1
|
Einav A, Azouz R. Corticothalamic modulation of somatosensory thalamic tactile processing. J Physiol 2025; 603:2801-2819. [PMID: 40178512 PMCID: PMC12072242 DOI: 10.1113/jp287526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/07/2025] [Indexed: 04/05/2025] Open
Abstract
The brain's processing of sensory information involves intricate interactions between feedforward and feedback pathways, including corticothalamic feedback. Although feedback from cortical Layer 6 to the sensory thalamus is known to regulate sensory signalling, its precise function remains elusive. This study delves into the impact of Layer 6 feedback on sensory transmission in the ventral posteromedial nucleus using in vivo electrophysiology recordings in lightly anesthetized rats. By local administration of drugs to the barrel cortex during thalamic recordings, we investigate how corticothalamic neurons influence the transformation of tactile stimuli into neuronal discharge characteristics. Our findings reveal that increasing cortical dynamics enhances thalamic response magnitude at low stimulus intensities but decreases it at high intensities, whereas reducing cortical dynamics produces the opposite effect. Moreover, we observe bidirectional cortical influence on thalamic neurons extending to stimulus magnitude-dependent sensory adaptation and burst propensity modulation by Layer 6 dynamics. Specifically, increased cortical dynamics reduce thalamic sensory adaptation and increase burst propensity at low stimulus intensities, with no observed change at high intensities, whereas decreased cortical dynamics elicit opposite effects. We show that thalamic neurons can discriminate between stimuli, with cortical influence varying by stimulus intensity. Increased cortical dynamics enhances discrimination at low intensities, whereas reduced dynamics has the opposite effect. Our findings suggest that cortical control of ventral posteromedial nucleus tactile transformation is not a binary switch but a dynamic modulator, adjusting thalamic transformations in real time based on cortical dynamics. This mechanism finely tunes sensory processing to meet environmental and behavioural demands. KEY POINTS: The study investigates touch processing in the brain by examining interactions between brain regions. Specifically, we study how cortical Layer 6 influences sensory signal processing in the thalamus. We manipulated Layer 6 activity with drugs and observed resulting changes in thalamic touch responses. Increased cortical activity enhanced weak touch signals but dampened strong ones in the thalamus; lower activity had the opposite effect. Increased cortical dynamics reduced thalamic sensory adaptation and increased burst propensity at low stimulus intensities, with no change at high intensities. The study shows that the brain's control over how it processes sensory information is not just an on/off switch but a dynamic system that adjusts in real time to different situations.
Collapse
Affiliation(s)
- Avisar Einav
- Department of Physiology and Cell Biology, The School of Brain Sciences and CognitionBen‐Gurion University of the NegevNegevIsrael
| | - Rony Azouz
- Department of Physiology and Cell Biology, The School of Brain Sciences and CognitionBen‐Gurion University of the NegevNegevIsrael
| |
Collapse
|
2
|
Mai S, Murphy AJ, Hasse JM, Briggs F. Dual parallel stream-specific and generalized effects of corticogeniculate feedback on LGN neurons in primate and carnivore. Nat Commun 2025; 16:3380. [PMID: 40204723 PMCID: PMC11982367 DOI: 10.1038/s41467-025-58667-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/26/2025] [Indexed: 04/11/2025] Open
Abstract
Sensory circuits are organized in parallel, e.g. parallel streams relay feedforward visual information from retina to cortex. Corticogeniculate (CG) feedback is also organized in parallel; however, stream-specific influences of CG feedback remained unresolved. We utilized optogenetics to manipulate CG feedback in monkeys while recording geniculate responses to a comprehensive set of visual stimuli designed to probe stream-specific responses. Here we show that CG feedback improved the spatial resolution of magnocellular, but not parvocellular neurons. Optogenetically enhancing CG feedback increased extraclassical surround suppression, shrunk classical receptive fields, and increased preferred spatial frequencies among magnocellular neurons. Optogenetically suppressing CG feedback reduced surround suppression. Enhancing CG feedback in female ferrets revealed similar stream-specific effects in geniculate Y, but not X neurons. Furthermore, optogenetically enhancing CG feedback improved temporal response precision across neuronal types. These results support dual functional roles for CG feedback in enhancing spatial resolution in a stream-specific manner and improving temporal precision broadly.
Collapse
Affiliation(s)
- Sabrina Mai
- Neuroscience Graduate Program, University of Rochester, Rochester, NY, 14642, USA
- Department of Neuroscience, University of Rochester School of Medicine, Rochester, NY, 14642, USA
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, Rochester, NY, 14642, USA
- Center for Visual Science, University of Rochester, Rochester, NY, 14642, USA
| | - Allison J Murphy
- Neuroscience Graduate Program, University of Rochester, Rochester, NY, 14642, USA
- Department of Neuroscience, University of Rochester School of Medicine, Rochester, NY, 14642, USA
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, Rochester, NY, 14642, USA
- Center for Visual Science, University of Rochester, Rochester, NY, 14642, USA
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - J Michael Hasse
- Center for Neural Science, New York University, New York, NY, 10003, USA
| | - Farran Briggs
- Neuroscience Graduate Program, University of Rochester, Rochester, NY, 14642, USA.
- Department of Neuroscience, University of Rochester School of Medicine, Rochester, NY, 14642, USA.
- Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, Rochester, NY, 14642, USA.
- Center for Visual Science, University of Rochester, Rochester, NY, 14642, USA.
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, 14642, USA.
- Laboratory of Sensorimotor Research, National Eye Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Lee KS, Loutit AJ, de Thomas Wagner D, Sanders M, Prsa M, Huber D. Transformation of neural coding for vibrotactile stimuli along the ascending somatosensory pathway. Neuron 2024; 112:3343-3353.e7. [PMID: 39111305 DOI: 10.1016/j.neuron.2024.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/25/2024] [Accepted: 07/10/2024] [Indexed: 10/12/2024]
Abstract
In mammals, action potentials fired by rapidly adapting mechanosensitive afferents are known to reliably time lock to the cycles of a vibration. How and where along the ascending neuraxis is the peripheral afferent temporal code transformed into a rate code are currently not clear. Here, we probed the encoding of vibrotactile stimuli with electrophysiological recordings along major stages of the ascending somatosensory pathway in mice. We discovered the main transformation step was identified at the level of the thalamus, and parvalbumin-positive interneurons in thalamic reticular nucleus participate in sharpening frequency selectivity and in disrupting the precise spike timing. When frequency-specific microstimulation was applied within the brainstem, it generated frequency selectivity reminiscent of real vibration responses in the somatosensory cortex and could provide informative and robust signals for learning in behaving mice. Taken together, these findings could guide biomimetic stimulus strategies to activate specific nuclei along the ascending somatosensory pathway for neural prostheses.
Collapse
Affiliation(s)
- Kuo-Sheng Lee
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland; Institute of Biomedical Sciences, Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.
| | - Alastair J Loutit
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | | | - Mark Sanders
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Mario Prsa
- Department of Neuroscience and Movement Science, University of Fribourg, Fribourg, Switzerland
| | - Daniel Huber
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
4
|
Martinetti LE, Autio DM, Crandall SR. Motor Control of Distinct Layer 6 Corticothalamic Feedback Circuits. eNeuro 2024; 11:ENEURO.0255-24.2024. [PMID: 38926084 PMCID: PMC11236587 DOI: 10.1523/eneuro.0255-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Layer 6 corticothalamic (L6 CT) neurons provide massive input to the thalamus, and these feedback connections enable the cortex to influence its own sensory input by modulating thalamic excitability. However, the functional role(s) feedback serves during sensory processing is unclear. One hypothesis is that CT feedback is under the control of extrasensory signals originating from higher-order cortical areas, yet we know nothing about the mechanisms of such control. It is also unclear whether such regulation is specific to CT neurons with distinct thalamic connectivity. Using mice (either sex) combined with in vitro electrophysiology techniques, optogenetics, and retrograde labeling, we describe studies of vibrissal primary motor cortex (vM1) influences on different CT neurons in the vibrissal primary somatosensory cortex (vS1) with distinct intrathalamic axonal projections. We found that vM1 inputs are highly selective, evoking stronger postsynaptic responses in CT neurons projecting to the dual ventral posterior medial nucleus (VPm) and posterior medial nucleus (POm) located in lower L6a than VPm-only-projecting CT cells in upper L6a. A targeted analysis of the specific cells and synapses involved revealed that the greater responsiveness of Dual CT neurons was due to their distinctive intrinsic membrane properties and synaptic mechanisms. These data demonstrate that vS1 has at least two discrete L6 CT subcircuits distinguished by their thalamic projection patterns, intrinsic physiology, and functional connectivity with vM1. Our results also provide insights into how a distinct CT subcircuit may serve specialized roles specific to contextual modulation of tactile-related sensory signals in the somatosensory thalamus during active vibrissa movements.
Collapse
Affiliation(s)
- Luis E Martinetti
- Neuroscience Program, Michigan State University, East Lansing, Michigan 48824
| | - Dawn M Autio
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| | - Shane R Crandall
- Neuroscience Program, Michigan State University, East Lansing, Michigan 48824
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
5
|
Martinetti LE, Autio DM, Crandall SR. Motor Control of Distinct Layer 6 Corticothalamic Feedback Circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.22.590613. [PMID: 38712153 PMCID: PMC11071411 DOI: 10.1101/2024.04.22.590613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Layer 6 corticothalamic (L6 CT) neurons provide massive input to the thalamus, and these feedback connections enable the cortex to influence its own sensory input by modulating thalamic excitability. However, the functional role(s) feedback serves during sensory processing is unclear. One hypothesis is that CT feedback is under the control of extra-sensory signals originating from higher-order cortical areas, yet we know nothing about the mechanisms of such control. It is also unclear whether such regulation is specific to CT neurons with distinct thalamic connectivity. Using mice (either sex) combined with in vitro electrophysiology techniques, optogenetics, and retrograde labeling, we describe studies of vibrissal primary motor cortex (vM1) influences on different CT neurons in the vibrissal primary somatosensory cortex (vS1) with distinct intrathalamic axonal projections. We found that vM1 inputs are highly selective, evoking stronger postsynaptic responses in Dual ventral posterior medial nucleus (VPm) and posterior medial nucleus (POm) projecting CT neurons located in lower L6a than VPm-only projecting CT cells in upper L6a. A targeted analysis of the specific cells and synapses involved revealed that the greater responsiveness of Dual CT neurons was due to their distinctive intrinsic membrane properties and synaptic mechanisms. These data demonstrate that vS1 has at least two discrete L6 CT subcircuits distinguished by their thalamic projection patterns, intrinsic physiology, and functional connectivity with vM1. Our results also provide insights into how a distinct CT subcircuit may serve specialized roles specific to contextual modulation of tactile-related sensory signals in the somatosensory thalamus during active vibrissa movements.
Collapse
Affiliation(s)
| | - Dawn M. Autio
- Department of Physiology, Michigan State University, East Lansing, MI 48824
| | - Shane R. Crandall
- Neuroscience Program, Michigan State University, East Lansing, MI 48824
- Department of Physiology, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
6
|
Dimwamwa ED, Pala A, Chundru V, Wright NC, Stanley GB. Dynamic corticothalamic modulation of the somatosensory thalamocortical circuit during wakefulness. Nat Commun 2024; 15:3529. [PMID: 38664415 PMCID: PMC11045850 DOI: 10.1038/s41467-024-47863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The feedback projections from cortical layer 6 (L6CT) to the sensory thalamus have long been implicated in playing a primary role in gating sensory signaling but remain poorly understood. To causally elucidate the full range of effects of these projections, we targeted silicon probe recordings to the whisker thalamocortical circuit of awake mice selectively expressing Channelrhodopsin-2 in L6CT neurons. Through optogenetic manipulation of L6CT neurons, multi-site electrophysiological recordings, and modeling of L6CT circuitry, we establish L6CT neurons as dynamic modulators of ongoing spiking in the ventral posteromedial nucleus of the thalamus (VPm), either suppressing or enhancing VPm spiking depending on L6CT neurons' firing rate and synchrony. Differential effects across the cortical excitatory and inhibitory sub-populations point to an overall influence of L6CT feedback on cortical excitability that could have profound implications for regulating sensory signaling across a range of ethologically relevant conditions.
Collapse
Affiliation(s)
- Elaida D Dimwamwa
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Aurélie Pala
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Vivek Chundru
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nathaniel C Wright
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Garrett B Stanley
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
7
|
Varela C, Moreira JVS, Kocaoglu B, Dura-Bernal S, Ahmad S. A mechanism for deviance detection and contextual routing in the thalamus: a review and theoretical proposal. Front Neurosci 2024; 18:1359180. [PMID: 38486972 PMCID: PMC10938916 DOI: 10.3389/fnins.2024.1359180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/15/2024] [Indexed: 03/17/2024] Open
Abstract
Predictive processing theories conceptualize neocortical feedback as conveying expectations and contextual attention signals derived from internal cortical models, playing an essential role in the perception and interpretation of sensory information. However, few predictive processing frameworks outline concrete mechanistic roles for the corticothalamic (CT) feedback from layer 6 (L6), despite the fact that the number of CT axons is an order of magnitude greater than that of feedforward thalamocortical (TC) axons. Here we review the functional architecture of CT circuits and propose a mechanism through which L6 could regulate thalamic firing modes (burst, tonic) to detect unexpected inputs. Using simulations in a model of a TC cell, we show how the CT feedback could support prediction-based input discrimination in TC cells by promoting burst firing. This type of CT control can enable the thalamic circuit to implement spatial and context selective attention mechanisms. The proposed mechanism generates specific experimentally testable hypotheses. We suggest that the L6 CT feedback allows the thalamus to detect deviance from predictions of internal cortical models, thereby supporting contextual attention and routing operations, a far more powerful role than traditionally assumed.
Collapse
Affiliation(s)
- Carmen Varela
- Psychology Department, Florida Atlantic University, Boca Raton, FL, United States
| | - Joao V. S. Moreira
- Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
| | - Basak Kocaoglu
- Center for Connected Autonomy and Artificial Intelligence, Florida Atlantic University, Boca Raton, FL, United States
| | - Salvador Dura-Bernal
- Department of Physiology and Pharmacology, State University of New York (SUNY) Downstate Health Sciences University, Brooklyn, NY, United States
- Center for Biomedical Imaging and Neuromodulation, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, United States
| | | |
Collapse
|
8
|
Dimwamwa E, Pala A, Chundru V, Wright NC, Stanley GB. Dynamic corticothalamic modulation of the somatosensory thalamocortical circuit during wakefulness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.18.549491. [PMID: 37503253 PMCID: PMC10370106 DOI: 10.1101/2023.07.18.549491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The feedback projections from cortical layer 6 (L6CT) to sensory thalamus have long been implicated in playing a primary role in gating sensory signaling but remain poorly understood. To causally elucidate the full range of effects of these projections, we targeted silicon probe recordings to the whisker thalamocortical circuit of awake mice selectively expressing Channelrhodopsin-2 in L6CT neurons. Through optogenetic manipulation of L6CT neurons, multi-site electrophysiological recordings, and modeling of L6CT circuitry, we establish L6CT neurons as dynamic modulators of ongoing spiking in the ventro-posterior-medial nucleus of thalamus (VPm), either suppressing or enhancing VPm spiking depending on L6CT neurons' firing rate and synchrony. Differential effects across the cortical excitatory and inhibitory sub-populations point to an overall influence of L6CT feedback on cortical excitability that could have profound implications for regulating sensory signaling across a range of ethologically relevant conditions.
Collapse
|
9
|
Brunner C, Montaldo G, Urban A. Functional ultrasound imaging of stroke in awake rats. eLife 2023; 12:RP88919. [PMID: 37988288 PMCID: PMC10662948 DOI: 10.7554/elife.88919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Anesthesia is a major confounding factor in preclinical stroke research as stroke rarely occurs in sedated patients. Moreover, anesthesia affects both brain functions and the stroke outcome acting as neurotoxic or protective agents. So far, no approaches were well suited to induce stroke while imaging hemodynamics along with simultaneous large-scale recording of brain functions in awake animals. For this reason, the first critical hours following the stroke insult and associated functional alteration remain poorly understood. Here, we present a strategy to investigate both stroke hemodynamics and stroke-induced functional alterations without the confounding effect of anesthesia, i.e., under awake condition. Functional ultrasound (fUS) imaging was used to continuously monitor variations in cerebral blood volume (CBV) in +65 brain regions/hemispheres for up to 3 hr after stroke onset. The focal cortical ischemia was induced using a chemo-thrombotic agent suited for permanent middle cerebral artery occlusion in awake rats and followed by ipsi- and contralesional whiskers stimulation to investigate on the dynamic of the thalamocortical functions. Early (0-3 hr) and delayed (day 5) fUS recording enabled to characterize the features of the ischemia (location, CBV loss), spreading depolarizations (occurrence, amplitude) and functional alteration of the somatosensory thalamocortical circuits. Post-stroke thalamocortical functions were affected at both early and later time points (0-3 hr and 5 days) after stroke. Overall, our procedure facilitates early, continuous, and chronic assessments of hemodynamics and cerebral functions. When integrated with stroke studies or other pathological analyses, this approach seeks to enhance our comprehension of physiopathologies towards the development of pertinent therapeutic interventions.
Collapse
Affiliation(s)
- Clément Brunner
- Neuro-Electronics Research FlandersLeuvenBelgium
- Vlaams Instituut voor BiotechnologieLeuvenBelgium
- Interuniversity Microelectronics CentreLeuvenBelgium
- Department of Neurosciences, KU LeuvenLeuvenBelgium
| | - Gabriel Montaldo
- Neuro-Electronics Research FlandersLeuvenBelgium
- Vlaams Instituut voor BiotechnologieLeuvenBelgium
- Interuniversity Microelectronics CentreLeuvenBelgium
- Department of Neurosciences, KU LeuvenLeuvenBelgium
| | - Alan Urban
- Neuro-Electronics Research FlandersLeuvenBelgium
- Vlaams Instituut voor BiotechnologieLeuvenBelgium
- Interuniversity Microelectronics CentreLeuvenBelgium
- Department of Neurosciences, KU LeuvenLeuvenBelgium
| |
Collapse
|
10
|
Ueta Y, Miyata M. Functional and structural synaptic remodeling mechanisms underlying somatotopic organization and reorganization in the thalamus. Neurosci Biobehav Rev 2023; 152:105332. [PMID: 37524138 DOI: 10.1016/j.neubiorev.2023.105332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/09/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
The somatosensory system organizes the topographic representation of body maps, termed somatotopy, at all levels of an ascending hierarchy. Postnatal maturation of somatotopy establishes optimal somatosensation, whereas deafferentation in adults reorganizes somatotopy, which underlies pathological somatosensation, such as phantom pain and complex regional pain syndrome. Here, we focus on the mouse whisker somatosensory thalamus to study how sensory experience shapes the fine topography of afferent connectivity during the critical period and what mechanisms remodel it and drive a large-scale somatotopic reorganization after peripheral nerve injury. We will review our findings that, following peripheral nerve injury in adults, lemniscal afferent synapses onto thalamic neurons are remodeled back to immature configuration, as if the critical period reopens. The remodeling process is initiated with local activation of microglia in the brainstem somatosensory nucleus downstream to injured nerves and heterosynaptically controlled by input from GABAergic and cortical neurons to thalamic neurons. These fruits of thalamic studies complement well-studied cortical mechanisms of somatotopic organization and reorganization and unveil potential intervention points in treating pathological somatosensation.
Collapse
Affiliation(s)
- Yoshifumi Ueta
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Mariko Miyata
- Division of Neurophysiology, Department of Physiology, School of Medicine, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| |
Collapse
|
11
|
Connectomic analysis of thalamus-driven disinhibition in cortical layer 4. Cell Rep 2022; 41:111476. [DOI: 10.1016/j.celrep.2022.111476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/29/2022] [Accepted: 09/19/2022] [Indexed: 11/18/2022] Open
|
12
|
Wang X, Zhang Y, Zhu L, Bai S, Li R, Sun H, Qi R, Cai R, Li M, Jia G, Cao X, Schriver KE, Li X, Gao L. Selective corticofugal modulation on sound processing in auditory thalamus of awake marmosets. Cereb Cortex 2022; 33:3372-3386. [PMID: 35851798 PMCID: PMC10068278 DOI: 10.1093/cercor/bhac278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/25/2022] [Accepted: 06/25/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
Cortical feedback has long been considered crucial for the modulation of sensory perception and recognition. However, previous studies have shown varying modulatory effects of the primary auditory cortex (A1) on the auditory response of subcortical neurons, which complicate interpretations regarding the function of A1 in sound perception and recognition. This has been further complicated by studies conducted under different brain states. In the current study, we used cryo-inactivation in A1 to examine the role of corticothalamic feedback on medial geniculate body (MGB) neurons in awake marmosets. The primary effects of A1 inactivation were a frequency-specific decrease in the auditory response of most MGB neurons coupled with an increased spontaneous firing rate, which together resulted in a decrease in the signal-to-noise ratio. In addition, we report for the first time that A1 robustly modulated the long-lasting sustained response of MGB neurons, which changed the frequency tuning after A1 inactivation, e.g. some neurons are sharper with corticofugal feedback and some get broader. Taken together, our results demonstrate that corticothalamic modulation in awake marmosets serves to enhance sensory processing in a manner similar to center-surround models proposed in visual and somatosensory systems, a finding which supports common principles of corticothalamic processing across sensory systems.
Collapse
Affiliation(s)
- Xiaohui Wang
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Yuanqing Zhang
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Lin Zhu
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Siyi Bai
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Rui Li
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Hao Sun
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Runze Qi
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Ruolan Cai
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Min Li
- Division of Psychology , State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, No.19, Xinjiekouwai St, Haidian District, Beijing 100875 , China
| | - Guoqiang Jia
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Xinyuan Cao
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
| | - Kenneth E Schriver
- School of Brain Science and Brain Medicine , Zhejiang University School of Medicine, Hangzhou 310020 , China
| | - Xinjian Li
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
- Department of Neurobiology , NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310020 , China
| | - Lixia Gao
- Department of Neurology of the Second Affiliated Hospital , College of Biomedical Engineering and Instrument Science, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University, School of Medicine, Zhejiang University, 268 Kaixuan Road, Science Building, Room 206, Hangzhou, Zhejiang 310020 , China
- Department of Neurobiology , NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310020 , China
| |
Collapse
|
13
|
Studtmann C, Ladislav M, Topolski MA, Safari M, Swanger SA. NaV1.1 haploinsufficiency impairs glutamatergic and GABAergic neuron function in the thalamus. Neurobiol Dis 2022; 167:105672. [DOI: 10.1016/j.nbd.2022.105672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
|
14
|
Corticothalamic feedback sculpts visual spatial integration in mouse thalamus. Nat Neurosci 2021; 24:1711-1720. [PMID: 34764474 DOI: 10.1038/s41593-021-00943-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/15/2021] [Indexed: 11/08/2022]
Abstract
En route from the retina to the cortex, visual information passes through the dorsolateral geniculate nucleus (dLGN) of the thalamus, where extensive corticothalamic (CT) feedback has been suggested to modulate spatial processing. How this modulation arises from direct excitatory and indirect inhibitory CT feedback pathways remains enigmatic. Here, we show that in awake mice, retinotopically organized cortical feedback sharpens receptive fields (RFs) and increases surround suppression in the dLGN. Guided by a network model indicating that widespread inhibitory CT feedback is necessary to reproduce these effects, we targeted the visual sector of the thalamic reticular nucleus (visTRN) for recordings. We found that visTRN neurons have large RFs, show little surround suppression and exhibit strong feedback-dependent responses to large stimuli. These features make them an ideal candidate for mediating feedback-enhanced surround suppression in the dLGN. We conclude that cortical feedback sculpts spatial integration in the dLGN, likely via recruitment of neurons in the visTRN.
Collapse
|
15
|
Whilden CM, Chevée M, An SY, Brown SP. The synaptic inputs and thalamic projections of two classes of layer 6 corticothalamic neurons in primary somatosensory cortex of the mouse. J Comp Neurol 2021; 529:3751-3771. [PMID: 33908623 PMCID: PMC8551307 DOI: 10.1002/cne.25163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 12/11/2022]
Abstract
Although corticothalamic neurons (CThNs) represent the largest source of synaptic input to thalamic neurons, their role in regulating thalamocortical interactions remains incompletely understood. CThNs in sensory cortex have historically been divided into two types, those with cell bodies in Layer 6 (L6) that project back to primary sensory thalamic nuclei and those with cell bodies in Layer 5 (L5) that project to higher-order thalamic nuclei and subcortical structures. Recently, diversity among L6 CThNs has increasingly been appreciated. In the rodent somatosensory cortex, two major classes of L6 CThNs have been identified: one projecting to the ventral posterior medial nucleus (VPM-only L6 CThNs) and one projecting to both VPM and the posterior medial nucleus (VPM/POm L6 CThNs). Using rabies-based tracing methods in mice, we asked whether these L6 CThN populations integrate similar synaptic inputs. We found that both types of L6 CThNs received local input from somatosensory cortex and thalamic input from VPM and POm. However, VPM/POm L6 CThNs received significantly more input from a number of additional cortical areas, higher order thalamic nuclei, and subcortical structures. We also found that the two types of L6 CThNs target different functional regions within the thalamic reticular nucleus (TRN). Together, our results indicate that these two types of L6 CThNs represent distinct information streams in the somatosensory cortex and suggest that VPM-only L6 CThNs regulate, via their more restricted circuits, sensory responses related to a cortical column while VPM/POm L6 CThNs, which are integrated into more widespread POm-related circuits, relay contextual information.
Collapse
Affiliation(s)
- Courtney Michelle Whilden
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA
| | - Maxime Chevée
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Biochemistry, Cellular and Molecular Biology Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | - Seong Yeol An
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Solange Pezon Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Antunes FM, Malmierca MS. Corticothalamic Pathways in Auditory Processing: Recent Advances and Insights From Other Sensory Systems. Front Neural Circuits 2021; 15:721186. [PMID: 34489648 PMCID: PMC8418311 DOI: 10.3389/fncir.2021.721186] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/28/2021] [Indexed: 11/24/2022] Open
Abstract
The corticothalamic (CT) pathways emanate from either Layer 5 (L5) or 6 (L6) of the neocortex and largely outnumber the ascending, thalamocortical pathways. The CT pathways provide the anatomical foundations for an intricate, bidirectional communication between thalamus and cortex. They act as dynamic circuits of information transfer with the ability to modulate or even drive the response properties of target neurons at each synaptic node of the circuit. L6 CT feedback pathways enable the cortex to shape the nature of its driving inputs, by directly modulating the sensory message arriving at the thalamus. L5 CT pathways can drive the postsynaptic neurons and initiate a transthalamic corticocortical circuit by which cortical areas communicate with each other. For this reason, L5 CT pathways place the thalamus at the heart of information transfer through the cortical hierarchy. Recent evidence goes even further to suggest that the thalamus via CT pathways regulates functional connectivity within and across cortical regions, and might be engaged in cognition, behavior, and perceptual inference. As descending pathways that enable reciprocal and context-dependent communication between thalamus and cortex, we venture that CT projections are particularly interesting in the context of hierarchical perceptual inference formulations such as those contemplated in predictive processing schemes, which so far heavily rely on cortical implementations. We discuss recent proposals suggesting that the thalamus, and particularly higher order thalamus via transthalamic pathways, could coordinate and contextualize hierarchical inference in cortical hierarchies. We will explore these ideas with a focus on the auditory system.
Collapse
Affiliation(s)
- Flora M. Antunes
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain
| | - Manuel S. Malmierca
- Cognitive and Auditory Neuroscience Laboratory (CANELAB), Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca, Salamanca, Spain
- Institute for Biomedical Research of Salamanca, University of Salamanca, Salamanca, Spain
- Department of Cell Biology and Pathology, School of Medicine, University of Salamanca, Salamanca, Spain
| |
Collapse
|
17
|
Homma NY, Bajo VM. Lemniscal Corticothalamic Feedback in Auditory Scene Analysis. Front Neurosci 2021; 15:723893. [PMID: 34489635 PMCID: PMC8417129 DOI: 10.3389/fnins.2021.723893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/30/2021] [Indexed: 12/15/2022] Open
Abstract
Sound information is transmitted from the ear to central auditory stations of the brain via several nuclei. In addition to these ascending pathways there exist descending projections that can influence the information processing at each of these nuclei. A major descending pathway in the auditory system is the feedback projection from layer VI of the primary auditory cortex (A1) to the ventral division of medial geniculate body (MGBv) in the thalamus. The corticothalamic axons have small glutamatergic terminals that can modulate thalamic processing and thalamocortical information transmission. Corticothalamic neurons also provide input to GABAergic neurons of the thalamic reticular nucleus (TRN) that receives collaterals from the ascending thalamic axons. The balance of corticothalamic and TRN inputs has been shown to refine frequency tuning, firing patterns, and gating of MGBv neurons. Therefore, the thalamus is not merely a relay stage in the chain of auditory nuclei but does participate in complex aspects of sound processing that include top-down modulations. In this review, we aim (i) to examine how lemniscal corticothalamic feedback modulates responses in MGBv neurons, and (ii) to explore how the feedback contributes to auditory scene analysis, particularly on frequency and harmonic perception. Finally, we will discuss potential implications of the role of corticothalamic feedback in music and speech perception, where precise spectral and temporal processing is essential.
Collapse
Affiliation(s)
- Natsumi Y. Homma
- Center for Integrative Neuroscience, University of California, San Francisco, San Francisco, CA, United States
- Coleman Memorial Laboratory, Department of Otolaryngology – Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Victoria M. Bajo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Saldeitis K, Jeschke M, Budinger E, Ohl FW, Happel MFK. Laser-Induced Apoptosis of Corticothalamic Neurons in Layer VI of Auditory Cortex Impact on Cortical Frequency Processing. Front Neural Circuits 2021; 15:659280. [PMID: 34322001 PMCID: PMC8311662 DOI: 10.3389/fncir.2021.659280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
Corticofugal projections outnumber subcortical input projections by far. However, the specific role for signal processing of corticofugal feedback is still less well understood in comparisonto the feedforward projection. Here, we lesioned corticothalamic (CT) neurons in layers V and/or VI of the auditory cortex of Mongolian gerbils by laser-induced photolysis to investigate their contribution to cortical activation patterns. We have used laminar current-source density (CSD) recordings of tone-evoked responses and could show that, particularly, lesion of CT neurons in layer VI affected cortical frequency processing. Specifically, we found a decreased gain of best-frequency input in thalamocortical (TC)-recipient input layers that correlated with the relative lesion of layer VI neurons, but not layer V neurons. Using cortical silencing with the GABA a -agonist muscimol and layer-specific intracortical microstimulation (ICMS), we found that direct activation of infragranular layers recruited a local recurrent cortico-thalamo-cortical loop of synaptic input. This recurrent feedback was also only interrupted when lesioning layer VI neurons, but not cells in layer V. Our study thereby shows distinct roles of these two types of CT neurons suggesting a particular impact of CT feedback from layer VI to affect the local feedforward frequency processing in auditory cortex.
Collapse
Affiliation(s)
- Katja Saldeitis
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Auditory Neuroscience and Optogenetics Group, Cognitive Hearing in Primates Lab, German Primate Center, Göttingen, Germany.,Institute for Auditory Neuroscience, University Medical Center Goettingen, Göttingen, Germany
| | - Marcus Jeschke
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Auditory Neuroscience and Optogenetics Group, Cognitive Hearing in Primates Lab, German Primate Center, Göttingen, Germany.,Institute for Auditory Neuroscience, University Medical Center Goettingen, Göttingen, Germany
| | - Eike Budinger
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Frank W Ohl
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Institute for Auditory Neuroscience, University Medical Center Goettingen, Göttingen, Germany.,Institute of Biology (IBIO), University Magdeburg, Magdeburg, Germany
| | - Max F K Happel
- Department of Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Medical School Berlin, Berlin, Germany
| |
Collapse
|
19
|
A Thalamic Reticular Circuit for Head Direction Cell Tuning and Spatial Navigation. Cell Rep 2021; 31:107747. [PMID: 32521272 DOI: 10.1016/j.celrep.2020.107747] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 02/13/2020] [Accepted: 05/18/2020] [Indexed: 01/13/2023] Open
Abstract
As we navigate in space, external landmarks and internal information guide our movement. Circuit and synaptic mechanisms that integrate these cues with head-direction (HD) signals remain, however, unclear. We identify an excitatory synaptic projection from the presubiculum (PreS) and the multisensory-associative retrosplenial cortex (RSC) to the anterodorsal thalamic reticular nucleus (TRN), so far classically implied in gating sensory information flow. In vitro, projections to TRN involve AMPA/NMDA-type glutamate receptors that initiate TRN cell burst discharge and feedforward inhibition of anterior thalamic nuclei. In vivo, chemogenetic anterodorsal TRN inhibition modulates PreS/RSC-induced anterior thalamic firing dynamics, broadens the tuning of thalamic HD cells, and leads to preferential use of allo- over egocentric search strategies in the Morris water maze. TRN-dependent thalamic inhibition is thus an integral part of limbic navigational circuits wherein it coordinates external sensory and internal HD signals to regulate the choice of search strategies during spatial navigation.
Collapse
|
20
|
Untangling the cortico-thalamo-cortical loop: cellular pieces of a knotty circuit puzzle. Nat Rev Neurosci 2021; 22:389-406. [PMID: 33958775 DOI: 10.1038/s41583-021-00459-3] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/22/2022]
Abstract
Functions of the neocortex depend on its bidirectional communication with the thalamus, via cortico-thalamo-cortical (CTC) loops. Recent work dissecting the synaptic connectivity in these loops is generating a clearer picture of their cellular organization. Here, we review findings across sensory, motor and cognitive areas, focusing on patterns of cell type-specific synaptic connections between the major types of cortical and thalamic neurons. We outline simple and complex CTC loops, and note features of these loops that appear to be general versus specialized. CTC loops are tightly interlinked with local cortical and corticocortical (CC) circuits, forming extended chains of loops that are probably critical for communication across hierarchically organized cerebral networks. Such CTC-CC loop chains appear to constitute a modular unit of organization, serving as scaffolding for area-specific structural and functional modifications. Inhibitory neurons and circuits are embedded throughout CTC loops, shaping the flow of excitation. We consider recent findings in the context of established CTC and CC circuit models, and highlight current efforts to pinpoint cell type-specific mechanisms in CTC loops involved in consciousness and perception. As pieces of the connectivity puzzle fall increasingly into place, this knowledge can guide further efforts to understand structure-function relationships in CTC loops.
Collapse
|
21
|
Grossberg S. A Canonical Laminar Neocortical Circuit Whose Bottom-Up, Horizontal, and Top-Down Pathways Control Attention, Learning, and Prediction. Front Syst Neurosci 2021; 15:650263. [PMID: 33967708 PMCID: PMC8102731 DOI: 10.3389/fnsys.2021.650263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/29/2021] [Indexed: 11/27/2022] Open
Abstract
All perceptual and cognitive circuits in the human cerebral cortex are organized into layers. Specializations of a canonical laminar network of bottom-up, horizontal, and top-down pathways carry out multiple kinds of biological intelligence across different neocortical areas. This article describes what this canonical network is and notes that it can support processes as different as 3D vision and figure-ground perception; attentive category learning and decision-making; speech perception; and cognitive working memory (WM), planning, and prediction. These processes take place within and between multiple parallel cortical streams that obey computationally complementary laws. The interstream interactions that are needed to overcome these complementary deficiencies mix cell properties so thoroughly that some authors have noted the difficulty of determining what exactly constitutes a cortical stream and the differences between streams. The models summarized herein explain how these complementary properties arise, and how their interstream interactions overcome their computational deficiencies to support effective goal-oriented behaviors.
Collapse
Affiliation(s)
- Stephen Grossberg
- Graduate Program in Cognitive and Neural Systems, Departments of Mathematics and Statistics, Psychological and Brain Sciences, and Biomedical Engineering, Center for Adaptive Systems, Boston University, Boston, MA, United States
| |
Collapse
|
22
|
Song Y, Su Q, Yang Q, Zhao R, Yin G, Qin W, Iannetti GD, Yu C, Liang M. Feedforward and feedback pathways of nociceptive and tactile processing in human somatosensory system: A study of dynamic causal modeling of fMRI data. Neuroimage 2021; 234:117957. [PMID: 33744457 DOI: 10.1016/j.neuroimage.2021.117957] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022] Open
Abstract
Nociceptive and tactile information is processed in the somatosensory system via reciprocal (i.e., feedforward and feedback) projections between the thalamus, the primary (S1) and secondary (S2) somatosensory cortices. The exact hierarchy of nociceptive and tactile information processing within this 'thalamus-S1-S2' network and whether the processing hierarchy differs between the two somatosensory submodalities remains unclear. In particular, two questions related to the ascending and descending pathways have not been addressed. For the ascending pathways, whether tactile or nociceptive information is processed in parallel (i.e., 'thalamus-S1' and 'thalamus-S2') or in serial (i.e., 'thalamus-S1-S2') remains controversial. For the descending pathways, how corticothalamic feedback regulates nociceptive and tactile processing also remains elusive. Here, we aimed to investigate the hierarchical organization for the processing of nociceptive and tactile information in the 'thalamus-S1-S2' network using dynamic causal modeling (DCM) combined with high-temporal-resolution fMRI. We found that, for both nociceptive and tactile information processing, both S1 and S2 received inputs from thalamus, indicating a parallel structure of ascending pathways for nociceptive and tactile information processing. Furthermore, we observed distinct corticothalamic feedback regulations from S1 and S2, showing that S1 generally exerts inhibitory feedback regulation independent of external stimulation whereas S2 provides additional inhibition to the thalamic activity during nociceptive and tactile information processing in humans. These findings revealed that nociceptive and tactile information processing have similar hierarchical organization within the somatosensory system in the human brain.
Collapse
Affiliation(s)
- Yingchao Song
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China
| | - Qian Su
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin, China
| | - Qingqing Yang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China
| | - Rui Zhao
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China; Department of Orthopedics Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Guotao Yin
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Gian Domenico Iannetti
- Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China; Chinese Academy of Sciences (CAS) Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Meng Liang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
23
|
Avram M, Rogg H, Korda A, Andreou C, Müller F, Borgwardt S. Bridging the Gap? Altered Thalamocortical Connectivity in Psychotic and Psychedelic States. Front Psychiatry 2021; 12:706017. [PMID: 34721097 PMCID: PMC8548726 DOI: 10.3389/fpsyt.2021.706017] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022] Open
Abstract
Psychiatry has a well-established tradition of comparing drug-induced experiences to psychotic symptoms, based on shared phenomena such as altered perceptions. The present review focuses on experiences induced by classic psychedelics, which are substances capable of eliciting powerful psychoactive effects, characterized by distortions/alterations of several neurocognitive processes (e.g., hallucinations). Herein we refer to such experiences as psychedelic states. Psychosis is a clinical syndrome defined by impaired reality testing, also characterized by impaired neurocognitive processes (e.g., hallucinations and delusions). In this review we refer to acute phases of psychotic disorders as psychotic states. Neuropharmacological investigations have begun to characterize the neurobiological mechanisms underpinning the shared and distinct neurophysiological changes observed in psychedelic and psychotic states. Mounting evidence indicates changes in thalamic filtering, along with disturbances in cortico-striato-pallido-thalamo-cortical (CSPTC)-circuitry, in both altered states. Notably, alterations in thalamocortical functional connectivity were reported by functional magnetic resonance imaging (fMRI) studies. Thalamocortical dysconnectivity and its clinical relevance are well-characterized in psychotic states, particularly in schizophrenia research. Specifically, studies report hyperconnectivity between the thalamus and sensorimotor cortices and hypoconnectivity between the thalamus and prefrontal cortices, associated with patients' psychotic symptoms and cognitive disturbances, respectively. Intriguingly, studies also report hyperconnectivity between the thalamus and sensorimotor cortices in psychedelic states, correlating with altered visual and auditory perceptions. Taken together, the two altered states appear to share clinically and functionally relevant dysconnectivity patterns. In this review we discuss recent findings of thalamocortical dysconnectivity, its putative extension to CSPTC circuitry, along with its clinical implications and future directions.
Collapse
Affiliation(s)
- Mihai Avram
- Department of Psychiatry and Psychotherapy, Schleswig Holstein University Hospital, University of Lübeck, Lübeck, Germany
| | - Helena Rogg
- Department of Psychiatry and Psychotherapy, Schleswig Holstein University Hospital, University of Lübeck, Lübeck, Germany
| | - Alexandra Korda
- Department of Psychiatry and Psychotherapy, Schleswig Holstein University Hospital, University of Lübeck, Lübeck, Germany
| | - Christina Andreou
- Department of Psychiatry and Psychotherapy, Schleswig Holstein University Hospital, University of Lübeck, Lübeck, Germany
| | - Felix Müller
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Department of Psychiatry and Psychotherapy, Schleswig Holstein University Hospital, University of Lübeck, Lübeck, Germany
| |
Collapse
|
24
|
Wolff M, Morceau S, Folkard R, Martin-Cortecero J, Groh A. A thalamic bridge from sensory perception to cognition. Neurosci Biobehav Rev 2021; 120:222-235. [PMID: 33246018 DOI: 10.1016/j.neubiorev.2020.11.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/07/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022]
Abstract
The ability to adapt to dynamic environments requires tracking multiple signals with variable sensory salience and fluctuating behavioral relevance. This complex process requires integrative crosstalk between sensory and cognitive brain circuits. Functional interactions between cortical and thalamic regions are now considered essential for both sensory perception and cognition but a clear account of the functional link between sensory and cognitive circuits is currently lacking. This review aims to document how thalamic nuclei may effectively act as a bridge allowing to fuse perceptual and cognitive events into meaningful experiences. After highlighting key aspects of thalamocortical circuits such as the classic first-order/higher-order dichotomy, we consider the role of the thalamic reticular nucleus from directed attention to cognition. We next summarize research relying on Pavlovian learning paradigms, showing that both first-order and higher-order thalamic nuclei contribute to associative learning. Finally, we propose that modulator inputs reaching all thalamic nuclei may be critical for integrative purposes when environmental signals are computed. Altogether, the thalamus appears as the bridge linking perception, cognition and possibly affect.
Collapse
Affiliation(s)
- M Wolff
- CNRS, INCIA, UMR 5287, Bordeaux, France; University of Bordeaux, INCIA, UMR 5287, Bordeaux, France.
| | - S Morceau
- CNRS, INCIA, UMR 5287, Bordeaux, France; University of Bordeaux, INCIA, UMR 5287, Bordeaux, France
| | - R Folkard
- Institute of Physiology and Pathophysiology, Medical Biophysics, Heidelberg University, INF 326, 69120, Heidelberg, Germany
| | - J Martin-Cortecero
- Institute of Physiology and Pathophysiology, Medical Biophysics, Heidelberg University, INF 326, 69120, Heidelberg, Germany
| | - A Groh
- Institute of Physiology and Pathophysiology, Medical Biophysics, Heidelberg University, INF 326, 69120, Heidelberg, Germany
| |
Collapse
|
25
|
Antonini A, Sattin A, Moroni M, Bovetti S, Moretti C, Succol F, Forli A, Vecchia D, Rajamanickam VP, Bertoncini A, Panzeri S, Liberale C, Fellin T. Extended field-of-view ultrathin microendoscopes for high-resolution two-photon imaging with minimal invasiveness. eLife 2020; 9:58882. [PMID: 33048047 PMCID: PMC7685710 DOI: 10.7554/elife.58882] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/12/2020] [Indexed: 11/24/2022] Open
Abstract
Imaging neuronal activity with high and homogeneous spatial resolution across the field-of-view (FOV) and limited invasiveness in deep brain regions is fundamental for the progress of neuroscience, yet is a major technical challenge. We achieved this goal by correcting optical aberrations in gradient index lens-based ultrathin (≤500 µm) microendoscopes using aspheric microlenses generated through 3D-microprinting. Corrected microendoscopes had extended FOV (eFOV) with homogeneous spatial resolution for two-photon fluorescence imaging and required no modification of the optical set-up. Synthetic calcium imaging data showed that, compared to uncorrected endoscopes, eFOV-microendoscopes led to improved signal-to-noise ratio and more precise evaluation of correlated neuronal activity. We experimentally validated these predictions in awake head-fixed mice. Moreover, using eFOV-microendoscopes we demonstrated cell-specific encoding of behavioral state-dependent information in distributed functional subnetworks in a primary somatosensory thalamic nucleus. eFOV-microendoscopes are, therefore, small-cross-section ready-to-use tools for deep two-photon functional imaging with unprecedentedly high and homogeneous spatial resolution.
Collapse
Affiliation(s)
- Andrea Antonini
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,Nanostructures Department, Istituto Italiano di Tecnologia, Genova, Italy
| | - Andrea Sattin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,University of Genova, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| | - Monica Moroni
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy.,Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy.,Center for Mind and Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Serena Bovetti
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Claudio Moretti
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,University of Genova, Genova, Italy
| | - Francesca Succol
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Angelo Forli
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| | - Dania Vecchia
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| | - Vijayakumar P Rajamanickam
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,Nanostructures Department, Istituto Italiano di Tecnologia, Genova, Italy.,Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Andrea Bertoncini
- Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Stefano Panzeri
- Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy.,Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems @UniTn, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Carlo Liberale
- Nanostructures Department, Istituto Italiano di Tecnologia, Genova, Italy.,Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy.,Neural Coding Laboratory, Istituto Italiano di Tecnologia, Genova and Rovereto, Italy
| |
Collapse
|
26
|
Staiger JF, Petersen CCH. Neuronal Circuits in Barrel Cortex for Whisker Sensory Perception. Physiol Rev 2020; 101:353-415. [PMID: 32816652 DOI: 10.1152/physrev.00019.2019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The array of whiskers on the snout provides rodents with tactile sensory information relating to the size, shape and texture of objects in their immediate environment. Rodents can use their whiskers to detect stimuli, distinguish textures, locate objects and navigate. Important aspects of whisker sensation are thought to result from neuronal computations in the whisker somatosensory cortex (wS1). Each whisker is individually represented in the somatotopic map of wS1 by an anatomical unit named a 'barrel' (hence also called barrel cortex). This allows precise investigation of sensory processing in the context of a well-defined map. Here, we first review the signaling pathways from the whiskers to wS1, and then discuss current understanding of the various types of excitatory and inhibitory neurons present within wS1. Different classes of cells can be defined according to anatomical, electrophysiological and molecular features. The synaptic connectivity of neurons within local wS1 microcircuits, as well as their long-range interactions and the impact of neuromodulators, are beginning to be understood. Recent technological progress has allowed cell-type-specific connectivity to be related to cell-type-specific activity during whisker-related behaviors. An important goal for future research is to obtain a causal and mechanistic understanding of how selected aspects of tactile sensory information are processed by specific types of neurons in the synaptically connected neuronal networks of wS1 and signaled to downstream brain areas, thus contributing to sensory-guided decision-making.
Collapse
Affiliation(s)
- Jochen F Staiger
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
27
|
Lohse M, Bajo VM, King AJ, Willmore BDB. Neural circuits underlying auditory contrast gain control and their perceptual implications. Nat Commun 2020; 11:324. [PMID: 31949136 PMCID: PMC6965083 DOI: 10.1038/s41467-019-14163-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/19/2019] [Indexed: 11/09/2022] Open
Abstract
Neural adaptation enables sensory information to be represented optimally in the brain despite large fluctuations over time in the statistics of the environment. Auditory contrast gain control represents an important example, which is thought to arise primarily from cortical processing. Here we show that neurons in the auditory thalamus and midbrain of mice show robust contrast gain control, and that this is implemented independently of cortical activity. Although neurons at each level exhibit contrast gain control to similar degrees, adaptation time constants become longer at later stages of the processing hierarchy, resulting in progressively more stable representations. We also show that auditory discrimination thresholds in human listeners compensate for changes in contrast, and that the strength of this perceptual adaptation can be predicted from physiological measurements. Contrast adaptation is therefore a robust property of both the subcortical and cortical auditory system and accounts for the short-term adaptability of perceptual judgments.
Collapse
Affiliation(s)
- Michael Lohse
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
| | - Victoria M Bajo
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Andrew J King
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
| | - Ben D B Willmore
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| |
Collapse
|
28
|
Halder P, Kambi N, Chand P, Jain N. Altered Expression of Reorganized Inputs as They Ascend From the Cuneate Nucleus to Cortical Area 3b in Monkeys With Long-Term Spinal Cord Injuries. Cereb Cortex 2019; 28:3922-3938. [PMID: 29045569 DOI: 10.1093/cercor/bhx256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/12/2017] [Indexed: 01/03/2023] Open
Abstract
Chronic deafferentations in adult mammals result in reorganization of the brain. Lesions of the dorsal columns of the spinal cord at cervical levels in monkeys result in expansion of the intact chin inputs into the deafferented hand representation in area 3b, second somatosensory (S2) and parietal ventral (PV) areas of the somatosensory cortex, ventroposterior lateral nucleus (VPL) of the thalamus, and cuneate nucleus of the brainstem. Here, we describe the extent and nature of reorganization of the cuneate and gracile nuclei of adult macaque monkeys with chronic unilateral lesions of the dorsal columns, and compare it with the reorganization of area 3b in the same monkeys. In both, area 3b and the cuneate nucleus chin inputs expand to reactivate the deafferented neurons. However, unlike area 3b, neurons in the cuneate nucleus also acquire receptive fields on the shoulder, neck, and occiput. A comparison with the previously published results shows that reorganization in the cuneate nucleus is similar to that in VPL. Thus, the emergent topography following deafferentations by spinal cord injuries undergoes transformation as the reorganized inputs ascend from subcortical nuclei to area 3b. The results help us understand mechanisms of the brain plasticity following spinal cord injuries.
Collapse
Affiliation(s)
| | - Niranjan Kambi
- National Brain Research Centre, N.H. 8, Manesar, Haryana, India
| | - Prem Chand
- National Brain Research Centre, N.H. 8, Manesar, Haryana, India
| | - Neeraj Jain
- National Brain Research Centre, N.H. 8, Manesar, Haryana, India
| |
Collapse
|
29
|
Pauzin FP, Schwarz N, Krieger P. Activation of Corticothalamic Layer 6 Cells Decreases Angular Tuning in Mouse Barrel Cortex. Front Neural Circuits 2019; 13:67. [PMID: 31736714 PMCID: PMC6838007 DOI: 10.3389/fncir.2019.00067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/30/2019] [Indexed: 01/21/2023] Open
Abstract
In the mouse whisker system, the contribution of L6 corticothalamic cells (L6 CT) to cortical and thalamic processing of the whisker deflection direction was investigated. A genetically defined population of L6 CT cells project to infragranular GABAergic interneurons that hyperpolarize neurons in somatosensory barrel cortex (BC). Optogenetic activation of these neurons switched BC to an adapted mode in which excitatory cells lost their angular tuning. In contrast, however, this was not the case with a general activation of inhibitory interneurons via optogenetic activation of Gad2-expressing cells. The decrease in angular tuning, when L6 CT cells were activated, was due to changes in cortical inhibition, and not inherited from changes in the thalamic output. Furthermore, L6 CT driven cortical inhibition, but not the general activation of GABAergic interneurons, abolished adaptation to whisker responses. In the present study, evidence is presented that a subpopulation of L6 CT activates a specific circuit of GABAergic interneurons that will predispose neocortex toward processing of tactile information requiring multiple whisker touches, such as in a texture discrimination task.
Collapse
Affiliation(s)
- François Philippe Pauzin
- Department of Systems Neuroscience, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Nadja Schwarz
- Department of Systems Neuroscience, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| | - Patrik Krieger
- Department of Systems Neuroscience, Faculty of Medicine, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
30
|
Pauzin FP, Krieger P. A Corticothalamic Circuit for Refining Tactile Encoding. Cell Rep 2019; 23:1314-1325. [PMID: 29719247 DOI: 10.1016/j.celrep.2018.03.128] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/12/2018] [Accepted: 03/29/2018] [Indexed: 10/17/2022] Open
Abstract
A fundamental task for the brain is to determine which aspects of the continuous flow of information is the most relevant in a given behavioral situation. The information flow is regulated via dynamic interactions between feedforward and feedback pathways. One such pathway is via corticothalamic feedback. Layer 6 (L6) corticothalamic (CT) cells make both cortical and thalamic connections and, therefore, are key modulators of activity in both areas. The functional properties of L6 CT cells in sensory processing were investigated in the mouse whisker system. Optogenetic activation of L6 CT neurons decreased spontaneous spiking, with the net effect that a whisker-evoked response was more accurately detected (larger evoked-to-spontaneous spiking ratio) but at the expense of reducing the response probability. In addition, L6 CT activation decreases sensory adaptation in both the thalamus and cortex. L6 CT activity can thus tune the tactile system, depending on the behaviorally relevant tactile input.
Collapse
Affiliation(s)
- François Philippe Pauzin
- Department of Systems Neuroscience, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany
| | - Patrik Krieger
- Department of Systems Neuroscience, Medical Faculty, Ruhr University Bochum, 44801 Bochum, Germany.
| |
Collapse
|
31
|
Chaudhary R, Rema V. Deficits in Behavioral Functions of Intact Barrel Cortex Following Lesions of Homotopic Contralateral Cortex. Front Syst Neurosci 2018; 12:57. [PMID: 30524251 PMCID: PMC6262316 DOI: 10.3389/fnsys.2018.00057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 10/17/2018] [Indexed: 12/02/2022] Open
Abstract
Focal unilateral injuries to the somatosensory whisker barrel cortex have been shown cause long-lasting deficits in the activity and experience-dependent plasticity of neurons in the intact contralateral barrel cortex. However, the long-term effect of these deficits on behavioral functions of the intact contralesional cortex is not clear. In this study, we used the “Gap-crossing task” a barrel cortex-dependent, whisker-sensitive, tactile behavior to test the hypothesis that unilateral lesions of the somatosensory cortex would affect behavioral functions of the intact somatosensory cortex and degrade the execution of a bilaterally learnt behavior. Adult rats were trained to perform the Gap-crossing task using whiskers on both sides of the face. The barrel cortex was then lesioned unilaterally by subpial aspiration. As observed in other studies, when rats used whiskers that directly projected to the lesioned hemisphere the performance of Gap-crossing was drastically compromised, perhaps due to direct effect of lesion. Significant and persistent deficits were present when the lesioned rats performed Gap-crossing task using whiskers that projected to the intact cortex. The deficits were specific to performance of the task at the highest levels of sensitivity. Comparable deficits were seen when normal, bilaterally trained, rats performed the Gap-crossing task with only the whiskers on one side of the face or when they used only two rows of whiskers (D row and E row) intact on both side of the face. These findings indicate that the prolonged impairment in execution of the learnt task by rats with unilateral lesions of somatosensory cortex could be because sensory inputs from one set of whiskers to the intact cortex is insufficient to provide adequate sensory information at higher thresholds of detection. Our data suggest that optimal performance of somatosensory behavior requires dynamic activity-driven interhemispheric interactions from the entire somatosensory inputs between homotopic areas of the cerebral cortex. These results imply that focal unilateral cortical injuries, including those in humans, are likely to have widespread bilateral effects on information processing including in intact areas of the cortex.
Collapse
Affiliation(s)
| | - V Rema
- National Brain Research Centre, Manesar, India
| |
Collapse
|
32
|
Abstract
The analysis and interpretation of somatosensory information are performed by a complex network of brain areas located mainly in the parietal cortex. Somatosensory deficits are therefore a common impairment following lesions of the parietal lobe. This chapter summarizes the clinical presentation, examination, prognosis, and therapy of sensory deficits, along with current knowledge about the anatomy and function of the somatosensory system. We start by reviewing how somatosensory signals are transmitted to and processed by the parietal lobe, along with the anatomic and functional features of the somatosensory system. In this context, we highlight the importance of the thalamus for processing somatosensory information in the parietal lobe. We discuss typical patterns of somatosensory deficits, their clinical examination, and how they can be differentiated through a careful neurologic examination that allows the investigator to deduce the location and size of the underlying lesion. In the context of adaption and rehabilitation of somatosensory functions, we delineate the importance of somatosensory information for motor performance and the prognostic evaluation of somatosensory deficits. Finally, we review current rehabilitation approaches for directing cortical reorganization in the appropriate direction and highlight some challenging questions that are unexplored in the field.
Collapse
Affiliation(s)
- Carsten M Klingner
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany; Biomagnetic Center, Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany.
| | - Otto W Witte
- Hans-Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
33
|
Wang W, Andolina IM, Lu Y, Jones HE, Sillito AM. Focal Gain Control of Thalamic Visual Receptive Fields by Layer 6 Corticothalamic Feedback. Cereb Cortex 2018; 28:267-280. [PMID: 27988493 DOI: 10.1093/cercor/bhw376] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/10/2016] [Indexed: 12/13/2022] Open
Abstract
The projections between the thalamus and primary visual cortex (V1) are a key reciprocal neural circuit, relaying retinal signals to cortical layers 4 & 6 while being simultaneously regulated by massive layer 6 corticothalamic feedback. Effectively dissecting the influence of this corticothalamic feedback circuit in higher mammals remains a challenge for vision research. By pharmacologically increasing the focal gain of visually driven layer 6 responses of cat V1 in a controlled fashion, we examined the effects of such focal cortical changes on the response amplitudes and spatial structure of the receptive fields (RFs) of individual dorsal lateral geniculate nucleus (dLGN) cells. We found that enhancing visually driven cortical feedback could facilitate or suppress the overall responses of dLGN cells, and such an effect was linked to the orientation preference of the cortical neuron. Related to these selective retinotopic gain changes, enhanced feedback induced the RFs of dLGN cells to expand, contract or shift their spatial focus. Our results provide further evidence for a functional mechanism through which the cortex can selectively gate visual information flow from the thalamus back to the visual cortex.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ian M Andolina
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yiliang Lu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Helen E Jones
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| | - Adam M Sillito
- Institute of Ophthalmology, University College London, Bath Street, London EC1V 9EL, UK
| |
Collapse
|
34
|
Crandall SR, Patrick SL, Cruikshank SJ, Connors BW. Infrabarrels Are Layer 6 Circuit Modules in the Barrel Cortex that Link Long-Range Inputs and Outputs. Cell Rep 2018; 21:3065-3078. [PMID: 29241536 DOI: 10.1016/j.celrep.2017.11.049] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 10/11/2017] [Accepted: 11/14/2017] [Indexed: 10/18/2022] Open
Abstract
The rodent somatosensory cortex includes well-defined examples of cortical columns-the barrel columns-that extend throughout the cortical depth and are defined by discrete clusters of neurons in layer 4 (L4) called barrels. Using the cell-type-specific Ntsr1-Cre mouse line, we found that L6 contains infrabarrels, readily identifiable units that align with the L4 barrels. Corticothalamic (CT) neurons and their local axons cluster within the infrabarrels, whereas corticocortical (CC) neurons are densest between infrabarrels. Optogenetic experiments showed that CC cells received robust input from somatosensory thalamic nuclei, whereas CT cells received much weaker thalamic inputs. We also found that CT neurons are intrinsically less excitable, revealing that both synaptic and intrinsic mechanisms contribute to the low firing rates of CT neurons often reported in vivo. In summary, infrabarrels are discrete cortical circuit modules containing two partially separated excitatory networks that link long-distance thalamic inputs with specific outputs.
Collapse
Affiliation(s)
- Shane R Crandall
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA.
| | - Saundra L Patrick
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Scott J Cruikshank
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| | - Barry W Connors
- Department of Neuroscience, Division of Biology and Medicine, Brown University, Providence, RI 02912, USA
| |
Collapse
|
35
|
Waiblinger C, Whitmire CJ, Sederberg A, Stanley GB, Schwarz C. Primary Tactile Thalamus Spiking Reflects Cognitive Signals. J Neurosci 2018; 38:4870-4885. [PMID: 29703788 PMCID: PMC6596129 DOI: 10.1523/jneurosci.2403-17.2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 03/30/2018] [Accepted: 04/08/2018] [Indexed: 11/21/2022] Open
Abstract
Little is known about whether information transfer at primary sensory thalamic nuclei is modified by behavioral context. Here we studied the influence of previous decisions/rewards on current choices and preceding spike responses of ventroposterior medial thalamus (VPm; the primary sensory thalamus in the rat whisker-related tactile system). We trained head-fixed rats to detect a ramp-like deflection of one whisker interspersed within ongoing white noise stimulation. Using generative modeling of behavior, we identify two task-related variables that are predictive of actual decisions. The first reflects task engagement on a local scale ("trial history": defined as the decisions and outcomes of a small number of past trials), whereas the other captures behavioral dynamics on a global scale ("satiation": slow dynamics of the response pattern along an entire session). Although satiation brought about a slow drift from Go to NoGo decisions during the session, trial history was related to local (trial-by-trial) patterning of Go and NoGo decisions. A second model that related the same predictors first to VPm spike responses, and from there to decisions, indicated that spiking, in contrast to behavior, is sensitive to trial history but relatively insensitive to satiation. Trial history influences VPm spike rates and regularity such that a history of Go decisions would predict fewer noise-driven spikes (but more regular ones), and more ramp-driven spikes. Neuronal activity in VPm, thus, is sensitive to local behavioral history, and may play an important role in higher-order cognitive signaling.SIGNIFICANCE STATEMENT It is an important question for perceptual and brain functions to find out whether cognitive signals modulate the sensory signal stream and if so, where in the brain this happens. This study provides evidence that decision and reward history can already be reflected in the ascending sensory pathway, on the level of first-order sensory thalamus. Cognitive signals are relayed very selectively such that only local trial history (spanning a few trials) but not global history (spanning an entire session) are reflected.
Collapse
Affiliation(s)
- Christian Waiblinger
- Systems Neurophysiology, Werner Reichardt Centre for Integrative Neuroscience
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany, and
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
| | - Clarissa J Whitmire
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
| | - Audrey Sederberg
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
| | - Garrett B Stanley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332
| | - Cornelius Schwarz
- Systems Neurophysiology, Werner Reichardt Centre for Integrative Neuroscience,
- Department of Cognitive Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076 Tübingen, Germany, and
| |
Collapse
|
36
|
Díaz B, Blank H, von Kriegstein K. Task-dependent modulation of the visual sensory thalamus assists visual-speech recognition. Neuroimage 2018; 178:721-734. [PMID: 29772380 DOI: 10.1016/j.neuroimage.2018.05.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 04/12/2018] [Accepted: 05/12/2018] [Indexed: 11/19/2022] Open
Abstract
The cerebral cortex modulates early sensory processing via feed-back connections to sensory pathway nuclei. The functions of this top-down modulation for human behavior are poorly understood. Here, we show that top-down modulation of the visual sensory thalamus (the lateral geniculate body, LGN) is involved in visual-speech recognition. In two independent functional magnetic resonance imaging (fMRI) studies, LGN response increased when participants processed fast-varying features of articulatory movements required for visual-speech recognition, as compared to temporally more stable features required for face identification with the same stimulus material. The LGN response during the visual-speech task correlated positively with the visual-speech recognition scores across participants. In addition, the task-dependent modulation was present for speech movements and did not occur for control conditions involving non-speech biological movements. In face-to-face communication, visual speech recognition is used to enhance or even enable understanding what is said. Speech recognition is commonly explained in frameworks focusing on cerebral cortex areas. Our findings suggest that task-dependent modulation at subcortical sensory stages has an important role for communication: Together with similar findings in the auditory modality the findings imply that task-dependent modulation of the sensory thalami is a general mechanism to optimize speech recognition.
Collapse
Affiliation(s)
- Begoña Díaz
- Center for Brain and Cognition, Pompeu Fabra University, Barcelona, 08018, Spain; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany; Department of Basic Sciences, Faculty of Medicine and Health Sciences, International University of Catalonia, 08195 Sant Cugat del Vallès, Spain.
| | - Helen Blank
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany; University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Katharina von Kriegstein
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, 04103, Germany; Faculty of Psychology, Technische Universität Dresden, 01187, Dresden, Germany
| |
Collapse
|
37
|
Anderson PM, Jones NC, O'Brien TJ, Pinault D. The N-Methyl d-Aspartate Glutamate Receptor Antagonist Ketamine Disrupts the Functional State of the Corticothalamic Pathway. Cereb Cortex 2018; 27:3172-3185. [PMID: 27261525 DOI: 10.1093/cercor/bhw168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The non-competitive N-methyl d-aspartate glutamate receptor (NMDAR) antagonist ketamine elicits a brain state resembling high-risk states for developing psychosis and early stages of schizophrenia characterized by sensory and cognitive deficits and aberrant ongoing gamma (30-80 Hz) oscillations in cortical and subcortical structures, including the thalamus. The underlying mechanisms are unknown. The goal of the present study was to determine whether a ketamine-induced psychotic-relevant state disturbs the functional state of the corticothalamic (CT) pathway. Multisite field recordings were performed in the somatosensory CT system of the sedated rat. Baseline activity was challenged by activation of vibrissa-related prethalamic inputs. The sensory-evoked thalamic response was characterized by a short-latency (∼4 ms) prethalamic-mediated negative sharp potential and a longer latency (∼10 ms) CT-mediated negative potential. Following a single subcutaneous injection of ketamine (2.5 mg/kg), spontaneously occurring and sensory-evoked thalamic gamma oscillations increased and decreased in power, respectively. The power of the sensory-related gamma oscillations was positively correlated with both the amplitude and the area under the curve of the corresponding CT potential but not with the prethalamic potential. The present results show that the layer VI CT pathway significantly contributes in thalamic gamma oscillations, and they support the hypothesis that reduced NMDAR activation disturbs the functional state of CT and corticocortical networks.
Collapse
Affiliation(s)
- Paul M Anderson
- Neuropsychologie cognitive et physiopathologie de la schizophrénie, INSERM U1114, Strasbourg, France.,FMTS, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia.,Current address: Department of Cognitive Neuroscience, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Nigel C Jones
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Terence J O'Brien
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Didier Pinault
- Neuropsychologie cognitive et physiopathologie de la schizophrénie, INSERM U1114, Strasbourg, France.,FMTS, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
38
|
Abstract
In this issue of Neuron, Guo et al. (2017) describe a layer 6 corticothalamic circuit that alternately drives cortical states favoring either sensory detection or discrimination. They also identify a neural mechanism that resets the phase of low-frequency cortical oscillations.
Collapse
Affiliation(s)
- Jennifer F Linden
- Ear Institute and Department of Neuroscience, Physiology & Pharmacology, University College London, 332 Gray's Inn Road, London, WC1X 8EE, UK.
| |
Collapse
|
39
|
Shaping somatosensory responses in awake rats: cortical modulation of thalamic neurons. Brain Struct Funct 2017; 223:851-872. [DOI: 10.1007/s00429-017-1522-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/26/2017] [Indexed: 02/02/2023]
|
40
|
Coulon P, Landisman CE. The Potential Role of Gap Junctional Plasticity in the Regulation of State. Neuron 2017; 93:1275-1295. [PMID: 28334604 DOI: 10.1016/j.neuron.2017.02.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 01/20/2017] [Accepted: 02/22/2017] [Indexed: 11/19/2022]
Abstract
Electrical synapses are the functional correlate of gap junctions and allow transmission of small molecules and electrical current between coupled neurons. Instead of static pores, electrical synapses are actually plastic, similar to chemical synapses. In the thalamocortical system, gap junctions couple inhibitory neurons that are similar in their biochemical profile, morphology, and electrophysiological properties. We postulate that electrical synaptic plasticity among inhibitory neurons directly interacts with the switching between different firing patterns in a state-dependent and type-dependent manner. In neuronal networks, electrical synapses may function as a modifiable resonance feedback system that enables stable oscillations. Furthermore, the plasticity of electrical synapses may play an important role in regulation of state, synchrony, and rhythmogenesis in the mammalian thalamocortical system, similar to chemical synaptic plasticity. Based on their plasticity, rich diversity, and specificity, electrical synapses are thus likely to participate in the control of consciousness and attention.
Collapse
Affiliation(s)
- Philippe Coulon
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA 98101, USA.
| | - Carole E Landisman
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA 98101, USA.
| |
Collapse
|
41
|
Higashikubo B, Moore CI. Systematic examination of the impact of depolarization duration on thalamic reticular nucleus firing in vivo. Neuroscience 2017; 368:187-198. [PMID: 28965837 DOI: 10.1016/j.neuroscience.2017.09.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/15/2017] [Accepted: 09/21/2017] [Indexed: 01/09/2023]
Abstract
The thalamic reticular nucleus (TRN) is optimally positioned to regulate information processing and state dynamics in dorsal thalamus. Distinct inputs depolarize TRN on multiple time scales, including thalamocortical afferents, corticothalamic 'feedback', and neuromodulation. Here, we systematically tested the concurrent and after-effects of depolarization duration on TRN firing in vivo using selective optogenetic drive. In VGAT-ChR2 mice, we isolated TRN single units (SU: N = 100 neurons) that responded at brief latency (≤5 ms) to stimulation. These units, and multi-unit activity (MUA) on corresponding electrodes, were analyzed in detail. Consistent with prior findings in relay neurons, after light cessation, burst-like events occurred in 74% of MUA sites, and 16% of SU. Increasing optical duration from 2 to 330 ms enhanced this burst probability, and decreased the latency to the first burst after stimulation. During stimulation, neurons demonstrated a 'plateau' firing response lasting 20-30 ms in response to light, but significant heterogeneity existed in the minimal stimuli required to drive this response. Two distinct types were evident, more sensitive 'non-linear' neurons that were driven to the plateau response by 2 or 5 ms pulses, versus 'linear' neurons that fired proportionally to optical duration, and reached the plateau with ∼20-ms optical drive. Non-linear neurons showed higher evoked firing rates and burst probability, but spontaneous rate did not differ between types. These findings provide direct predictions for TRN responses to a range of natural depolarizing inputs, and a guide for the optical control of this key structure in studies of network function and behavior.
Collapse
Affiliation(s)
- Bryan Higashikubo
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Neuroscience, Brown University, Providence, RI 02912-1978, USA
| | - Christopher I Moore
- Brown Institute for Brain Science, Brown University, Providence, RI 02912-1978, USA; Department of Neuroscience, Brown University, Providence, RI 02912-1978, USA.
| |
Collapse
|
42
|
Adaptation of Thalamic Neurons Provides Information about the Spatiotemporal Context of Stimulus History. J Neurosci 2017; 37:10012-10021. [PMID: 28899918 DOI: 10.1523/jneurosci.0637-17.2017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/02/2017] [Accepted: 08/16/2017] [Indexed: 11/21/2022] Open
Abstract
Adaptation of neural responses due to the history of sensory input has been observed across all sensory modalities. However, the computational role of adaptation is not fully understood, especially when one considers neural coding problems in which adaptation increases the ambiguity of the neural responses to simple stimuli. To address this, we quantified the impact of adaptation on the information conveyed by thalamic neurons about paired whisker stimuli in male rat. At the single neuron level, although paired-pulse adaptation reduces the information about the present stimulus, the information per spike increases. Moreover, the adapted response can convey significant amounts of information about whether, when and where a previous stimulus occurred. At the population level, ambiguity of the adapted responses about the present stimulus can be compensated for by large numbers of neurons. Therefore, paired-pulse adaptation does not reduce the discriminability of simple stimuli. It provides information about the spatiotemporal context of stimulus history.SIGNIFICANCE STATEMENT The present work provides a computational framework that demonstrates how adaptation allows neurons to encode spatiotemporal dynamics of stimulus history.
Collapse
|
43
|
Guo W, Clause AR, Barth-Maron A, Polley DB. A Corticothalamic Circuit for Dynamic Switching between Feature Detection and Discrimination. Neuron 2017; 95:180-194.e5. [PMID: 28625486 PMCID: PMC5568886 DOI: 10.1016/j.neuron.2017.05.019] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 03/03/2017] [Accepted: 05/09/2017] [Indexed: 01/05/2023]
Abstract
Sensory processing must be sensitive enough to encode faint signals near the noise floor but selective enough to differentiate between similar stimuli. Here we describe a layer 6 corticothalamic (L6 CT) circuit in the mouse auditory forebrain that alternately biases sound processing toward hypersensitivity and improved behavioral sound detection or dampened excitability and enhanced sound discrimination. Optogenetic activation of L6 CT neurons could increase or decrease the gain and tuning precision in the thalamus and all layers of the cortical column, depending on the timing between L6 CT activation and sensory stimulation. The direction of neural and perceptual modulation - enhanced detection at the expense of discrimination or vice versa - arose from the interaction of L6 CT neurons and subnetworks of fast-spiking inhibitory neurons that reset the phase of low-frequency cortical rhythms. These findings suggest that L6 CT neurons contribute to the resolution of the competing demands of detection and discrimination.
Collapse
Affiliation(s)
- Wei Guo
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Center for Computational Neuroscience and Neural Technology, Boston University, Boston, MA 02215, USA
| | - Amanda R Clause
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Asa Barth-Maron
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
| | - Daniel B Polley
- Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
44
|
A Role for Auditory Corticothalamic Feedback in the Perception of Complex Sounds. J Neurosci 2017; 37:6149-6161. [PMID: 28559384 PMCID: PMC5481946 DOI: 10.1523/jneurosci.0397-17.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 11/21/2022] Open
Abstract
Feedback signals from the primary auditory cortex (A1) can shape the receptive field properties of neurons in the ventral division of the medial geniculate body (MGBv). However, the behavioral significance of corticothalamic modulation is unknown. The aim of this study was to elucidate the role of this descending pathway in the perception of complex sounds. We tested the ability of adult female ferrets to detect the presence of a mistuned harmonic in a complex tone using a positive conditioned go/no-go behavioral paradigm before and after the input from layer VI in A1 to MGBv was bilaterally and selectively eliminated using chromophore-targeted laser photolysis. MGBv neurons were identified by their short latencies and sharp tuning curves. They responded robustly to harmonic complex tones and exhibited an increase in firing rate and temporal pattern changes when one frequency component in the complex tone was mistuned. Injections of fluorescent microbeads conjugated with a light-sensitive chromophore were made in MGBv, and, following retrograde transport to the cortical cell bodies, apoptosis was induced by infrared laser illumination of A1. This resulted in a selective loss of ∼60% of layer VI A1-MGBv neurons. After the lesion, mistuning detection was impaired, as indicated by decreased d' values, a shift of the psychometric curves toward higher mistuning values, and increased thresholds, whereas discrimination performance was unaffected when level cues were also available. Our results suggest that A1-MGBv corticothalamic feedback contributes to the detection of harmonicity, one of the most important grouping cues in the perception of complex sounds.SIGNIFICANCE STATEMENT Perception of a complex auditory scene is based on the ability of the brain to group those sound components that belong to the same source and to segregate them from those belonging to different sources. Because two people talking simultaneously may differ in their voice pitch, perceiving the harmonic structure of sounds is very important for auditory scene analysis. Here we demonstrate mistuning sensitivity in the thalamus and that feedback from the primary auditory cortex is required for the normal ability of ferrets to detect a mistuned harmonic within a complex sound. These results provide novel insight into the function of descending sensory pathways in the brain and suggest that this corticothalamic circuit plays an important role in scene analysis.
Collapse
|
45
|
Clarke SE, Maler L. Feedback Synthesizes Neural Codes for Motion. Curr Biol 2017; 27:1356-1361. [PMID: 28457872 DOI: 10.1016/j.cub.2017.03.068] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/27/2017] [Accepted: 03/28/2017] [Indexed: 11/30/2022]
Abstract
In senses as diverse as vision, hearing, touch, and the electrosense, sensory neurons receive bottom-up input from the environment, as well as top-down input from feedback loops involving higher brain regions [1-4]. Through connectivity with local inhibitory interneurons, these feedback loops can exert both positive and negative control over fundamental aspects of neural coding, including bursting [5, 6] and synchronous population activity [7, 8]. Here we show that a prominent midbrain feedback loop synthesizes a neural code for motion reversal in the hindbrain electrosensory ON- and OFF-type pyramidal cells. This top-down mechanism generates an accurate bidirectional encoding of object position, despite the inability of the electrosensory afferents to generate a consistent bottom-up representation [9, 10]. The net positive activity of this midbrain feedback is additionally regulated through a hindbrain feedback loop, which reduces stimulus-induced bursting and also dampens the ON and OFF cell responses to interfering sensory input [11]. We demonstrate that synthesis of motion representations and cancellation of distracting signals are mediated simultaneously by feedback, satisfying an accepted definition of spatial attention [12]. The balance of excitatory and inhibitory feedback establishes a "focal" distance for optimized neural coding, whose connection to a classic motion-tracking behavior provides new insight into the computational roles of feedback and active dendrites in spatial localization [13, 14].
Collapse
Affiliation(s)
- Stephen E Clarke
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Leonard Maler
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Brain and Mind Institute, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Center for Neural Dynamics, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
46
|
A Neurophysiological Perspective on a Preventive Treatment against Schizophrenia Using Transcranial Electric Stimulation of the Corticothalamic Pathway. Brain Sci 2017; 7:brainsci7040034. [PMID: 28350371 PMCID: PMC5406691 DOI: 10.3390/brainsci7040034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/11/2017] [Accepted: 03/24/2017] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia patients are waiting for a treatment free of detrimental effects. Psychotic disorders are devastating mental illnesses associated with dysfunctional brain networks. Ongoing brain network gamma frequency (30–80 Hz) oscillations, naturally implicated in integrative function, are excessively amplified during hallucinations, in at-risk mental states for psychosis and first-episode psychosis. So, gamma oscillations represent a bioelectrical marker for cerebral network disorders with prognostic and therapeutic potential. They accompany sensorimotor and cognitive deficits already present in prodromal schizophrenia. Abnormally amplified gamma oscillations are reproduced in the corticothalamic systems of healthy humans and rodents after a single systemic administration, at a psychotomimetic dose, of the glutamate N-methyl-d-aspartate receptor antagonist ketamine. These translational ketamine models of prodromal schizophrenia are thus promising to work out a preventive noninvasive treatment against first-episode psychosis and chronic schizophrenia. In the present essay, transcranial electric stimulation (TES) is considered an appropriate preventive therapeutic modality because it can influence cognitive performance and neural oscillations. Here, I highlight clinical and experimental findings showing that, together, the corticothalamic pathway, the thalamus, and the glutamatergic synaptic transmission form an etiopathophysiological backbone for schizophrenia and represent a potential therapeutic target for preventive TES of dysfunctional brain networks in at-risk mental state patients against psychotic disorders.
Collapse
|
47
|
Li L, Ebner FF. Cortex dynamically modulates responses of thalamic relay neurons through prolonged circuit-level disinhibition in rat thalamus in vivo. J Neurophysiol 2016; 116:2368-2382. [PMID: 27582292 DOI: 10.1152/jn.00424.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/29/2016] [Indexed: 11/22/2022] Open
Abstract
Cortex actively modulates the responses of thalamic relay neurons through corticothalamic (CT) projections. Here we investigated the temporal precision of CT modulation on sensory responses of relay neurons in rat ventral posterior medial thalamus (VPM) to direction-specific whisker stimuli. CT feedback levels were either augmented by cortical electrical microstimulation or depressed by cortical application of muscimol, a potent agonist of γ-aminobutyric acid A-type (GABAA) receptors. To evaluate the temporal specificity of CT influence, we compared the early (3-10 ms after stimulus onset) and late (10-100 ms) response components of VPM single units to whisker deflections in preferred or nonpreferred directions before and after altering CT feedback levels under urethane anesthesia. The data showed that cortical feedback most strongly affected the late responses of single VPM units to whisker stimulation. That is, cortical stimulation consistently increased the late responses of VPM units in the corresponding (homologous) barreloids to the stimulus direction preferred by neurons in the cortical locus stimulated. However, cortical stimulation could either increase or decrease the early response, depending on whether or not cortical and thalamic loci were tuned to the same direction. Such bidirectional regulation of the early and late VPM responses is consistent with a mechanism of circuit-level disinhibition in vivo. The results support the theory that CT feedback on thalamic sensory responses is mediated by a time-dependent shift of the excitation-inhibition balance in the thalamo-cortico-thalamic loop, such as would occur during sensory feature integration, plasticity, and learning in the awake state.
Collapse
Affiliation(s)
- Lu Li
- Allen Institute for Brain Science, Seattle, Washington; and
| | - Ford F Ebner
- Department of Psychology, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
48
|
Thompson AD, Picard N, Min L, Fagiolini M, Chen C. Cortical Feedback Regulates Feedforward Retinogeniculate Refinement. Neuron 2016; 91:1021-1033. [PMID: 27545712 DOI: 10.1016/j.neuron.2016.07.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 06/08/2016] [Accepted: 07/08/2016] [Indexed: 01/23/2023]
Abstract
According to the prevailing view of neural development, sensory pathways develop sequentially in a feedforward manner, whereby each local microcircuit refines and stabilizes before directing the wiring of its downstream target. In the visual system, retinal circuits are thought to mature first and direct refinement in the thalamus, after which cortical circuits refine with experience-dependent plasticity. In contrast, we now show that feedback from cortex to thalamus critically regulates refinement of the retinogeniculate projection during a discrete window in development, beginning at postnatal day 20 in mice. Disrupting cortical activity during this window, pharmacologically or chemogenetically, increases the number of retinal ganglion cells innervating each thalamic relay neuron. These results suggest that primary sensory structures develop through the concurrent and interdependent remodeling of subcortical and cortical circuits in response to sensory experience, rather than through a simple feedforward process. Our findings also highlight an unexpected function for the corticothalamic projection.
Collapse
Affiliation(s)
- Andrew D Thompson
- BBS Program, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Nathalie Picard
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Lia Min
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michela Fagiolini
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Chinfei Chen
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
49
|
Kinnischtzke AK, Fanselow EE, Simons DJ. Target-specific M1 inputs to infragranular S1 pyramidal neurons. J Neurophysiol 2016; 116:1261-74. [PMID: 27334960 PMCID: PMC5018057 DOI: 10.1152/jn.01032.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 06/16/2016] [Indexed: 01/05/2023] Open
Abstract
The functional role of input from the primary motor cortex (M1) to primary somatosensory cortex (S1) is unclear; one key to understanding this pathway may lie in elucidating the cell-type specific microcircuits that connect S1 and M1. Recently, we discovered that a subset of pyramidal neurons in the infragranular layers of S1 receive especially strong input from M1 (Kinnischtzke AK, Simons DJ, Fanselow EE. Cereb Cortex 24: 2237-2248, 2014), suggesting that M1 may affect specific classes of pyramidal neurons differently. Here, using combined optogenetic and retrograde labeling approaches in the mouse, we examined the strengths of M1 inputs to five classes of infragranular S1 neurons categorized by their projections to particular cortical and subcortical targets. We found that the magnitude of M1 synaptic input to S1 pyramidal neurons varies greatly depending on the projection target of the postsynaptic neuron. Of the populations examined, M1-projecting corticocortical neurons in L6 received the strongest M1 inputs, whereas ventral posterior medial nucleus-projecting corticothalamic neurons, also located in L6, received the weakest. Each population also possessed distinct intrinsic properties. The results suggest that M1 differentially engages specific classes of S1 projection neurons, thereby regulating the motor-related influence S1 exerts over subcortical structures.
Collapse
Affiliation(s)
- Amanda K Kinnischtzke
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Erika E Fanselow
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Daniel J Simons
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania; and Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
50
|
Béhuret S, Deleuze C, Bal T. Corticothalamic Synaptic Noise as a Mechanism for Selective Attention in Thalamic Neurons. Front Neural Circuits 2015; 9:80. [PMID: 26733818 PMCID: PMC4686626 DOI: 10.3389/fncir.2015.00080] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/27/2015] [Indexed: 12/04/2022] Open
Abstract
A reason why the thalamus is more than a passive gateway for sensory signals is that two-third of the synapses of thalamocortical neurons are directly or indirectly related to the activity of corticothalamic axons. While the responses of thalamocortical neurons evoked by sensory stimuli are well characterized, with ON- and OFF-center receptive field structures, the prevalence of synaptic noise resulting from neocortical feedback in intracellularly recorded thalamocortical neurons in vivo has attracted little attention. However, in vitro and modeling experiments point to its critical role for the integration of sensory signals. Here we combine our recent findings in a unified framework suggesting the hypothesis that corticothalamic synaptic activity is adapted to modulate the transfer efficiency of thalamocortical neurons during selective attention at three different levels: First, on ionic channels by interacting with intrinsic membrane properties, second at the neuron level by impacting on the input-output gain, and third even more effectively at the cell assembly level by boosting the information transfer of sensory features encoded in thalamic subnetworks. This top-down population control is achieved by tuning the correlations in subthreshold membrane potential fluctuations and is adapted to modulate the transfer of sensory features encoded by assemblies of thalamocortical relay neurons. We thus propose that cortically-controlled (de-)correlation of subthreshold noise is an efficient and swift dynamic mechanism for selective attention in the thalamus.
Collapse
Affiliation(s)
- Sébastien Béhuret
- Unité de Neurosciences, Information et Complexité, Centre National de la Recherche Scientifique FRE-3693 Gif-sur-Yvette, France
| | - Charlotte Deleuze
- Unité de Neurosciences, Information et Complexité, Centre National de la Recherche Scientifique FRE-3693Gif-sur-Yvette, France; Institut National de la Santé et de la Recherche Médicale U 1127, Centre National de la Recherche Scientifique UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle ÉpinièreParis, France
| | - Thierry Bal
- Unité de Neurosciences, Information et Complexité, Centre National de la Recherche Scientifique FRE-3693 Gif-sur-Yvette, France
| |
Collapse
|