1
|
Angeli PA, DiNicola LM, Saadon-Grosman N, Eldaief MC, Buckner RL. Specialization of the human hippocampal long axis revisited. Proc Natl Acad Sci U S A 2025; 122:e2422083122. [PMID: 39808662 PMCID: PMC11760929 DOI: 10.1073/pnas.2422083122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
The hippocampus possesses anatomical differences along its long axis. Here, we explored the functional specialization of the human hippocampal long axis using network-anchored precision functional MRI in two independent datasets (N = 11 and N = 9) paired with behavioral analysis (N = 266 and N = 238). Functional connectivity analyses demonstrated that the anterior hippocampus was preferentially correlated with a cerebral network associated with remembering, while the posterior hippocampus selectively contained a region correlated with a distinct network associated with behavioral salience. Seed regions placed within the hippocampus recapitulated the distinct cerebral networks. Functional characterization of the anterior and posterior hippocampal regions using task data identified and replicated a functional double dissociation. The anterior hippocampal region was sensitive to remembering and imagining the future, specifically tracking the process of scene construction, while the posterior hippocampal region displayed transient responses to targets in an oddball detection task and to transitions between task blocks. These findings suggest an unexpected specialization along the long axis of the human hippocampus with differential responses reflecting the functional properties of the partner cerebral networks.
Collapse
Affiliation(s)
- Peter A. Angeli
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA02138
| | - Lauren M. DiNicola
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA02138
| | - Noam Saadon-Grosman
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA02138
| | - Mark C. Eldaief
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA02129
| | - Randy L. Buckner
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA02138
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA02129
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA02129
| |
Collapse
|
2
|
Lee JY, Jung D, Royer S. Stochastic characterization of navigation strategies in an automated variant of the Barnes maze. eLife 2024; 12:RP88648. [PMID: 38899521 PMCID: PMC11189626 DOI: 10.7554/elife.88648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Animals can use a repertoire of strategies to navigate in an environment, and it remains an intriguing question how these strategies are selected based on the nature and familiarity of environments. To investigate this question, we developed a fully automated variant of the Barnes maze, characterized by 24 vestibules distributed along the periphery of a circular arena, and monitored the trajectories of mice over 15 days as they learned to navigate towards a goal vestibule from a random start vestibule. We show that the patterns of vestibule visits can be reproduced by the combination of three stochastic processes reminiscent of random, serial, and spatial strategies. The processes randomly selected vestibules based on either uniform (random) or biased (serial and spatial) probability distributions. They closely matched experimental data across a range of statistical distributions characterizing the length, distribution, step size, direction, and stereotypy of vestibule sequences, revealing a shift from random to spatial and serial strategies over time, with a strategy switch occurring approximately every six vestibule visits. Our study provides a novel apparatus and analysis toolset for tracking the repertoire of navigation strategies and demonstrates that a set of stochastic processes can largely account for exploration patterns in the Barnes maze.
Collapse
Affiliation(s)
- Ju-Young Lee
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST)SeoulRepublic of Korea
| | - Dahee Jung
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| | - Sebastien Royer
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST)SeoulRepublic of Korea
| |
Collapse
|
3
|
Fenton AA. Remapping revisited: how the hippocampus represents different spaces. Nat Rev Neurosci 2024; 25:428-448. [PMID: 38714834 DOI: 10.1038/s41583-024-00817-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2024] [Indexed: 05/25/2024]
Abstract
The representation of distinct spaces by hippocampal place cells has been linked to changes in their place fields (the locations in the environment where the place cells discharge strongly), a phenomenon that has been termed 'remapping'. Remapping has been assumed to be accompanied by the reorganization of subsecond cofiring relationships among the place cells, potentially maximizing hippocampal information coding capacity. However, several observations challenge this standard view. For example, place cells exhibit mixed selectivity, encode non-positional variables, can have multiple place fields and exhibit unreliable discharge in fixed environments. Furthermore, recent evidence suggests that, when measured at subsecond timescales, the moment-to-moment cofiring of a pair of cells in one environment is remarkably similar in another environment, despite remapping. Here, I propose that remapping is a misnomer for the changes in place fields across environments and suggest instead that internally organized manifold representations of hippocampal activity are actively registered to different environments to enable navigation, promote memory and organize knowledge.
Collapse
Affiliation(s)
- André A Fenton
- Center for Neural Science, New York University, New York, NY, USA.
- Neuroscience Institute at the NYU Langone Medical Center, New York, NY, USA.
| |
Collapse
|
4
|
Tamboli S, Singh S, Topolnik D, El Amine Barkat M, Radhakrishnan R, Guet-McCreight A, Topolnik L. Mouse hippocampal CA1 VIP interneurons detect novelty in the environment and support recognition memory. Cell Rep 2024; 43:114115. [PMID: 38607918 DOI: 10.1016/j.celrep.2024.114115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/17/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
In the CA1 hippocampus, vasoactive intestinal polypeptide-expressing interneurons (VIP-INs) play a prominent role in disinhibitory circuit motifs. However, the specific behavioral conditions that lead to circuit disinhibition remain uncertain. To investigate the behavioral relevance of VIP-IN activity, we employed wireless technologies allowing us to monitor and manipulate their function in freely behaving mice. Our findings reveal that, during spatial exploration in new environments, VIP-INs in the CA1 hippocampal region become highly active, facilitating the rapid encoding of novel spatial information. Remarkably, both VIP-INs and pyramidal neurons (PNs) exhibit increased activity when encountering novel changes in the environment, including context- and object-related alterations. Concurrently, somatostatin- and parvalbumin-expressing inhibitory populations show an inverse relationship with VIP-IN and PN activity, revealing circuit disinhibition that occurs on a timescale of seconds. Thus, VIP-IN-mediated disinhibition may constitute a crucial element in the rapid encoding of novelty and the acquisition of recognition memory.
Collapse
Affiliation(s)
- Suhel Tamboli
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | - Sanjay Singh
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | - Dimitry Topolnik
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | - Mohamed El Amine Barkat
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | - Risna Radhakrishnan
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada
| | | | - Lisa Topolnik
- Neuroscience Axis, CRCHUQ-CHUL, Quebec City, PQ, Canada; Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Quebec City, PQ, Canada.
| |
Collapse
|
5
|
Zeng YF, Yang KX, Cui Y, Zhu XN, Li R, Zhang H, Wu DC, Stevens RC, Hu J, Zhou N. Conjunctive encoding of exploratory intentions and spatial information in the hippocampus. Nat Commun 2024; 15:3221. [PMID: 38622129 PMCID: PMC11018604 DOI: 10.1038/s41467-024-47570-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 04/02/2024] [Indexed: 04/17/2024] Open
Abstract
The hippocampus creates a cognitive map of the external environment by encoding spatial and self-motion-related information. However, it is unclear whether hippocampal neurons could also incorporate internal cognitive states reflecting an animal's exploratory intention, which is not driven by rewards or unexpected sensory stimuli. In this study, a subgroup of CA1 neurons was found to encode both spatial information and animals' investigatory intentions in male mice. These neurons became active before the initiation of exploration behaviors at specific locations and were nearly silent when the same fields were traversed without exploration. Interestingly, this neuronal activity could not be explained by object features, rewards, or mismatches in environmental cues. Inhibition of the lateral entorhinal cortex decreased the activity of these cells during exploration. Our findings demonstrate that hippocampal neurons may bridge external and internal signals, indicating a potential connection between spatial representation and intentional states in the construction of internal navigation systems.
Collapse
Affiliation(s)
- Yi-Fan Zeng
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ke-Xin Yang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yilong Cui
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiao-Na Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Rui Li
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Hanqing Zhang
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Dong Chuan Wu
- Neuroscience and Brain Disease Center, Graduate Institute of Biomedical Sciences, China Medical University, Taichung City, 404333, Taiwan
- Translational Medicine Research Center, China Medical University Hospital, Taichung City, 404333, Taiwan
| | - Raymond C Stevens
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ji Hu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ning Zhou
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
6
|
Savelli F. Spontaneous Dynamics of Hippocampal Place Fields in a Model of Combinatorial Competition among Stable Inputs. J Neurosci 2024; 44:e1663232024. [PMID: 38316560 PMCID: PMC10977031 DOI: 10.1523/jneurosci.1663-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/16/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024] Open
Abstract
We present computer simulations illustrating how the plastic integration of spatially stable inputs could contribute to the dynamic character of hippocampal spatial representations. In novel environments of slightly larger size than typical apparatus, the emergence of well-defined place fields in real place cells seems to rely on inputs from normally functioning grid cells. Theoretically, the grid-to-place transformation is possible if a place cell is able to respond selectively to a combination of suitably aligned grids. We previously identified the functional characteristics that allow a synaptic plasticity rule to accomplish this selection by synaptic competition during rat foraging behavior. Here, we show that the synaptic competition can outlast the formation of place fields, contributing to their spatial reorganization over time, when the model is run in larger environments and the topographical/modular organization of grid inputs is taken into account. Co-simulated cells that differ only by their randomly assigned grid inputs display different degrees and kinds of spatial reorganization-ranging from place-field remapping to more subtle in-field changes or lapses in firing. The model predicts a greater number of place fields and propensity for remapping in place cells recorded from more septal regions of the hippocampus and/or in larger environments, motivating future experimental standardization across studies and animal models. In sum, spontaneous remapping could arise from rapid synaptic learning involving inputs that are functionally homogeneous, spatially stable, and minimally stochastic.
Collapse
Affiliation(s)
- Francesco Savelli
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, Texas 78249
- Neurosciences Institute, The University of Texas at San Antonio, San Antonio, Texas 78249
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, Texas 78249
| |
Collapse
|
7
|
Grella SL, Donaldson TN. Contextual memory engrams, and the neuromodulatory influence of the locus coeruleus. Front Mol Neurosci 2024; 17:1342622. [PMID: 38375501 PMCID: PMC10875109 DOI: 10.3389/fnmol.2024.1342622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Here, we review the basis of contextual memory at a conceptual and cellular level. We begin with an overview of the philosophical foundations of traversing space, followed by theories covering the material bases of contextual representations in the hippocampus (engrams), exploring functional characteristics of the cells and subfields within. Next, we explore various methodological approaches for investigating contextual memory engrams, emphasizing plasticity mechanisms. This leads us to discuss the role of neuromodulatory inputs in governing these dynamic changes. We then outline a recent hypothesis involving noradrenergic and dopaminergic projections from the locus coeruleus (LC) to different subregions of the hippocampus, in sculpting contextual representations, giving a brief description of the neuroanatomical and physiological properties of the LC. Finally, we examine how activity in the LC influences contextual memory processes through synaptic plasticity mechanisms to alter hippocampal engrams. Overall, we find that phasic activation of the LC plays an important role in promoting new learning and altering mnemonic processes at the behavioral and cellular level through the neuromodulatory influence of NE/DA in the hippocampus. These findings may provide insight into mechanisms of hippocampal remapping and memory updating, memory processes that are potentially dysregulated in certain psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Stephanie L. Grella
- MNEME Lab, Department of Psychology, Program in Neuroscience, Loyola University Chicago, Chicago, IL, United States
| | - Tia N. Donaldson
- Systems Neuroscience and Behavior Lab, Department of Psychology, The University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
8
|
Bowler JC, Losonczy A. Direct cortical inputs to hippocampal area CA1 transmit complementary signals for goal-directed navigation. Neuron 2023; 111:4071-4085.e6. [PMID: 37816349 PMCID: PMC11490304 DOI: 10.1016/j.neuron.2023.09.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/14/2023] [Accepted: 09/13/2023] [Indexed: 10/12/2023]
Abstract
The subregions of the entorhinal cortex (EC) are conventionally thought to compute dichotomous representations for spatial processing, with the medial EC (MEC) providing a global spatial map and the lateral EC (LEC) encoding specific sensory details of experience. Yet, little is known about the specific types of information EC transmits downstream to the hippocampus. Here, we exploit in vivo sub-cellular imaging to record from EC axons in CA1 while mice perform navigational tasks in virtual reality (VR). We uncover distinct yet overlapping representations of task, location, and context in both MEC and LEC axons. MEC transmitted highly location- and context-specific codes; LEC inputs were biased by ongoing navigational goals. However, during tasks with reliable reward locations, the animals' position could be accurately decoded from either subregion. Our results revise the prevailing dogma about EC information processing, revealing novel ways spatial and non-spatial information is routed and combined upstream of the hippocampus.
Collapse
Affiliation(s)
- John C Bowler
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10027, USA.
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
9
|
Angeli PA, DiNicola LM, Saadon-Grosman N, Eldaief MC, Buckner RL. Specialization of the Human Hippocampal Long Axis Revisited. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.19.572264. [PMID: 38187548 PMCID: PMC10769203 DOI: 10.1101/2023.12.19.572264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The hippocampus possesses anatomical differences along its long axis. Here the functional specialization of the human hippocampal long axis was explored using network-anchored precision functional MRI (N = 11) paired with behavioral analyses (N=266). Functional connectivity analyses demonstrated that the anterior hippocampus was preferentially correlated with a cerebral network associated with remembering, while the posterior hippocampus was correlated with a distinct network associated with behavioral salience. Seed regions placed within the hippocampus recapitulated the distinct cerebral networks. Functional characterization using task data within the same intensively sampled individuals discovered a functional double dissociation between the anterior and posterior hippocampal regions. The anterior hippocampal region was sensitive to remembering and imagining the future, specifically tracking the process of scene construction, while the posterior hippocampal region displayed transient responses to targets in an oddball detection task and to transitions between task blocks. These findings suggest specialization along the long axis of the hippocampus with differential responses reflecting the functional properties of the partner cerebral networks.
Collapse
Affiliation(s)
- Peter A Angeli
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Lauren M DiNicola
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Noam Saadon-Grosman
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Mark C Eldaief
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Randy L Buckner
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
10
|
Tyree TJ, Metke M, Miller CT. Cross-modal representation of identity in the primate hippocampus. Science 2023; 382:417-423. [PMID: 37883535 PMCID: PMC11086670 DOI: 10.1126/science.adf0460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 09/01/2023] [Indexed: 10/28/2023]
Abstract
Faces and voices are the dominant social signals used to recognize individuals among primates. Yet, it is not known how these signals are integrated into a cross-modal representation of individual identity in the primate brain. We discovered that, although single neurons in the marmoset hippocampus exhibited selective responses when presented with the face or voice of a specific individual, a parallel mechanism for representing the cross-modal identities for multiple individuals was evident within single neurons and at the population level. Manifold projections likewise showed the separability of individuals as well as clustering for others' families, which suggests that multiple learned social categories are encoded as related dimensions of identity in the hippocampus. Neural representations of identity in the hippocampus are thus both modality independent and reflect the primate social network.
Collapse
Affiliation(s)
- Timothy J Tyree
- Cortical Systems and Behavior Laboratory, University of California San Diego; 9500 Gilman Dr. La Jolla, CA 92039, USA
- Department of Physics, University of California San Diego; 9500 Gilman Dr. La Jolla, CA 92039, USA
| | - Michael Metke
- Cortical Systems and Behavior Laboratory, University of California San Diego; 9500 Gilman Dr. La Jolla, CA 92039, USA
- Neurosciences Graduate Program, University of California San Diego; 9500 Gilman Dr. La Jolla, CA 92039, USA
| | - Cory T Miller
- Cortical Systems and Behavior Laboratory, University of California San Diego; 9500 Gilman Dr. La Jolla, CA 92039, USA
- Neurosciences Graduate Program, University of California San Diego; 9500 Gilman Dr. La Jolla, CA 92039, USA
| |
Collapse
|
11
|
Savelli F. Spontaneous dynamics of hippocampal place fields in a model of combinatorial competition among stable inputs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.04.556254. [PMID: 37732194 PMCID: PMC10508775 DOI: 10.1101/2023.09.04.556254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
We present computer simulations illustrating how the plastic integration of spatially stable inputs could contribute to the dynamic character of hippocampal spatial representations. In novel environments of slightly larger size than typical apparatus, the emergence of well-defined place fields in real place cells seems to rely on inputs from normally functioning grid cells. Theoretically, the grid-to-place transformation is possible if a place cell is able to respond selectively to a combination of suitably aligned grids. We previously identified the functional characteristics that allow a synaptic plasticity rule to accomplish this selection by synaptic competition during rat foraging behavior. Here, we show that the synaptic competition can outlast the formation of place fields, contributing to their spatial reorganization over time, when the model is run in larger environments and the topographical/modular organization of grid inputs is taken into account. Co-simulated cells that differ only by their randomly assigned grid inputs display different degrees and kinds of spatial reorganization-ranging from place-field remapping to more subtle in-field changes or lapses in firing. The model predicts a greater number of place fields and propensity for remapping in place cells recorded from more septal regions of the hippocampus and/or in larger environments, motivating future experimental standardization across studies and animal models. In sum, spontaneous remapping could arise from rapid synaptic learning involving inputs that are functionally homogeneous, spatially stable, and minimally stochastic. Significance Statement In both AI and theoretical neuroscience, learning systems often rely on the asymptotic convergence of slow-acting learning rules applied to input spaces that are presumed to be sampled repeatedly, for example over developmental timescales. Place cells of the hippocampus testify to a neural system capable of rapidly encoding cognitive variables-such as the animal's position in space-from limited experience. These internal representations undergo "spontaneous" changes over time, spurring much interest in their cognitive significance and underlying mechanisms. We investigate a model suggesting that some of these changes could be a tradeoff of rapid learning.
Collapse
|
12
|
Rolls ET. Hippocampal spatial view cells for memory and navigation, and their underlying connectivity in humans. Hippocampus 2023; 33:533-572. [PMID: 36070199 PMCID: PMC10946493 DOI: 10.1002/hipo.23467] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 01/08/2023]
Abstract
Hippocampal and parahippocampal gyrus spatial view neurons in primates respond to the spatial location being looked at. The representation is allocentric, in that the responses are to locations "out there" in the world, and are relatively invariant with respect to retinal position, eye position, head direction, and the place where the individual is located. The underlying connectivity in humans is from ventromedial visual cortical regions to the parahippocampal scene area, leading to the theory that spatial view cells are formed by combinations of overlapping feature inputs self-organized based on their closeness in space. Thus, although spatial view cells represent "where" for episodic memory and navigation, they are formed by ventral visual stream feature inputs in the parahippocampal gyrus in what is the parahippocampal scene area. A second "where" driver of spatial view cells are parietal inputs, which it is proposed provide the idiothetic update for spatial view cells, used for memory recall and navigation when the spatial view details are obscured. Inferior temporal object "what" inputs and orbitofrontal cortex reward inputs connect to the human hippocampal system, and in macaques can be associated in the hippocampus with spatial view cell "where" representations to implement episodic memory. Hippocampal spatial view cells also provide a basis for navigation to a series of viewed landmarks, with the orbitofrontal cortex reward inputs to the hippocampus providing the goals for navigation, which can then be implemented by hippocampal connectivity in humans to parietal cortex regions involved in visuomotor actions in space. The presence of foveate vision and the highly developed temporal lobe for object and scene processing in primates including humans provide a basis for hippocampal spatial view cells to be key to understanding episodic memory in the primate and human hippocampus, and the roles of this system in primate including human navigation.
Collapse
Affiliation(s)
- Edmund T. Rolls
- Oxford Centre for Computational NeuroscienceOxfordUK
- Department of Computer ScienceUniversity of WarwickCoventryUK
| |
Collapse
|
13
|
Scleidorovich P, Fellous JM, Weitzenfeld A. Adapting hippocampus multi-scale place field distributions in cluttered environments optimizes spatial navigation and learning. Front Comput Neurosci 2022; 16:1039822. [PMID: 36578316 PMCID: PMC9792172 DOI: 10.3389/fncom.2022.1039822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/21/2022] [Indexed: 12/14/2022] Open
Abstract
Extensive studies in rodents show that place cells in the hippocampus have firing patterns that are highly correlated with the animal's location in the environment and are organized in layers of increasing field sizes or scales along its dorsoventral axis. In this study, we use a spatial cognition model to show that different field sizes could be exploited to adapt the place cell representation to different environments according to their size and complexity. Specifically, we provide an in-depth analysis of how to distribute place cell fields according to the obstacles in cluttered environments to optimize learning time and path optimality during goal-oriented spatial navigation tasks. The analysis uses a reinforcement learning (RL) model that assumes that place cells allow encoding the state. While previous studies have suggested exploiting different field sizes to represent areas requiring different spatial resolutions, our work analyzes specific distributions that adapt the representation to the environment, activating larger fields in open areas and smaller fields near goals and subgoals (e.g., obstacle corners). In addition to assessing how the multi-scale representation may be exploited in spatial navigation tasks, our analysis and results suggest place cell representations that can impact the robotics field by reducing the total number of cells for path planning without compromising the quality of the paths learned.
Collapse
Affiliation(s)
- Pablo Scleidorovich
- Department of Computer Science and Engineering, University of South Florida, Tampa, FL, United States
| | - Jean-Marc Fellous
- Department of Psychology and Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Alfredo Weitzenfeld
- Department of Computer Science and Engineering, University of South Florida, Tampa, FL, United States
| |
Collapse
|
14
|
Sun Y, Giocomo LM. Neural circuit dynamics of drug-context associative learning in the mouse hippocampus. Nat Commun 2022; 13:6721. [PMID: 36344498 PMCID: PMC9640587 DOI: 10.1038/s41467-022-34114-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/12/2022] [Indexed: 11/09/2022] Open
Abstract
The environmental context associated with previous drug consumption is a potent trigger for drug relapse. However, the mechanism by which neural representations of context are modified to incorporate information associated with drugs of abuse remains unknown. Using longitudinal calcium imaging in freely behaving mice, we find that unlike the associative learning of natural reward, drug-context associations for psychostimulants and opioids are encoded in a specific subset of hippocampal neurons. After drug conditioning, these neurons weakened their spatial coding for the non-drug paired context, resulting in an orthogonal representation for the drug versus non-drug context that was predictive of drug-seeking behavior. Furthermore, these neurons were selected based on drug-spatial experience and were exclusively tuned to animals' allocentric position. Together, this work reveals how drugs of abuse alter the hippocampal circuit to encode drug-context associations and points to the possibility of targeting drug-associated memory in the hippocampus.
Collapse
Affiliation(s)
- Yanjun Sun
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
15
|
Nyberg N, Duvelle É, Barry C, Spiers HJ. Spatial goal coding in the hippocampal formation. Neuron 2022; 110:394-422. [PMID: 35032426 DOI: 10.1016/j.neuron.2021.12.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/18/2021] [Accepted: 12/08/2021] [Indexed: 12/22/2022]
Abstract
The mammalian hippocampal formation contains several distinct populations of neurons involved in representing self-position and orientation. These neurons, which include place, grid, head direction, and boundary-vector cells, are thought to collectively instantiate cognitive maps supporting flexible navigation. However, to flexibly navigate, it is necessary to also maintain internal representations of goal locations, such that goal-directed routes can be planned and executed. Although it has remained unclear how the mammalian brain represents goal locations, multiple neural candidates have recently been uncovered during different phases of navigation. For example, during planning, sequential activation of spatial cells may enable simulation of future routes toward the goal. During travel, modulation of spatial cells by the prospective route, or by distance and direction to the goal, may allow maintenance of route and goal-location information, supporting navigation on an ongoing basis. As the goal is approached, an increased activation of spatial cells may enable the goal location to become distinctly represented within cognitive maps, aiding goal localization. Lastly, after arrival at the goal, sequential activation of spatial cells may represent the just-taken route, enabling route learning and evaluation. Here, we review and synthesize these and other evidence for goal coding in mammalian brains, relate the experimental findings to predictions from computational models, and discuss outstanding questions and future challenges.
Collapse
Affiliation(s)
- Nils Nyberg
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, UK.
| | - Éléonore Duvelle
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, USA
| | - Caswell Barry
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Hugo J Spiers
- Institute of Behavioural Neuroscience, Department of Experimental Psychology, University College London, London, UK.
| |
Collapse
|
16
|
Distal CA1 Maintains a More Coherent Spatial Representation than Proximal CA1 When Local and Global Cues Conflict. J Neurosci 2021; 41:9767-9781. [PMID: 34670850 DOI: 10.1523/jneurosci.2938-20.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 09/10/2021] [Accepted: 10/13/2021] [Indexed: 11/21/2022] Open
Abstract
Entorhinal cortical projections show segregation along the transverse axis of CA1, with the medial entorhinal cortex (MEC) sending denser projections to proximal CA1 (pCA1) and the lateral entorhinal cortex (LEC) sending denser projections to distal CA1 (dCA1). Previous studies have reported functional segregation along the transverse axis of CA1 correlated with the functional differences in MEC and LEC. pCA1 shows higher spatial selectivity than dCA1 in these studies. We employ a double rotation protocol, which creates an explicit conflict between the local and the global cues, to understand the differential contributions of these reference frames to the spatial code in pCA1 and dCA1 in male Long-Evans rats. We show that pCA1 and dCA1 respond differently to this local-global cue conflict. pCA1 representation splits as predicted from the strong conflicting inputs it receives from MEC and dCA3. In contrast, dCA1 rotates more in concert with the global cues. In addition, pCA1 and dCA1 display comparable levels of spatial selectivity in this study. This finding differs from the previous studies, perhaps because of richer sensory information available in our behavior arena. Together, these observations indicate that the functional segregation along proximodistal axis of CA1 is not of the amount of spatial selectivity but that of the nature of the different inputs used to create and anchor spatial representations.SIGNIFICANCE STATEMENT Subregions of the hippocampus are thought to play different roles in spatial navigation and episodic memory. It was previously thought that the distal part of area CA1 of the hippocampus carries lesser information about space than proximal CA1 (pCA1). We report that distal CA1 (dCA1) spatial representation moves more in concert with the global cues than pCA1 when the local and the global cues conflict. We also show that spatial selectivity is comparable along the proximodistal axis in this experimental protocol. Thus, different parts of the brain receiving differential outputs from pCA1 and dCA1 receive spatial information in different spatial reference frames encoded using different sets of inputs, rather than different amounts of spatial information as thought earlier.
Collapse
|
17
|
Michon F, Krul E, Sun JJ, Kloosterman F. Single-trial dynamics of hippocampal spatial representations are modulated by reward value. Curr Biol 2021; 31:4423-4435.e5. [PMID: 34416178 DOI: 10.1016/j.cub.2021.07.058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/26/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Reward value is known to modulate learning speed in spatial memory tasks, but little is known about its influence on the dynamical changes in hippocampal spatial representations. Here, we monitored the trial-to-trial changes in hippocampal place cell activity during the acquisition of place-reward associations with varying reward size. We show a faster reorganization and stabilization of the hippocampal place map when a goal location is associated with a large reward. The reorganization is driven by both rate changes and the appearance and disappearance of place fields. The occurrence of hippocampal replay activity largely followed the dynamics of changes in spatial representations. Replay patterns became more selectively tuned toward behaviorally relevant experiences over the course of learning via the refined contributions of specific cell subpopulations. These results suggest that high reward value enhances memory retention by accelerating the formation and stabilization of the hippocampal cognitive map and selectively enhancing its reactivation during learning.
Collapse
Affiliation(s)
- Frédéric Michon
- NERF, Kapeldreef 75, 3001 Leuven, Belgium; Brain & Cognition, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium; VIB, Rijvisschestraat 120, 9052 Ghent, Belgium
| | - Esther Krul
- NERF, Kapeldreef 75, 3001 Leuven, Belgium; Brain & Cognition, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium
| | - Jyh-Jang Sun
- NERF, Kapeldreef 75, 3001 Leuven, Belgium; imec, Remisebosweg 1, 3001 Leuven, Belgium
| | - Fabian Kloosterman
- NERF, Kapeldreef 75, 3001 Leuven, Belgium; Brain & Cognition, KU Leuven, Tiensestraat 102, 3000 Leuven, Belgium; VIB, Rijvisschestraat 120, 9052 Ghent, Belgium; imec, Remisebosweg 1, 3001 Leuven, Belgium.
| |
Collapse
|
18
|
Dolfen N, Veldman MP, Gann MA, von Leupoldt A, Puts NAJ, Edden RAE, Mikkelsen M, Swinnen S, Schwabe L, Albouy G, King BR. A role for GABA in the modulation of striatal and hippocampal systems under stress. Commun Biol 2021; 4:1033. [PMID: 34475515 PMCID: PMC8413374 DOI: 10.1038/s42003-021-02535-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/05/2021] [Indexed: 11/10/2022] Open
Abstract
Previous research has demonstrated that stress modulates the competitive interaction between the hippocampus and striatum, two structures known to be critically involved in motor sequence learning. These earlier investigations, however, have largely focused on blood oxygen-level dependent (BOLD) responses. No study to date has examined the link between stress, motor learning and levels of striatal and hippocampal gamma-aminobutyric acid (GABA). This knowledge gap is surprising given the known role of GABA in neuroplasticity subserving learning and memory. The current study thus examined: a) the effects of motor learning and stress on striatal and hippocampal GABA levels; and b) how learning- and stress-induced changes in GABA relate to the neural correlates of learning. To do so, fifty-three healthy young adults were exposed to a stressful or non-stressful control intervention before motor sequence learning. Striatal and hippocampal GABA levels were assessed at baseline and post-intervention/learning using magnetic resonance spectroscopy. Regression analyses indicated that stress modulated the link between striatal GABA levels and functional plasticity in both the hippocampus and striatum during learning as measured with fMRI. This study provides evidence for a role of GABA in the stress-induced modulation of striatal and hippocampal systems.
Collapse
Affiliation(s)
- Nina Dolfen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Menno P Veldman
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Mareike A Gann
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | | | - Nicolaas A J Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Mark Mikkelsen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Stephan Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
| | - Lars Schwabe
- Department of Cognitive Psychology, Institute of Psychology, University of Hamburg, Hamburg, Germany
| | - Geneviève Albouy
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, Leuven, Belgium.
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, USA.
| | - Bradley R King
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, Leuven, Belgium
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
19
|
Climer JR, Dombeck DA. Information Theoretic Approaches to Deciphering the Neural Code with Functional Fluorescence Imaging. eNeuro 2021; 8:ENEURO.0266-21.2021. [PMID: 34433574 PMCID: PMC8474651 DOI: 10.1523/eneuro.0266-21.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/22/2021] [Accepted: 08/04/2021] [Indexed: 11/21/2022] Open
Abstract
Information theoretic metrics have proven useful in quantifying the relationship between behaviorally relevant parameters and neuronal activity with relatively few assumptions. However, these metrics are typically applied to action potential (AP) recordings and were not designed for the slow timescales and variable amplitudes typical of functional fluorescence recordings (e.g., calcium imaging). The lack of research guidelines on how to apply and interpret these metrics with fluorescence traces means the neuroscience community has yet to realize the power of information theoretic metrics. Here, we used computational methods to create mock AP traces with known amounts of information. From these, we generated fluorescence traces and examined the ability of different information metrics to recover the known information values. We provide guidelines for how to use information metrics when applying them to functional fluorescence and demonstrate their appropriate application to GCaMP6f population recordings from mouse hippocampal neurons imaged during virtual navigation.
Collapse
Affiliation(s)
- Jason R Climer
- Department of Neurobiology, Northwestern University, Evanston, 60208 IL
| | - Daniel A Dombeck
- Department of Neurobiology, Northwestern University, Evanston, 60208 IL
| |
Collapse
|
20
|
Divergence in Population Coding for Space between Dorsal and Ventral CA1. eNeuro 2021; 8:ENEURO.0211-21.2021. [PMID: 34433573 PMCID: PMC8425966 DOI: 10.1523/eneuro.0211-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022] Open
Abstract
Molecular, anatomic, and behavioral studies show that the hippocampus is structurally and functionally heterogeneous, with dorsal hippocampus implicated in mnemonic processes and spatial navigation and ventral hippocampus involved in affective processes. By performing electrophysiological recordings of large neuronal populations in dorsal and ventral CA1 in head-fixed mice navigating a virtual environment, we found that this diversity resulted in different strategies for population coding of space. Populations of neurons in dorsal CA1 showed more complex patterns of activity, which resulted in a higher dimensionality of neural representations that translated to more information being encoded, as compared ensembles in vCA1. Furthermore, a pairwise maximum entropy model was better at predicting the structure of these global patterns of activity in ventral CA1 as compared with dorsal CA1. Taken together, the different coding strategies we uncovered likely emerge from anatomic and physiological differences along the longitudinal axis of hippocampus and that may, in turn, underpin the divergent ethological roles of dorsal and ventral CA1.
Collapse
|
21
|
Numan R. The Prefrontal-Hippocampal Comparator: Volition and Episodic Memory. Percept Mot Skills 2021; 128:2421-2447. [PMID: 34424092 DOI: 10.1177/00315125211041341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review describes recent research that is relevant to the prefrontal-hippocampal comparator model with the following conclusions: 1. Hippocampal area CA1 serves, at least in part, as an associative match-mismatch comparator. 2. Voluntary movement strengthens episodic memories for goal-directed behavior. 3. Hippocampal theta power serves as a prediction error signal during hippocampal dependent tasks. 4. The self-referential component of episodic memory in humans is mediated by the corollary discharge (the efference copy of the action plan developed by prefrontal cortex and transmitted to hippocampus where it is stored as a working memory; CA1 uses this efference copy to compare the expected consequences of action to the actual consequences of action). 5. Impairments in the production or transmission of this corollary discharge may contribute to some of the symptoms of schizophrenia. Unresolved issues and suggestions for future research are discussed.
Collapse
Affiliation(s)
- Robert Numan
- Department of Psychology, Santa Clara University, Santa Clara, California, United States
| |
Collapse
|
22
|
Abstract
There are currently a number of theories of rodent hippocampal function. They fall into two major groups that differ in the role they impute to space in hippocampal information processing. On one hand, the cognitive map theory sees space as crucial and central, with other types of nonspatial information embedded in a primary spatial framework. On the other hand, most other theories see the function of the hippocampal formation as broader, treating all types of information as equivalent and concentrating on the processes carried out irrespective of the specific material being represented, stored, and manipulated. One crucial difference, therefore, is the extent to which theories see hippocampal pyramidal cells as representing nonspatial information independently of a spatial framework. Studies have reported the existence of single hippocampal unit responses to nonspatial stimuli, both to simple sensory inputs as well as to more complex stimuli such as objects, conspecifics, rewards, and time, and these findings been interpreted as evidence in favor of a broader hippocampal function. Alternatively, these nonspatial responses might actually be feature-in-place signals where the spatial nature of the response has been masked by the fact that the objects or features were only presented in one location or one spatial context. In this article, we argue that when tested in multiple locations, the hippocampal response to nonspatial stimuli is almost invariably dependent on the animal's location. Looked at collectively, the data provide strong support for the cognitive map theory.
Collapse
Affiliation(s)
- John O'Keefe
- Sainsbury Wellcome Centre and Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Julija Krupic
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
23
|
Zhang K, Lian N, Ding R, Guo C, Dong X, Li Y, Wei S, Jiao Q, Yu Y, Shen H. Sleep Deprivation Aggravates Cognitive Impairment by the Alteration of Hippocampal Neuronal Activity and the Density of Dendritic Spine in Isoflurane-Exposed Mice. Front Behav Neurosci 2020; 14:589176. [PMID: 33328920 PMCID: PMC7719754 DOI: 10.3389/fnbeh.2020.589176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Isoflurane contributes to cognitive deficits when used as a general anesthetic, and so does sleep deprivation (SD). Patients usually suffer from insomnia before an operation due to anxiety, fear, and other factors. It remains unclear whether preoperative SD exacerbates cognitive impairment induced by isoflurane. In this study, we observed the effects of pretreated 24-h SD in adult isoflurane-exposed mice on the cognitive behaviors, the Ca2+ signals of dorsal hippocampal CA1 (dCA1) neurons in vivo with fiber photometry, and the density of dendritic spines in hippocampal neurons. Our results showed that in cognitive behavior tasks, short-term memory damages were more severe with SD followed by isoflurane exposure than that with SD or isoflurane exposure separately, and interestingly, severe long-term memory deficits were induced only by SD followed by isoflurane exposure. Only the treatment of SD followed by isoflurane exposure could reversibly decrease the amplitude of Ca2+ signals when mice were freely moving and increase the duration of Ca2+ signals during the long-term memory behavior test. The density of dendritic spines with both SD and isoflurane exposure was lower than that with SD alone. This study suggests that SD should be avoided preoperatively in patients undergoing elective surgery under isoflurane anesthesia.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Anesthesiology, Tianjin, China
| | - Naqi Lian
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Anesthesiology, Tianjin, China
| | - Ran Ding
- Chinese Institute for Brain Research, Beijing (CIBR), Beijing, China
| | - Cunle Guo
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Xi Dong
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Yuanyuan Li
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Sheng Wei
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qingyan Jiao
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China
| | - Yonghao Yu
- Department of Anesthesia, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Institute of Anesthesiology, Tianjin, China
| | - Hui Shen
- Laboratory of Neurobiology, School of Biomedical Engineering, Tianjin Medical University, Tianjin, China.,Institute of Neurology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
24
|
Farrell JS, Colangeli R, Dudok B, Wolff MD, Nguyen SL, Jackson J, Dickson CT, Soltesz I, Teskey GC. In vivo assessment of mechanisms underlying the neurovascular basis of postictal amnesia. Sci Rep 2020; 10:14992. [PMID: 32929133 PMCID: PMC7490395 DOI: 10.1038/s41598-020-71935-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Long-lasting confusion and memory difficulties during the postictal state remain a major unmet problem in epilepsy that lacks pathophysiological explanation and treatment. We previously identified that long-lasting periods of severe postictal hypoperfusion/hypoxia, not seizures per se, are associated with memory impairment after temporal lobe seizures. While this observation suggests a key pathophysiological role for insufficient energy delivery, it is unclear how the networks that underlie episodic memory respond to vascular constraints that ultimately give rise to amnesia. Here, we focused on cellular/network level analyses in the CA1 of hippocampus in vivo to determine if neural activity, network oscillations, synaptic transmission, and/or synaptic plasticity are impaired following kindled seizures. Importantly, the induction of severe postictal hypoperfusion/hypoxia was prevented in animals treated by a COX-2 inhibitor, which experimentally separated seizures from their vascular consequences. We observed complete activation of CA1 pyramidal neurons during brief seizures, followed by a short period of reduced activity and flattening of the local field potential that resolved within minutes. During the postictal state, constituting tens of minutes to hours, we observed no changes in neural activity, network oscillations, and synaptic transmission. However, long-term potentiation of the temporoammonic pathway to CA1 was impaired in the postictal period, but only when severe local hypoxia occurred. Lastly, we tested the ability of rats to perform object-context discrimination, which has been proposed to require temporoammonic input to differentiate between sensory experience and the stored representation of the expected object-context pairing. Deficits in this task following seizures were reversed by COX-2 inhibition, which prevented severe postictal hypoxia. These results support a key role for hypoperfusion/hypoxia in postictal memory impairments and identify that many aspects of hippocampal network function are resilient during severe hypoxia except for long-term synaptic plasticity.
Collapse
Affiliation(s)
- Jordan S Farrell
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Roberto Colangeli
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Barna Dudok
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Marshal D Wolff
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Sarah L Nguyen
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
| | - Jesse Jackson
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Clayton T Dickson
- Department of Psychology, University of Alberta, Edmonton, AB, Canada
- Department of Physiology, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - G Campbell Teskey
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
25
|
Barron HC, Auksztulewicz R, Friston K. Prediction and memory: A predictive coding account. Prog Neurobiol 2020; 192:101821. [PMID: 32446883 PMCID: PMC7305946 DOI: 10.1016/j.pneurobio.2020.101821] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/26/2020] [Accepted: 04/29/2020] [Indexed: 01/27/2023]
Abstract
The hippocampus is crucial for episodic memory, but it is also involved in online prediction. Evidence suggests that a unitary hippocampal code underlies both episodic memory and predictive processing, yet within a predictive coding framework the hippocampal-neocortical interactions that accompany these two phenomena are distinct and opposing. Namely, during episodic recall, the hippocampus is thought to exert an excitatory influence on the neocortex, to reinstate activity patterns across cortical circuits. This contrasts with empirical and theoretical work on predictive processing, where descending predictions suppress prediction errors to 'explain away' ascending inputs via cortical inhibition. In this hypothesis piece, we attempt to dissolve this previously overlooked dialectic. We consider how the hippocampus may facilitate both prediction and memory, respectively, by inhibiting neocortical prediction errors or increasing their gain. We propose that these distinct processing modes depend upon the neuromodulatory gain (or precision) ascribed to prediction error units. Within this framework, memory recall is cast as arising from fictive prediction errors that furnish training signals to optimise generative models of the world, in the absence of sensory data.
Collapse
Affiliation(s)
- Helen C Barron
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford, OX1 3TH, UK; Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford, OX3 9DU, UK.
| | - Ryszard Auksztulewicz
- Max Planck Institute for Empirical Aesthetics, Frankfurt Am Main, 60322, Germany; Department of Biomedical Sciences, City University of Hong Kong, Hong Kong
| | - Karl Friston
- The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London, WC1N 3BG, UK
| |
Collapse
|
26
|
Masuda A, Sano C, Zhang Q, Goto H, McHugh TJ, Fujisawa S, Itohara S. The hippocampus encodes delay and value information during delay-discounting decision making. eLife 2020; 9:52466. [PMID: 32077851 PMCID: PMC7051257 DOI: 10.7554/elife.52466] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/19/2020] [Indexed: 11/13/2022] Open
Abstract
The hippocampus, a region critical for memory and spatial navigation, has been implicated in delay discounting, the decline in subjective reward value when a delay is imposed. However, how delay information is encoded in the hippocampus is poorly understood. Here, we recorded from CA1 of mice performing a delay-discounting decision-making task, where delay lengths, delay positions, and reward amounts were changed across sessions, and identified subpopulations of CA1 neurons that increased or decreased their firing rate during long delays. The activity of both delay-active and -suppressed cells reflected delay length, delay position, and reward amount; but manipulating reward amount differentially impacted the two populations, suggesting distinct roles in the valuation process. Further, genetic deletion of the N-methyl-D-aspartate (NMDA) receptor in hippocampal pyramidal cells impaired delay-discount behavior and diminished delay-dependent activity in CA1. Our results suggest that distinct subclasses of hippocampal neurons concertedly support delay-discounting decisions in a manner that is dependent on NMDA receptor function.
Collapse
Affiliation(s)
- Akira Masuda
- Laboratory for Behavioral Genetics, Center for Brain Science, RIKEN, Wako, Japan.,Organization for Research Initiatives and Development, Doshisha University, Kyotanabe, Japan
| | - Chie Sano
- Laboratory for Behavioral Genetics, Center for Brain Science, RIKEN, Wako, Japan
| | - Qi Zhang
- Laboratory for Behavioral Genetics, Center for Brain Science, RIKEN, Wako, Japan.,Faculty of Human Science, University of Tsukuba, Tsukuba, Japan
| | - Hiromichi Goto
- Laboratory for Behavioral Genetics, Center for Brain Science, RIKEN, Wako, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, Center for Brain Science, RIKEN, Wako, Japan
| | - Shigeyoshi Fujisawa
- Laboratory for Systems Neurophysiology, Center for Brain Science, RIKEN, Wako, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, Center for Brain Science, RIKEN, Wako, Japan
| |
Collapse
|
27
|
Kaufman AM, Geiller T, Losonczy A. A Role for the Locus Coeruleus in Hippocampal CA1 Place Cell Reorganization during Spatial Reward Learning. Neuron 2020; 105:1018-1026.e4. [PMID: 31980319 DOI: 10.1016/j.neuron.2019.12.029] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/16/2019] [Accepted: 12/26/2019] [Indexed: 01/06/2023]
Abstract
During spatial learning, hippocampal (HPC) place maps reorganize to represent new goal locations, but little is known about the circuit mechanisms facilitating these changes. Here, we examined how neuromodulation via locus coeruleus (LC) projections to HPC area CA1 (LC-CA1) regulates the overrepresentation of CA1 place cells near rewarded locations. Using two-photon calcium imaging, we monitored the activity of LC-CA1 fibers in the mouse dorsal HPC. We find that the LC-CA1 projection signals the translocation of a reward, predicting behavioral performance on a goal-oriented spatial learning task. An optogenetic stimulation mimicking this LC-CA1 activity induces place cell reorganization around a familiar reward, while its inhibition decreases the degree of overrepresentation around a translocated reward. Our results show that LC acts in conjunction with other factors to induce goal-directed reorganization of HPC representations and provide a better understanding of the role of neuromodulatory actions on HPC place map plasticity.
Collapse
Affiliation(s)
- Alexandra Mansell Kaufman
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA; Graduate Program in Neurobiology and Behavior, Columbia University, New York, NY 10027, USA
| | - Tristan Geiller
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY 10027, USA; Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Kavli Institute for Brain Science, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
28
|
Diamantaki M, Coletta S, Nasr K, Zeraati R, Laturnus S, Berens P, Preston-Ferrer P, Burgalossi A. Manipulating Hippocampal Place Cell Activity by Single-Cell Stimulation in Freely Moving Mice. Cell Rep 2019; 23:32-38. [PMID: 29617670 DOI: 10.1016/j.celrep.2018.03.031] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 03/01/2018] [Accepted: 03/08/2018] [Indexed: 11/26/2022] Open
Abstract
Learning critically depends on the ability to rapidly form and store non-overlapping representations of the external world. In line with their postulated role in episodic memory, hippocampal place cells can undergo a rapid reorganization of their firing fields upon contextual manipulations. To explore the mechanisms underlying such global remapping, we juxtacellularly stimulated 42 hippocampal neurons in freely moving mice during spatial exploration. We found that evoking spike trains in silent neurons was sufficient for creating place fields, while in place cells, juxtacellular stimulation induced a rapid remapping of their place fields to the stimulus location. The occurrence of complex spikes was most predictive of place field plasticity. Our data thus indicate that plasticity-inducing stimuli are able to rapidly bias place cell activity, simultaneously suppressing existing place fields. We propose that such competitive place field dynamics could support the orthogonalization of the hippocampal map during global remapping.
Collapse
Affiliation(s)
- Maria Diamantaki
- Werner-Reichardt Centre for Integrative Neuroscience, Otfried-Müller-str. 25, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience-IMPRS, 72074 Tübingen, Germany
| | - Stefano Coletta
- Werner-Reichardt Centre for Integrative Neuroscience, Otfried-Müller-str. 25, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience-IMPRS, 72074 Tübingen, Germany
| | - Khaled Nasr
- Werner-Reichardt Centre for Integrative Neuroscience, Otfried-Müller-str. 25, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience-IMPRS, 72074 Tübingen, Germany
| | - Roxana Zeraati
- Werner-Reichardt Centre for Integrative Neuroscience, Otfried-Müller-str. 25, 72076 Tübingen, Germany; Graduate Training Centre of Neuroscience-IMPRS, 72074 Tübingen, Germany
| | - Sophie Laturnus
- Werner-Reichardt Centre for Integrative Neuroscience, Otfried-Müller-str. 25, 72076 Tübingen, Germany; Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Philipp Berens
- Werner-Reichardt Centre for Integrative Neuroscience, Otfried-Müller-str. 25, 72076 Tübingen, Germany; Institute of Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Patricia Preston-Ferrer
- Werner-Reichardt Centre for Integrative Neuroscience, Otfried-Müller-str. 25, 72076 Tübingen, Germany
| | - Andrea Burgalossi
- Werner-Reichardt Centre for Integrative Neuroscience, Otfried-Müller-str. 25, 72076 Tübingen, Germany.
| |
Collapse
|
29
|
Duvelle É, Grieves RM, Hok V, Poucet B, Arleo A, Jeffery KJ, Save E. Insensitivity of Place Cells to the Value of Spatial Goals in a Two-Choice Flexible Navigation Task. J Neurosci 2019; 39:2522-2541. [PMID: 30696727 PMCID: PMC6435828 DOI: 10.1523/jneurosci.1578-18.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 01/28/2023] Open
Abstract
Hippocampal place cells show position-specific activity thought to reflect a self-localization signal. Several reports also point to some form of goal encoding by place cells. We investigated this by asking whether they also encode the value of spatial goals, which is crucial information for optimizing goal-directed navigation. We used a continuous place navigation task in which male rats navigate to one of two (freely chosen) unmarked locations and wait, triggering the release of reward, which is then located and consumed elsewhere. This allows sampling of place fields and dissociates spatial goal from reward consumption. The two goals varied in the amount of reward provided, allowing assessment of whether the rats factored goal value into their navigational choice and of possible neural correlates of this value. Rats successfully learned the task, indicating goal localization, and they preferred higher-value goals, indicating processing of goal value. Replicating previous findings, there was goal-related activity in the out-of-field firing of CA1 place cells, with a ramping-up of firing rate during the waiting period, but no general overrepresentation of goals by place fields, an observation that we extended to CA3 place cells. Importantly, place cells were not modulated by goal value. This suggests that dorsal hippocampal place cells encode space independently of its associated value despite the effect of that value on spatial behavior. Our findings are consistent with a model of place cells in which they provide a spontaneously constructed value-free spatial representation rather than encoding other navigationally relevant but nonspatial information.SIGNIFICANCE STATEMENT We investigated whether hippocampal place cells, which compute a self-localization signal, also encode the relative value of places, which is essential information for optimal navigation. When choosing between two spatial goals of different value, rats preferred the higher-value goal. We saw out-of-field goal firing in place cells, replicating previous observations that the cells are influenced by the goal, but their activity was not modulated by the value of these goals. Our results suggest that place cells do not encode all of the navigationally relevant aspects of a place, but instead form a value-free "map" that links to such aspects in other parts of the brain.
Collapse
Affiliation(s)
- Éléonore Duvelle
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Laboratory of Cognitive Neuroscience, Marseille, France
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France, and
- Institute of Behavioural Neuroscience, Division of Psychology and Language Sciences, University College London, London WC1H 0AP, United Kingdom
| | - Roddy M Grieves
- Institute of Behavioural Neuroscience, Division of Psychology and Language Sciences, University College London, London WC1H 0AP, United Kingdom
| | - Vincent Hok
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Laboratory of Cognitive Neuroscience, Marseille, France
| | - Bruno Poucet
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Laboratory of Cognitive Neuroscience, Marseille, France
| | - Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, F-75012 Paris, France, and
| | - Kate J Jeffery
- Institute of Behavioural Neuroscience, Division of Psychology and Language Sciences, University College London, London WC1H 0AP, United Kingdom
| | - Etienne Save
- Aix Marseille University, Centre National de la Recherche Scientifique (CNRS), Laboratory of Cognitive Neuroscience, Marseille, France,
| |
Collapse
|
30
|
Van Zandt M, Weiss E, Almyasheva A, Lipior S, Maisel S, Naegele JR. Adeno-associated viral overexpression of neuroligin 2 in the mouse hippocampus enhances GABAergic synapses and impairs hippocampal-dependent behaviors. Behav Brain Res 2018; 362:7-20. [PMID: 30605713 DOI: 10.1016/j.bbr.2018.12.052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 12/14/2018] [Accepted: 12/29/2018] [Indexed: 10/27/2022]
Abstract
The cell adhesion molecule neuroligin2 (NLGN2) regulates GABAergic synapse development, but its role in neural circuit function in the adult hippocampus is unclear. We investigated GABAergic synapses and hippocampus-dependent behaviors following viral-vector-mediated overexpression of NLGN2. Transducing hippocampal neurons with AAV-NLGN2 increased neuronal expression of NLGN2 and membrane localization of GABAergic postsynaptic proteins gephyrin and GABAARγ2, and presynaptic vesicular GABA transporter protein (VGAT) suggesting trans-synaptic enhancement of GABAergic synapses. In contrast, glutamatergic postsynaptic density protein-95 (PSD-95) and presynaptic vesicular glutamate transporter (VGLUT) protein were unaltered. Moreover, AAV-NLGN2 significantly increased parvalbumin immunoreactive (PV+) synaptic boutons co-localized with postsynaptic gephyrin+ puncta. Furthermore, these changes were demonstrated to lead to cognitive impairments as shown in a battery of hippocampal-dependent mnemonic tasks and social behaviors.
Collapse
Affiliation(s)
- M Van Zandt
- Wesleyan University, Department of Biology, Program in Neuroscience and Behavior, Middletown, CT, United States
| | - E Weiss
- Wesleyan University, Department of Biology, Program in Neuroscience and Behavior, Middletown, CT, United States
| | - A Almyasheva
- Wesleyan University, Department of Biology, Program in Neuroscience and Behavior, Middletown, CT, United States
| | - S Lipior
- Wesleyan University, Department of Biology, Program in Neuroscience and Behavior, Middletown, CT, United States
| | - S Maisel
- Wesleyan University, Department of Biology, Program in Neuroscience and Behavior, Middletown, CT, United States
| | - J R Naegele
- Wesleyan University, Department of Biology, Program in Neuroscience and Behavior, Middletown, CT, United States.
| |
Collapse
|
31
|
Rolls ET, Wirth S. Spatial representations in the primate hippocampus, and their functions in memory and navigation. Prog Neurobiol 2018; 171:90-113. [DOI: 10.1016/j.pneurobio.2018.09.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 01/01/2023]
|
32
|
Abstract Representation of Prospective Reward in the Hippocampus. J Neurosci 2018; 38:10093-10101. [PMID: 30282732 DOI: 10.1523/jneurosci.0719-18.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 11/21/2022] Open
Abstract
Motivation enhances memory by increasing hippocampal engagement during encoding. However, whether such increased hippocampal activation reflects encoding of the value of highly rewarding events per se is less understood. Here, using a monetary incentive encoding task with a novel manipulation, we tested in humans whether the hippocampus represents abstract reward value, independent of perceptual content. During functional MRI scanning, men and women studied object pairs, each preceded by a monetary reward cue indicating the amount of money they would receive if they successfully remembered the object pair at test. Reward cues varied on both the level of reward (penny, dime, and dollar) and visual form (picture or word) across trials to dissociate hippocampal responses to reward value from those reflecting the perceptual properties of the cues. Behaviorally, participants remembered pairs associated with the high reward (dollar) more often than pairs associated with lower rewards. Neural pattern-similarity analysis revealed that hippocampal and parahippocampal cortex activation patterns discriminated between cues of different value regardless of their visual form, and that hippocampal discrimination of value was most pronounced in participants who showed the greatest behavioral sensitivity to reward. Strikingly, hippocampal patterns were most distinct for reward cues that differed in value but had similar visual appearance, consistent with theoretical proposals of hippocampal-pattern differentiation of competing representations. Our data illustrate how contextual representations within the hippocampus go beyond space and time to include information about the motivational salience of events, with hippocampal reward coding tracking the motivational impact on later memory.SIGNIFICANCE STATEMENT Motivation, such as the promise of future rewards, enhances hippocampal engagement during encoding and promotes successful retention of events associated with valuable rewards. However, whether the hippocampus explicitly encodes reward value, dissociable from sensory information, is unclear. Here, we show that the hippocampus forms abstract representation of valuable rewards, encoding conceptual rather than perceptual information about the motivational context of individual events. Reward representation within the hippocampus is associated with preferential retention of high-value events in memory. Furthermore, we show that hippocampal-pattern differentiation serves to emphasize differences between visually similar events with distinct motivational salience. Collectively, these findings indicate that hippocampal contextual representations enable individuals to distinguish the motivational value of events, leading to prioritized encoding of significant memories.
Collapse
|
33
|
Spiers HJ, Olafsdottir HF, Lever C. Hippocampal CA1 activity correlated with the distance to the goal and navigation performance. Hippocampus 2018; 28:644-658. [PMID: 29149774 PMCID: PMC6282985 DOI: 10.1002/hipo.22813] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 10/25/2017] [Accepted: 11/09/2017] [Indexed: 11/16/2022]
Abstract
Coding the distance to a future goal is an important function of a neural system supporting navigation. While some evidence indicates the hippocampus increases activity with proximity to the goal, others have found activity to decrease with proximity. To explore goal distance coding in the hippocampus we recorded from CA1 hippocampal place cells in rats as they navigated to learned goals in an event arena with a win-stay lose-shift rule. CA1 activity was positively correlated with the distance - decreasing with proximity to the goal. The stronger the correlation between distance to the goal and CA1 activity, the more successful navigation was in a given task session. Acceleration, but not speed, was also correlated with the distance to the goal. However, the relationship between CA1 activity and navigation performance was independent of variation in acceleration and variation in speed. These results help clarify the situations in which CA1 activity encodes navigationally relevant information and the extent to which it relates to behavior.
Collapse
Affiliation(s)
- Hugo J. Spiers
- Division of Psychology and Language Sciences, Department of Experimental Psychology, UCL Institute of Behavioural NeuroscienceUniversity College LondonLondonUK
| | - H. Freyja Olafsdottir
- Division of Biosciences, Department of Cell & Developmental BiologyUniversity College LondonUK
| | - Colin Lever
- Department of PsychologyUniversity of DurhamDurhamUK
| |
Collapse
|
34
|
Buccino AP, Lepperød ME, Dragly SA, Häfliger P, Fyhn M, Hafting T. Open source modules for tracking animal behavior and closed-loop stimulation based on Open Ephys and Bonsai. J Neural Eng 2018; 15:055002. [DOI: 10.1088/1741-2552/aacf45] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
35
|
Gauthier JL, Tank DW. A Dedicated Population for Reward Coding in the Hippocampus. Neuron 2018; 99:179-193.e7. [PMID: 30008297 PMCID: PMC7023678 DOI: 10.1016/j.neuron.2018.06.008] [Citation(s) in RCA: 229] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/17/2018] [Accepted: 06/04/2018] [Indexed: 11/25/2022]
Abstract
The hippocampus plays a critical role in goal-directed navigation. Across different environments, however, hippocampal maps are randomized, making it unclear how goal locations could be encoded consistently. To address this question, we developed a virtual reality task with shifting reward contingencies to distinguish place versus reward encoding. In mice performing the task, large-scale recordings in CA1 and subiculum revealed a small, specialized cell population that was only active near reward yet whose activity could not be explained by sensory cues or stereotyped reward anticipation behavior. Across different virtual environments, most cells remapped randomly, but reward encoding consistently arose from a single pool of cells, suggesting that they formed a dedicated channel for reward. These observations represent a significant departure from the current understanding of CA1 as a relatively homogeneous ensemble without fixed coding properties and provide a new candidate for the cellular basis of goal memory in the hippocampus.
Collapse
Affiliation(s)
- Jeffrey L Gauthier
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - David W Tank
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
36
|
Qin H, Fu L, Hu B, Liao X, Lu J, He W, Liang S, Zhang K, Li R, Yao J, Yan J, Chen H, Jia H, Zott B, Konnerth A, Chen X. A Visual-Cue-Dependent Memory Circuit for Place Navigation. Neuron 2018; 99:47-55.e4. [PMID: 29909996 PMCID: PMC6048686 DOI: 10.1016/j.neuron.2018.05.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/03/2018] [Accepted: 05/11/2018] [Indexed: 01/28/2023]
Abstract
The ability to remember and to navigate to safe places is necessary for survival. Place navigation is known to involve medial entorhinal cortex (MEC)-hippocampal connections. However, learning-dependent changes in neuronal activity in the distinct circuits remain unknown. Here, by using optic fiber photometry in freely behaving mice, we discovered the experience-dependent induction of a persistent-task-associated (PTA) activity. This PTA activity critically depends on learned visual cues and builds up selectively in the MEC layer II-dentate gyrus, but not in the MEC layer III-CA1 pathway, and its optogenetic suppression disrupts navigation to the target location. The findings suggest that the visual system, the MEC layer II, and the dentate gyrus are essential hubs of a memory circuit for visually guided navigation. Fiber photometry allows for recording MEC-DG projection in freely moving mice A persistent-task-associated (PTA) activity is induced in the MECII-DG pathway PTA activity requires visual inputs throughout navigation to the learned place Photoinhibition of the MECII-DG activity causes a disruption of navigation
Collapse
Affiliation(s)
- Han Qin
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China; Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Key Laboratory for Biomedical Photonics of Ministry of Education, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ling Fu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Key Laboratory for Biomedical Photonics of Ministry of Education, School of Engineering Sciences, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Bo Hu
- Department of Physiology, Third Military Medical University, Chongqing 400038, China
| | - Xiang Liao
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Jian Lu
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Wenjing He
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Shanshan Liang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Kuan Zhang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Ruijie Li
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Jiwei Yao
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Junan Yan
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China
| | - Hao Chen
- Department of Physiology, Third Military Medical University, Chongqing 400038, China
| | - Hongbo Jia
- Brain Research Instrument Innovation Center, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China; Institute of Neuroscience and the Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| | - Benedikt Zott
- Institute of Neuroscience and the Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany
| | - Arthur Konnerth
- Institute of Neuroscience and the Munich Cluster for Systems Neurology, Technical University of Munich, 80802 Munich, Germany.
| | - Xiaowei Chen
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing 400038, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
37
|
The cognitive nuances of surprising events: exposure to unexpected stimuli elicits firing variations in neurons of the dorsal CA1 hippocampus. Brain Struct Funct 2018; 223:3183-3211. [PMID: 29789932 PMCID: PMC6132666 DOI: 10.1007/s00429-018-1681-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 05/08/2018] [Indexed: 12/02/2022]
Abstract
The ability to recognize novel situations is among the most fascinating and vital of the brain functions. A hypothesis posits that encoding of novelty is prompted by failures in expectancy, according to computation matching incoming information with stored events. Thus, unexpected changes in context are detected within the hippocampus and transferred to downstream structures, eliciting the arousal of the dopamine system. Nevertheless, the precise locus of detection is a matter of debate. The dorsal CA1 hippocampus (dCA1) appears as an ideal candidate for operating a mismatch computation and discriminating the occurrence of diverse stimuli within the same environment. In this study, we sought to determine dCA1 neuronal firing during the experience of novel stimuli embedded in familiar contexts. We performed population recordings while head-fixed mice navigated virtual environments. Three stimuli were employed, namely a novel pattern of visual cues, an odor, and a reward with enhanced valence. The encounter of unexpected events elicited profound variations in dCA1 that were assessed both as opposite rate directions and altered network connectivity. When experienced in sequence, novel stimuli elicited specific responses that often exhibited cross-sensitization. Short-latency, event-triggered responses were in accordance with the detection of novelty being computed within dCA1. We postulate that firing variations trigger neuronal disinhibition, and constitute a fundamental mechanism in the processing of unexpected events and in learning. Elucidating the mechanisms underlying detection and computation of novelty might help in understanding hippocampal-dependent cognitive dysfunctions associated with neuropathologies and psychiatric conditions.
Collapse
|
38
|
Lee JQ, LeDuke DO, Chua K, McDonald RJ, Sutherland RJ. Relocating cued goals induces population remapping in CA1 related to memory performance in a two-platform water task in rats. Hippocampus 2018; 28:431-440. [DOI: 10.1002/hipo.22843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/21/2018] [Accepted: 03/20/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Justin Quinn Lee
- Department of Neuroscience; Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive; Lethbridge Alberta, T1K 3M4 Canada
| | - Deryn O. LeDuke
- Quest University Canada, 3200 University Drive; Squamish British Columbia, V8B 0N8 Canada
| | - Kate Chua
- Department of Neuroscience; Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive; Lethbridge Alberta, T1K 3M4 Canada
| | - Robert J. McDonald
- Department of Neuroscience; Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive; Lethbridge Alberta, T1K 3M4 Canada
| | - Robert J. Sutherland
- Department of Neuroscience; Canadian Centre for Behavioural Neuroscience, University of Lethbridge, 4401 University Drive; Lethbridge Alberta, T1K 3M4 Canada
| |
Collapse
|
39
|
Pinnell RC, Pereira de Vasconcelos A, Cassel JC, Hofmann UG. A Miniaturized, Programmable Deep-Brain Stimulator for Group-Housing and Water Maze Use. Front Neurosci 2018; 12:231. [PMID: 29706862 PMCID: PMC5906879 DOI: 10.3389/fnins.2018.00231] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/23/2018] [Indexed: 12/20/2022] Open
Abstract
Pre-clinical deep-brain stimulation (DBS) research has observed a growing interest in the use of portable stimulation devices that can be carried by animals. Not only can such devices overcome many issues inherent with a cable tether, such as twisting or snagging, they can also be utilized in a greater variety of arenas, including enclosed or large mazes. However, these devices are not inherently designed for water-maze environments, and their use has been restricted to individually-housed rats in order to avoid damage from various social activities such as grooming, playing, or fighting. By taking advantage of 3D-printing techniques, this study demonstrates an ultra-small portable stimulator with an environmentally-protective device housing, that is suitable for both social-housing and water-maze environments. The miniature device offers 2 channels of charge-balanced biphasic pulses with a high compliance voltage (12 V), a magnetic switch, and a diverse range of programmable stimulus parameters and pulse modes. The device's capabilities have been verified in both chronic pair-housing and water-maze experiments that asses the effects of nucleus reuniens DBS. Theta-burst stimulation delivered during a reference-memory water-maze task (but not before) had induced performance deficits during both the acquisition and probe trials of a reference memory task. The results highlight a successful application of 3D-printing for expanding on the range of measurement modalities capable in DBS research.
Collapse
Affiliation(s)
- Richard C Pinnell
- Laboratoire de Neurosciences Cognitives et Adaptatives, Faculté de Psychologie de Strasbourg, Université de Strasbourg, Strasbourg, France.,Section of Neuroelectronic Systems, Neurosurgery, Medical Centre, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg im Breisgau, Germany.,University of Strasbourg Institute for Advanced Study, University of Strasbourg, Strasbourg, France
| | - Anne Pereira de Vasconcelos
- Laboratoire de Neurosciences Cognitives et Adaptatives, Faculté de Psychologie de Strasbourg, Université de Strasbourg, Strasbourg, France.,LNCA, UMR 7364, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Jean C Cassel
- Laboratoire de Neurosciences Cognitives et Adaptatives, Faculté de Psychologie de Strasbourg, Université de Strasbourg, Strasbourg, France.,Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg im Breisgau, Germany.,University of Strasbourg Institute for Advanced Study, University of Strasbourg, Strasbourg, France.,LNCA, UMR 7364, Centre National de la Recherche Scientifique, Strasbourg, France
| | - Ulrich G Hofmann
- Section of Neuroelectronic Systems, Neurosurgery, Medical Centre, University of Freiburg, Freiburg im Breisgau, Germany.,Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.,Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg im Breisgau, Germany.,University of Strasbourg Institute for Advanced Study, University of Strasbourg, Strasbourg, France
| |
Collapse
|
40
|
Abstract
Since the first place cell was recorded and the cognitive-map theory was subsequently formulated, investigation of spatial representation in the hippocampal formation has evolved in stages. Early studies sought to verify the spatial nature of place cell activity and determine its sensory origin. A new epoch started with the discovery of head direction cells and the realization of the importance of angular and linear movement-integration in generating spatial maps. A third epoch began when investigators turned their attention to the entorhinal cortex, which led to the discovery of grid cells and border cells. This review will show how ideas about integration of self-motion cues have shaped our understanding of spatial representation in hippocampal-entorhinal systems from the 1970s until today. It is now possible to investigate how specialized cell types of these systems work together, and spatial mapping may become one of the first cognitive functions to be understood in mechanistic detail.
Collapse
|
41
|
|
42
|
Zaremba JD, Diamantopoulou A, Danielson NB, Grosmark AD, Kaifosh PW, Bowler JC, Liao Z, Sparks FT, Gogos JA, Losonczy A. Impaired hippocampal place cell dynamics in a mouse model of the 22q11.2 deletion. Nat Neurosci 2017; 20:1612-1623. [PMID: 28869582 DOI: 10.1038/nn.4634] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/01/2017] [Indexed: 02/08/2023]
Abstract
Hippocampal place cells represent the cellular substrate of episodic memory. Place cell ensembles reorganize to support learning but must also maintain stable representations to facilitate memory recall. Despite extensive research, the learning-related role of place cell dynamics in health and disease remains elusive. Using chronic two-photon Ca2+ imaging in hippocampal area CA1 of wild-type and Df(16)A+/- mice, an animal model of 22q11.2 deletion syndrome, one of the most common genetic risk factors for cognitive dysfunction and schizophrenia, we found that goal-oriented learning in wild-type mice was supported by stable spatial maps and robust remapping of place fields toward the goal location. Df(16)A+/- mice showed a significant learning deficit accompanied by reduced spatial map stability and the absence of goal-directed place cell reorganization. These results expand our understanding of the hippocampal ensemble dynamics supporting cognitive flexibility and demonstrate their importance in a model of 22q11.2-associated cognitive dysfunction.
Collapse
Affiliation(s)
- Jeffrey D Zaremba
- Department of Neuroscience, Columbia University, New York, New York, USA
| | - Anastasia Diamantopoulou
- Department of Psychiatry, Columbia University, New York, New York, USA.,Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| | - Nathan B Danielson
- Department of Neuroscience, Columbia University, New York, New York, USA
| | - Andres D Grosmark
- Department of Neuroscience, Columbia University, New York, New York, USA
| | - Patrick W Kaifosh
- Department of Neuroscience, Columbia University, New York, New York, USA.,Center for Theoretical Neuroscience, Columbia University, New York, New York, USA
| | - John C Bowler
- Department of Neuroscience, Columbia University, New York, New York, USA
| | - Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, New York, USA
| | - Fraser T Sparks
- Department of Neuroscience, Columbia University, New York, New York, USA
| | - Joseph A Gogos
- Department of Neuroscience, Columbia University, New York, New York, USA.,Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, New York, USA.,Kavli Institute for Brain Science, Columbia University, New York, New York, USA
| |
Collapse
|
43
|
Hippocampus-Dependent Goal Localization by Head-Fixed Mice in Virtual Reality. eNeuro 2017; 4:eN-NWR-0369-16. [PMID: 28484738 PMCID: PMC5413318 DOI: 10.1523/eneuro.0369-16.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 11/21/2022] Open
Abstract
The demonstration of the ability of rodents to navigate in virtual reality (VR) has made it an important behavioral paradigm for studying spatially modulated neuronal activity in these animals. However, their behavior in such simulated environments remains poorly understood. Here, we show that encoding and retrieval of goal location memory in mice head-fixed in VR depends on the postsynaptic scaffolding protein Shank2 and the dorsal hippocampus. In our newly developed virtual cued goal location task, a head-fixed mouse moves from one end of a virtual linear track to seek rewards given at a target location along the track. The mouse needs to visually recognize the target location and stay there for a short period of time to receive the reward. Transient pharmacological blockade of fast glutamatergic synaptic transmission in the dorsal hippocampus dramatically and reversibly impaired performance of this task. Encoding and updating of virtual cued goal location memory was impaired in mice deficient in the postsynaptic scaffolding protein Shank2, a mouse model of autism that exhibits impaired spatial learning in a real environment. These results highlight the crucial roles of the dorsal hippocampus and postsynaptic protein complexes in spatial learning and navigation in VR.
Collapse
|
44
|
Functional dynamics of hippocampal glutamate during associative learning assessed with in vivo 1H functional magnetic resonance spectroscopy. Neuroimage 2017; 153:189-197. [PMID: 28363835 DOI: 10.1016/j.neuroimage.2017.03.051] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/06/2017] [Accepted: 03/22/2017] [Indexed: 12/25/2022] Open
Abstract
fMRI has provided vibrant characterization of regional and network responses associated with associative learning and memory; however, their relationship to functional neurochemistry is unclear. Here, we introduce a novel application of in vivo proton functional magnetic resonance spectroscopy (1H fMRS) to investigate the dynamics of hippocampal glutamate during paired-associated learning and memory in healthy young adults. We show that the temporal dynamics of glutamate differed significantly during processes of memory consolidation and retrieval. Moreover, learning proficiency was predictive of the temporal dynamics of glutamate such that fast learners were characterized by a significant increase in glutamate levels early in learning, whereas this increase was only observed later in slow learners. The observed functional dynamics of glutamate provides a novel in vivo marker of brain function. Previously demonstrated N-methyl-D-aspartate (NMDA) receptor mediated synaptic plasticity during associative memory formation may be expressed in glutamate dynamics, which the novel application of 1H MRS is sensitive to. The novel application of 1H fMRS can provide highly innovative vistas for characterizing brain function in vivo, with significant implications for studying glutamatergic neurotransmission in health and disorders such as schizophrenia.
Collapse
|
45
|
Tryon VL, Penner MR, Heide SW, King HO, Larkin J, Mizumori SJY. Hippocampal neural activity reflects the economy of choices during goal-directed navigation. Hippocampus 2017; 27:743-758. [PMID: 28241404 DOI: 10.1002/hipo.22720] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 02/05/2017] [Accepted: 02/17/2017] [Indexed: 11/09/2022]
Abstract
Distinguishing spatial contexts is likely essential for the well-known role of the hippocampus in episodic memory. We studied whether types of hippocampal neural organization thought to underlie context discrimination are impacted by learned economic considerations of choice behavior. Hippocampal place cells and theta activity were recorded as rats performed a maze-based probability discounting task that involved choosing between a small certain reward or a large probabilistic reward. Different spatial distributions of place fields were observed in response to changes in probability, the outcome of the rats' choice, and whether or not rats were free to make that choice. The degree to which the reward location was represented by place cells scaled with the expected probability of rewards. Theta power increased around the goal location also in proportion to the expected probability of signaled rewards. Furthermore, theta power dynamically varied as specific econometric information was obtained "on the fly" during task performance. Such an economic perspective of memory processing by hippocampal place cells expands our view of the nature of context memories retrieved by hippocampus during adaptive navigation.
Collapse
Affiliation(s)
- Valerie L Tryon
- Psychology Department, University of Washington, Seattle, Washington
| | - Marsha R Penner
- Psychology Department, University of Washington, Seattle, Washington
| | - Shawn W Heide
- Psychology Department, University of Washington, Seattle, Washington
| | - Hunter O King
- Psychology Department, University of Washington, Seattle, Washington
| | - Joshua Larkin
- Psychology Department, University of Washington, Seattle, Washington
| | - Sheri J Y Mizumori
- Psychology Department, University of Washington, Seattle, Washington.,Neuroscience Program, University of Washington, Seattle, Washington
| |
Collapse
|
46
|
Moreno-Castilla P, Pérez-Ortega R, Violante-Soria V, Balderas I, Bermúdez-Rattoni F. Hippocampal release of dopamine and norepinephrine encodes novel contextual information. Hippocampus 2017; 27:547-557. [DOI: 10.1002/hipo.22711] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Perla Moreno-Castilla
- Departamento de Neurociencia Cognitiva, División de Neurociencias; Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; México D.F. México
| | - Rodrigo Pérez-Ortega
- Departamento de Neurociencia Cognitiva, División de Neurociencias; Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; México D.F. México
| | - Valeria Violante-Soria
- Departamento de Neurociencia Cognitiva, División de Neurociencias; Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; México D.F. México
| | - Israela Balderas
- Departamento de Neurociencia Cognitiva, División de Neurociencias; Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; México D.F. México
| | - Federico Bermúdez-Rattoni
- Departamento de Neurociencia Cognitiva, División de Neurociencias; Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; México D.F. México
| |
Collapse
|
47
|
The fate of memory: Reconsolidation and the case of Prediction Error. Neurosci Biobehav Rev 2016; 68:423-441. [DOI: 10.1016/j.neubiorev.2016.06.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 05/07/2016] [Accepted: 06/06/2016] [Indexed: 11/22/2022]
|
48
|
Sublayer-Specific Coding Dynamics during Spatial Navigation and Learning in Hippocampal Area CA1. Neuron 2016; 91:652-65. [PMID: 27397517 DOI: 10.1016/j.neuron.2016.06.020] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/13/2016] [Accepted: 06/03/2016] [Indexed: 01/03/2023]
Abstract
The mammalian hippocampus is critical for spatial information processing and episodic memory. Its primary output cells, CA1 pyramidal cells (CA1 PCs), vary in genetics, morphology, connectivity, and electrophysiological properties. It is therefore possible that distinct CA1 PC subpopulations encode different features of the environment and differentially contribute to learning. To test this hypothesis, we optically monitored activity in deep and superficial CA1 PCs segregated along the radial axis of the mouse hippocampus and assessed the relationship between sublayer dynamics and learning. Superficial place maps were more stable than deep during head-fixed exploration. Deep maps, however, were preferentially stabilized during goal-oriented learning, and representation of the reward zone by deep cells predicted task performance. These findings demonstrate that superficial CA1 PCs provide a more stable map of an environment, while their counterparts in the deep sublayer provide a more flexible representation that is shaped by learning about salient features in the environment. VIDEO ABSTRACT.
Collapse
|
49
|
Schoenenberger P, O'Neill J, Csicsvari J. Activity-dependent plasticity of hippocampal place maps. Nat Commun 2016; 7:11824. [PMID: 27282121 PMCID: PMC4906387 DOI: 10.1038/ncomms11824] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 05/04/2016] [Indexed: 11/30/2022] Open
Abstract
Hippocampal neurons encode a cognitive map of space. These maps are thought to be updated during learning and in response to changes in the environment through activity-dependent synaptic plasticity. Here we examine how changes in activity influence spatial coding in rats using halorhodopsin-mediated, spatially selective optogenetic silencing. Halorhoposin stimulation leads to light-induced suppression in many place cells and interneurons; some place cells increase their firing through disinhibition, whereas some show no effect. We find that place fields of the unaffected subpopulation remain stable. On the other hand, place fields of suppressed place cells were unstable, showing remapping across sessions before and after optogenetic inhibition. Disinhibited place cells had stable maps but sustained an elevated firing rate. These findings suggest that place representation in the hippocampus is constantly governed by activity-dependent processes, and that disinhibition may provide a mechanism for rate remapping. Place cells in hippocampus encode a map of space, however the role of activity in place map stability is not known. Schoenenberger and colleagues optogenetically manipulate hippocampal firing rates within place fields and show lasting changes in spatial firing patterns through two separate mechanisms.
Collapse
Affiliation(s)
- Philipp Schoenenberger
- Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| | - Joseph O'Neill
- Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| | - Jozsef Csicsvari
- Institute of Science and Technology Austria, Am Campus 1, A-3400 Klosterneuburg, Austria
| |
Collapse
|
50
|
Pinnell RC, Almajidy RK, Kirch RD, Cassel JC, Hofmann UG. A Wireless EEG Recording Method for Rat Use inside the Water Maze. PLoS One 2016; 11:e0147730. [PMID: 26828947 PMCID: PMC4734832 DOI: 10.1371/journal.pone.0147730] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/22/2015] [Indexed: 12/31/2022] Open
Abstract
With the continued miniaturisation of portable embedded systems, wireless EEG recording techniques are becoming increasingly prevalent in animal behavioural research. However, in spite of their versatility and portability, they have seldom been used inside water-maze tasks designed for rats. As such, a novel 3D printed implant and waterproof connector is presented, which can facilitate wireless water-maze EEG recordings in freely-moving rats, using a commercial wireless recording system (W32; Multichannel Systems). As well as waterproofing the wireless system, battery, and electrode connector, the implant serves to reduce movement-related artefacts by redistributing movement-related forces away from the electrode connector. This implant/connector was able to successfully record high-quality LFP in the hippocampo-striatal brain regions of rats as they undertook a procedural-learning variant of the double-H water-maze task. Notably, there were no significant performance deficits through its use when compared with a control group across a number of metrics including number of errors and speed of task completion. Taken together, this method can expand the range of measurements that are currently possible in this diverse area of behavioural neuroscience, whilst paving the way for integration with more complex behaviours.
Collapse
Affiliation(s)
- Richard C. Pinnell
- Neuroelectronic Systems, Dept. of Neurosurgery, University Medical Centre Freiburg, Freiburg, Germany
- * E-mail:
| | - Rand K. Almajidy
- Neuroelectronic Systems, Dept. of Neurosurgery, University Medical Centre Freiburg, Freiburg, Germany
- Institute for Signal Processing, University of Luebeck, Luebeck, Germany
- College of Medicine, University of Diyala, Diyala, Iraq
| | - Robert D. Kirch
- Neuroelectronic Systems, Dept. of Neurosurgery, University Medical Centre Freiburg, Freiburg, Germany
| | - Jean C. Cassel
- Université de Strasbourg, Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), F-67000, Strasbourg, France
- CNRS, LNCA UMR 7364, F-67000, Strasbourg, France
| | - Ulrich G. Hofmann
- Neuroelectronic Systems, Dept. of Neurosurgery, University Medical Centre Freiburg, Freiburg, Germany
| |
Collapse
|