse
|
31
|
Han Y, Lin CY, Niu L. Functional Roles of the Edited Isoform of GluA2 in GluA2-Containing AMPA Receptor Channels. Biochemistry 2017; 56:1620-1631. [DOI: 10.1021/acs.biochem.6b01041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Yan Han
- Department of Chemistry and
Center for Neuroscience Research, University at Albany, State University of New York, Albany, New York 12222, United Stated
| | - Chi-Yen Lin
- Department of Chemistry and
Center for Neuroscience Research, University at Albany, State University of New York, Albany, New York 12222, United Stated
| | - Li Niu
- Department of Chemistry and
Center for Neuroscience Research, University at Albany, State University of New York, Albany, New York 12222, United Stated
| |
Collapse
|
32
|
Greer JB, Khuri S, Fieber LA. Phylogenetic analysis of ionotropic L-glutamate receptor genes in the Bilateria, with special notes on Aplysia californica. BMC Evol Biol 2017; 17:11. [PMID: 28077092 PMCID: PMC5225553 DOI: 10.1186/s12862-016-0871-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 12/22/2016] [Indexed: 01/17/2023] Open
Abstract
Background The neurotransmitter L-Glutamate (L-Glu) acting at ionotropic L-Glu receptors (iGluR) conveys fast excitatory signal transmission in the nervous systems of all animals. iGluR-dependent neurotransmission is a key component of the synaptic plasticity that underlies learning and memory. During learning, two subtypes of iGluR, α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPAR) and N-methyl-D-aspartate receptors (NMDAR), are dynamically regulated postsynaptically in vertebrates. Invertebrate organisms such as Aplysia californica (Aplysia) are well-studied models for iGluR-mediated function, yet no studies to date have analyzed the evolutionary relationships between iGluR genes in these species and those in vertebrates, to identify genes that may mediate plasticity. We conducted a thorough phylogenetic analysis spanning Bilateria to elucidate these relationships. The expression status of iGluR genes in the Aplysia nervous system was also examined. Results Our analysis shows that ancestral genes for both NMDAR and AMPAR subtypes were present in the common bilaterian ancestor. NMDAR genes show very high conservation in motifs responsible for forming the conductance pore of the ion channel. The number of NMDAR subunits is greater in vertebrates due to an increased number of splice variants and an increased number of genes, likely due to gene duplication events. AMPAR subunits form an orthologous group, and there is high variability in the number of AMPAR genes in each species due to extensive taxon specific gene gain and loss. qPCR results show that all 12 Aplysia iGluR subunits are expressed in all nervous system ganglia. Conclusions Orthologous NMDAR subunits in all species studied suggests conserved function across Bilateria, and potentially a conserved mechanism of neuroplasticity and learning. Vertebrates display an increased number of NMDAR genes and splice variants, which may play a role in their greater diversity of physiological responses. Extensive gene gain and loss of AMPAR genes may result in different physiological properties that are taxon specific. Our results suggest a significant role for L-Glu mediated responses throughout the Aplysia nervous system, consistent with L-Glu’s role as the primary excitatory neurotransmitter. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0871-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Justin B Greer
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| | - Sawsan Khuri
- Center for Computational Science, University of Miami, 1320 S. Dixie Highway, Coral Gables, FL, 33146, USA.,Department of Computer Science, University of Miami, P.O. Box 248154, Coral Gables, FL, 33124, USA
| | - Lynne A Fieber
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA
| |
Collapse
|
33
|
GluA1 signal peptide determines the spatial assembly of heteromeric AMPA receptors. Proc Natl Acad Sci U S A 2016; 113:E5645-54. [PMID: 27601647 DOI: 10.1073/pnas.1524358113] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
AMPA-type glutamate receptors (AMPARs) mediate fast excitatory neurotransmission and predominantly assemble as heterotetramers in the brain. Recently, the crystal structures of homotetrameric GluA2 demonstrated that AMPARs are assembled with two pairs of conformationally distinct subunits, in a dimer of dimers formation. However, the structure of heteromeric AMPARs remains unclear. Guided by the GluA2 structure, we performed cysteine mutant cross-linking experiments in full-length GluA1/A2, aiming to draw the heteromeric AMPAR architecture. We found that the amino-terminal domains determine the first level of heterodimer formation. When the dimers further assemble into tetramers, GluA1 and GluA2 subunits have preferred positions, possessing a 1-2-1-2 spatial assembly. By swapping the critical sequences, we surprisingly found that the spatial assembly pattern is controlled by the excisable signal peptides. Replacements with an unrelated GluK2 signal peptide demonstrated that GluA1 signal peptide plays a critical role in determining the spatial priority. Our study thus uncovers the spatial assembly of an important type of glutamate receptors in the brain and reveals a novel function of signal peptides.
Collapse
|
34
|
Alteration of AMPA Receptor-Mediated Synaptic Transmission by Alexa Fluor 488 and 594 in Cerebellar Stellate Cells. eNeuro 2016; 3:eN-NWR-0109-15. [PMID: 27280156 PMCID: PMC4895128 DOI: 10.1523/eneuro.0109-15.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 12/13/2022] Open
Abstract
The fluorescent dyes, Alexa Fluor 488 and 594 are commonly used to visualize dendritic structures and the localization of synapses, both of which are critical for the spatial and temporal integration of synaptic inputs. However, the effect of the dyes on synaptic transmission is not known. Here we investigated whether Alexa Fluor dyes alter the properties of synaptic currents mediated by two subtypes of AMPA receptors (AMPARs) at cerebellar stellate cell synapses. In naive mice, GluA2-lacking AMPAR-mediated synaptic currents displayed an inwardly rectifying current–voltage (I–V) relationship due to blockade by cytoplasmic spermine at depolarized potentials. We found that the inclusion of 100 µm Alexa Fluor dye, but not 10 µm, in the pipette solution led to a gradual increase in the amplitude of EPSCs at +40 mV and a change in the I–V relationship from inwardly rectifying to more linear. In mice exposed to an acute stress, AMPARs switched to GluA2-containing receptors, and 100 µm Alexa Fluor 594 did not alter the I–V relationship of synaptic currents. Therefore, a high concentration of Alexa Fluor dye changed the I–V relationship of EPSCs at GluA2-lacking AMPAR synapses.
Collapse
|
35
|
Godin AG, Rappaz B, Potvin-Trottier L, Kennedy TE, De Koninck Y, Wiseman PW. Spatial Intensity Distribution Analysis Reveals Abnormal Oligomerization of Proteins in Single Cells. Biophys J 2016; 109:710-21. [PMID: 26287623 DOI: 10.1016/j.bpj.2015.06.068] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 06/09/2015] [Accepted: 06/22/2015] [Indexed: 12/30/2022] Open
Abstract
Knowledge of membrane receptor organization is essential for understanding the initial steps in cell signaling and trafficking mechanisms, but quantitative analysis of receptor interactions at the single-cell level and in different cellular compartments has remained highly challenging. To achieve this, we apply a quantitative image analysis technique-spatial intensity distribution analysis (SpIDA)-that can measure fluorescent particle concentrations and oligomerization states within different subcellular compartments in live cells. An important technical challenge faced by fluorescence microscopy-based measurement of oligomerization is the fidelity of receptor labeling. In practice, imperfect labeling biases the distribution of oligomeric states measured within an aggregated system. We extend SpIDA to enable analysis of high-order oligomers from fluorescence microscopy images, by including a probability weighted correction algorithm for nonemitting labels. We demonstrated that this fraction of nonemitting probes could be estimated in single cells using SpIDA measurements on model systems with known oligomerization state. Previously, this artifact was measured using single-step photobleaching. This approach was validated using computer-simulated data and the imperfect labeling was quantified in cells with ion channels of known oligomer subunit count. It was then applied to quantify the oligomerization states in different cell compartments of the proteolipid protein (PLP) expressed in COS-7 cells. Expression of a mutant PLP linked to impaired trafficking resulted in the detection of PLP tetramers that persist in the endoplasmic reticulum, while no difference was measured at the membrane between the distributions of wild-type and mutated PLPs. Our results demonstrate that SpIDA allows measurement of protein oligomerization in different compartments of intact cells, even when fractional mislabeling occurs as well as photobleaching during the imaging process, and reveals insights into the mechanism underlying impaired trafficking of PLP.
Collapse
Affiliation(s)
- Antoine G Godin
- Department of Physics, McGill University, Montréal, Québec, Canada; Institut Universitaire en Santé Mentale de Québec, Québec, Canada
| | - Benjamin Rappaz
- Department of Physics, McGill University, Montréal, Québec, Canada; Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada; Program in NeuroEngineering, McGill University, Montréal, Québec, Canada
| | | | - Timothy E Kennedy
- Department of Neurology and Neurosurgery, Montréal Neurological Institute, McGill University, Montréal, Québec, Canada; Program in NeuroEngineering, McGill University, Montréal, Québec, Canada
| | - Yves De Koninck
- Institut Universitaire en Santé Mentale de Québec, Québec, Canada; Département de Psychiatrie et Neurosciences, Université Laval, Québec, Canada; Department of Pharmacology & Therapeutics, McGill University, Montréal, Québec, Canada; Alan Edwards Center for Research of Pain, McGill University, Montréal, Québec, Canada
| | - Paul W Wiseman
- Department of Physics, McGill University, Montréal, Québec, Canada; Program in NeuroEngineering, McGill University, Montréal, Québec, Canada; Department of Chemistry, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
36
|
Babiec WE, Guglietta R, O'Dell TJ. Basal levels of AMPA receptor GluA1 subunit phosphorylation at threonine 840 and serine 845 in hippocampal neurons. ACTA ACUST UNITED AC 2016; 23:127-33. [PMID: 26980779 PMCID: PMC4793196 DOI: 10.1101/lm.040675.115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/12/2016] [Indexed: 01/19/2023]
Abstract
Dephosphorylation of AMPA receptor (AMPAR) GluA1 subunits at two sites, serine 845 (S845) and threonine 840 (T840), is thought to be involved in NMDA receptor-dependent forms of long-term depression (LTD). Importantly, the notion that dephosphorylation of these sites contributes to LTD assumes that a significant fraction of GluA1 subunits are basally phosphorylated at these sites. To examine this question, we used immunoprecipitation/depletion assays to estimate the proportion of GluA1 subunits basally phosphorylated at S845 and T840. Although dephosphorylation of S845 is thought to have a key role in LTD, our results indicate that few GluA1 subunits in hippocampal neurons are phosphorylated at this site. In contrast, ∼50% of GluA1 subunits are basally phosphorylated at T840, suggesting that dephosphorylation of this site can contribute to the down-regulation of AMPAR-mediated synaptic transmission in LTD.
Collapse
Affiliation(s)
- Walter E Babiec
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA
| | - Ryan Guglietta
- Interdepartmental Ph.D. Program for Neuroscience at UCLA, Los Angeles, California 90095, USA
| | - Thomas J O'Dell
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, California 90095, USA UCLA Integrative Center for Learning and Memory, Brain Research Institute, Los Angeles, California 90095, USA
| |
Collapse
|
37
|
Herguedas B, García-Nafría J, Cais O, Fernández-Leiro R, Krieger J, Ho H, Greger IH. Structure and organization of heteromeric AMPA-type glutamate receptors. Science 2016; 352:aad3873. [PMID: 26966189 DOI: 10.1126/science.aad3873] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 02/24/2016] [Indexed: 12/22/2022]
Abstract
AMPA-type glutamate receptors (AMPARs), which are central mediators of rapid neurotransmission and synaptic plasticity, predominantly exist as heteromers of the subunits GluA1 to GluA4. Here we report the first AMPAR heteromer structures, which deviate substantially from existing GluA2 homomer structures. Crystal structures of the GluA2/3 and GluA2/4 N-terminal domains reveal a novel compact conformation with an alternating arrangement of the four subunits around a central axis. This organization is confirmed by cysteine cross-linking in full-length receptors, and it permitted us to determine the structure of an intact GluA2/3 receptor by cryogenic electron microscopy. Two models in the ligand-free state, at resolutions of 8.25 and 10.3 angstroms, exhibit substantial vertical compression and close associations between domain layers, reminiscent of N-methyl-D-aspartate receptors. Model 1 resembles a resting state and model 2 a desensitized state, thus providing snapshots of gating transitions in the nominal absence of ligand. Our data reveal organizational features of heteromeric AMPARs and provide a framework to decipher AMPAR architecture and signaling.
Collapse
Affiliation(s)
- Beatriz Herguedas
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Ondrej Cais
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - James Krieger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Hinze Ho
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Ingo H Greger
- Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
38
|
Coleman SK, Hou Y, Willibald M, Semenov A, Möykkynen T, Keinänen K. Aggregation Limits Surface Expression of Homomeric GluA3 Receptors. J Biol Chem 2016; 291:8784-94. [PMID: 26912664 DOI: 10.1074/jbc.m115.689125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Indexed: 11/06/2022] Open
Abstract
AMPA receptors are glutamate-gated cation channels assembled from GluA1-4 subunits and have properties that are strongly dependent on the subunit composition. The subunits have different propensities to form homomeric or various heteromeric receptors expressed on cell surface, but the underlying mechanisms are still poorly understood. Here, we examined the biochemical basis for the poor ability of GluA3 subunits to form homomeric receptors, linked previously to two amino acid residues, Tyr-454 and Arg-461, in its ligand binding domain (LBD). Surface expression of GluA3 was improved by co-assembly with GluA2 but not with stargazin, a trafficking chaperone and modulator of AMPA receptors. The secretion efficiency of GluA2 and GluA3 LBDs paralleled the transport difference between the respective full-length receptors and was similarly dependent on Tyr-454/Arg-461 but not on LBD stability. In comparison to GluA2, GluA3 homomeric receptors showed a strong and Tyr-454/Arg-461-dependent tendency to aggregate both in the macroscopic scale measured as lower solubility in nonionic detergent and in the microscopic scale evident as the preponderance of hydrodynamically large structures in density gradient centrifugation and native gel electrophoresis. We conclude that the impaired surface expression of homomeric GluA3 receptors is caused by nonproductive assembly and aggregation to which LBD residues Tyr-454 and Arg-461 strongly contribute. This aggregation inhibits the entry of newly synthesized GluA3 receptors to the secretory pathway.
Collapse
Affiliation(s)
- Sarah K Coleman
- From the Department of Biosciences, Division of Biochemistry and Biotechnology, University of Helsinki, Helsinki FI-00014, Finland
| | - Ying Hou
- From the Department of Biosciences, Division of Biochemistry and Biotechnology, University of Helsinki, Helsinki FI-00014, Finland
| | - Marina Willibald
- From the Department of Biosciences, Division of Biochemistry and Biotechnology, University of Helsinki, Helsinki FI-00014, Finland
| | - Artur Semenov
- From the Department of Biosciences, Division of Biochemistry and Biotechnology, University of Helsinki, Helsinki FI-00014, Finland
| | - Tommi Möykkynen
- From the Department of Biosciences, Division of Biochemistry and Biotechnology, University of Helsinki, Helsinki FI-00014, Finland
| | - Kari Keinänen
- From the Department of Biosciences, Division of Biochemistry and Biotechnology, University of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|
39
|
Gan Q, Dai J, Zhou HX, Wollmuth LP. The Transmembrane Domain Mediates Tetramerization of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptors. J Biol Chem 2016; 291:6595-606. [PMID: 26839312 DOI: 10.1074/jbc.m115.686246] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Indexed: 11/06/2022] Open
Abstract
AMPA receptors (AMPARs) mediate fast excitatory neurotransmission in the central nervous system. Functional AMPARs are tetrameric complexes with a highly modular structure, consisting of four evolutionarily distinct structural domains: an amino-terminal domain (ATD), a ligand-binding domain (LBD), a channel-forming transmembrane domain (TMD), and a carboxyl-terminal domain (CTD). Here we show that the isolated TMD of the GluA1 AMPAR is fully capable of tetramerization. Additionally, removal of the extracellular domains from the receptor did not affect membrane topology or surface delivery. Furthermore, whereas the ATD and CTD contribute positively to tetramerization, the LBD presents a barrier to the process by reducing the stability of the receptor complex. These experiments pinpoint the TMD as the "tetramerization domain" for AMPARs, with other domains playing modulatory roles. They also raise intriguing questions about the evolution of iGluRs as well as the mechanisms regulating the biogenesis of AMPAR complexes.
Collapse
Affiliation(s)
- Quan Gan
- Graduate Program in Neuroscience, From the Department of Neurobiology and Behavior
| | - Jian Dai
- the Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306
| | - Huan-Xiang Zhou
- the Department of Physics and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306
| | - Lonnie P Wollmuth
- From the Department of Neurobiology and Behavior, the Department of Biochemistry and Cell Biology, and the Center for Nervous System Disorders, Stony Brook University, Stony Brook, New York 11794-5230 and
| |
Collapse
|
40
|
Lee K, Goodman L, Fourie C, Schenk S, Leitch B, Montgomery JM. AMPA Receptors as Therapeutic Targets for Neurological Disorders. ION CHANNELS AS THERAPEUTIC TARGETS, PART A 2016; 103:203-61. [DOI: 10.1016/bs.apcsb.2015.10.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Abstract
This review compares the biological and physiological function of Sigma receptors [σRs] and their potential therapeutic roles. Sigma receptors are widespread in the central nervous system and across multiple peripheral tissues. σRs consist of sigma receptor one (σ1R) and sigma receptor two (σ2R) and are expressed in numerous regions of the brain. The sigma receptor was originally proposed as a subtype of opioid receptors and was suggested to contribute to the delusions and psychoses induced by benzomorphans such as SKF-10047 and pentazocine. Later studies confirmed that σRs are non-opioid receptors (not an µ opioid receptor) and play a more diverse role in intracellular signaling, apoptosis and metabolic regulation. σ1Rs are intracellular receptors acting as chaperone proteins that modulate Ca2+ signaling through the IP3 receptor. They dynamically translocate inside cells, hence are transmembrane proteins. The σ1R receptor, at the mitochondrial-associated endoplasmic reticulum membrane, is responsible for mitochondrial metabolic regulation and promotes mitochondrial energy depletion and apoptosis. Studies have demonstrated that they play a role as a modulator of ion channels (K+ channels; N-methyl-d-aspartate receptors [NMDAR]; inositol 1,3,5 triphosphate receptors) and regulate lipid transport and metabolism, neuritogenesis, cellular differentiation and myelination in the brain. σ1R modulation of Ca2+ release, modulation of cardiac myocyte contractility and may have links to G-proteins. It has been proposed that σ1Rs are intracellular signal transduction amplifiers. This review of the literature examines the mechanism of action of the σRs, their interaction with neurotransmitters, pharmacology, location and adverse effects mediated through them.
Collapse
Affiliation(s)
- Colin G Rousseaux
- a Department of Pathology and Laboratory Medicine , University of Ottawa , Ottawa , ON , Canada and
| | | |
Collapse
|
42
|
Jacob AL, Weinberg RJ. The organization of AMPA receptor subunits at the postsynaptic membrane. Hippocampus 2015; 25:798-812. [PMID: 25524891 DOI: 10.1002/hipo.22404] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2014] [Indexed: 12/21/2022]
Abstract
AMPA receptors are the principal mediators of excitatory synaptic transmission in the mammalian central nervous system. The subunit composition of these tetrameric receptors helps to define their functional properties, and may also influence the synaptic trafficking implicated in long-term synaptic plasticity. However, the organization of AMPAR subunits within the synapse remains unclear. Here, we use postembedding immunogold electron microscopy to study the synaptic organization of AMPAR subunits in stratum radiatum of CA1 hippocampus in the adult rat. We find that GluA1 concentrates away from the center of the synapse, extending at least 25 nm beyond the synaptic specialization; in contrast, GluA3 is uniformly distributed along the synapse, and seldom extends beyond its lateral border. The fraction of extrasynaptic GluA1 is markedly higher in small than in large synapses; no such effect is seen for GluA3. These observations imply that different kinds of AMPARs are differently trafficked to and/or anchored at the synapse.
Collapse
Affiliation(s)
- Amanda L Jacob
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina
| | - Richard J Weinberg
- Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina.,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
43
|
Francotte P, Nørholm AB, Deva T, Olsen L, Frydenvang K, Goffin E, Fraikin P, de Tullio P, Challal S, Thomas JY, Iop F, Louis C, Botez-Pop I, Lestage P, Danober L, Kastrup JS, Pirotte B. Positive Allosteric Modulators of 2-Amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic Acid Receptors Belonging to 4-Cyclopropyl-3,4-dihydro-2H-1,2,4-pyridothiadiazine Dioxides and Diversely Chloro-Substituted 4-Cyclopropyl-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-Dioxides. J Med Chem 2014; 57:9539-53. [DOI: 10.1021/jm501268r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Pierre Francotte
- Department
of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines
(CIRM), University of Liege, Avenue de l’Hôpital,
1, B36, B-4000 Liège, Belgium
| | - Ann-Beth Nørholm
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken, 2, DK-2100 Copenhagen, Denmark
| | - Taru Deva
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken, 2, DK-2100 Copenhagen, Denmark
| | - Lars Olsen
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken, 2, DK-2100 Copenhagen, Denmark
| | - Karla Frydenvang
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken, 2, DK-2100 Copenhagen, Denmark
| | - Eric Goffin
- Department
of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines
(CIRM), University of Liege, Avenue de l’Hôpital,
1, B36, B-4000 Liège, Belgium
| | - Pierre Fraikin
- Department
of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines
(CIRM), University of Liege, Avenue de l’Hôpital,
1, B36, B-4000 Liège, Belgium
| | - Pascal de Tullio
- Department
of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines
(CIRM), University of Liege, Avenue de l’Hôpital,
1, B36, B-4000 Liège, Belgium
| | - Sylvie Challal
- Institut
de Recherches
Servier, 125 Chemin de Ronde, F-78290 Croissy-sur-Seine, France
| | - Jean-Yves Thomas
- Institut
de Recherches
Servier, 125 Chemin de Ronde, F-78290 Croissy-sur-Seine, France
| | - Fabrice Iop
- Institut
de Recherches
Servier, 125 Chemin de Ronde, F-78290 Croissy-sur-Seine, France
| | - Caroline Louis
- Institut
de Recherches
Servier, 125 Chemin de Ronde, F-78290 Croissy-sur-Seine, France
| | - Iuliana Botez-Pop
- Institut
de Recherches
Servier, 125 Chemin de Ronde, F-78290 Croissy-sur-Seine, France
| | - Pierre Lestage
- Institut
de Recherches
Servier, 125 Chemin de Ronde, F-78290 Croissy-sur-Seine, France
| | - Laurence Danober
- Institut
de Recherches
Servier, 125 Chemin de Ronde, F-78290 Croissy-sur-Seine, France
| | - Jette S. Kastrup
- Department
of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken, 2, DK-2100 Copenhagen, Denmark
| | - Bernard Pirotte
- Department
of Medicinal Chemistry, Center for Interdisciplinary Research on Medicines
(CIRM), University of Liege, Avenue de l’Hôpital,
1, B36, B-4000 Liège, Belgium
| |
Collapse
|
44
|
Gan Q, Salussolia CL, Wollmuth LP. Assembly of AMPA receptors: mechanisms and regulation. J Physiol 2014; 593:39-48. [PMID: 25556786 DOI: 10.1113/jphysiol.2014.273755] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 07/01/2014] [Indexed: 12/16/2022] Open
Abstract
AMPA receptors (AMPARs) play a critical role in excitatory glutamatergic neurotransmission. The number and subunit composition of AMPARs at synapses determines the dynamics of fast glutamatergic signalling. Functional AMPARs on the cell surface are tetramers. Thus tetrameric assembly of AMPARs represents a promising target for modulating AMPAR-mediated signalling in health and disease. Multiple structural domains within the receptor influence AMPAR assembly. In a proposed model for AMPAR assembly, the amino-terminal domain underlies the formation of a dimer pool. The transmembrane domain facilitates the formation and enhances the stability of the tetramer. The ligand-binding domain influences assembly through a process referred to as 'domain swapping'. We propose that this core AMPAR assembly process could be regulated by neuronal signals and speculate on possible mechanisms for such regulation.
Collapse
Affiliation(s)
- Quan Gan
- Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY, USA; Center for Nervous System Disorders, Stony Brook University, Stony Brook, NY, USA; Department of Neurobiology and Behaviour, Stony Brook University, Stony Brook, NY, USA
| | | | | |
Collapse
|
45
|
Green T, Nayeem N. The multifaceted subunit interfaces of ionotropic glutamate receptors. J Physiol 2014; 593:73-81. [PMID: 25556789 DOI: 10.1113/jphysiol.2014.273409] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/30/2014] [Indexed: 01/14/2023] Open
Abstract
The past fifteen years has seen a revolution in our understanding of ionotropic glutamate receptor (iGluR) structure, starting with the first view of the ligand binding domain (LBD) published in 1998, and in many ways culminating in the publication of the full-length structure of GluA2 in 2009. These reports have revealed not only the central role played by subunit interfaces in iGluR function, but also myriad binding sites within interfaces for endogenous and exogenous factors. Changes in the conformation of inter-subunit interfaces are central to transmission of ligand gating into pore opening (itself a rearrangement of interfaces), and subsequent closure through desensitization. With the exception of the agonist binding site, which is located entirely within individual subunits, almost all modulatory factors affecting iGluRs appear to bind to sites in subunit interfaces. This review seeks to summarize what we currently understand about the diverse roles interfaces play in iGluR function, and to highlight questions for future research.
Collapse
Affiliation(s)
- Tim Green
- Department of Pharmacology, University of Liverpool, Ashton Street, Liverpool L69 3GE, UK
| | | |
Collapse
|
46
|
von Roemeling CA, Radisky DC, Marlow LA, Cooper SJ, Grebe SK, Anastasiadis PZ, Tun HW, Copland JA. Neuronal pentraxin 2 supports clear cell renal cell carcinoma by activating the AMPA-selective glutamate receptor-4. Cancer Res 2014; 74:4796-810. [PMID: 24962026 DOI: 10.1158/0008-5472.can-14-0210] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer and has the highest propensity to manifest as metastatic disease. Recent characterizations of the genetic signature of ccRCC have revealed several factors correlated with tumor cell migration and invasion; however, the specific events driving malignancy are not well defined. Furthermore, there remains a lack of targeted therapies that result in long-term, sustainable response in patients with metastatic disease. We show here that neuronal pentraxin 2 (NPTX2) is overexpressed specifically in ccRCC primary tumors and metastases, and that it contributes to tumor cell viability and promotes cell migration through its interaction with the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor subunit GluR4. We propose NPTX2 as a novel molecular target for therapy for patients with ccRCC diagnosed with or at risk of developing metastatic disease.
Collapse
Affiliation(s)
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida
| | - Laura A Marlow
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida
| | - Simon J Cooper
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida
| | - Stefan K Grebe
- Division of Clinical Biochemistry and Immunology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Han W Tun
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida. Division of Hematology and Oncology, Mayo Clinic, Jacksonville, Florida
| | - John A Copland
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida.
| |
Collapse
|
47
|
Functional insight into development of positive allosteric modulators of AMPA receptors. Neuropharmacology 2014; 85:57-66. [PMID: 24878241 DOI: 10.1016/j.neuropharm.2014.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Revised: 05/02/2014] [Accepted: 05/15/2014] [Indexed: 11/22/2022]
Abstract
Positive allosteric modulators of α-amino-3-hydroxy-5-methyl-isoxazole-propionic acid (AMPA) ionotropic glutamate receptors facilitate synaptic plasticity and contribute essentially to learning and memory, properties which make AMPA receptors targets for drug discovery and development. One region at which several different classes of positive allosteric modulators bind lies at the dimer interface between the ligand-binding core of the second, membrane-proximal, extracellular domain of AMPA receptors. This solvent-accessible binding pocket has been the target of drug discovery efforts, leading to the recent delineation of five "subsites" which differentially allow access to modulator moieties, and for which distinct modulator affinities and apparent efficacies are attributed. Here we use the voltage-clamp technique in conjunction with rapid drug application to study the effects of mutants lining subsites "A" and "B" of the allosteric modulator pocket to assess affinity and efficacy of allosteric modulation by cyclothiazide, CX614, CMPDA and CMPDB. A novel analysis of the decay of current produced by the onset of desensitization has allowed us to estimate both affinity and efficacy from single concentrations of modulator. Such an approach may be useful for effective high throughput screening of new target compounds.
Collapse
|
48
|
Lu W, Khatri L, Ziff EB. Trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA) receptor subunit GluA2 from the endoplasmic reticulum is stimulated by a complex containing Ca2+/calmodulin-activated kinase II (CaMKII) and PICK1 protein and by release of Ca2+ from internal stores. J Biol Chem 2014; 289:19218-30. [PMID: 24831007 DOI: 10.1074/jbc.m113.511246] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The GluA2 subunit of the AMPA receptor (AMPAR) dominantly blocks AMPAR Ca(2+) permeability, and its trafficking to the synapse regulates AMPAR-dependent synapse Ca(2+) permeability. Here we show that GluA2 trafficking from the endoplasmic reticulum (ER) to the plasma membrane of cultured hippocampal neurons requires Ca(2+) release from internal stores, the activity of Ca(2+)/calmodulin activated kinase II (CaMKII), and GluA2 interaction with the PDZ protein, PICK1. We show that upon Ca(2+) release from the ER via the IP3 and ryanodine receptors, CaMKII that is activated enters a complex that contains PICK1, dependent upon the PICK1 BAR (Bin-amphiphysin-Rvs) domain, and that interacts with the GluA2 C-terminal domain and stimulates GluA2 ER exit and surface trafficking. This study reveals a novel mechanism of regulation of trafficking of GluA2-containing receptors to the surface under the control of intracellular Ca(2+) dynamics and CaMKII activity.
Collapse
Affiliation(s)
- Wei Lu
- From the Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Latika Khatri
- From the Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Edward B Ziff
- From the Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
49
|
Gray EE, Guglietta R, Khakh BS, O'Dell TJ. Inhibitory interactions between phosphorylation sites in the C terminus of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptor GluA1 subunits. J Biol Chem 2014; 289:14600-11. [PMID: 24706758 DOI: 10.1074/jbc.m114.553537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The C terminus of AMPA-type glutamate receptor (AMPAR) GluA1 subunits contains several phosphorylation sites that regulate AMPAR activity and trafficking at excitatory synapses. Although many of these sites have been extensively studied, little is known about the signaling mechanisms regulating GluA1 phosphorylation at Thr-840. Here, we report that neuronal depolarization in hippocampal slices induces a calcium and protein phosphatase 1/2A-dependent dephosphorylation of GluA1 at Thr-840 and a nearby site at Ser-845. Despite these similarities, inhibitors of NMDA-type glutamate receptors and protein phosphatase 2B prevented depolarization-induced Ser-845 dephosphorylation but had no effect on Thr-840 dephosphorylation. Instead, depolarization-induced Thr-840 dephosphorylation was prevented by blocking voltage-gated calcium channels, indicating that distinct Ca(2+) sources converge to regulate GluA1 dephosphorylation at Thr-840 and Ser-845 in separable ways. Results from immunoprecipitation/depletion assays indicate that Thr-840 phosphorylation inhibits protein kinase A (PKA)-mediated increases in Ser-845 phosphorylation. Consistent with this, PKA-mediated increases in AMPAR currents, which are dependent on Ser-845 phosphorylation, were inhibited in HEK-293 cells expressing a Thr-840 phosphomimetic version of GluA1. Conversely, mimicking Ser-845 phosphorylation inhibited protein kinase C phosphorylation of Thr-840 in vitro, and PKA activation inhibited Thr-840 phosphorylation in hippocampal slices. Together, the regulation of Thr-840 and Ser-845 phosphorylation by distinct sources of Ca(2+) influx and the presence of inhibitory interactions between these sites highlight a novel mechanism for conditional regulation of AMPAR phosphorylation and function.
Collapse
Affiliation(s)
- Erin E Gray
- From the Department of Physiology and Interdepartmental Ph.D. Program for Neuroscience at UCLA, and
| | - Ryan Guglietta
- From the Department of Physiology and Interdepartmental Ph.D. Program for Neuroscience at UCLA, and
| | - Baljit S Khakh
- From the Department of Physiology and Department of Neurobiology, David Geffen School of Medicine at UCLA
| | - Thomas J O'Dell
- From the Department of Physiology and UCLA Integrative Center for Learning and Memory, Los Angeles, California 90095
| |
Collapse
|
50
|
Wang C, Han Y, Wu A, Sólyom S, Niu L. Mechanism and site of inhibition of AMPA receptors: pairing a thiadiazole with a 2,3-benzodiazepine scaffold. ACS Chem Neurosci 2014; 5:138-47. [PMID: 24313227 DOI: 10.1021/cn400193u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
2,3-Benzodiazepine compounds are synthesized as drug candidates for treatment of various neurological disorders involving excessive activity of AMPA receptors. Here we report that pairing a thiadiazole moiety with a 2,3-benzodiazepine scaffold via the N-3 position yields an inhibitor type with >28-fold better potency and selectivity on AMPA receptors than the 2,3-benzodiazepine scaffold alone. Using whole-cell recording, we characterized two thiadiazolyl compounds, that is, one contains a 1,3,4-thiadiazole moiety and the other contains a 1,2,4-thiadiazole-3-one moiety. These compounds exhibit potent, equal inhibition of both the closed-channel and the open-channel conformations of all four homomeric AMPA receptor channels and two GluA2R-containing complex AMPA receptor channels. Furthermore, these compounds bind to the same receptor site as GYKI 52466 does, a site we previously termed as the "M" site. A thiadiazole moiety is thought to occupy more fully the side pocket of the receptor site or the "M" site, thereby generating a stronger, multivalent interaction between the inhibitor and the receptor binding site. We suggest that, as a heterocycle, a thiadiazole can be further modified chemically to produce a new class of even more potent, noncompetitive inhibitors of AMPA receptors.
Collapse
Affiliation(s)
- Congzhou Wang
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222, United States
| | - Yan Han
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222, United States
| | - Andrew Wu
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222, United States
| | - Sándor Sólyom
- CF Pharma Pharmaceutical Manufacturing Co., Ltd, H-1097 Budapest, Kén
utca 5, Hungary
| | - Li Niu
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222, United States
| |
Collapse
|