1
|
Huang WH. Performing Single-Cell Clonal Analysis in the Mouse Brain Using Mosaic Analysis with Double Markers (MADM). Methods Mol Biol 2022; 2515:59-74. [PMID: 35776345 DOI: 10.1007/978-1-0716-2409-8_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A central question in neuroscience is how 100 billion neurons come together to build the human brain. The wiring, morphology, survival, and death of each neuron are controlled by genes that encode intrinsic and extrinsic factors. Determining the function of these genes at a high spatiotemporal resolution is a critical step toward understanding brain development and function. Moreover, an increasing number of somatic mutations are being discovered in many brain disorders. However, neurons are embedded in complex networks, making it difficult to distinguish cell-autonomous from non-cell-autonomous function of any given gene in the brain. Here, I describe MADM (mosaic analysis with double markers), a genetic method that allows for labeling and manipulating gene function at the single-cell level within the mouse brain. I present mouse breeding schemes to employ MADM analysis and important considerations for experimental design. This powerful system can be adapted to make fundamental neuroscience discoveries by targeting genetically defined cell types in the mouse brain with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Wei-Hsiang Huang
- Department of Neurology and Neurosurgery, Centre for Research in Neuroscience, McGill University, Montréal, QC, Canada.
| |
Collapse
|
2
|
Reelin Counteracts Chondroitin Sulfate Proteoglycan-Mediated Cortical Dendrite Growth Inhibition. eNeuro 2020; 7:ENEURO.0168-20.2020. [PMID: 32641498 PMCID: PMC7393641 DOI: 10.1523/eneuro.0168-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/28/2022] Open
Abstract
Disruptions in neuronal dendrite development alter brain circuitry and are associated with debilitating neurological disorders. Nascent apical dendrites of cortical excitatory neurons project into the marginal zone (MZ), a cell-sparse layer characterized by intense chondroitin sulfate proteoglycan (CSPG) expression. Paradoxically, CSPGs are known to broadly inhibit neurite growth and regeneration. This raises the possibility that the growing apical dendrite is somehow insensitive to CSPG-mediated neurite growth inhibition. To test this, developing cortical neurons were challenged with both soluble CSPGs and CSPG-positive stripe substrates in vitro. Soluble CSPGs inhibited dendritic growth and cortical dendrites respected CSPG stripe boundaries, effects that could be counteracted by prior CSPG inactivation by chondroitinase. Importantly, addition of Reelin, an extracellular signaling protein highly expressed in the MZ, partially rescued dendritic growth in the presence of CSPGs. High-resolution confocal imaging revealed that the CSPG-enriched areas of the MZ spatially correspond with the areas of reduced dendritic density in the Reelin null (reeler) cortex compared with controls. Chondroitinase injections into reeler explants resulted in increased dendritic growth into the MZ, recovering to near wild-type levels. Activation of the serine threonine kinase Akt is required for Reelin-dependent dendritic growth and we find that CSPGs induce Akt dephosphorylation, an effect that can be counteracted by Reelin addition. In contrast, CSPG application had no effect on the cytoplasmic adaptor Dab1, which is rapidly phosphorylated in response to Reelin and is upstream of Akt. These findings suggest CSPGs do inhibit cortical dendritic growth, but this effect can be counteracted by Reelin signaling.
Collapse
|
3
|
Guarnieri FC, de Chevigny A, Falace A, Cardoso C. Disorders of neurogenesis and cortical development. DIALOGUES IN CLINICAL NEUROSCIENCE 2019. [PMID: 30936766 PMCID: PMC6436956 DOI: 10.31887/dcns.2018.20.4/ccardoso] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The development of the cerebral cortex requires complex sequential processes that have to be precisely orchestrated. The localization and timing of neuronal progenitor proliferation and of neuronal migration define the identity, laminar positioning, and specific connectivity of each single cortical neuron. Alterations at any step of this organized series of events—due to genetic mutations or environmental factors—lead to defined brain pathologies collectively known as malformations of cortical development (MCDs), which are now recognized as a leading cause of drug-resistant epilepsy and intellectual disability. In this heterogeneous group of disorders, macroscopic alterations of brain structure (eg, heterotopic nodules, small or absent gyri, double cortex) can be recognized and probably subtend a general reorganization of neuronal circuits. In this review, we provide an overview of the molecular mechanisms that are implicated in the generation of genetic MCDs associated with aberrations at various steps of neurogenesis and cortical development.
Collapse
Affiliation(s)
| | | | - Antonio Falace
- Aix-Marseille University, INSERM U1249, INMED, Marseille 13009, France
| | - Carlos Cardoso
- Aix-Marseille University, INSERM U1249, INMED, Marseille 13009, France
| |
Collapse
|
4
|
Petanjek Z, Sedmak D, Džaja D, Hladnik A, Rašin MR, Jovanov-Milosevic N. The Protracted Maturation of Associative Layer IIIC Pyramidal Neurons in the Human Prefrontal Cortex During Childhood: A Major Role in Cognitive Development and Selective Alteration in Autism. Front Psychiatry 2019; 10:122. [PMID: 30923504 PMCID: PMC6426783 DOI: 10.3389/fpsyt.2019.00122] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 02/18/2019] [Indexed: 12/12/2022] Open
Abstract
The human specific cognitive shift starts around the age of 2 years with the onset of self-awareness, and continues with extraordinary increase in cognitive capacities during early childhood. Diffuse changes in functional connectivity in children aged 2-6 years indicate an increase in the capacity of cortical network. Interestingly, structural network complexity does not increase during this time and, thus, it is likely to be induced by selective maturation of a specific neuronal subclass. Here, we provide an overview of a subclass of cortico-cortical neurons, the associative layer IIIC pyramids of the human prefrontal cortex. Their local axonal collaterals are in control of the prefrontal cortico-cortical output, while their long projections modulate inter-areal processing. In this way, layer IIIC pyramids are the major integrative element of cortical processing, and changes in their connectivity patterns will affect global cortical functioning. Layer IIIC neurons have a unique pattern of dendritic maturation. In contrast to other classes of principal neurons, they undergo an additional phase of extensive dendritic growth during early childhood, and show characteristic molecular changes. Taken together, circuits associated with layer IIIC neurons have the most protracted period of developmental plasticity. This unique feature is advanced but also provides a window of opportunity for pathological events to disrupt normal formation of cognitive circuits involving layer IIIC neurons. In this manuscript, we discuss how disrupted dendritic and axonal maturation of layer IIIC neurons may lead into global cortical disconnectivity, affecting development of complex communication and social abilities. We also propose a model that developmentally dictated incorporation of layer IIIC neurons into maturing cortico-cortical circuits between 2 to 6 years will reveal a previous (perinatal) lesion affecting other classes of principal neurons. This "disclosure" of pre-existing functionally silent lesions of other neuronal classes induced by development of layer IIIC associative neurons, or their direct alteration, could be found in different forms of autism spectrum disorders. Understanding the gene-environment interaction in shaping cognitive microcircuitries may be fundamental for developing rehabilitation and prevention strategies in autism spectrum and other cognitive disorders.
Collapse
Affiliation(s)
- Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dora Sedmak
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Domagoj Džaja
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ana Hladnik
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mladen Roko Rašin
- Department of Neuroscience and Cell Biology, Rutgers University, Robert Wood Johnson Medical School, Piscataway, NJ, United States
| | - Nataša Jovanov-Milosevic
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Center of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
5
|
Ryglewski S, Vonhoff F, Scheckel K, Duch C. Intra-neuronal Competition for Synaptic Partners Conserves the Amount of Dendritic Building Material. Neuron 2017; 93:632-645.e6. [PMID: 28132832 DOI: 10.1016/j.neuron.2016.12.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 11/11/2016] [Accepted: 12/28/2016] [Indexed: 01/02/2023]
Abstract
Brain development requires correct targeting of multiple thousand synaptic terminals onto staggeringly complex dendritic arbors. The mechanisms by which input synapse numbers are matched to dendrite size, and by which synaptic inputs from different transmitter systems are correctly partitioned onto a postsynaptic arbor, are incompletely understood. By combining quantitative neuroanatomy with targeted genetic manipulation of synaptic input to an identified Drosophila neuron, we show that synaptic inputs of two different transmitter classes locally direct dendrite growth in a competitive manner. During development, the relative amounts of GABAergic and cholinergic synaptic drive shift dendrites between different input domains of one postsynaptic neuron without affecting total arbor size. Therefore, synaptic input locally directs dendrite growth, but intra-neuronal dendrite redistributions limit morphological variability, a phenomenon also described for cortical neurons. Mechanistically, this requires local dendritic Ca2+ influx through Dα7nAChRs or through LVA channels following GABAAR-mediated depolarizations. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Stefanie Ryglewski
- Institute of Neurobiology, Johannes Gutenberg University Mainz, 55099 Mainz, Germany
| | - Fernando Vonhoff
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Kathryn Scheckel
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Carsten Duch
- Institute of Neurobiology, Johannes Gutenberg University Mainz, 55099 Mainz, Germany.
| |
Collapse
|
6
|
Ke C, Gao F, Tian X, Li C, Shi D, He W, Tian Y. Slit2/Robo1 Mediation of Synaptic Plasticity Contributes to Bone Cancer Pain. Mol Neurobiol 2017; 54:295-307. [PMID: 26738857 DOI: 10.1007/s12035-015-9564-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/29/2015] [Indexed: 12/11/2022]
Abstract
Synaptic plasticity is fundamental to spinal sensitivity of bone cancer pain. Here, we have shown that excitatory synaptogenesis contributes to bone cancer pain. New synapse formation requires neurite outgrowth and an interaction between axons and dendrites, accompanied by the appositional organization of presynaptic and postsynaptic specializations. We have shown that Slit2, Robo1, and RhoA act as such cues that promote neurite outgrowth and guide the axon for synapse formation. Sarcoma inoculation induces excitatory synaptogenesis and bone cancer pain which are reversed by Slit2 knockdown but aggravated by Robo1 knockdown. Synaptogenesis of cultured neurons are inhibited by Slit2 knockdown but enhanced by Robo1 knockdown. Sarcoma implantation induces an increase in Slit2 and decreases Robo1 and RhoA, while Slit2 knockdown results in an increase of Robo1 and RhoA. These results have demonstrated a molecular mechanism of synaptogenesis in bone cancer pain.
Collapse
Affiliation(s)
- Changbin Ke
- Institute of Anesthesiology and Pain (IAP) and Department of Anesthesiology, Taihe Hospital, Hubei University of Medicine, Shiyan City, 442000, Hubei Province, China
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xuebi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Caijuan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dai Shi
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wensheng He
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuke Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
7
|
Abstract
UNLABELLED The mechanisms controlling cortical dendrite initiation and targeting are poorly understood. Multiphoton imaging of developing mouse cortex reveals that apical dendrites emerge by direct transformation of the neuron's leading process during the terminal phase of neuronal migration. During this ∼110 min period, the dendritic arbor increases ∼2.5-fold in size and migration arrest occurs below the first stable branch point in the developing arbor. This dendritic outgrowth is triggered at the time of leading process contact with the marginal zone (MZ) and occurs primarily by neurite extension into the extracellular matrix of the MZ. In reeler cortices that lack the secreted glycoprotein Reelin, a subset of neurons completed migration but then retracted and reorganized their arbor in a tangential direction away from the MZ soon after migration arrest. For these reeler neurons, the tangential oriented primary neurites were longer lived than the radially oriented primary neurites, whereas the opposite was true of wild-type (WT) neurons. Application of Reelin protein to reeler cortices destabilized tangential neurites while stabilizing radial neurites and stimulating dendritic growth in the MZ. Therefore, Reelin functions as part of a polarity signaling system that links dendritogenesis in the MZ with cellular positioning and cortical lamination. SIGNIFICANCE STATEMENT Whether the apical dendrite emerges by transformation of the leading process of the migrating neuron or emerges de novo after migration is completed is unclear. Similarly, it is not clear whether the secreted glycoprotein Reelin controls migration and dendritic growth as related or separate processes. Here, multiphoton microscopy reveals the direct transformation of the leading process into the apical dendrite. This transformation is coupled to the successful completion of migration and neuronal soma arrest occurs below the first stable branch point of the nascent dendrite. Deficiency in Reelin causes the forming dendrite to avoid its normal target area and branch aberrantly, leading to improper cellular positioning. Therefore, this study links Reelin-dependent dendritogenesis with migration arrest and cortical lamination.
Collapse
|
8
|
Rao S, Ge S, Shelly M. Centrosome positioning and primary cilia assembly orchestrate neuronal development. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-012-1231-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Nak regulates localization of clathrin sites in higher-order dendrites to promote local dendrite growth. Neuron 2011; 72:285-99. [PMID: 22017988 DOI: 10.1016/j.neuron.2011.08.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2011] [Indexed: 11/22/2022]
Abstract
VIDEO ABSTRACT During development, dendrites arborize in a field several hundred folds of their soma size, a process regulated by intrinsic transcription program and cell adhesion molecule (CAM)-mediated interaction. However, underlying cellular machineries that govern distal higher-order dendrite extension remain largely unknown. Here, we show that Nak, a clathrin adaptor-associated kinase, promotes higher-order dendrite growth through endocytosis. In nak mutants, both the number and length of higher-order dendrites are reduced, which are phenocopied by disruptions of clathrin-mediated endocytosis. Nak interacts genetically with components of the endocytic pathway, colocalizes with clathrin puncta, and is required for dendritic localization of clathrin puncta. More importantly, these Nak-containing clathrin structures preferentially localize to branching points and dendritic tips that are undergoing active growth. We present evidence that the Drosophila L1-CAM homolog Neuroglian is a relevant cargo of Nak-dependent internalization, suggesting that localized clathrin-mediated endocytosis of CAMs facilitates the extension of nearby higher-order dendrites.
Collapse
|
10
|
Sato Y, Suzuki S, Kitabatake M, Hara T, Kojima M. Generation of TrkA/TrkB chimeric receptor constructs reveals molecular mechanisms underlying BDNF-induced dendritic outgrowth in hippocampal neurons. Cell Mol Neurobiol 2011; 31:605-14. [PMID: 21279681 PMCID: PMC11498564 DOI: 10.1007/s10571-011-9655-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2010] [Accepted: 01/12/2011] [Indexed: 01/19/2023]
Abstract
Neurotrophins (NTs) regulate neuronal survival, differentiation, and synaptic plasticity through tropomyosin receptor kinases (Trks). The molecular mechanisms underlying these functions, however, have remained incompletely understood. In the present study, we first showed that brain-derived neurotrophic factor (BDNF) increased both the number of primary dendrites and dendritic complexity in cultured hippocampal neurons. Since hippocampal neurons predominantly express the BDNF receptor TrkB, but not the nerve growth factor (NGF) receptor Trk, we generated DNA constructs encoding the extracellular domain of TrkA fused with the transmembrane and intracellular domain of TrkB and introduced these constructs into cultured hippocampal neurons. To visualize the dendrites, the TrkA/TrkB fusion proteins were bicistronically expressed with green fluorescence protein (GFP). Interestingly, the GFP-labeled neurons grew dendrites and activated the TrkA/TrkB receptors in response to NGF, but not BDNF. We next generated a series of TrkA/TrkB receptors with mutations at tyrosine residues in the TrkB kinase domain, and sought to identify the signaling pathway required for NT-induced dendrite outgrowth. Sholl analyses demonstrated that TrkB signaling through Shc, but not through PLC-γ, plays a crucial role in NT-elicited dendritic outgrowth in hippocampal neurons.
Collapse
Affiliation(s)
- Yosuke Sato
- Biointerface Research group, Health Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 Japan
| | - Shingo Suzuki
- Biointerface Research group, Health Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 Japan
- Medical Top Track (MTT) Program, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, 113-8510 Bunkyo-ku, Tokyo, Japan
| | - Mako Kitabatake
- Biointerface Research group, Health Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 Japan
| | - Tomoko Hara
- Biointerface Research group, Health Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012 Japan
| | - Masami Kojima
- Biointerface Research group, Health Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012 Japan
| |
Collapse
|
11
|
Horch HW, Sheldon E, Cutting CC, Williams CR, Riker DM, Peckler HR, Sangal RB. Bilateral consequences of chronic unilateral deafferentation in the auditory system of the cricket Gryllus bimaculatus. Dev Neurosci 2011; 33:21-37. [PMID: 21346310 DOI: 10.1159/000322887] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 11/15/2010] [Indexed: 12/12/2022] Open
Abstract
The auditory system of the cricket has the unusual ability to respond to deafferentation by compensatory growth and synapse formation. Auditory interneurons such as ascending neuron 2 (AN-2) in the cricket Gryllus bimaculatus possess a dendritic arbor that normally grows up to, but not over, the midline of the prothoracic ganglion. After chronic deafferentation throughout larval development, however, the AN-2 dendritic arbor changes dramatically, and medial dendrites sprout across the midline where they form compensatory synapses with the auditory afferents from the contralateral ear. We quantified the extent of the effects of chronic, unilateral deafferentation by measuring several cellular parameters of 3 different neuronal components of the auditory system: the deafferented AN-2, the contralateral (or nondeafferented) AN-2 and the contralateral auditory afferents. Neuronal tracers and confocal microscopy were used to visualize neurons, and double-label experiments were performed to examine the cellular relationship between pairs of cells. Dendritic complexity was quantified using a modified Sholl analysis, and the length and volume of processes and presynaptic varicosities were assessed under control and deafferented conditions. Chronic deafferentation significantly influenced the morphology of all 3 neuronal components examined. The overall dendritic complexity of the deafferented AN-2 dendritic arbor was reduced, while both the contralateral AN-2 dendritic arbor and the remaining, intact, auditory afferents grew longer. We found no significant changes in the volume or density of varicosities after deafferentation. These complex cellular changes after deafferentation are interpreted in the light of the reported differential regulation of vesicle-associated membrane protein and semaphorin 2a.
Collapse
|
12
|
Gonthier B, Koncina E, Satkauskas S, Perraut M, Roussel G, Aunis D, Kapfhammer JP, Bagnard D. A PKC-dependent recruitment of MMP-2 controls semaphorin-3A growth-promoting effect in cortical dendrites. PLoS One 2009; 4:e5099. [PMID: 19352510 PMCID: PMC2663036 DOI: 10.1371/journal.pone.0005099] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 03/05/2009] [Indexed: 11/18/2022] Open
Abstract
There is increasing evidence for a crucial role of proteases and metalloproteinases during axon growth and guidance. In this context, we recently described a functional link between the chemoattractive Sema3C and Matrix metalloproteinase 3 (MMP3). Here, we provide data demonstrating the involvement of MMP-2 to trigger the growth-promoting effect of Sema3A in cortical dendrites. The in situ analysis of MMP-2 expression and activity is consistent with a functional growth assay demonstrating in vitro that the pharmacological inhibition of MMP-2 reduces the growth of cortical dendrites in response to Sema3A. Hence, our results suggest that the selective recruitment and activation of MMP-2 in response to Sema3A requires a PKC alpha dependent mechanism. Altogether, we provide a second set of data supporting MMPs as effectors of the growth-promoting effects of semaphorins, and we identify the potential signalling pathway involved.
Collapse
Affiliation(s)
- Bertrand Gonthier
- INSERM U575, Physiopathologie du Système Nerveux, Strasbourg, France
| | - Eric Koncina
- INSERM U575, Physiopathologie du Système Nerveux, Strasbourg, France
| | - Saulius Satkauskas
- INSERM U575, Physiopathologie du Système Nerveux, Strasbourg, France
- Vytautas Magnus University, Department of Biology, Kaunas, Lithuania
| | - Martine Perraut
- INSERM U575, Physiopathologie du Système Nerveux, Strasbourg, France
| | - Guy Roussel
- INSERM U575, Physiopathologie du Système Nerveux, Strasbourg, France
| | - Dominique Aunis
- INSERM U575, Physiopathologie du Système Nerveux, Strasbourg, France
| | - Josef P. Kapfhammer
- Developmental Neurobiology, Institute of Anatomy, University of Basel, Basel, Switzerland
| | - Dominique Bagnard
- INSERM U575, Physiopathologie du Système Nerveux, Strasbourg, France
- * E-mail:
| |
Collapse
|
13
|
Kullenberg J, Rosatini F, Vozzi G, Bianchi F, Ahluwalia A, Domenici C. Optimization of PAM scaffolds for neural tissue engineering: preliminary study on an SH-SY5Y cell line. Tissue Eng Part A 2009; 14:1017-23. [PMID: 18476808 DOI: 10.1089/ten.tea.2007.0163] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Engineering neural tissue is one of the most challenging goals of tissue engineering. Neural tissue is highly complex and possesses an organized three-dimensional (3D) distribution that is essential for tissue function. An optimal scaffold for tissue engineering has to provide this distribution until the cells are able to activate their normal functions and develop neural connections with the host tissue. Different strategies such as gene therapy and cell transplantation particularly in retinal tissue have been tested, but so far they have only induced retinal degeneration in animals. The objective of this work was to study neural cell assembly as a function of scaffold features and surface chemistry for application in retinal tissue engineering using microfabricated patterns with a well-defined geometry. Because retinal neurons are known to be arranged in hexagonal arrays, hexagonal scaffolds of poly(DL-lactide-co-glycolide) acid were fabricated using a pressure-assisted microsyringe (PAM) system. The behavior of a model cell, neuroblastoma originating from human retina (SH-SY5Y), was analyzed after seeding on the scaffolds, measuring cell density as a function of line width and length of the scaffold to identify the optimal hexagonal geometry. We also evaluated the influence of scaffold on cell metabolism using the methyl thiazolyl tetrazolium assay and on neurite extension. As far as two-dimensional scaffolds are concerned, the results show that although metabolic activity per cell remains constant, hexagons with sides of 500 microm and line widths of 20 +/- 5 microm are optimum for neural cell adhesion in terms of cell density. On 3D scaffolds, cell metabolism is about three times higher than controls, and the optimum number of layers in the scaffold is three or four.
Collapse
Affiliation(s)
- Johanna Kullenberg
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
| | | | | | | | | | | |
Collapse
|
14
|
Johansson C, Castoldi AF, Onishchenko N, Manzo L, Vahter M, Ceccatelli S. Neurobehavioural and molecular changes induced by methylmercury exposure during development. Neurotox Res 2007; 11:241-60. [PMID: 17449462 DOI: 10.1007/bf03033570] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is an increasing body of evidence on the possible environmental influence on neurodevelopmental and neurodegenerative disorders. Both experimental and epidemiological studies have demonstrated the distinctive susceptibility of the developing brain to environmental factors such as lead, mercury and polychlorinated biphenyls at levels of exposure that have no detectable effects in adults. Methylmercury (MeHg) has long been known to affect neurodevelopment in both humans and experimental animals. Neurobehavioural effects reported include altered motoric function and memory and learning disabilities. In addition, there is evidence from recent experimental neurodevelopmental studies that MeHg can induce depression-like behaviour. Several mechanisms have been suggested from in vivo- and in vitro-studies, such as effects on neurotransmitter systems, induction of oxidative stress and disruption of microtubules and intracellular calcium homeostasis. Recent in vitro data show that very low levels of MeHg can inhibit neuronal differentiation of neural stem cells. This review summarises what is currently known about the neurodevelopmental effects of MeHg and consider the strength of different experimental approaches to study the effects of environmentally relevant exposure in vivo and in vitro.
Collapse
Affiliation(s)
- Carolina Johansson
- Division of Toxicology and Neurotoxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
15
|
Bucher D, Johnson CD, Marder E. Neuronal morphology and neuropil structure in the stomatogastric ganglion of the lobster, Homarus americanus. J Comp Neurol 2007; 501:185-205. [PMID: 17226763 DOI: 10.1002/cne.21169] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The stomatogastric nervous system (STNS) has long been used as a model system for the study of central pattern generation, neuromodulation, and network dynamics. Anatomical studies of the crustacean stomatogastric ganglion (STG) in different species have mostly been restricted to subsets of neurons and/or general structural features. For the first time, we describe the morphology of all STG neurons belonging to the two circuits that produce the well-described pyloric and gastric rhythms in the lobster, Homarus americanus. Somata sit on the dorsal and lateral surface of the STG and send a single primary neurite into the core of the neuropil, which is mostly made up of larger lower order branches. The perimeter of the neuropil consists mostly of finer higher order branches. Immunohistochemical labeling for synaptic proteins is associated with the small diameter branches. Somata positions are not constant but show preferred locations across individuals. The number of copies is constant for all neuron types except the PY and GM neurons (PY neuron number ranges from 3 to 7, and GM neuron number ranges from 6 to 9). Branch structure is largely nondichotomous, and branches can deviate substantially from cylindrical shape. Diameter changes at branch points can be as large as 20-fold. Clearly, the morphology of a specific neuron type can be quite variable from animal to animal.
Collapse
Affiliation(s)
- Dirk Bucher
- Volen Center and Biology Department, Brandeis University, Waltham, Massachusetts 02454-9110, USA.
| | | | | |
Collapse
|
16
|
Rossi MR, Huntoon K, Cowell JK. Differential expression of the LGI and SLIT families of genes in human cancer cells. Gene 2005; 356:85-90. [PMID: 16000246 DOI: 10.1016/j.gene.2005.04.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2004] [Revised: 03/08/2005] [Accepted: 04/13/2005] [Indexed: 10/25/2022]
Abstract
The LGI and SLIT genes have a distinctive leucine-rich repeat motif in the N-terminal end of the protein which is indicative of either receptor function or an interaction with the extracellular matrix. Members of the LGI and SLIT family of genes have been implicated in specific cancers and have been suggested to have a restricted pattern of expression in normal cells. To investigate the extent and distribution of the expression of these genes in cancer cells we have analyzed their expression levels in a range of tumor cell types. Different tumor types appear to hold a preference for the specific members of the families which are expressed. Differential expression between cell lines, from the same tumor type, implies a role for inactivation and reactivation of these genes during tumorigenesis. The detailed characterization of the expression pattern in these tumor cells offers the opportunity to perform a functional analysis of these individual genes.
Collapse
Affiliation(s)
- Michael R Rossi
- Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14263, USA
| | | | | |
Collapse
|
17
|
Martínez-López MJ, Alcántara S, Mascaró C, Pérez-Brangulí F, Ruiz-Lozano P, Maes T, Soriano E, Buesa C. Mouse neuron navigator 1, a novel microtubule-associated protein involved in neuronal migration. Mol Cell Neurosci 2005; 28:599-612. [PMID: 15797708 DOI: 10.1016/j.mcn.2004.09.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2004] [Revised: 09/28/2004] [Accepted: 09/29/2004] [Indexed: 11/21/2022] Open
Abstract
The development of the nervous system (NS) requires the coordinated migration of multiple waves of neurons and subsequent processes of neurite maturation, both involving selective guidance mechanisms. In Caenorhabditis elegans, unc-53 codes for a new multidomain protein involved in the directional migration of a subset of cells. We describe here the first functional characterization of the mouse homologue, mouse Neuron navigator 1 (mNAV1), whose expression is largely restricted to the NS during development. EGFP-mNAV1 associates with microtubules (MTs) plus ends present in the growth cone through a new microtubule-binding (MTB) domain. Moreover, its overexpression in transfected cells leads to MT bundling. The abolition of mNAV1 causes loss of directionality in the leading processes of pontine-migrating cells, providing evidence for a role of mNAV1 in mediating Netrin-1-induced directional migration.
Collapse
Affiliation(s)
- María José Martínez-López
- Department of Biochemistry and Molecular Biology, Cell Signaling Group, School of Pharmacy, University of Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Advances in defining mechanisms of cortical development have been paralleled in recent years by an intense interest in translating these findings into greater insight of both childhood- and adult-onset cognitive and mental health disorders of developmental etiology. Successful integration of basic and clinical findings have been applied to monogenic disorders. The greater challenge lies in studying cortical development in the context of gene x environment interactions, which underlie the pathogenesis of the most common neurodevelopmental disorders. This can occur through an improved delineation of pathophysiological characteristics unique to specific complex disorders and the application of this information to the refinement of the most relevant model systems.
Collapse
Affiliation(s)
- Pat Levitt
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee 37203, USA.
| |
Collapse
|
19
|
Munno DW, Syed NI. Synaptogenesis in the CNS: an odyssey from wiring together to firing together. J Physiol 2003; 552:1-11. [PMID: 12897180 PMCID: PMC2343306 DOI: 10.1113/jphysiol.2003.045062] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2003] [Accepted: 08/01/2003] [Indexed: 12/31/2022] Open
Abstract
To acquire a better comprehension of nervous system function, it is imperative to understand how synapses are assembled during development and subsequently altered throughout life. Despite recent advances in the fields of neurodevelopment and synaptic plasticity, relatively little is known about the mechanisms that guide synapse formation in the central nervous system (CNS). Although many structural components of the synaptic machinery are pre-assembled prior to the arrival of growth cones at the site of their potential targets, innumerable changes, central to the proper wiring of the brain, must subsequently take place through contact-mediated cell-cell communications. Identification of such signalling molecules and a characterization of various events underlying synaptogenesis are pivotal to our understanding of how a brain cell completes its odyssey from "wiring together to firing together". Here we attempt to provide a comprehensive overview that pertains directly to the cellular and molecular mechanisms of selection, formation and refinement of synapses during the development of the CNS in both vertebrates and invertebrates.
Collapse
Affiliation(s)
- David W Munno
- Neuroscience and Respiratory Research Groups, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
20
|
Abstract
A stochastic, nonlinear dynamic model is proposed to explain the growth cone at the tip of a cell process, such as a growing axon or dendrite of a neuron. The model explains the outward motion of the tip as an extension of the cytoskeleton, using the actin-myosin system as a molecular motor. The kinetic energy is supplied by heat from ATP hydrolysis in the form of random motion of water molecules embedding the actin-myosin. The mechanical structure is provided by the F-actin macromolecules forming a spiral filament. The myosin heads form a stochastic distribution of small spheres. They are attached by elastic springs to the spiral rods of the myosin filaments. Under thermal agitation the system sustains oscillation, which is directed by the interaction between the myosin heads and the actin filament. As the energy of oscillation is dissipated, the actin filament is moved toward the center of the growth cone. The joint probability density of movement of the actin filament is obtained by solving a non-stationary version of the FPK equation. By incorporating a probability distribution of actin filaments provided by the geometry of the tip, the directed motion of the tip is explained.
Collapse
|
21
|
Datwani A, Iwasato T, Itohara S, Erzurumlu RS. NMDA receptor-dependent pattern transfer from afferents to postsynaptic cells and dendritic differentiation in the barrel cortex. Mol Cell Neurosci 2002; 21:477-92. [PMID: 12498788 PMCID: PMC3564661 DOI: 10.1006/mcne.2002.1195] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
N-Methyl-D-aspartate receptors (NMDARs) are important for synaptic refinement during development. In CxNR1KO mice, cortical excitatory neurons lack NR1, the essential subunit of the NMDAR, and in their primary somatosensory (S1) cortex whisker-specific cellular patterns, "barrels," are absent. Despite this cytoarchitectural defect, thalamocortical axons (TCAs) representing the mystacial vibrissae form topographically organized patterns and undergo critical period plasticity. This region-specific knockout mouse model allows for dissection of the mechanisms underlying patterning of the pre- and postsynaptic neural elements in the S1 cortex. In the absence of functional NMDARs, layer IV cell numbers are unaltered, but these cells fail to segregate into barrels. Furthermore, the dendritic fields of spiny stellate cells do not orient toward TCA terminal patches as in normal mice. Instead, they radiate in all directions covering larger territories, exhibiting profuse branching with increased spine density. Comparison of TCA patches with serotonin transporter (5-HTT) immunohistochemistry or Dil labeling also indicates that in the CxNR1KO cortex TCAs form smaller patches and individual axon terminal branching is not as well developed as in control cortex. Our results suggest that postsynaptic NMDAR activation is critical in communicating periphery-related sensory patterns from TCAs to barrel cells. When postsynaptic NMDAR function is disrupted, layer IV spiny stellate cells remain imperceptive to patterning of their presynaptic inputs and elaborate exuberant dendritic specializations.
Collapse
Affiliation(s)
- Akash Datwani
- Department of Cell Biology and Anatomy, and Neuroscience Center of Excellence, LSUHSC, 1901 Perdido Street, New Orleans, Louisiana 70112
| | - Takuji Iwasato
- PRESTO, Japan Science and Technology Corporation (JST), RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
- Laboratory for Behavioral Genetics, Brain Science Institute (BSI), RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, Brain Science Institute (BSI), RIKEN, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | - Reha S. Erzurumlu
- Department of Cell Biology and Anatomy, and Neuroscience Center of Excellence, LSUHSC, 1901 Perdido Street, New Orleans, Louisiana 70112
- To whom correspondence should be addressed at Department of Cell Biology and Anatomy, LSUHSC, 1901 Perdido Street, New Orleans, LA 70112. Fax: (504) 458-4392.
| |
Collapse
|
22
|
Yuan SSF, Yeh YT, Lee EYHP. Pax-2 interacts with RB and reverses its repression on the promoter of Rig-1, a Robo member. Biochem Biophys Res Commun 2002; 296:1019-25. [PMID: 12200151 DOI: 10.1016/s0006-291x(02)02032-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
RB plays dual roles in the regulation of cell proliferation and differentiation. The nervous tissue-specific gene Rig-1, a member of the roundabout (Robo) guidance receptor family, was identified as an RB-regulated gene in the mouse embryo. Herein, we report that a 2.3kb genomic DNA fragment, which contains the first 129 bases of the 5'-untranslated region and 2.2kb of the 5'-flanking region of Rig-1, has a cell type-specific promoter activity. Rig-1 promoter activity is downregulated by RB and upregulated by Pax-2. Furthermore, Rig-1 and Pax-2 mRNAs are coexpressed in the hindbrain and spinal cord of the E11.5 mouse embryo, suggesting that Pax-2 may regulate Rig-1 expression during the embryonic stage. Pax-2 interacts with RB and reverses its transcriptional suppression on the Rig-1 promoter. In summary, the ubiquitous tumor suppressor RB and the neuron-enriched transcription factor Pax-2 may play a role in the regulation of Rig-1 expression during embryogenesis.
Collapse
Affiliation(s)
- Shyng-Shiou F Yuan
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan, ROC.
| | | | | |
Collapse
|