1
|
Rahiman N, Zamani P, Badiee A, Arabi L, Alavizadeh SH, Jaafari MR. An insight into the role of liposomal therapeutics in the reversion of Multiple Sclerosis. Expert Opin Drug Deliv 2021; 18:1795-1813. [PMID: 34747298 DOI: 10.1080/17425247.2021.2003327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Multiple Sclerosis (MS), as an autoimmune disease, has complicated immunopathology, which makes its management relevant to various factors. Novel pharmaceutical vehicles, especially liposomes, can support efficacious handling of this disease both in early detection and prognosis and also in a therapeutic manner. The most well-known trigger of MS onset is the predominance of cellular to humoral immunity and enhancement of inflammatory cytokines level. The installation of liposomes as nanoparticles to control this disease holds great promise up to now. AREAS COVERED Various types of liposomes with different properties and purposes have been formulated and targeted immune cells with their surface manipulations. They may be encapsulated with anti-inflammatory, MS-related therapeutics, or immunodominant myelin-specific peptides for attaining a higher therapeutic efficacy of the drugs or tolerance induction. Cationic liposomes are also highly applicable for gene delivery of the anti-inflammatory cytokines or silencing the inflammatory cytokines. Liposomes have also been used as biotools for comprehending MS pathomechanisms or as diagnostic agents. EXPERT OPINION The efforts to manage MS through nanomedicine, especially liposomal therapeutics, pave a new avenue to a high-throughput medication of this autoimmune disease and their translation to the clinic in the future for overcoming the challenges that MS patients confront.
Collapse
Affiliation(s)
- Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Zamani
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Arabi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Cook ME, Jarjour NN, Lin CC, Edelson BT. Transcription Factor Bhlhe40 in Immunity and Autoimmunity. Trends Immunol 2020; 41:1023-1036. [PMID: 33039338 DOI: 10.1016/j.it.2020.09.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/10/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
The basic helix-loop-helix transcription factor (TF) Bhlhe40 is emerging as a key regulator of immunity during infection, autoimmunity, and inflammatory conditions. We describe the roles of Bhlhe40 in the circulating and tissue-resident arms of the immune system, with emphasis on recent work on the regulation of cytokine production and proliferation. We explore the mechanisms behind these functions in mouse models and human cells, including interactions with other TFs, and propose that Bhlhe40 is a central mediator of both inflammation and pathogen control, as well as a crucial regulator of a growing number of tissue-resident leukocyte populations. Finally, we suggest areas for further study that may advance our understanding of immunity and disease.
Collapse
Affiliation(s)
- Melissa E Cook
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Nicholas N Jarjour
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Chih-Chung Lin
- Genetics and Aging Research Unit, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Brian T Edelson
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
3
|
Castor T, Yogev N, Blank T, Barwig C, Prinz M, Waisman A, Bros M, Reske-Kunz AB. Inhibition of experimental autoimmune encephalomyelitis by tolerance-promoting DNA vaccination focused to dendritic cells. PLoS One 2018; 13:e0191927. [PMID: 29408931 PMCID: PMC5800700 DOI: 10.1371/journal.pone.0191927] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
In this study we analysed the effects of prophylactic biolistic DNA vaccination with plasmids encoding the encephalitogenic protein myelin oligodendrocyte glycoprotein (MOG) on the severity of a subsequently MOGp35-55-induced EAE and on the underlying immune response. We compared the outcome of vaccination with MOG-encoding plasmids alone or in combination with vectors encoding the regulatory cytokines IL-10 and TGF-ß1, respectively. MOG expression was restricted to skin dendritic cells (DCs) by the use of the DC-specific promoter of the fascin1 gene (pFscn-MOG). For comparison, the strong and ubiquitously active CMV promoter was employed (pCMV-MOG), which allows MOG expression in all transfected cells. Expression of IL-10 and TGF-ß1 was controlled by the CMV promoter to yield maximal synthesis (pCMV-IL10, pCMV-TGFß). Co-application of pFscn-MOG and pCMV-IL10 significantly ameliorated EAE pathology, while vaccination with pCMV-MOG plus pCMV-IL10 did not affect EAE outcome. In contrast, vaccination with either of the two MOG-encoding plasmids in combination with pCMV-TGFß significantly attenuated the clinical EAE symptoms. Mechanistically, we observed diminished infiltration of Th17 and Th1 cells as well as macrophages/DCs into the CNS, which correlated with decreased MOGp35-55-specific production of IL-17 and IFN-ϫ by spleen cells and reduced peptide-specific T cell proliferation. Our findings suggest deletion of or anergy induction in MOG-specific CD4+ T cells by the suppressive vaccination platform employed. MOG expression driven by the DC-specific fascin1 promoter yielded similar inhibitory effects on EAE progression as the ubiquitously active viral CMV promoter, when coapplying pCMV-TGFß. Our finding that pCMV-IL10 promoted tolerogenic effects only, when coapplied with pFscn-MOG, but not pCMV-MOG suggests that IL-10 affected only directly transfected DCs (pFscn-MOG), but not neighbouring DCs that engulfed MOG-containing vesicles derived from transfected keratinocytes (pCMV-MOG). Thus, due to its DC-restricted expression, the fascin1 promoter might be an interesting alternative to ubiquitously expressed promoters for vaccination strategies.
Collapse
Affiliation(s)
- Timo Castor
- Department of Dermatology University Medical Center, Mainz, Germany
| | - Nir Yogev
- Institute for Molecular Medicine, University Medical Center, Mainz, Germany
| | - Thomas Blank
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Christina Barwig
- Department of Dermatology University Medical Center, Mainz, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center, Mainz, Germany
| | - Matthias Bros
- Department of Dermatology University Medical Center, Mainz, Germany
| | | |
Collapse
|
4
|
Zhang R, Zeng H, Zhang Y, Chen K, Zhang C, Song C, Fang L, Xu Z, Yang K, Jin B, Wang Q, Chen L. CD226 ligation protects against EAE by promoting IL-10 expression via regulation of CD4+ T cell differentiation. Oncotarget 2017; 7:19251-64. [PMID: 26942885 PMCID: PMC4991380 DOI: 10.18632/oncotarget.7834] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 01/29/2016] [Indexed: 11/25/2022] Open
Abstract
Treatment targeting CD226 can ameliorate experimental autoimmune encephalomyelitis (EAE), the widely accepted model of MS. However, the mechanisms still need to be elucidated. Here we showed that CD226 blockage by anti-CD226 blocking mAb LeoA1 efficiently promoted IL-10 production in human peripheral blood monocytes (PBMC) or in mixed lymphocyte culture (MLC) system, significantly induced the CD4+IL-10+ T cell differentiation while suppressing the generation of Th1 and Th17. Furthermore, CD226 pAb administration in vivo reduced the onset of EAE in mice by promoting IL-10 production and regulating T cell differentiation. Concomitantly, the onset and severity of EAE were reduced and the serum IL-10 expression levels were increased in CD226 knockout mice than that in control mice when both received EAE induction. These novel findings confirmed that CD226 played a pivotal role in mediating autoimmune diseases such as EAE. Furthermore, to our knowledge, we show for the first time that IL-10 is an important contributor in the inhibitory effects of CD226 ligation on EAE.
Collapse
Affiliation(s)
- Rong Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China.,State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Hanyu Zeng
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Yun Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Kun Chen
- Department of Neurobiology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Chunmei Zhang
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Chaojun Song
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Liang Fang
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Zhuwei Xu
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Kun Yang
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Boquan Jin
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Qintao Wang
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| | - Lihua Chen
- Department of Immunology, The Fourth Military Medical University, Xi'an, Shaanxi, P.R. China
| |
Collapse
|
5
|
Biragyn A, Aliseychik M, Rogaev E. Potential importance of B cells in aging and aging-associated neurodegenerative diseases. Semin Immunopathol 2017; 39:283-294. [PMID: 28083646 DOI: 10.1007/s00281-016-0615-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022]
Abstract
Our understanding of B cells as merely antibody producers is slowly changing. Alone or in concert with antibody, they control outcomes of seemingly different diseases such as cancer, rheumatoid arthritis, diabetes, and multiple sclerosis. While their role in activation of effector immune cells is beneficial in cancer but bad in autoimmune diseases, their immunosuppressive and regulatory subsets (Bregs) inhibit autoimmune and anticancer responses. These pathogenic and suppressive functions are not static and appear to be regulated by the nature and strength of inflammation. Although aging increases inflammation and changes the composition and function of B cells, surprisingly, little is known whether the change affects aging-associated neurodegenerative disease, such as Alzheimer's disease (AD). Here, by analyzing B cells in cancer and autoimmune and neuroinflammatory diseases, we elucidate their potential importance in AD and other aging-associated neuroinflammatory diseases.
Collapse
Affiliation(s)
- Arya Biragyn
- Immunoregulation section, National Institute on Aging, 251 Bayview Blvd, Suite 100, Baltimore, MD, 21224, USA.
| | - Maria Aliseychik
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Evgeny Rogaev
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, MA, USA.,Department of Genomics and Human Genetics, Russian Academy of Sciences, Institute of General Genetics, Moscow, Russia.,Center for Brain Neurobiology and Neurogenetics, Siberian Branch of the Russian Academy of Sciences, Institute of Cytology and Genetics, Novosibirsk, Russia
| |
Collapse
|
6
|
Russi R, García MI, Vignatti P, Veiga MF, Vazquez-Levin MH, Veaute C. Immune mediators associated to male infertility in a mouse model of DNA immunization with the sperm protease proacrosin. J Reprod Immunol 2016; 118:28-35. [DOI: 10.1016/j.jri.2016.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 08/02/2016] [Accepted: 08/15/2016] [Indexed: 11/16/2022]
|
7
|
Oh J, Shin JS. Molecular mechanism and cellular function of MHCII ubiquitination. Immunol Rev 2016; 266:134-44. [PMID: 26085212 DOI: 10.1111/imr.12303] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The major histocompatibility complex class II (MHCII) is ubiquitinated via the evolutionarily conserved lysine in the cytoplasmic tail of the β chain in dendritic cells (DCs) and B cells. The ubiquitination is mediated by the membrane-associated RING-CH1 (MARCH1) ubiquitin ligase although it can be also mediated by the homologous ligase MARCH8 in model cell lines. The ubiquitination promotes MHCII endocytosis and lysosomal sorting that results in a reduction in the level of MHCII at cell surface. Functionally, MHCII ubiquitination serves as a means by which DCs suppress MHCII expression and reduce antigen presentation in response to the immune regulatory cytokine interleukin-10 (IL-10) and regulatory T cells. Recently, additional roles of MHCII ubiquitination have emerged. MHCII ubiquitination promoted DC production of inflammatory cytokines in response to the Toll-like receptor ligands. It also potentiated DC ability to activate antigen-specific naive CD4(+) T cells while limiting the amount of antigens presented at cell surface. Similarly, MHCII ubiquitination promoted DC activation of CD4(+) thymocytes supporting regulatory T-cell development independent of its effect of limiting antigen presentation. Thus, ubiquitination appears to confer MHCII a function independent of presenting antigens by a mechanism yet to be identified.
Collapse
Affiliation(s)
- Jaehak Oh
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Jeoung-Sook Shin
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
8
|
Bravo B, Gallego MI, Flores AI, Bornstein R, Puente-Bedia A, Hernández J, de la Torre P, García-Zaragoza E, Perez-Tavarez R, Grande J, Ballester A, Ballester S. Restrained Th17 response and myeloid cell infiltration into the central nervous system by human decidua-derived mesenchymal stem cells during experimental autoimmune encephalomyelitis. Stem Cell Res Ther 2016; 7:43. [PMID: 26987803 PMCID: PMC4797118 DOI: 10.1186/s13287-016-0304-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Multiple sclerosis is a widespread inflammatory demyelinating disease. Several immunomodulatory therapies are available, including interferon-β, glatiramer acetate, natalizumab, fingolimod, and mitoxantrone. Although useful to delay disease progression, they do not provide a definitive cure and are associated with some undesirable side-effects. Accordingly, the search for new therapeutic methods constitutes an active investigation field. The use of mesenchymal stem cells (MSCs) to modify the disease course is currently the subject of intense interest. Decidua-derived MSCs (DMSCs) are a cell population obtained from human placental extraembryonic membranes able to differentiate into the three germ layers. This study explores the therapeutic potential of DMSCs. METHODS We used the experimental autoimmune encephalomyelitis (EAE) animal model to evaluate the effect of DMSCs on clinical signs of the disease and on the presence of inflammatory infiltrates in the central nervous system. We also compared the inflammatory profile of spleen T cells from DMSC-treated mice with that of EAE control animals, and the influence of DMSCs on the in vitro definition of the Th17 phenotype. Furthermore, we analyzed the effects on the presence of some critical cell types in central nervous system infiltrates. RESULTS Preventive intraperitoneal injection of DMSCs resulted in a significant delay of external signs of EAE. In addition, treatment of animals already presenting with moderate symptoms resulted in mild EAE with reduced disease scores. Besides decreased inflammatory infiltration, diminished percentages of CD4(+)IL17(+), CD11b(+)Ly6G(+) and CD11b(+)Ly6C(+) cells were found in infiltrates of treated animals. Early immune response was mitigated, with spleen cells of DMSC-treated mice displaying low proliferative response to antigen, decreased production of interleukin (IL)-17, and increased production of the anti-inflammatory cytokines IL-4 and IL-10. Moreover, lower RORγT and higher GATA-3 expression levels were detected in DMSC-treated mice. DMSCs also showed a detrimental influence on the in vitro definition of the Th17 phenotype. CONCLUSIONS DMSCs modulated the clinical course of EAE, modified the frequency and cell composition of the central nervous system infiltrates during the disease, and mediated an impairment of Th17 phenotype establishment in favor of the Th2 subtype. These results suggest that DMSCs might provide a new cell-based therapy for the control of multiple sclerosis.
Collapse
Affiliation(s)
- Beatriz Bravo
- />Instituto de Salud Carlos III, Unidad Funcional de Investigación en Enfermedades Crónicas, Laboratory of Gene Regulation, Carretera de Majadahonda-Pozuelo Km 2, 28220 Madrid, Spain
| | - Marta I. Gallego
- />Instituto de Salud Carlos III, Unidad Funcional de Investigación en Enfermedades Crónicas, Laboratory of Mammary Gland Pathology, Carretera de Majadahonda-Pozuelo Km 2, 28220 Madrid, Spain
| | - Ana I. Flores
- />Grupo de Medicina Regenerativa, Instituto de Investigación Hospital 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain
| | - Rafael Bornstein
- />Hospital Central de Cruz Roja, Servicio de Hematología y Hemoterapia, Avenida de Reina Victoria 24, 28003 Madrid, Spain
| | - Alba Puente-Bedia
- />Instituto de Salud Carlos III, Unidad Funcional de Investigación en Enfermedades Crónicas, Laboratory of Gene Regulation, Carretera de Majadahonda-Pozuelo Km 2, 28220 Madrid, Spain
| | - Javier Hernández
- />Instituto de Salud Carlos III, Unidad Funcional de Investigación en Enfermedades Crónicas, Laboratory of Gene Regulation, Carretera de Majadahonda-Pozuelo Km 2, 28220 Madrid, Spain
| | - Paz de la Torre
- />Grupo de Medicina Regenerativa, Instituto de Investigación Hospital 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain
| | - Elena García-Zaragoza
- />Instituto de Salud Carlos III, Unidad Funcional de Investigación en Enfermedades Crónicas, Laboratory of Mammary Gland Pathology, Carretera de Majadahonda-Pozuelo Km 2, 28220 Madrid, Spain
| | - Raquel Perez-Tavarez
- />Instituto de Salud Carlos III, Unidad Funcional de Investigación en Enfermedades Crónicas, Histology Core Unit, Carretera de Majadahonda-Pozuelo Km 2, 28220 Madrid, Spain
| | - Jesús Grande
- />Grupo de Medicina Regenerativa, Instituto de Investigación Hospital 12 de Octubre, Avda. Córdoba s/n, 28041 Madrid, Spain
| | - Alicia Ballester
- />Instituto de Salud Carlos III, Unidad Funcional de Investigación en Enfermedades Crónicas, Laboratory of Gene Regulation, Carretera de Majadahonda-Pozuelo Km 2, 28220 Madrid, Spain
| | - Sara Ballester
- />Instituto de Salud Carlos III, Unidad Funcional de Investigación en Enfermedades Crónicas, Laboratory of Gene Regulation, Carretera de Majadahonda-Pozuelo Km 2, 28220 Madrid, Spain
| |
Collapse
|
9
|
Guan H, Singh UP, Rao R, Mrelashvili D, Sen S, Hao H, Zumbrun EE, Singh NP, Nagarkatti PS, Nagarkatti M. Inverse correlation of expression of microRNA-140-5p with progression of multiple sclerosis and differentiation of encephalitogenic T helper type 1 cells. Immunology 2016; 147:488-98. [PMID: 26780721 DOI: 10.1111/imm.12583] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/17/2015] [Accepted: 01/04/2016] [Indexed: 12/11/2022] Open
Abstract
The role of microRNA in the regulation of encephalitogenic T-cell development is of interest in understanding the pathogenesis of multiple sclerosis (MS). Direct binding of microRNAs to their target mRNAs usually suppresses gene expression and facilitates mRNA degradation. In this study, we observed that the expression of several microRNAs was significantly altered in patients with MS. Interestingly, the expression of miR-140-5p, among other microRNAs, was significantly decreased in the peripheral blood mononuclear cells of patients with MS, and this microRNA may regulate encephalitogenic T helper type 1 (Th1) cell differentiation. The expression level of miR-140-5p was inversely correlated with disease severity with greater reduction in relapsing disease compared with remitting disease. Transfection of synthetic miR-140-5p in peripheral blood mononuclear cells suppressed encephalitogenic Th1 differentiation. Signal transducer and activator of transcription 1 (STAT1) was the functional target of miR-140-5p - transfection of the synthetic miR-140-5p suppressed activation of STAT1 and the expression of its downstream target, T-bet. Our results suggested that miR-140-5p is probably involved in the regulation of encephalitogenic T cells in the pathogenesis of MS.
Collapse
Affiliation(s)
- Hongbing Guan
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Udai P Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Roshni Rao
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Davit Mrelashvili
- Department of Neurology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Souvik Sen
- Department of Neurology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Haiping Hao
- Deep Sequencing and Microarray Core, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth E Zumbrun
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Narendra P Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Prakash S Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA.,WJB Dorn Veterans Affairs Medical Center, Columbia, SC, USA
| |
Collapse
|
10
|
Secretory Products of Trichinella spiralis Muscle Larvae and Immunomodulation: Implication for Autoimmune Diseases, Allergies, and Malignancies. J Immunol Res 2015; 2015:523875. [PMID: 26114122 PMCID: PMC4465845 DOI: 10.1155/2015/523875] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/18/2015] [Indexed: 12/12/2022] Open
Abstract
Trichinella spiralis has the unique ability to make itself "at home" by creating and hiding in a new type of cell in the host body that is the nurse cell. From this immunologically privileged place, the parasite orchestrates a long-lasting molecular cross talk with the host through muscle larvae excretory-secretory products (ES L1). Those products can successfully modulate parasite-specific immune responses as well as responses to unrelated antigens (either self or nonself in origin), providing an anti-inflammatory milieu and maintaining homeostasis. It is clear, based on the findings from animal model studies, that T. spiralis and its products induce an immunomodulatory network (which encompasses Th2- and Treg-type responses) that may allow the host to deal with various hyperimmune-associated disorders as well as tumor growth, although the latter still remains unclear. This review focuses on studies of the molecules released by T. spiralis, their interaction with pattern recognition receptors on antigen presenting cells, and subsequently provoked responses. This paper also addresses the immunomodulatory properties of ES L1 molecules and how the induced immunomodulation influences the course of different experimental inflammatory and malignant diseases.
Collapse
|
11
|
Suryawanshi A, Manoharan I, Hong Y, Swafford D, Majumdar T, Taketo MM, Manicassamy B, Koni PA, Thangaraju M, Sun Z, Mellor AL, Munn DH, Manicassamy S. Canonical wnt signaling in dendritic cells regulates Th1/Th17 responses and suppresses autoimmune neuroinflammation. THE JOURNAL OF IMMUNOLOGY 2015; 194:3295-304. [PMID: 25710911 DOI: 10.4049/jimmunol.1402691] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Breakdown in immunological tolerance to self-Ags or uncontrolled inflammation results in autoimmune disorders. Dendritic cells (DCs) play an important role in regulating the balance between inflammatory and regulatory responses in the periphery. However, factors in the tissue microenvironment and the signaling networks critical for programming DCs to control chronic inflammation and promote tolerance are unknown. In this study, we show that wnt ligand-mediated activation of β-catenin signaling in DCs is critical for promoting tolerance and limiting neuroinflammation. DC-specific deletion of key upstream (lipoprotein receptor-related protein [LRP]5/6) or downstream (β-catenin) mediators of canonical wnt signaling in mice exacerbated experimental autoimmune encephalomyelitis pathology. Mechanistically, loss of LRP5/6-β-catenin-mediated signaling in DCs led to an increased Th1/Th17 cell differentiation but reduced regulatory T cell response. This was due to increased production of proinflammatory cytokines and decreased production of anti-inflammatory cytokines such as IL-10 and IL-27 by DCs lacking LRP5/6-β-catenin signaling. Consistent with these findings, pharmacological activation of canonical wnt/β-catenin signaling delayed experimental autoimmune encephalomyelitis onset and diminished CNS pathology. Thus, the activation of canonical wnt signaling in DCs limits effector T cell responses and represents a potential therapeutic approach to control autoimmune neuroinflammation.
Collapse
Affiliation(s)
- Amol Suryawanshi
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Georgia Regents University, Augusta, GA 30912
| | - Indumathi Manoharan
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Georgia Regents University, Augusta, GA 30912
| | - Yuan Hong
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Georgia Regents University, Augusta, GA 30912
| | - Daniel Swafford
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Georgia Regents University, Augusta, GA 30912
| | - Tanmay Majumdar
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Georgia Regents University, Augusta, GA 30912
| | - M Mark Taketo
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | - Pandelakis A Koni
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Georgia Regents University, Augusta, GA 30912; Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Zuoming Sun
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010; and
| | - Andrew L Mellor
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Georgia Regents University, Augusta, GA 30912; Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - David H Munn
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Georgia Regents University, Augusta, GA 30912; Department of Pediatrics, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912
| | - Santhakumar Manicassamy
- Cancer Immunology, Inflammation, and Tolerance Program, Georgia Regents University Cancer Center, Georgia Regents University, Augusta, GA 30912; Department of Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912;
| |
Collapse
|
12
|
González-García C, Bravo B, Ballester A, Gómez-Pérez R, Eguiluz C, Redondo M, Martínez A, Gil C, Ballester S. Comparative assessment of PDE 4 and 7 inhibitors as therapeutic agents in experimental autoimmune encephalomyelitis. Br J Pharmacol 2014; 170:602-13. [PMID: 23869659 DOI: 10.1111/bph.12308] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/01/2013] [Accepted: 07/08/2013] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE PDE4 inhibition suppresses experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). However, side effects hinder PDE4 inhibitors clinical use. PDE7 inhibition might constitute an alternative therapeutic strategy, but few data about the anti-inflammatory potential of PDE7 inhibitors are currently available. We have used the EAE model to perform a comparative evaluation of PDE4 and PDE7 inhibition as strategies for MS treatment. EXPERIMENTAL APPROACH Two PDE7 inhibitors, the sulfonamide derivative BRL50481 and the recently described quinazoline compound TC3.6, were assayed to modulate EAE in SJL mice, in comparison with the well-known PDE4 inhibitor Rolipram. We evaluated clinical signs, presence of inflammatory infiltrates in CNS and anti-inflammatory markers. We also analysed the effect of these inhibitors on the inflammatory profile of spleen cells in vitro. KEY RESULTS TC3.6 prevented EAE with efficacy similar to Rolipram, while BRL50481 had no effect on the disease. Differences between both PDE7 inhibitors are discussed. Data from Rolipram and TC3.6 showed that PDE4 and PDE7 inhibition work through both common and distinct pathways. Rolipram administration caused an increase in IL-10 and IL-27 expression which was not found after TC3.6 treatment. On the other hand, both inhibitors reduced IL-17 levels, prevented infiltration in CNS and increased the expression of the T regulator cell marker Foxp3. CONCLUSIONS AND IMPLICATIONS These results provide new information about the effects of Rolipram on EAE, underline PDE7 inhibition as a new therapeutic target for inflammatory diseases and show the value of TC3.6 to prevent EAE, with possible consequences for new therapeutic tools in MS.
Collapse
Affiliation(s)
- C González-García
- Unidad de Regulación Génica, UFIEC, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bhlhe40 controls cytokine production by T cells and is essential for pathogenicity in autoimmune neuroinflammation. Nat Commun 2014; 5:3551. [PMID: 24699451 PMCID: PMC4016562 DOI: 10.1038/ncomms4551] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 03/04/2014] [Indexed: 01/12/2023] Open
Abstract
TH1 and TH17 cells mediate neuroinflammation in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Pathogenic TH cells in EAE must produce the pro-inflammatory cytokine granulocyte-macrophage colony stimulating factor (GM-CSF). TH cell pathogenicity in EAE is also regulated by cell-intrinsic production of the immunosuppressive cytokine interleukin 10 (IL-10). Here, we demonstrate that mice deficient for the basic helix-loop-helix (bHLH) transcription factor Bhlhe40 (Bhlhe40−/−) are resistant to the induction of EAE. Bhlhe40 is required in vivo in a T cell-intrinsic manner, where it positively regulates the production of GM-CSF and negatively regulates the production of IL-10. In vitro, GM-CSF secretion is selectively abrogated in polarized Bhlhe40−/− TH1 and TH17 cells, and these cells show increased production of IL-10. Blockade of IL-10 receptor in Bhlhe40−/− mice renders them susceptible to EAE. These findings identify Bhlhe40 as a critical regulator of autoreactive T cell pathogenicity.
Collapse
|
14
|
Bae J, Koo J, Kim S, Park TY, Kim MY. Ginsenoside Rp1 Exerts Anti-inflammatory Effects via Activation of Dendritic Cells and Regulatory T Cells. J Ginseng Res 2013; 36:375-82. [PMID: 23717139 PMCID: PMC3659614 DOI: 10.5142/jgr.2012.36.4.375] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/13/2012] [Accepted: 06/16/2012] [Indexed: 02/04/2023] Open
Abstract
Ginsenoside Rp1 (G-Rp1) is a saponin derivate that provides anti-metastatic activities through inhibition of the NF-κB pathway. In this study, we examined the effects of G-Rp1 on regulatory T cell (Treg) activation. After treatment of splenocytes with G-Rp1, Tregs exhibited upregulation of IL-10 expression, and along with dendritic cells (DCs), these Tregs showed increased cell number compared to other cell populations. The effect of G-Rp1 on Treg number was augmented in the presence of lipopolysaccharide (LPS), which mimics pathological changes that occur during inflammation. However, depletion of DCs prevented the increase in Treg number in the presence of G-Rp1 and/or LPS. In addition, G-Rp1 promoted the differentiation of the memory types of CD4+Foxp3+CD62Llow Tregs rather than the generation of new Tregs. In vivo experiments also demonstrated that Tregs and DCs from mice that were fed G-Rp1 for 7 d and then injected with LPS exhibited increased activation compared with those from mice that were injected with LPS alone. Expression of TGF-β and CTLA4 in Tregs was increased, and upregulation of IL-2 and CD80/ CD86 expression by DCs affected the suppressive function of Tregs through IL-2 receptors and CTLA4. These data demonstrate that G-Rp1 exerts anti-inflammatory effects by activating Tregs in vitro and in vivo.
Collapse
Affiliation(s)
- Jingyu Bae
- Department of Bioinformatics and Life Science, College of Natural Sciences, Soongsil University, Seoul 156-743, Korea
| | | | | | | | | |
Collapse
|
15
|
Abstract
Hypersensitivity reactions of the immune system have been broadly categorized into the atopic and autoimmune depending on whether the antigen triggering the reaction is endogenous (or self) or exogenous, the types of cellular and humoral components involved, and the clinical symptoms. Research into the pathophysiology of the resultant disease states has focused on a dichotomy between Th1 and Th2 T helper lymphocytes thought to govern autoimmune and atopic disease, respectively. Recent discoveries, however, have served to dispute this paradigm and have provided additional insight into the roles of Th17 cells, B-lymphocytes and T regulatory cells as well as the considerable communication and commonalities between the complex signaling pathways. Furthermore, clinical studies have served to challenge the idea that the presence of atopy and autoimmunity are mutually exclusive states. Finally, application of recent approaches to treatment-biologic targeted therapy in autoimmunity and induction of immune tolerance in atopic disease--to both disease states have shown mixed but promising results.
Collapse
|
16
|
Guan H, Fan D, Mrelashvili D, Hao H, Singh NP, Singh UP, Nagarkatti PS, Nagarkatti M. MicroRNA let-7e is associated with the pathogenesis of experimental autoimmune encephalomyelitis. Eur J Immunol 2012; 43:104-14. [PMID: 23079871 DOI: 10.1002/eji.201242702] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/20/2012] [Accepted: 10/15/2012] [Indexed: 12/20/2022]
Abstract
MicroRNAs (miRNAs) play important roles in the regulation of immune responses. There is evidence that miRNAs also participate in the pathogenesis of multiple sclerosis (MS), but how the miRNAs regulate the pathogenesis of MS is still under investigation. The identification of new members of the miRNA family associated with the pathogenesis of MS could facilitate early diagnosis and treatment. Here, we show that the level of miRNA let-7e is significantly upregulated in EAE, an animal model of MS using miRNA array and quantitative real-time PCR. The expression of let-7e was mainly in CD4(+) T cells and infiltrated mononuclear cells of CNS, and highly correlated with the development of EAE. We found that let-7e silencing in vivo inhibited encephalitogenic Th1 and Th17 cells and attenuated EAE, with reciprocal increase of Th2 cells; overexpression of let-7e enhanced Th1 and Th17 cells and aggravated EAE. We also identified IL-10 as one of the functional targets of let-7e. Together, we propose that let-7e is a new miRNA involved in the regulation of encephalitogenic T-cell differentiation and the pathogenesis of EAE.
Collapse
Affiliation(s)
- Hongbing Guan
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina, Columbia, SC 29209, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The co-evolution of a wide range of helminth parasites and vertebrates represented a constant pressure on the host's immune system and a selective force for shaping the immune response. Modulation of the immune system by parasites is accomplished partly by dendritic cells. When exposed to helminth parasites or their products, dendritic cells do not become classically mature and are potent inducers of Th2 and regulatory responses. Treating animals with helminths (eggs, larvae, extracts) causes dampening or in some cases prevention of allergic or autoimmune diseases. Trichinella spiralis (T. spiralis) possess a capacity to retune the immune cell repertoire, acting as a moderator of the host response not only to itself but also to third party antigens. In this review, we will focus on the ability of T. spiralis-stimulated dendritic cells to polarize the immune response toward Th2 and regulatory mode in vitro and in vivo and also on the capacity of this parasite to modulate autoimmune disease--such as experimental autoimmune encephalomyelitis.
Collapse
|
18
|
IL-33 blockade suppresses the development of experimental autoimmune encephalomyelitis in C57BL/6 mice. J Neuroimmunol 2012; 247:25-31. [DOI: 10.1016/j.jneuroim.2012.03.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 03/17/2012] [Accepted: 03/19/2012] [Indexed: 12/13/2022]
|
19
|
El-Malky M, Nabih N, Heder M, Saudy N, El-Mahdy M. Helminth infections: therapeutic potential in autoimmune disorders. Parasite Immunol 2012; 33:589-93. [PMID: 21797885 DOI: 10.1111/j.1365-3024.2011.01324.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Knowledge of immunity enables us to predict that the reactions set in response to infection with helminth would prevent concomitant disease driven by an opposing spectrum of immune events. In another way, the immune response generated to combat the helminth infection could counteract the immunopathological reactions that drive autoimmune diseases. Rodent model systems recapitulate many aspects of human autoimmune diseases and have been enormously useful in defining mechanisms of immunopathology after infection. From this theoretical perspective, many researchers have proved that infection with a variety of helminth can ameliorate disease in murine model systems. Thus, helminth-evoked Th2 events were shown to improve disorders in which Th1 events predominated. This raised the question, 'Can this information be translated into therapies for autoimmune diseases in humans via actual infection, cell delivery or drug intervention?' In this review, we will present some experimental trails to treat autoimmune disorders through establishment of some parasitic infections.
Collapse
Affiliation(s)
- M El-Malky
- Departments of Medical Parasitology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | | | | | | | | |
Collapse
|
20
|
Liu N, Lu H, Tao F, Guo T, Liu C, Cui B, Ning G. An association of interleukin-10 gene polymorphisms with Graves' disease in two Chinese populations. Endocrine 2011; 40:90-4. [PMID: 21424183 DOI: 10.1007/s12020-011-9444-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 02/12/2011] [Indexed: 11/28/2022]
Abstract
Graves' disease (GD) is a common autoimmune disorder with a genetic predisposition. The cytokine interleukin-10 (IL-10) has a central role in mediating inflammation, which may affect the outcome of the patients with GD. To elucidate the impact of IL-10 gene polymorphisms, we performed a two-stage case-control association study of five single-nucleotide polymorphisms (SNPs) within the IL-10 gene as well as a meta-analysis of two SNP's rs1800896 and rs1800872 covering three previous studies from Iran, Taiwan, and the United Kingdom. The five SNPs were genotyped by SNPstream Genotyping and Taqman PCR. There was a significant increase of G allele of rs1800896 in the two cohorts (P (allele) = 2.6 × 10(-4) and 0.0082 for cohort Shanghai and Xiamen, respectively) compared with the controls. The meta-analysis showed the risk-increasing effects for the G allele of rs1800896 in GD (OR = 1.88; P < 0.00001). The allele and haplotype analysis results suggested that the polymorphisms of IL-10 were associated with GD susceptibility in the Chinese population.
Collapse
Affiliation(s)
- Nan Liu
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, 197 RuiJin Er Lu, Shanghai, 200025, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
21
|
Gruden-Movsesijan A, Ilic N, Mostarica-Stojkovic M, Stosic-Grujicic S, Milic M, Sofronic-Milosavljevic L. Mechanisms of modulation of experimental autoimmune encephalomyelitis by chronic Trichinella spiralis infection in Dark Agouti rats. Parasite Immunol 2010; 32:450-9. [PMID: 20500676 DOI: 10.1111/j.1365-3024.2010.01207.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Trichinella spiralis is a helminth that provokes Th2 and anti-inflammatory type responses in an infected host. Our previous studies using Dark Agouti (DA) rats indicated that T. spiralis infection reduced experimental autoimmune encephalomyelitis (EAE) severity in rats. The aim of this study was to analyse the mechanisms underlying EAE suppression driven by T. spiralis infection. Reduced clinical and histological manifestations of the disease were accompanied by increased IL-4 and IL-10 production and decreased IFN-gamma and IL-17 production in draining lymph node cells. This indicates that T. spiralis infection successfully maintains a Th2 cytokine bias regardless of EAE induction. High IL-10 signifies parasite-induced anti-inflammatory and/or regulatory cell responses. Transfer of splenic T cell-enriched population of cells from T. spiralis-infected rats into EAE immunized rats caused amelioration of EAE and in some cases protection from disease development. This population of cells contained higher proportion of CD4(+) CD25(+) Foxp3(+) regulatory cells and produced high level of IL-10 when compared with uninfected rats.
Collapse
Affiliation(s)
- A Gruden-Movsesijan
- Institute for the Application of Nuclear Energy, University of Belgrade, Belgrade, Serbia.
| | | | | | | | | | | |
Collapse
|
22
|
Mazza G, Sabatos-Peyton CA, Protheroe RE, Herman A, Campbell JD, Wraith DC. Isolation and characterization of human interleukin-10-secreting T cells from peripheral blood. Hum Immunol 2010; 71:225-34. [PMID: 20034527 DOI: 10.1016/j.humimm.2009.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Revised: 11/30/2009] [Accepted: 12/12/2009] [Indexed: 10/20/2022]
Abstract
Recent studies have expanded our understanding of the role of the anti-inflammatory cytokine interleukin (IL)-10, produced by multiple lineages of both human and murine T cells, in regulating the immune response. Here, we demonstrate that the small percentage of circulating CD4(+) T cells that secrete IL-10 can be isolated from human peripheral blood and, importantly, we have optimized a protocol to expand these cells in both antigen-specific and polyclonal manners. Expanded CD4(+)IL-10(+) T cells abrogate proliferation and T helper (Th) 1-like cytokine production in an antigen-specific manner, and to a lesser extent exhibit bystander suppressive capacity. CD4(+)IL-10(+) T cells are suppressive in a cell contact-dependent way, though they do not require secretion of IL-10 for their suppressive role in vitro. CD4(+)IL-10(+) T cells have an activated phenotype, with high expression of CD25, CD69, and cytotoxic T-lymphocyte antigen-4, and are largely FoxP3 negative. This novel method for the isolation and expansion of suppressive IL-10-secreting T cells has important implications both for further research and clinical therapeutic development.
Collapse
Affiliation(s)
- Graziella Mazza
- Department of Cellular and Molecular Medicine, University of Bristol, School of Medical Sciences, University Walk, Clifton, Bristol, United Kingdom
| | | | | | | | | | | |
Collapse
|
23
|
Cohen SJ, Cohen IR, Nussbaum G. IL-10 mediates resistance to adoptive transfer experimental autoimmune encephalomyelitis in MyD88(-/-) mice. THE JOURNAL OF IMMUNOLOGY 2009; 184:212-21. [PMID: 19949074 DOI: 10.4049/jimmunol.0900296] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
MyD88 is an adaptor molecule that functions in the innate signaling induced by proinflammatory adjuvants that interact with TLRs. Mice lacking MyD88, for example, resist active experimental autoimmune encephalomyelitis (EAE) induced by immunization with an encephalitogenic myelin oligodendrocyte glycoprotein (MOG) peptide in CFA. We reasoned that MyD88(-/-) mice, nevertheless, should be susceptible to EAE mediated by adoptive transfer of activated encephalitogenic T cell lines, which do not require adjuvant signaling for their effector functions. We now report, however, that mice lacking MyD88 also resist adoptive EAE mediated by an anti-MOG T cell line that is strongly encephalitogenic in wild-type (WT) mice. The transferred anti-MOG T cells proliferated, secreted INF-gamma, and migrated to the CNS in the MyD88(-/-) mice, as they did in WT mice, but inflammatory infiltrates did not progress and clinical EAE did not develop. The resistance of the MyD88(-/-) mice to adoptive EAE mediated by the otherwise encephalitogenic T cells was found to result from the secretion of IL-10 by recipient T cells of two different specificities: those specific for MOG and those responding to the T cell clone itself-both anticlonotypic and antiergotypic T regulators were detected. IL-10-producing anti-MOG T cells isolated from immunized MyD88(-/-) mice suppressed the induction of active EAE in WT recipients. Moreover, the absence of IL-10 production in MyD88/IL-10 double-knockout mice rendered the mice susceptible to adoptive transfer of EAE. Thus, MyD88 signaling appears to be a key factor in determining the cytokine phenotype of T cells involved in autoimmune inflammation and regulation.
Collapse
Affiliation(s)
- Shmuel J Cohen
- Institute of Dental Sciences, Hebrew University-Hadassah School of Dental Medicine, Jerusalem, Israel
| | | | | |
Collapse
|
24
|
Poffenberger MC, Straka N, El Warry N, Fang D, Shanina I, Horwitz MS. Lack of IL-6 during coxsackievirus infection heightens the early immune response resulting in increased severity of chronic autoimmune myocarditis. PLoS One 2009; 4:e6207. [PMID: 19587788 PMCID: PMC2703827 DOI: 10.1371/journal.pone.0006207] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 06/09/2009] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Chronic myocarditis is often initiated by viral infection, the most common of which is coxsackievirus infection. The precise mechanism by which viral infection leads to chronic autoimmune pathology is poorly understood, however it is clear that the early immune response plays a critical role. Previous results have shown that the inflammatory cytokine interleukin (IL)-6 is integral to the development of experimental-induced autoimmune myocarditis. However, the function of IL-6 during viral-mediated autoimmunity has yet to be elucidated. METHODS AND RESULTS To address the requirement of IL-6 during disease induction, IL-6 deficient mice were infected with coxsackievirus B3 (CB3). Following infection, mice lacking IL-6 developed increased chronic autoimmune disease pathology compared to wild type controls without a corresponding change in the level of viral replication in the heart. This increase in disease severity was accompanied by elevated levels of TNF-alpha, MCP-1, IL-10, activated T cells and cardiac infiltrating macrophage/monocytes. Injection of recombinant IL-6 early following infection in the IL-6 deficient mice was sufficient to lower the serum cytokines TNF-alpha and IL-10 as well as the serum chemokines MCP-1, MIP-1beta, RANTES and MIG with a corresponding decrease in the chronic disease pathology strongly suggests an important regulatory role for IL-6 during the early response. CONCLUSIONS While IL-6 plays a pathogenic role in experimental-induced autoimmune disease, its function following viral-induced autoimmunity is not reprised. By regulating the early immune response and thereby controlling the severity of chronic disease, IL-6 directs the outcome of chronic autoimmune myocarditis.
Collapse
Affiliation(s)
- Maya C. Poffenberger
- Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Nadine Straka
- Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Nahida El Warry
- Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Dianne Fang
- Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Iryna Shanina
- Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Marc S. Horwitz
- Microbiology and Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
De Paula ML, Rodrigues DH, Teixeira HC, Barsante MM, Souza MA, Ferreira AP. Genistein down-modulates pro-inflammatory cytokines and reverses clinical signs of experimental autoimmune encephalomyelitis. Int Immunopharmacol 2008; 8:1291-7. [PMID: 18602076 DOI: 10.1016/j.intimp.2008.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Revised: 04/10/2008] [Accepted: 05/05/2008] [Indexed: 01/23/2023]
Abstract
Multiple sclerosis (MS) is the most common non-traumatic, disabling neurological human inflammatory demyelinating disease of the central nervous system (CNS). Experimental autoimmune encephalomyelitis (EAE) models MS and is characterized as a CD4+ T-helper type 1 (Th1) cell-mediated autoimmune disease. It is characterized by an influx of activated leukocytes into the CNS. Genistein, occurring abundantly in soy products, has apoptotic, antioxidant, and anti-inflammatory properties. In the present report, we investigated the use of genistein for the treatment of the murine model of MS. After induction of EAE with myelin oligodendrocyte glycoprotein 35-55 peptide (MOG(35-55)), we observed that genistein treatment ameliorated significantly the clinical symptoms, modulating pro- and anti-inflammatory cytokines. Moreover, we analyzed the leukocyte rolling and adherence in the CNS by performing intravital microscopy. Genistein treatment resulted in decreased rolling and adhering of leukocytes as compared to the untreated group. Our data suggest that genistein might be a potential therapy for MS.
Collapse
Affiliation(s)
- Marcio L De Paula
- Department of Parasitology, Microbiology and Immunology, Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | | | | | | | | |
Collapse
|
26
|
Scabeni S, Lapilla M, Musio S, Gallo B, Ciusani E, Steinman L, Mantegazza R, Pedotti R. CD4+CD25+ Regulatory T Cells Specific for a Thymus-Expressed Antigen Prevent the Development of Anaphylaxis to Self. THE JOURNAL OF IMMUNOLOGY 2008; 180:4433-40. [DOI: 10.4049/jimmunol.180.7.4433] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
Trichinella spiralis: modulation of experimental autoimmune encephalomyelitis in DA rats. Exp Parasitol 2008; 118:641-7. [PMID: 18226814 DOI: 10.1016/j.exppara.2007.12.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 10/26/2007] [Accepted: 12/10/2007] [Indexed: 11/23/2022]
Abstract
Helminth infection has a potent systemic immunomodulatory effect on the host immune response, which also affects the development of autoimmune diseases. We investigated the dose-dependent influence of Trichinella spiralis infection on experimental autoimmune encephalomyelitis (EAE). Our model of concomitant T. spiralis infection and EAE demonstrates that established infection of Dark Agouti (DA) rats with the parasite causes amelioration of the clinical course of induced EAE in a dose-dependent way. Infection with T. spiralis L1 stage muscle larvae (TSL1) reduced the severity of the autoimmune disease as judged by lower maximal clinical score, cumulative index, duration of illness and degree of mononuclear cell infiltration in T. spiralis infected animals compared to control, EAE-induced group. This study provides a valuable model of worm infection to investigate helminth-induced regulatory mechanisms for optimal benefit to the host.
Collapse
|
28
|
Yamazaki K, Murray JA, Kita H. Innate immunomodulatory effects of cereal grains through induction of IL-10. J Allergy Clin Immunol 2007; 121:172-178.e3. [PMID: 17919702 DOI: 10.1016/j.jaci.2007.08.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Revised: 08/08/2007] [Accepted: 08/08/2007] [Indexed: 02/02/2023]
Abstract
BACKGROUND Interactions between the gastrointestinal immune system and the luminal environment play critical roles in maintaining immune homeostasis and in diseases such as inflammatory bowel disease. Although immunomodulation by microbial factors has been studied extensively, little attention has been given to the potential immunomodulatory effects of ingested foods. OBJECTIVE We characterized the effects of cereal grains on the immune response in human subjects and investigated the mechanism. METHODS PBMCs from healthy individuals were incubated with cereal grain extracts, and cytokine levels in cell-free supernatants were measured. The cellular source of IL-10 and the role of monocytes were investigated by means of flow cytometry and cell-depletion/reconstitution experiments. RESULTS Extracts of cereal grains, including rice and wheat, induced marked IL-10 production from PBMCs. Intracellular cytokine staining and cell-depletion experiments showed that CD14+ monocytes produced IL-10. Importantly, when PBMCs were stimulated with concanavalin A, cereal grains concentration-dependently inhibited their production of IL-5, IL-13, and IFN-gamma; neutralizing IL-10 or removing the monocytes abrogated this inhibitory effect. This cereal grain-induced IL-10 response was polymyxin B sensitive, heat resistant, and inhibited by blocking the Toll-like receptor 4. CONCLUSION Cereal grains have strong innate immunomodulatory effects by inducing marked production of IL-10 from CD14+ monocytes in vitro. LPS or LPS-mimicking activity in cereal grains might be responsible. The potential immunomodulatory effects of cereal grains need further study in vivo.
Collapse
Affiliation(s)
- Kiyoshi Yamazaki
- Division of Allergic Diseases, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | | | |
Collapse
|
29
|
Arnon R, Aharoni R. Neurogenesis and Neuroprotection in the CNS — Fundamental Elements in the Effect of Glatiramer Acetate on Treatment of Autoimmune Neurological Disorders. Mol Neurobiol 2007; 36:245-53. [DOI: 10.1007/s12035-007-8002-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Accepted: 10/09/2006] [Indexed: 12/18/2022]
|
30
|
Tu H, Rady PL, Juelich T, Tyring SK, Koldzic-Zivanovic N, Smith EM, Hughes TK. Interleukin-10 regulated gene expression in cells of hypothalamic-pituitary-adrenal axis origin. Cell Mol Neurobiol 2007; 27:161-70. [PMID: 17295069 PMCID: PMC11517130 DOI: 10.1007/s10571-006-9137-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2005] [Accepted: 09/09/2005] [Indexed: 10/23/2022]
Abstract
AIM The hypothalamic-pituitary-adrenal (HPA) axis is a mediator for interactions between the immune and neuroendocrine systems. Pro-inflammatory cytokines such as interleukin-1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-alpha) have been shown to activate the HPA axis. Recently, interleukin-10, an important anti-inflammatory cytokine in the immune system, has been shown to be expressed in the central nervous system and neuroendocrine system. Little is known, however, about IL-10's functions in the HPA axis. METHODS The Affymetrix DNA microarray (mouse genome U74Av2 Probe Array) was conducted to determine the gene expression profile regulated by IL-10 in cells of HPA axis origin. RESULTS In this study, we analyzed gene expression regulated by IL-10 in cells derived from the HPA axis. The results showed that quorums of genes are modulated by IL-10 in these neuroendocrine cells. CONCLUSIONS These findings will provide a valuable repository to aid in understanding IL-10's functions in the HPA axis at the molecular level.
Collapse
Affiliation(s)
- Huolin Tu
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1019 USA
| | - Peter L. Rady
- Department of Dermatology, University of Texas Health Science Center, Houston, TX 77030 USA
| | - Terry Juelich
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1019 USA
| | - Stephen K. Tyring
- Department of Dermatology, University of Texas Health Science Center, Houston, TX 77030 USA
| | - Nina Koldzic-Zivanovic
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1019 USA
| | - Eric M. Smith
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1019 USA
- Department of Psychiatry and Behavioral Sciences, University of Texas Medical Branch, Galveston, TX 77555 USA
| | - Thomas K. Hughes
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1019 USA
| |
Collapse
|
31
|
Mannie MD, Devine JL, Clayson BA, Lewis LT, Abbott DJ. Cytokine-neuroantigen fusion proteins: new tools for modulation of myelin basic protein (MBP)-specific T cell responses in experimental autoimmune encephalomyelitis. J Immunol Methods 2006; 319:118-32. [PMID: 17188704 DOI: 10.1016/j.jim.2006.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2006] [Revised: 11/10/2006] [Accepted: 11/14/2006] [Indexed: 10/23/2022]
Abstract
Fusion proteins incorporating anti-inflammatory cytokines and immunodominant self antigen as separate domains of a single protein may hold promise for development of antigen-specific tolerogenic vaccines. Proteins incorporating rat sequences of IL-1RA, IL-2, IL-4, IL-10, or IL-13 were expressed as fusion proteins containing the major encephalitogenic region of myelin basic protein (MBP). These fusion proteins were expressed via baculovirus (bv) expression systems and were shown to have cytokine-dependent and antigen-specific biological activity. In the case of the IL-2 and IL-4 fusion proteins, covalent linkage of the cytokine and neuroantigen domains resulted in synergistic antigen presentation. These data indicate that the cytokine domain may be able to modulate APC activity and simultaneously target the covalently tethered NAg for enhanced presentation by certain APC subsets. Cytokine/antigen fusion proteins may represent a novel tool for antigen-specific immune modulation in autoimmune disease.
Collapse
Affiliation(s)
- Mark D Mannie
- The Department of Microbiology and Immunology, East Carolina University School of Medicine, Greenville, North Carolina 27834, USA.
| | | | | | | | | |
Collapse
|
32
|
Moreno B, Hevia H, Santamaria M, Sepulcre J, Muñoz J, García-Trevijano ER, Berasain C, Corrales FJ, Avila MA, Villoslada P. Methylthioadenosine reverses brain autoimmune disease. Ann Neurol 2006; 60:323-334. [PMID: 16786535 DOI: 10.1002/ana.20895] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To assess the immunomodulatory activity of methylthioadenosine (MTA) in rodent experimental autoimmune encephalomyelitis (EAE) and in patients with multiple sclerosis. METHODS We studied the effect of intraperitoneal MTA in the acute and chronic EAE model by quantifying clinical and histological scores and by performing immunohistochemistry stains of the brain. We studied the immunomodulatory effect of MTA in lymphocytes from EAE animals and in peripheral blood mononuclear cells from healthy control subjects and multiple sclerosis patients by assessing cell proliferation and cytokine gene expression, by real-time polymerase chain reaction, and by nuclear factor-kappaB modulation by Western blot. RESULTS We found that MTA prevents acute EAE and, more importantly, reverses chronic-relapsing EAE. MTA treatment markedly inhibited brain inflammation and reduced brain damage. Administration of MTA suppressed T-cell activation in vivo and in vitro, likely through a blockade in T-cell signaling resulting in the prevention of inhibitor of kappa B (IkappaB-alpha) degradation and in the impaired activation transcription factor nuclear factor-kappaB. Indeed, MTA suppressed the production of proinflammatory genes and cytokines (interferon-gamma, tumor necrosis factor-alpha, and inducible nitric oxide synthase) and increased the production of antiinflammatory cytokines (interleukin-10). INTERPRETATION MTA has a remarkable immunomodulatory activity and may be beneficial for multiple sclerosis and other autoimmune diseases.
Collapse
MESH Headings
- Adult
- Age of Onset
- Amyloid beta-Protein Precursor/genetics
- Amyloid beta-Protein Precursor/metabolism
- Animals
- Cytokines/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Interactions
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Female
- Humans
- Immunologic Factors/chemistry
- Immunologic Factors/therapeutic use
- Lymphocytes/drug effects
- Macrophages/drug effects
- Male
- Middle Aged
- Multiple Sclerosis/drug therapy
- Multiple Sclerosis/pathology
- Nitric Oxide Synthase Type II/genetics
- Nitric Oxide Synthase Type II/metabolism
- Phytohemagglutinins/pharmacology
- RNA, Messenger/biosynthesis
- Rats
- Rats, Inbred Lew
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Statistics, Nonparametric
- Thionucleosides/chemistry
- Thionucleosides/therapeutic use
Collapse
Affiliation(s)
- Beatriz Moreno
- Neuroscience and Gene Therapy Division, Center for Applied Medical Research, University of Navarra, Navarra, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Croxford JL, Miyake S, Huang YY, Shimamura M, Yamamura T. Invariant V(alpha)19i T cells regulate autoimmune inflammation. Nat Immunol 2006; 7:987-94. [PMID: 16878136 DOI: 10.1038/ni1370] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 07/05/2006] [Indexed: 02/06/2023]
Abstract
T cells expressing an invariant V(alpha)19-J(alpha)33 T cell receptor alpha-chain (V(alpha)19i TCR) are restricted by the nonpolymorphic major histocompatibility complex class Ib molecule MR1. Whether V(alpha)19i T cells are involved in autoimmunity is not understood. Here we demonstrate that T cells expressing the V(alpha)19i TCR transgene inhibited the induction and progression of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Similarly, EAE was exacerbated in MR1-deficient mice, which lack V(alpha)19i T cells. EAE suppression was accompanied by reduced production of inflammatory mediators and increased secretion of interleukin 10. Interleukin 10 production occurred at least in part through interactions between B cells and V(alpha)19i T cells mediated by the ICOS costimulatory molecule. These results suggest an immunoregulatory function for V(alpha)19i T cells.
Collapse
MESH Headings
- Animals
- Antigens, CD1/genetics
- Antigens, CD1d
- Antigens, Differentiation, T-Lymphocyte/pharmacology
- B-Lymphocytes/immunology
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Histocompatibility Antigens Class I/genetics
- Immunoglobulin Variable Region/analysis
- Immunoglobulin Variable Region/genetics
- Inducible T-Cell Co-Stimulator Protein
- Interleukin-10/metabolism
- Lymphocyte Activation
- Mice
- Mice, Transgenic
- Minor Histocompatibility Antigens
- Multiple Sclerosis/immunology
- Receptors, Antigen, T-Cell, alpha-beta/analysis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
Collapse
Affiliation(s)
- J Ludovic Croxford
- Department of Immunology, National Institute of Neuroscience, National Centre of Neurology and Psychiatry, Tokyo 187-8502, Japan
| | | | | | | | | |
Collapse
|
34
|
McGeachy MJ, Anderton SM. Cytokines in the induction and resolution of experimental autoimmune encephalomyelitis. Cytokine 2005; 32:81-4. [PMID: 16153854 DOI: 10.1016/j.cyto.2005.07.012] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Experimental autoimmune encephalomyelitis is the prototypic T cell-mediated autoimmune disease model. Classically, this disease was viewed in terms of type 1 versus type 2 immunity: the type 1 cytokines IFNgamma and TNFalpha promoting disease, whereas an IL-4-dominated, type 2 response was protective. However, studies in knockout mice do not support this paradigm. More recent data point to important roles for IL-23 and IL-17 (rather than IL-12 and IFNgamma) in the establishment and persistence of the inflammatory lesion. IL-10 appears to be the dominant cytokine mediating recovery. The source of IL-10 includes B cells (most probably in the peripheral lymphoid organs). However, the key IL-10-producing cell within the central nervous system is a CD4+CD25+ T cell population that has regulatory function and is critical to resolution of the disease.
Collapse
Affiliation(s)
- Mandy J McGeachy
- Institute of Immunology and Infection Research, University of Edinburgh, School of Biological Sciences, Kings Buildings, West Mains Road, Edinburgh EH9 3JT, UK
| | | |
Collapse
|
35
|
Stern JNH, Illés Z, Reddy J, Keskin DB, Fridkis-Hareli M, Kuchroo VK, Strominger JL. Peptide 15-mers of defined sequence that substitute for random amino acid copolymers in amelioration of experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2005; 102:1620-5. [PMID: 15665083 PMCID: PMC547868 DOI: 10.1073/pnas.0409022102] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Myelin basic protein (MBP) is a major candidate autoantigen in multiple sclerosis (MS). Its immunodominant epitope, MBP 85-99, forms a complex with human leukocyte antigen (HLA)-DR2 with which multiple sclerosis is genetically associated. Copolymer 1 (Copaxone), a random amino acid copolymer [poly (Y,E,A,K)n] as well as two modified synthetic copolymers [poly (F,Y,A,K)n and poly (V,W,A,K)n] also form complexes with HLA-DR2 (DRA/DRB1*1501) and compete with MBP 85-99 for binding. Moreover, two high-affinity synthetic peptide 15-mers that could inhibit binding even more effectively were previously designed. Here, we show that further-modified peptide 15-mers inhibited even more strongly (in order J5 > J3 > J2) both the binding of MBP 85-99 to HLA-DR2 and IL-2 production by two MBP 85-99-specific HLA-DR2-restricted T cells. J5, J3, and J2 also suppressed both MBP 85-99-induced experimental autoimmune encephalomyelitis (EAE) in humanized mice and proteolipid protein 139-151-induced EAE in SJL/J mice. Moreover, none of these previously uncharacterized peptide inhibitors crossreacted with MBP 85-99- or proteolipid protein 139-151-specific T cells. In both cases, spleen and lymph node cultures stimulated with these peptides produced large amounts of Th2 cytokines (IL-4 and IL-10), and adoptive transfer of established T cell lines suppressed disease induction. These peptide 15-mers provide specific, nonrandom sequences that appear to be at least as effective as random copolymers in suppressing EAE in several models.
Collapse
Affiliation(s)
- Joel N H Stern
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Arnon R, Aharoni R. Mechanism of action of glatiramer acetate in multiple sclerosis and its potential for the development of new applications. Proc Natl Acad Sci U S A 2004; 101 Suppl 2:14593-8. [PMID: 15371592 PMCID: PMC521994 DOI: 10.1073/pnas.0404887101] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Glatiramer acetate (GA, Copaxone, Copolymer 1) is an approved drug for the treatment of multiple sclerosis and is highly effective in the suppression of experimental autoimmune encephalomyelitis in various species. The mode of action of GA is by initial strong promiscuous binding to MHC molecules and consequent competition with various myelin antigens for their presentation to T cells. A further aspect of its action is potent induction of specific suppressor cells of the T helper 2 (Th2) type that migrate to the brain and lead to in situ bystander suppression. Furthermore, the GA-specific cells in the brain express the antiinflammatory cytokines IL-10 and transforming growth factor beta, in addition to brain-derived neurotrophic factor, whereas they do not express IFN-gamma. Based on this immunomodulatory mode of action, we explored the potential of GA for two other applications: prevention of graft rejection and amelioration of inflammatory bowel diseases. GA was effective in amelioration of graft rejection in two systems by prolongation of skin graft survival and inhibition of functional deterioration of thyroid grafts, across minor and major histocompatibility barriers. In all transplantation systems GA treatment inhibited the detrimental secretion of Th1 inflammatory cytokines and induced beneficial Th2/3 antiinflammatory response. GA was effective also in combination with low-dose immunosuppressive drugs. Inflammatory bowel diseases are characterized by detrimental imbalanced proinflammatory immune reactivity in the gut. GA significantly suppressed the various manifestations of trinitrobenzene sulfonic acid-induced colitis, including mortality, weight loss, and macroscopic and microscopic colonic damage. GA suppressed local lymphocyte proliferations and tumor necrosis factor alpha detrimental secretion but induced transforming growth factor beta, thus confirming the involvement of Th1 to Th2 shift in GA mode of action.
Collapse
Affiliation(s)
- Ruth Arnon
- The Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel.
| | | |
Collapse
|
37
|
Aharoni R, Kayhan B, Eilam R, Sela M, Arnon R. Glatiramer acetate-specific T cells in the brain express T helper 2/3 cytokines and brain-derived neurotrophic factor in situ. Proc Natl Acad Sci U S A 2003; 100:14157-62. [PMID: 14614135 PMCID: PMC283562 DOI: 10.1073/pnas.2336171100] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of a remedy to modulate the pathological process in the target organ is crucial for its therapeutic activity. Glatiramer acetate (GA, Copaxone, Copolymer 1), a drug approved for the treatment of multiple sclerosis, induces regulatory T helper 2/3 cells that penetrate the CNS. Here we investigated whether these GA-specific T cells can function as suppressor cells with therapeutic potential in the target organ by in situ expression of T helper 2/3 cytokines and neurotrophic factors. GA-specific cells and their in situ expression were detected on the level of whole-brain tissue by using a two-stage double-labeling system: (i) labeling of the GA-specific T cells, followed by their adoptive transfer, and (ii) detection of the secreted factors in the brain by immunohistological methods. GA-specific T cells in the CNS demonstrated intense expression of the brain-derived neurotrophic factor and of two antiinflammatory cytokines, IL-10 and transforming growth factor beta. No expression of the inflammatory cytokine IFN-gamma was observed. This pattern of expression was manifested in brains of normal and experimental autoimmune encephalomyelitis-induced mice to which GA-specific cells were adoptively transferred, but not in control mice. Furthermore, infiltration of GA-induced cells to the brain resulted in bystander expression of IL-10 and transforming growth factor beta by resident astrocytes and microglia. The ability of infiltrating GA-specific cells to express antiinflammatory cytokines and neurotrophic factor in the organ in which the pathological processes occur correlates directly with the therapeutic activity of GA in experimental autoimmune encephalomyelitis/multiple sclerosis.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Brain/drug effects
- Brain/immunology
- Brain/metabolism
- Brain-Derived Neurotrophic Factor/metabolism
- Cytokines/metabolism
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Female
- Glatiramer Acetate
- Humans
- Immunohistochemistry
- Immunosuppressive Agents/pharmacology
- Interferon-gamma/metabolism
- Interleukin-10/metabolism
- Mice
- Mice, Inbred BALB C
- Multiple Sclerosis/drug therapy
- Multiple Sclerosis/immunology
- Multiple Sclerosis/metabolism
- Peptides/pharmacology
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes, Helper-Inducer/drug effects
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/metabolism
- Th2 Cells/drug effects
- Th2 Cells/immunology
- Th2 Cells/metabolism
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Rina Aharoni
- Department of Immunology, The Weizmann Institute, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|