1
|
Li M, Xue Y, Chi L, Jin L. Heparin Oligosaccharides as Vasoactive Intestinal Peptide Inhibitors via their Binding Process Characterization. Curr Protein Pept Sci 2024; 25:480-491. [PMID: 38284716 DOI: 10.2174/0113892037287189240122110819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/02/2024] [Accepted: 01/12/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND It has been proven that vasoactive intestinal peptide (VIP) was involved in the pathogenesis of prostate cancer. Cardin et al. found that by an alanine scan, the heparin- binding site on VIP was exactly the same sequence in VIP and its receptor. Therefore, heparin could competitively block the binding of VIP and its receptor. However, the structure-activity relationship between heparin and VIP has not been reported, especially in terms of the sequence and sulfation patterns of heparin oligosaccharides upon binding to VIP. OBJECTIVE A variety of experiments were designed to study the binding process and structure-activity relationship between heparin oligosaccharides and VIP. METHODS Heparin was enzymatically digested and purified to produce heparin oligosaccharides, and the structures were characterized by NMR. The binding capacity between heparin oligosaccharides and VIP was analyzed by GMSA and ITC experiments. The binding between heparin oligosaccharides and VIP was simulated using a molecular docking program to show the complex. ELISA assay was used to investigate the effect of non-anticoagulant heparin oligosaccharides on the VIP-mediated cAMP/PKA signaling pathway in vitro. RESULTS The results indicated that both the length and the sulfation pattern of heparin oligosaccharides affected its binding to VIP. VIP could induce the expression of cAMP at a higher level in PC3 cells, which could be regulated by the interaction of heparin oligosaccharides and VIP. CONCLUSION The binding between heparin oligosaccharides and VIP could block the binding between VIP and its receptor on tumor cells. Downloading the regulation of the expression level of cAMP could possibly further affect the subsequent activation of PKA. These non-anticoagulant heparin oligosaccharides may block the VIP-mediated cAMP/PKA signaling pathway and thus exert their antitumor activity.
Collapse
Affiliation(s)
- Meixin Li
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate- based Medicine, Shandong University, Qingdao, Shandong, 266237, China
| | - Yaqi Xue
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate- based Medicine, Shandong University, Qingdao, Shandong, 266237, China
| | - Lianli Chi
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate- based Medicine, Shandong University, Qingdao, Shandong, 266237, China
| | - Lan Jin
- National Glycoengineering Research Center, NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate- based Medicine, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
2
|
Butler W, Xu L, Zhou Y, Cheng Q, Hauck S, He Y, Marek R, Hartman Z, Cheng L, Yang Q, Wang ME, Chen M, Zhang H, Armstrong AJ, Huang J. Oncofetal protein glypican-3 is a biomarker and critical regulator of function for neuroendocrine cells in prostate cancer. J Pathol 2023; 260:43-55. [PMID: 36752189 PMCID: PMC10273879 DOI: 10.1002/path.6063] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/27/2022] [Accepted: 02/04/2023] [Indexed: 02/09/2023]
Abstract
Neuroendocrine (NE) cells comprise ~1% of epithelial cells in benign prostate and prostatic adenocarcinoma (PCa). However, they become enriched in hormonally treated and castration-resistant PCa (CRPC). In addition, close to 20% of hormonally treated tumors recur as small cell NE carcinoma (SCNC), composed entirely of NE cells, which may be the result of clonal expansion or lineage plasticity. Since NE cells do not express androgen receptors (ARs), they are resistant to hormonal therapy and contribute to therapy failure. Here, we describe the identification of glypican-3 (GPC3) as an oncofetal cell surface protein specific to NE cells in prostate cancer. Functional studies revealed that GPC3 is critical to the viability of NE tumor cells and tumors displaying NE differentiation and that it regulates calcium homeostasis and signaling. Since our results demonstrate that GPC3 is specifically expressed by NE cells, patients with confirmed SCNC may qualify for GPC3-targeted therapy which has been developed in the context of liver cancer and displays minimal toxicity due to its tumor-specific expression. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- William Butler
- Department of Pathology, Duke University School of Medicine, Durham NC, USA
| | - Lingfan Xu
- Department of Pathology, Duke University School of Medicine, Durham NC, USA
| | - Yinglu Zhou
- Department of Data Science, Dana-Farber Cancer Institute, Boston MA, USA
| | - Qing Cheng
- Department of Surgery, Duke University School of Medicine, Durham NC, USA
| | - Spencer Hauck
- Department of Pathology, Duke University School of Medicine, Durham NC, USA
| | - Yiping He
- Department of Pathology, Duke University School of Medicine, Durham NC, USA
| | - Robert Marek
- Department of Pathology, Duke University School of Medicine, Durham NC, USA
| | - Zachary Hartman
- Department of Surgery, Duke University School of Medicine, Durham NC, USA
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University, Providence RI, USA
| | - Qing Yang
- School of Nursing, Duke University School of Medicine, Durham NC 27710, USA
| | - Mu-En Wang
- Department of Pathology, Duke University School of Medicine, Durham NC, USA
| | - Ming Chen
- Department of Pathology, Duke University School of Medicine, Durham NC, USA
| | - Hong Zhang
- Department of Pathology, Duke University School of Medicine, Durham NC, USA
| | - Andrew J. Armstrong
- Department of Medicine, Duke University School of Medicine, Durham NC 27710, USA
| | - Jiaoti Huang
- Department of Pathology, Duke University School of Medicine, Durham NC, USA
| |
Collapse
|
3
|
Valentine H, Aiken W, Morrison B, Zhao Z, Fowle H, Wasserman JS, Thompson E, Chin W, Young M, Clarke S, Gibbs D, Harrison S, McLaughlin W, Kwok T, Jin F, Campbell KS, Horvath A, Thompson R, Lee NH, Zhou Y, Graña X, Ragin C, Badal S. Expanding the prostate cancer cell line repertoire with ACRJ-PC28, an AR-negative neuroendocrine cell line derived from an African-Caribbean patient. CANCER RESEARCH COMMUNICATIONS 2022; 2:1355-1371. [PMID: 36643868 PMCID: PMC9836004 DOI: 10.1158/2767-9764.crc-22-0245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/02/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022]
Abstract
Prostate cell lines from diverse backgrounds are important to addressing disparities in prostate cancer (PCa) incidence and mortality rates among Black men. ACRJ-PC28 was developed from a transrectal needle biopsy and established via inactivation of the CDKN2A locus and simultaneous expression of human telomerase. Characterization assays included growth curve analysis, immunoblots, IHC, 3D cultures, immunofluorescence imaging, confocal microscopy, flow cytometry, WGS, and RNA-Seq. ACRJ-PC28 has been passaged more than 40 times in vitro over 10 months with a doubling time of 45 hours. STR profiling confirmed the novelty and human origin of the cell line. RNA-Seq confirmed the expression of prostate specific genes alpha-methylacyl-CoA racemase (AMACR) and NKX3.1 and Neuroendocrine specific markers synaptophysin (SYP) and enolase 2 (ENO2) and IHC confirmed the presence of AMACR. Immunoblots indicated the cell line is of basal-luminal type; expresses p53 and pRB and is AR negative. WGS confirmed the absence of exonic mutations and the presence of intronic variants that appear to not affect function of AR, p53, and pRB. RNA-Seq data revealed numerous TP53 and RB1 mRNA splice variants and the lack of AR mRNA expression. This is consistent with retention of p53 function in response to DNA damage and pRB function in response to contact inhibition. Soft agar anchorage-independent analysis indicated that the cells are transformed, confirmed by principal component analysis (PCA) where ACRJ-PC28 cells cluster alongside other PCa tumor tissues, yet was distinct. The novel methodology described should advance prostate cell line development, addressing the disparity in PCa among Black men.
Collapse
Affiliation(s)
- Henkel Valentine
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, Jamaica, West Indies
| | - William Aiken
- Department of Surgery, Radiology, Anaesthesia and Intensive Care, Section of Surgery, Faculty of Medical Sciences, The University of the West Indies, Mona, Jamaica
- African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania
| | - Belinda Morrison
- Department of Surgery, Radiology, Anaesthesia and Intensive Care, Section of Surgery, Faculty of Medical Sciences, The University of the West Indies, Mona, Jamaica
- African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania
| | - Ziran Zhao
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Holly Fowle
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Jason S. Wasserman
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Elon Thompson
- Department of Urology Kingston Public Hospital, North Street, Kingston
| | - Warren Chin
- Department of Urology Kingston Public Hospital, North Street, Kingston
| | - Mark Young
- Department of Urology Kingston Public Hospital, North Street, Kingston
| | - Shannique Clarke
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, Jamaica, West Indies
| | - Denise Gibbs
- African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Sharon Harrison
- African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Wayne McLaughlin
- CARIGEN, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, Jamaica
| | - Tim Kwok
- Cell Culture Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Fang Jin
- Cell Culture Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Kerry S. Campbell
- Blood Cell Development and Function Program and Cell Culture Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Anelia Horvath
- Department of Biochemistry and Molecular Medicine, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Rory Thompson
- African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania
- Department of Pathology, University Hospital of the West Indies, Mona, Kingston, Jamaica
| | - Norman H. Lee
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, GW Cancer Center, Washington, District of Columbia
| | - Yan Zhou
- Biostatistics and Bioinformatics Facility, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Xavier Graña
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania
| | - Camille Ragin
- African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Simone Badal
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, Jamaica, West Indies
- African-Caribbean Cancer Consortium, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Stimulation of neuroendocrine differentiation in prostate cancer cells by GHRH and its blockade by GHRH antagonists. Invest New Drugs 2019; 38:746-754. [PMID: 31312936 DOI: 10.1007/s10637-019-00831-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023]
Abstract
Prostate cancer is the second leading cause of cancer-related deaths among men in developed countries. Neuroendocrine prostate cancer, in particular, is associated with an aggressive phenotype and a poor prognosis. Neuroendocrine cells produce and secrete peptide hormones and growth factors in a paracrine/autocrine manner which promote the progression of the disease. Recent studies have demonstrated that extracellular vesicles or exosomes are released by prostate cancer cells, supporting the spread of prostate cancer. Hence, the aim of this study was to investigate the effect of growth hormone-releasing hormone (GHRH) on neuroendocrine differentiation (NED) in the androgen-dependent prostate cancer cell line LNCaP and the molecular mechanisms underlying these effects. GHRH induced an increase in the percentage of neurite-bearing cells and in the protein levels of Neuron-Specific Enolase. Both effects were blocked by the GHRH receptor antagonist MIA-690. In addition, pretreatment of these cells with the calcium chelator BAPTA, the EGFR inhibitor AG-1478 or the HER2 inhibitor AG-825 reduced the effect of GHRH, suggesting that the GHRH-induced stimulation of NED involves calcium channel activation and EGFR/HER2 transactivation. Finally, PC3-derived exosomes led to an increase in NED, cell proliferation and cell adhesion. Altogether, these findings suggest that GHRH antagonists should be considered for in the management of neuroendocrine prostate cancer.
Collapse
|
5
|
Creating a potential diagnostic for prostate cancer risk stratification (InformMDx™) by translating novel scientific discoveries concerning cAMP degrading phosphodiesterase-4D7 (PDE4D7). Clin Sci (Lond) 2019; 133:269-286. [DOI: 10.1042/cs20180519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/19/2018] [Accepted: 01/01/2019] [Indexed: 12/14/2022]
Abstract
Abstract
Increased PSA-based screening for prostate cancer has resulted in a growing number of diagnosed cases. However, around half of these are ‘indolent’, neither metastasizing nor leading to disease specific death. Treating non-progressing tumours with invasive therapies is currently regarded as unnecessary over-treatment with patients being considered for conservative regimens, such as active surveillance (AS). However, this raises both compliance and protocol issues. Great clinical benefit could accrue from a biomarker able to predict long-term patient outcome accurately at the time of biopsy and initial diagnosis. Here we delineate the translation of a laboratory discovery through to the precision development of a clinically validated, novel prognostic biomarker assay (InformMDx™). This centres on determining transcript levels for phosphodiesterase-4D7 (PDE4D7), an enzyme that breaks down cyclic AMP, a signalling molecule intimately connected with proliferation and androgen receptor function. Quantifiable detection of PDE4D7 mRNA transcripts informs on the longitudinal outcome of post-surgical disease progression. The risk of post-surgical progression increases steeply for patients with very low ‘PDE4D7 scores’, while risk decreases markedly for those patients with very high ‘PDE4D7 scores’. Combining clinical risk variables, such as the Gleason or CAPRA (Cancer of the Prostate Risk Assessment) score, with the ‘PDE4D7 score’ further enhances the prognostic power of this personalized, precision assessment. Thus the ‘PDE4D7 score’ has the potential to define, more effectively, appropriate medical intervention/AS strategies for individual prostate cancer patients.
Collapse
|
6
|
Couvineau A, Dayot S, Nicole P, Gratio V, Rebours V, Couvelard A, Voisin T. The Anti-tumoral Properties of Orexin/Hypocretin Hypothalamic Neuropeptides: An Unexpected Therapeutic Role. Front Endocrinol (Lausanne) 2018; 9:573. [PMID: 30319552 PMCID: PMC6170602 DOI: 10.3389/fendo.2018.00573] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/10/2018] [Indexed: 02/05/2023] Open
Abstract
Orexins (OxA and OxB) also termed hypocretins are hypothalamic neuropeptides involved in central nervous system (CNS) to control the sleep/wake process which is mediated by two G protein-coupled receptor subtypes, OX1R, and OX2R. Beside these central effects, orexins also play a role in various peripheral organs such as the intestine, pancreas, adrenal glands, kidney, adipose tissue and reproductive tract.In the past few years, an unexpected anti-tumoral role of orexins mediated by a new signaling pathway involving the presence of two immunoreceptor tyrosine-based inhibitory motifs (ITIM) in both orexin receptors subtypes, the recruitment of the phosphotyrosine phosphatase SHP2 and the induction of mitochondrial apoptosis has been elucidated. In the present review, we will discuss the anti-tumoral effect of orexin/OXR system in colon, pancreas, prostate and other cancers, and its interest as a possible therapeutic target.
Collapse
Affiliation(s)
- Alain Couvineau
- INSERM UMR1149/Inflammation Research Center (CRI), Team “From Inflammation to Cancer in Digestive Diseases” Labeled by “La Ligue Nationale Contre Le Cancer,” Paris-Diderot University, DHU UNITY, Paris, France
| | | | | | | | | | | | | |
Collapse
|
7
|
Maugeri G, D'Amico AG, Reitano R, Magro G, Cavallaro S, Salomone S, D'Agata V. PACAP and VIP Inhibit the Invasiveness of Glioblastoma Cells Exposed to Hypoxia through the Regulation of HIFs and EGFR Expression. Front Pharmacol 2016; 7:139. [PMID: 27303300 PMCID: PMC4885839 DOI: 10.3389/fphar.2016.00139] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/12/2016] [Indexed: 11/30/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal
peptide (VIP) through the binding of vasoactive intestinal peptide receptors (VIPRs),
perform a wide variety of effects in human cancers, including glioblastoma multiforme
(GBM). This tumor is characterized by extensive areas of hypoxia, which triggers the
expression of hypoxia-inducible factors (HIFs). HIFs not only mediate angiogenesis
but also tumor cell migration and invasion. Furthermore, HIFs activation is linked to
epidermal growth factor receptor (EGFR) overexpression. Previous studies have shown
that VIP interferes with the invasive nature of gliomas by regulating cell migration.
However, the role of VIP family members in GBM infiltration under low oxygen tension
has not been clarified yet. Therefore, in the present study we have investigated, for
the first time, the molecular mechanisms involved in the anti-invasive effect of
PACAP or VIP in U87MG glioblastoma cells exposed to hypoxia induced by treatment with
desferrioxamine (DFX). The results suggest that either PACAP or VIP exert an
anti-infiltrative effect under low oxygen tension by modulating HIFs and EGFR
expression, key elements involved in cell migration and angiogenesis. These peptides
act through the inhibition of PI3K/Akt and MAPK/ERK signaling pathways, which are
known to have a crucial role in HIFs regulation.
Collapse
Affiliation(s)
- Grazia Maugeri
- Sections of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Agata Grazia D'Amico
- Sections of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of CataniaCatania, Italy; San Raffaele Open University of RomeRome, Italy
| | - Rita Reitano
- Sections of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Gaetano Magro
- Section of Anatomic Pathology, Department of Medical and Surgical Sciences and Advanced Technologies, G.F. Ingrassia, Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele", University of Catania Catania, Italy
| | | | - Salvatore Salomone
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| | - Velia D'Agata
- Sections of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania Catania, Italy
| |
Collapse
|
8
|
Alexandre D, Hautot C, Mehio M, Jeandel L, Courel M, Voisin T, Couvineau A, Gobet F, Leprince J, Pfister C, Anouar Y, Chartrel N. The orexin type 1 receptor is overexpressed in advanced prostate cancer with a neuroendocrine differentiation, and mediates apoptosis. Eur J Cancer 2014; 50:2126-2133. [PMID: 24910418 DOI: 10.1016/j.ejca.2014.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/10/2014] [Accepted: 05/09/2014] [Indexed: 02/05/2023]
Abstract
AIM In the present study, we have examined the presence of orexins and their receptors in prostate cancer (CaP) and investigated their effects on the apoptosis of prostate cancer cells. METHODS We have localised the orexin type 1 and 2 receptors (OX1R and OX2R) and orexin A (OxA) in CaP sections of various grades and we have quantified tumour cells containing OX1R. Expression of OX1R was evaluated in the androgeno-dependent (AD) LNCaP and the androgeno-independent (AI) DU145 prostate cancer cells submitted or not to a neuroendocrine differentiation. The effects of orexins on the apoptosis and viability of DU145 cells were also investigated. RESULTS OX1R is strongly expressed in carcinomatous foci exhibiting a neuroendocrine differentiation, and the number of OX1R-stained cancer cells increases with the grade of the CaP. In contrast, OX2R is only detected in scattered malignant cells in high grade CaP. OX1R is expressed in the AI DU145 cells but is undetectable in the LNCaP cells. Acquisition of a neuroendocrine phenotype by the DU145 cells is associated with an overexpression of OX1R. Orexins induce the apoptosis of DU145 cells submitted to a neuroendocrine differentiation. CONCLUSION The present data indicate that OX1R-driven apoptosis is overexpressed in AI CaP exhibiting a neuroendocrine differentiation opening a gate for novel therapies for these aggressive cancers which are incurable until now.
Collapse
Affiliation(s)
- David Alexandre
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Biomedical Research and Innovation Institute (IRIB), University of Rouen, Mont-Saint-Aignan, France
| | - Coralie Hautot
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Biomedical Research and Innovation Institute (IRIB), University of Rouen, Mont-Saint-Aignan, France
| | - Marwa Mehio
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Biomedical Research and Innovation Institute (IRIB), University of Rouen, Mont-Saint-Aignan, France
| | - Lydie Jeandel
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Biomedical Research and Innovation Institute (IRIB), University of Rouen, Mont-Saint-Aignan, France
| | - Maïté Courel
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Biomedical Research and Innovation Institute (IRIB), University of Rouen, Mont-Saint-Aignan, France
| | - Thierry Voisin
- University Paris-Diderot, Sorbonne Paris Cité, CRB3, Centre de Recherche Biomédicale Bichat Beaujon (CRB3), UMR773, INSERM, F-75018 Paris, France
| | - Alain Couvineau
- University Paris-Diderot, Sorbonne Paris Cité, CRB3, Centre de Recherche Biomédicale Bichat Beaujon (CRB3), UMR773, INSERM, F-75018 Paris, France
| | - Françoise Gobet
- Department of Pathology, University Hospital of Rouen, Institute for Biomedical Research, University of Rouen, Rouen, France
| | - Jérôme Leprince
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Biomedical Research and Innovation Institute (IRIB), University of Rouen, Mont-Saint-Aignan, France
| | - Christian Pfister
- Department of Urology, University Hospital of Rouen, Institute for Biomedical Research, University of Rouen, Rouen, France
| | - Youssef Anouar
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Biomedical Research and Innovation Institute (IRIB), University of Rouen, Mont-Saint-Aignan, France
| | - Nicolas Chartrel
- INSERM U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Biomedical Research and Innovation Institute (IRIB), University of Rouen, Mont-Saint-Aignan, France.
| |
Collapse
|
9
|
VPAC1 overexpression is associated with poor differentiation in colon cancer. Tumour Biol 2014; 35:6397-404. [PMID: 24671823 DOI: 10.1007/s13277-014-1852-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/13/2014] [Indexed: 12/14/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) is a neurotransmitter that primarily functions as a vasodilator. VIP plays its role through binding to its receptors known as VIP/pituitary adenylate cyclase-activating peptide receptors (VPACs). In this study, we examined the expression of VPAC1 in human colon cancer tissues, analyzed the relationship between VPAC1 expression and cancer malignancy, and explored the possible mechanisms using immunohistochemistry and immunofluorescence double staining. The results showed that (1) poorly differentiated colon cancers have significantly higher VPAC1 expression than well-differentiated colon cancers do (p < 0.01); (2) phospho-epithelial growth factor receptor (EGFR) overexpression/activation in the cytoplasm of cancer cells is related to VPAC1 overexpression; (3) blood vessels surrounding colon cancer have significantly more VPAC1-positive than normal colon mucosa does; (4) tumor-associated macrophages (TAMs) of colon cancer have a higher level of VPAC1 expression than macrophages in normal colon mucosa do. These data suggest that VPAC1 overexpression is associated with poorer differentiation of colon cancer, which is likely caused by subsequent EGFR activation in cancer cells. In addition, VPAC1 overexpression in both blood vessels and macrophages in tumors may also play an important role in the development of aggressive cancer.
Collapse
|
10
|
Alonzeau J, Alexandre D, Jeandel L, Courel M, Hautot C, Yamani FZE, Gobet F, Leprince J, Magoul R, Amarti A, Pfister C, Yon L, Anouar Y, Chartrel N. The neuropeptide 26RFa is expressed in human prostate cancer and stimulates the neuroendocrine differentiation and the migration of androgeno-independent prostate cancer cells. Eur J Cancer 2013; 49:511-9. [DOI: 10.1016/j.ejca.2012.05.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 05/07/2012] [Accepted: 05/27/2012] [Indexed: 11/15/2022]
|
11
|
Langer I. Mechanisms involved in VPAC receptors activation and regulation: lessons from pharmacological and mutagenesis studies. Front Endocrinol (Lausanne) 2012; 3:129. [PMID: 23115557 PMCID: PMC3483716 DOI: 10.3389/fendo.2012.00129] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 10/11/2012] [Indexed: 11/18/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) plays diverse and important role in human physiology and physiopathology and their receptors constitute potential targets for the treatment of several diseases such as neurodegenerative disorder, asthma, diabetes, and inflammatory diseases. This article reviews the current knowledge regarding the two VIP receptors, VPAC(1) and VPAC(2), with respect to mechanisms involved in receptor activation, G protein coupling, signaling, regulation, and oligomerization.
Collapse
Affiliation(s)
- Ingrid Langer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Faculté de Médecine, Université Libre de BruxellesBrussels, Belgium
| |
Collapse
|
12
|
Ge D, Gao AC, Zhang Q, Liu S, Xue Y, You Z. LNCaP prostate cancer cells with autocrine interleukin-6 expression are resistant to IL-6-induced neuroendocrine differentiation due to increased expression of suppressors of cytokine signaling. Prostate 2012; 72:1306-16. [PMID: 22213096 PMCID: PMC3665156 DOI: 10.1002/pros.22479] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 12/02/2011] [Indexed: 01/17/2023]
Abstract
BACKGROUND Neuroendocrine differentiation (NED) is one of the mechanisms underlying development of castration-resistant prostate cancer (CRPC). In this study, we investigated IL-6-induced NED in two LNCaP sublines. METHODS LNCaP-S17, an LNCaP subline that secretes IL-6, and LNCaP-C3, a control subline that does not express IL-6, were analyzed for IL-6-induced NED, activation of JAK2 and STAT3 pathways, and expression of IL-6/IL-6R signaling proteins and downstream target genes. RESULTS IL-6 did not induce NED in LNCaP-S17 cells, even though IL-6 induced NED in LNCaP-C3 cells. IL-6 activated JAK2 and STAT3 pathways in LNCaP-C3 cells but not in LNCaP-S17 cells. IL-6 did not activate ERK1/2, AKT, or NF-κB pathways in either cell line. Both LNCaP-C3 and LNCaP-S17 cell lines expressed IL-6R, gp130, and TYK2 at almost the same levels and did not express JAK1 or JAK3. The basal level of JAK2 expression was slightly higher in LNCaP-C3 cells than in LNCaP-S17 cells. Two suppressors of cytokine signaling, SOCS7 and cytokine-inducible SH2 protein (CIS), were expressed constitutively at higher levels in LNCaP-S17 cells than in LNCaP-C3 cells, while SOCS1 to SOCS6 were expressed at approximately the same levels. Using siRNA to knockdown SOCS7 and CIS expression in LNCaP-S17 cells led to increased phosphorylation of STAT3 upon IL-6 stimulation. CONCLUSIONS LNCaP-S17 cells are resistant to exogenous IL-6-induced NED due to increased levels of CIS/SOCS7 that block activation of JAK2-STAT3 pathways.
Collapse
Affiliation(s)
- Dongxia Ge
- Department of Structural & Cellular Biology, Department of Orthopaedic Surgery, Tulane Cancer Center, Louisiana Cancer Research Consortium, Tulane Center for Aging, Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Allen C. Gao
- Department of Urology, University of California at Davis Medical Center, Sacramento, California 95817
| | - Qiuyang Zhang
- Department of Structural & Cellular Biology, Department of Orthopaedic Surgery, Tulane Cancer Center, Louisiana Cancer Research Consortium, Tulane Center for Aging, Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Sen Liu
- Department of Structural & Cellular Biology, Department of Orthopaedic Surgery, Tulane Cancer Center, Louisiana Cancer Research Consortium, Tulane Center for Aging, Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Yun Xue
- Department of Structural & Cellular Biology, Department of Orthopaedic Surgery, Tulane Cancer Center, Louisiana Cancer Research Consortium, Tulane Center for Aging, Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112
| | - Zongbing You
- Department of Structural & Cellular Biology, Department of Orthopaedic Surgery, Tulane Cancer Center, Louisiana Cancer Research Consortium, Tulane Center for Aging, Tulane Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112
- Correspondence to: Zongbing You, MD, PhD, Department of Structural & Cellular Biology, Tulane University School of Medicine, 1430 Tulane Ave SL 49, New Orleans, LA 70112. Fax: 504-988-1687; Tel: 504-988-0467;
| |
Collapse
|
13
|
Vacas E, Fernández-Martínez AB, Bajo AM, Sánchez-Chapado M, Schally AV, Prieto JC, Carmena MJ. Vasoactive intestinal peptide (VIP) inhibits human renal cell carcinoma proliferation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1676-85. [PMID: 22728770 DOI: 10.1016/j.bbamcr.2012.06.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/29/2012] [Accepted: 06/14/2012] [Indexed: 12/13/2022]
Abstract
Clear renal cell carcinoma (cRCC) is an aggressive and fatal neoplasm. The present work was undertaken to investigate the antiproliferative potential of vasoactive intestinal peptide (VIP) exposure on non-tumoral (HK2) and tumoral (A498, cRCC) human proximal tubular epithelial cell lines. Reverse transcription and semiquantitative PCR was used at the VIP mRNA level whereas enzyme immunoanalysis was performed at the protein level. Both renal cell lines expressed VIP as well as VIP/pituitary adenylate cyclase-activating peptide (VPAC) receptors whereas only HK2 cells expressed formyl peptide receptor-like 1 (FPRL-1). Receptors were functional, as shown by VIP stimulation of adenylyl cyclase activity. Treatment with 0.1μM VIP (24h) inhibited proliferation of A498 but not HK2 cells as based on a reduction in the incorporation of [(3)H]-thymidine and BrdU (5'-Br-2'-deoxyuridine), PCNA (proliferating-cell nuclear antigen) expression and STAT3 (signal transducer and activator of transcription 3) expression and activation. VPAC(1)-receptor participation was established using JV-1-53 antagonist and siRNA transfection. Growth-inhibitory response to VIP was related to the cyclic adenosine monophosphate (cAMP)/exchange protein directly activated by cAMP (EPAC)/phosphoinositide 3-kinase (PI3-K) signaling systems as shown by studies on adenylate cyclase stimulation, and using the EPAC-specific compound 8CPT-2Me-cAMP and specific kinase inhibitors such as H89, wortmannin and PD98059. The efficacy of VIP on the prevention of tumor progression was confirmed in vivo using xenografted athymic mouse. These actions support a potential role of this peptide and its agonists in new therapies for cRCC.
Collapse
Affiliation(s)
- Eva Vacas
- Department of Biochemistry and Molecular Biology, University of Alcalá, Alcalá de Henares, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Dorsam GP, Benton K, Failing J, Batra S. Vasoactive intestinal peptide signaling axis in human leukemia. World J Biol Chem 2011; 2:146-60. [PMID: 21765981 PMCID: PMC3135862 DOI: 10.4331/wjbc.v2.i6.146] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 05/03/2011] [Accepted: 05/10/2011] [Indexed: 02/05/2023] Open
Abstract
The vasoactive intestinal peptide (VIP) signaling axis constitutes a master “communication coordinator” between cells of the nervous and immune systems. To date, VIP and its two main receptors expressed in T lymphocytes, vasoactive intestinal peptide receptor (VPAC)1 and VPAC2, mediate critical cellular functions regulating adaptive immunity, including arresting CD4 T cells in G1 of the cell cycle, protection from apoptosis and a potent chemotactic recruiter of T cells to the mucosa associated lymphoid compartment of the gastrointestinal tissues. Since the discovery of VIP in 1970, followed by the cloning of VPAC1 and VPAC2 in the early 1990s, this signaling axis has been associated with common human cancers, including leukemia. This review highlights the present day knowledge of the VIP ligand and its receptor expression profile in T cell leukemia and cell lines. Also, there will be a discussion describing how the anti-leukemic DNA binding transcription factor, Ikaros, regulates VIP receptor expression in primary human CD4 T lymphocytes and T cell lymphoblastic cell lines (e.g. Hut-78). Lastly, future goals will be mentioned that are expected to uncover the role of how the VIP signaling axis contributes to human leukemogenesis, and to establish whether the VIP receptor signature expressed by leukemic blasts can provide therapeutic and/or diagnostic information.
Collapse
Affiliation(s)
- Glenn Paul Dorsam
- Glenn Paul Dorsam, Keith Benton, Jarrett Failing, Department of Chemistry and Biochemistry, Center for Protease Research, North Dakota State University, Fargo, ND 58102, United States
| | | | | | | |
Collapse
|
15
|
Fernández-Martínez AB, Bajo AM, Isabel Arenas M, Sánchez-Chapado M, Prieto JC, Carmena MJ. Vasoactive intestinal peptide (VIP) induces malignant transformation of the human prostate epithelial cell line RWPE-1. Cancer Lett 2010; 299:11-21. [DOI: 10.1016/j.canlet.2010.07.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/20/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
|
16
|
Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, Fournier A, Chow BKC, Hashimoto H, Galas L, Vaudry H. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 2009; 61:283-357. [PMID: 19805477 DOI: 10.1124/pr.109.001370] [Citation(s) in RCA: 862] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 38-amino acid C-terminally alpha-amidated peptide that was first isolated 20 years ago from an ovine hypothalamic extract on the basis of its ability to stimulate cAMP formation in anterior pituitary cells (Miyata et al., 1989. PACAP belongs to the vasoactive intestinal polypeptide (VIP)-secretin-growth hormone-releasing hormone-glucagon superfamily. The sequence of PACAP has been remarkably well conserved during evolution from protochordates to mammals, suggesting that PACAP is involved in the regulation of important biological functions. PACAP is widely distributed in the brain and peripheral organs, notably in the endocrine pancreas, gonads, respiratory and urogenital tracts. Characterization of the PACAP precursor has revealed the existence of a PACAP-related peptide, the activity of which remains unknown. Two types of PACAP binding sites have been characterized: type I binding sites exhibit a high affinity for PACAP and a much lower affinity for VIP, whereas type II binding sites have similar affinity for PACAP and VIP. Molecular cloning of PACAP receptors has shown the existence of three distinct receptor subtypes: the PACAP-specific PAC1-R, which is coupled to several transduction systems, and the PACAP/VIP-indifferent VPAC1-R and VPAC2-R, which are primarily coupled to adenylyl cyclase. PAC1-Rs are particularly abundant in the brain, the pituitary and the adrenal gland, whereas VPAC receptors are expressed mainly in lung, liver, and testis. The development of transgenic animal models and specific PACAP receptor ligands has strongly contributed to deciphering the various actions of PACAP. Consistent with the wide distribution of PACAP and its receptors, the peptide has now been shown to exert a large array of pharmacological effects and biological functions. The present report reviews the current knowledge concerning the pleiotropic actions of PACAP and discusses its possible use for future therapeutic applications.
Collapse
Affiliation(s)
- David Vaudry
- Institut National de la Santé et de la Recherche Médicale U413, European Institute for Peptide Research (Institut Fédératif de Recherches Multidisciplinaires sur les Peptides 23), Mont-Saint-Aignan, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fernández-Martínez AB, Bajo AM, Sánchez-Chapado M, Prieto JC, Carmena MJ. Vasoactive intestinal peptide behaves as a pro-metastatic factor in human prostate cancer cells. Prostate 2009; 69:774-86. [PMID: 19189304 DOI: 10.1002/pros.20930] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND There is little known on the involvement of vasoactive intestinal peptide (VIP) in the metastatic cascade of human prostate cancer, that is, cell proliferation, cell-cell adhesion, extracellular-matrix degradation, and migration/invasion. Here we evaluated the expression of related biomarker proteins (cyclin D1, metalloproteinases MMP-2 and MMP-9, and E-cadherin) in human androgen-dependent (LNCaP) and independent (PC3) prostate cancer cells. METHODS Reverse transcriptase (RT)-polymerase chain reaction (PCR), gelatin zymography, Western blotting, confocal immunofluorescence microscopy, and assays on cell proliferation, adhesion, wound-healing, migration and random homing were performed. RESULTS VIP increased cell proliferation and cyclin D1 expression whereas it decreased cell adhesion and E-cadherin expression in LNCaP and PC3 cells. VIP enhanced the gelatinolytic activity of MMP-2 and MMP-9. Semiquantitative RT-PCR assays showed that VIP stimulated mRNA levels of these MMPs and suppressed mRNA levels of its inhibitory protein RECK. VIP promoted cell invasion and migration, and the responses were faster according to the most aggressive status in cancer progression (androgen-independence). The involvement of nuclear factor-kappaB (NF-kappaB) was demonstrated since the anti-inflammatory agent curcumin blocked VIP effects on the above biomarkers in both cell lines. CONCLUSIONS Taken together, these results and the presence of kappaB sites on gene promoter of cyclin D1, MMPs and, possibly, E-cadherin suggest that VIP may act as a cytokine in an early metastatic stage of human prostate cancer through the NF-kappaB/MMPs-RECK/E-cadherin system. Our findings may help to define novel targets and agents with potential usefulness in prostate cancer therapy.
Collapse
Affiliation(s)
- Ana B Fernández-Martínez
- Department of Biochemistry and Molecular Biology, University of Alcalá, Alcalá de Henares, Spain
| | | | | | | | | |
Collapse
|
18
|
Castorina A, Tiralongo A, Giunta S, Carnazza ML, Rasi G, D'Agata V. PACAP and VIP prevent apoptosis in schwannoma cells. Brain Res 2008; 1241:29-35. [DOI: 10.1016/j.brainres.2008.09.035] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 05/20/2008] [Accepted: 09/08/2008] [Indexed: 10/21/2022]
|
19
|
Collado B, Carmena MJ, Clemente C, Prieto JC, Bajo AM. Vasoactive intestinal peptide enhances growth and angiogenesis of human experimental prostate cancer in a xenograft model. Peptides 2007; 28:1896-901. [PMID: 17544169 DOI: 10.1016/j.peptides.2007.04.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 04/13/2007] [Accepted: 04/24/2007] [Indexed: 10/23/2022]
Abstract
We show that vasoactive intestinal peptide (VIP) exerts trophic and proangiogenic activities in experimental prostate cancer in vivo. Nude mice were subcutaneously injected with Matrigel impregnated with LNCaP prostate cancer cells. Cell treatment with 100 nM VIP for 1h before xenograft resulted in increased tumor growth after 8 and, more remarkably, 15 days of injection. The same occurred with the mRNA expression of the main angiogenic factor, vascular endothelial growth factor (VEGF), as shown by real-time RT-PCR quantification. The proangiogenic activity of VIP was further established by showing increases of hemoglobin levels, Masson trichromic staining, and immunohistochemical CD34 staining in tumors excised 15 days after subcutaneous injection of VIP-treated cells as compared to control conditions. All these parameters indicate that VIP increases vessel formation. This xenograft model is a useful tool to study in vivo the effects of VIP-related peptides in tumor growth and development of blood supply as well as their therapeutical potential in prostate cancer.
Collapse
Affiliation(s)
- Beatriz Collado
- Department of Biochemistry and Molecular Biology, University of Alcalá, Alcalá de Henares 28871, Spain
| | | | | | | | | |
Collapse
|
20
|
Valdehita A, Carmena MJ, Collado B, Prieto JC, Bajo AM. Vasoactive intestinal peptide (VIP) increases vascular endothelial growth factor (VEGF) expression and secretion in human breast cancer cells. ACTA ACUST UNITED AC 2007; 144:101-8. [PMID: 17683807 DOI: 10.1016/j.regpep.2007.06.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Revised: 06/15/2007] [Accepted: 06/15/2007] [Indexed: 11/18/2022]
Abstract
Previous studies have shown that vasoactive intestinal peptide (VIP) and its receptors (VPAC(1) and VPAC(2) receptors) are involved in promotion and growth of many human tumours including breast cancer. Here we investigated whether VIP regulates the expression of the main angiogenic factor, vascular endothelial cell growth factor (VEGF) in human oestrogen-dependent (T47D) and oestrogen-independent (MDA-MB-4687) breast cancer cells. Semiquantitative and quantitative real-time RT-PCRs were used at mRNA level whereas enzyme immunoanalysis was performed at protein level. Both cancer cell lines expressed VIP and VPAC(1) (but not VPAC(2)) receptors that were functional as shown by VIP stimulation of adenylate cyclase activity. VIP induced VEGF expression at both mRNA and protein levels following a time-dependent pattern. The responses were faster in T47D than in MDA-MB-468 cells. The observed VIP regulation of VEGF expression appears to be modulated at least by the cAMP/protein kinase A (PKA) and the phosphoinositide 3-kinase (PI3-K) signalling systems as shown by studies of adenylate cyclase stimulation and using specific kinase inhibitors such as H89 and wortmannin. These actions suggest a proangiogenic potential of VIP in breast cancer.
Collapse
Affiliation(s)
- Ana Valdehita
- Molecular Neuroendocrinology Unit, Department of Biochemistry and Molecular Biology, Alcalá University, Alcalá de Henares 28871, Spain
| | | | | | | | | |
Collapse
|
21
|
Sastry KSR, Smith AJ, Karpova Y, Datta SR, Kulik G. Diverse Antiapoptotic Signaling Pathways Activated by Vasoactive Intestinal Polypeptide, Epidermal Growth Factor, and Phosphatidylinositol 3-Kinase in Prostate Cancer Cells Converge on BAD. J Biol Chem 2006; 281:20891-20901. [PMID: 16728406 DOI: 10.1074/jbc.m602928200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It has been demonstrated that vasoactive intestinal polypeptide, epidermal growth factor, and chronic activation of phosphatidylinositol 3-kinase can protect prostate cancer cells from apoptosis; however, the signaling pathways that they use and molecules that they target are unknown. We report that vasoactive intestinal polypeptide, epidermal growth factor, and phosphatidylinositol 3-kinase activate independent signaling pathways that phosphorylate the proapoptotic protein BAD. Vasoactive intestinal polypeptide operated via protein kinase A, epidermal growth factor required Ras activity, and effects of phosphatidylinositol 3-kinase were predominantly mediated by Akt. BAD phosphorylation was critical for the antiapoptotic effects of each signaling pathway. None of these survival signals was able to rescue cells that express BAD with mutations in phosphorylation sites, whereas knockdown of BAD expression with small hairpin RNA rendered cells insensitive to apoptosis. Taken together, these results identify BAD as a convergence point of several antiapoptotic signaling pathways in prostate cells.
Collapse
Affiliation(s)
- Konduru S R Sastry
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina 27157
| | - Adrienne Joy Smith
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina 27157
| | - Yelena Karpova
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina 27157
| | - Sandeep Robert Datta
- Center for Neurobiology and Behavior, Columbia University, New York, New York 10032
| | - George Kulik
- Department of Cancer Biology, Wake Forest University School of Medicine, Winston Salem, North Carolina 27157.
| |
Collapse
|
22
|
Langer I, Gaspard N, Robberecht P. Pharmacological properties of Chinese hamster ovary cells coexpressing two vasoactive intestinal peptide receptors (hVPAC1 and hVPAC2). Br J Pharmacol 2006; 148:1051-9. [PMID: 16783404 PMCID: PMC1752023 DOI: 10.1038/sj.bjp.0706816] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. In the light of recent findings that VPAC1 and VPAC2 receptors form homodimers and heterodimers, we have evaluated the function of these receptors coexpressed in the same cells, using whole-cell and membrane preparations. Cells expressing each receptor alone were used for comparison. 2. The study was performed on Chinese hamster ovary cells stably transfected with both human recombinant receptors and we compared receptor occupancy and adenylate cyclase activation by VIP, Ro 25-1553 - a VPAC2 selective agonist - and [K(15),R(16),L(27)]VIP(1-7)/GRF(8-27) - a VPAC1 selective agonist - on membranes prepared from each cell line and on a mixture of membranes from cells expressing each receptor individually. We also studied receptor internalization induced by the three agonists on intact cells expressing both receptors alone or together by fluorescence-activated cell sorting using monoclonal antibodies and demonstrated by using co-immunoprecipitation that the two receptors did interact.3. The results indicated that coexpression of the receptors did not modify the recognition of ligands, nor the capacity of the agonists to stimulate adenylate cyclase activity and, in intact cells, to induce internalization of the receptors.4. As a consequence, the properties of the selective ligands that were established on cell lines expressing a single population of VIP receptors were valid on cells expressing both receptors. Furthermore, the recently demonstrated VPAC1/VPAC2 receptor heterodimerization did not affect the function of either receptor.
Collapse
Affiliation(s)
- Ingrid Langer
- Department of Biological Chemistry and Nutrition, School of Medicine, Université Libre de Bruxelles, 808 Route de Lennik, CP 611, Brussels B-1070, Belgium.
| | | | | |
Collapse
|
23
|
Collado B, Sánchez-Chapado M, Prieto JC, Carmena MJ. Hypoxia regulation of expression and angiogenic effects of vasoactive intestinal peptide (VIP) and VIP receptors in LNCaP prostate cancer cells. Mol Cell Endocrinol 2006; 249:116-22. [PMID: 16563610 DOI: 10.1016/j.mce.2006.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 02/01/2006] [Accepted: 02/07/2006] [Indexed: 01/08/2023]
Abstract
Vascular endothelial growth factor (VEGF) is a main factor promoting neovascularization (angiogenesis) of solid tumours as prostate carcinoma. Hypoxia stimulates VEGF gene expression by activating the hypoxia-inducible factor-1 (HIF-1alpha). In the present study, the hypoxia-mimicking agent Ni(2+) induced vasoactive intestinal peptide (VIP) expression at both mRNA and peptide levels but it did not modify the expression of VIP receptors (VPAC(1), VPAC(2) and PAC(1) receptors) in androgen-dependent human LNCaP prostate cancer cells. VIP increased the mRNA levels of VPAC(1) and PAC(1) receptors whereas it decreased VPAC(2) receptor mRNA level. These features support that hypoxia up-regulation of VIP gene expression in prostatic carcinoma may lead to VIP regulation of the expression of its receptors by means of autocrine/paracrine mechanisms. Either VIP or hypoxia mimetics with Ni(2+) increased VEGF expression whereas both conditions together resulted in an additive response. It suggests two independent mechanisms for the observed pro-angiogenic activities of VIP and hypoxia. VIP did not stimulate HIF-1alpha mRNA expression but increased the translocation of HIF-1alpha from the cytosolic compartment to the cell nucleus. Moreover, VIP was unable to modify the expression of the HIF-1alpha inhibitor FIH-1 discarding the possibility of an indirect effect of VIP on HIF-1 transactivation.
Collapse
Affiliation(s)
- Beatriz Collado
- Department of Biochemistry and Molecular Biology, Príncipe de Asturias Hospital, Alcalá de Henares 28871, Spain
| | | | | | | |
Collapse
|
24
|
Song K, Krebs TL, Danielpour D. Novel permissive role of epidermal growth factor in transforming growth factor beta (TGF-beta) signaling and growth suppression. Mediation by stabilization of TGF-beta receptor type II. J Biol Chem 2006; 281:7765-74. [PMID: 16428382 DOI: 10.1074/jbc.m511781200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transforming growth factor beta (TGF-beta) signals through TGF-beta receptor serine/threonine kinases (TbetaRI and TbetaRII) and Smads, regulating cell growth and apoptosis. Although loss of TGF-beta receptor levels is strongly selected for during the progression of most cancers, tumor cells frequently escape from complete loss of TGF-beta receptors through unknown mechanisms. Here, we provide the first evidence that epidermal growth factor (EGF) signaling, which is generally enhanced in cancer, is permissive for regulation of gene expression and growth suppression by TGF-beta in LNCaP prostate adenocarcinoma cells. Our results support that these permissive effects occur through enhanced stability of TbetaRII mRNA and reversal of TGF-beta-mediated TbetaRII mRNA loss. Changes in stability of TbetaRII mRNA occur soon after EGF or TGF-beta1 addition (optimal within 3 h) and are independent of de novo protein synthesis or transcription. Remarkably, such loss of TbetaRII by TGF-beta can be mediated by a kinase-dead TbetaRII (K277R), as well as by other forms of this receptor harboring mutations at prominent autophosphorylation sites. Moreover, Smad3 small interfering RNA, which blocks TGF-beta-induced AP-1 promoter activity, does not block changes in the expression of TbetaRII by EGF or TGF-beta. We have also shown that changes in TbetaRII levels by EGF are EGF receptor-kinase-dependent and are controlled by signals downstream of MEK1/2. Our findings provide invaluable insights on the role of the EGF receptor-kinase in enhancing TGF-beta responses during prostate carcinogenesis.
Collapse
Affiliation(s)
- Kyung Song
- The Case Comprehensive Cancer Center, The Division of General Medical Sciences and the Department of Pharmacology, Case School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | |
Collapse
|
25
|
Schulz S, Röcken C, Mawrin C, Weise W, Höllt V, Schulz S. Immunocytochemical identification of VPAC1, VPAC2, and PAC1 receptors in normal and neoplastic human tissues with subtype-specific antibodies. Clin Cancer Res 2005; 10:8235-42. [PMID: 15623599 DOI: 10.1158/1078-0432.ccr-04-0939] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human tumors frequently overexpress receptors for vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP). However, none of the VIP/PACAP receptor proteins has been visualized individually in human tumors. Here, we developed and characterized a panel of antipeptide antibodies to the carboxyl-terminal regions of the VIP/PACAP receptor subtypes vasoactive intestinal peptide receptor (VPAC)1, VPAC2, and pituitary adenylate cyclase-activating peptide receptor (PAC)1. Specificity of the antisera was shown by the following: (1) detection of broad bands migrating at Mr 50,000 to 70,000 in Western blots of membranes from receptor-expressing tumors and receptor-transfected cells; (2) cell surface staining of VIP/PACAP receptor-transfected cells; (3) translocation of VIP/PACAP receptor immunostaining in transfected cells after agonist exposure; and (4) abolition of tissue immunostaining by preadsorbtion of the antibodies with their immunizing peptides. The distribution of VIP/PACAP receptors was investigated in 98 human tumors and their tissues of origin. VPAC1, VPAC2, and PAC1 receptors were clearly located at the plasma membrane of the tumor cells in a variety of human neoplasms. In the gastrointestinal tract, VPAC1 receptor immunoreactivity was abundant in the mucosa and myenteric neurons; VPAC2 receptor immunoreactivity was detected in neuroendocrine cells, blood vessels, and smooth muscle; and PAC1 receptor immunoreactivity was found in myenteric neurons. This is the first localization of all of the VIP/PACAP receptor subtypes in human formalin-fixed, paraffin-embedded tissues. VIP/PACAP receptor visualization with this simple and rapid immunohistochemical method will facilitate identification of tumors with a sufficient receptor overexpression for diagnostic or therapeutic intervention.
Collapse
MESH Headings
- Animals
- Blood Vessels/metabolism
- Blotting, Western
- Cell Membrane/metabolism
- Gastrointestinal Tract/metabolism
- Humans
- Immunoglobulin G/immunology
- Muscle, Smooth/metabolism
- Neoplasms/diagnosis
- Neoplasms/immunology
- Neoplasms/metabolism
- Neurosecretory Systems/metabolism
- Peptide Fragments/immunology
- Rabbits
- Receptors, Cell Surface/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
- Receptors, Vasoactive Intestinal Peptide/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II
- Receptors, Vasoactive Intestinal Polypeptide, Type I
Collapse
Affiliation(s)
- Solveig Schulz
- Department of Obstetrics and Gynecology, Otto-von-Guericke-University, Magdeburg, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Collado B, Sánchez MG, Díaz-Laviada I, Prieto JC, Carmena MJ. Vasoactive intestinal peptide (VIP) induces c-fos expression in LNCaP prostate cancer cells through a mechanism that involves Ca2+ signalling. Implications in angiogenesis and neuroendocrine differentiation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:224-33. [PMID: 15921770 DOI: 10.1016/j.bbamcr.2005.04.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 03/30/2005] [Accepted: 04/15/2005] [Indexed: 01/05/2023]
Abstract
The effect of vasoactive intestinal peptide (VIP) on intracellular Ca(2+) levels and its relationship with the expression of c-fos and vascular endothelial growth factor (VEGF) as well as with neuroendocrine (NE) differentiation were investigated in human prostate LNCaP cells. VIP induced the expression of c-fos mRNA as studied by reverse transcription polymerase chain reaction (RT-PCR). It was accompanied by VIP stimulation of c-fos protein synthesis, as measured by Western blot analysis. VIP enhanced intracellular Ca(2+) levels as evaluated using the calcium probe fura-2. VIP regulation of c-fos expression depended on [Ca(2+)](i) concentration since the intracellular calcium chelator BAPTA/AM decreased c-fos expression (both mRNA and protein) to basal levels. As shown by means of real-time RT-PCR, VIP stimulated VEGF mRNA expression: the effect was inhibited by 40% in the presence of curcumin (an inhibitor of AP-1 binding), and it was dependent on Ca(2+) since BAPTA/AM inhibited this VIP action by 43%. Similar observations were made on the effects of BAPTA/AM and curcumin on VIP stimulation of VEGF protein expression. Simultaneous treatment of cells with the protein kinase A inhibitor H89 and BAPTA/AM completely blocked this VIP effect, whereas each agent alone led only to a partial inhibition. In addition, the calcium chelator blocked by 37% the ability of VIP to induce NE cell differentiation as estimated by the observation of neurite development. These features support a VIP signalling pathway that could be mediated through both cAMP and [Ca(2+)](i) increase in prostate LNCaP cancer cells. Moreover, our data suggest the implication of c-Fos on the induction of the main angiogenic factor VEGF since the promoter region of the VEGF gene possesses AP-1 (i.e., c-Fos/c-Jun heterodimer) response elements. This feature represents a link between the nuclear oncogene c-fos, angiogenesis and NE differentiation by means of an initiating signal upon VIP receptors.
Collapse
Affiliation(s)
- Beatriz Collado
- Department of Biochemistry and Molecular Biology, Alcalá University, Alcalá de Henares, Spain
| | | | | | | | | |
Collapse
|
27
|
Gutiérrez-Cañas I, Juarranz MG, Collado B, Rodríguez-Henche N, Chiloeches A, Prieto JC, Carmena MJ. Vasoactive intestinal peptide induces neuroendocrine differentiation in the LNCaP prostate cancer cell line through PKA, ERK, and PI3K. Prostate 2005; 63:44-55. [PMID: 15468165 DOI: 10.1002/pros.20173] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND Neuroendocrine (NE) differentiation in prostate cancer has been correlated with unfavorable clinical outcome. The mechanisms by which prostate cancer acquires NE properties are poorly understood, but several signaling pathways have been proposed. We have previously observed that vasoactive intestinal peptide (VIP) stimulates cAMP production mainly through VPAC(1) receptor, inducing NE differentiation in LNCaP cells. The aim of this study was to analyze the mechanisms involved in this process. METHODS Reverse transcriptase (RT)-polymerase chain reaction (PCR), quantitative real-time RT-PCR, Western blotting, and immunocytochemistry were performed. RESULTS LNCaP cells produce VIP, as demonstrated by RT-PCR and immunocytochemistry. VIP induced NE differentiation of LNCaP cells at a time as short as 1 hr of treatment, and the same occurred with the expression and secretion of neuronal-specific enolase (NSE, a NE differentiation marker). These effects were faster than those exerted by serum-deprivation. VIP induced extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation and NE differentiation by PKA-dependent and independent pathways, since the PKA inhibitor H89 partially blocked VIP-induced NE differentiation and did not affect ERK1/2 phosphorylation. mitogen-activated protein kinase kinase (MEK) and phosphoinositide 3-kinase (PI3K) appear to be also involved since the inhibitors PD98059 and wortmannin abolished ERK1/2 phosphorylation and decreased NE differentiation induced by VIP. Moreover, VIP activated Ras suggesting the involvement of a Ras-dependent pathway. CONCLUSIONS VIP behaves as autocrine/paracrine factor in LNCaP cells by inducing NE differentiation through PKA, ERK1/2, and PI3K.
Collapse
Affiliation(s)
- Irene Gutiérrez-Cañas
- Unidad de Neuroendocrinología Molecular, Departamento de Bioquímica y Biología Molecular, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
28
|
McCarty MF. Targeting multiple signaling pathways as a strategy for managing prostate cancer: multifocal signal modulation therapy. Integr Cancer Ther 2005; 3:349-80. [PMID: 15523106 DOI: 10.1177/1534735404270757] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The aberrant behavior of cancer reflects upregulation of certain oncogenic signaling pathways that promote proliferation, inhibit apoptosis, and enable the cancer to spread and evoke angiogenesis. Theoretically, it should be feasible to decrease the activity of these pathways-or increase the activity of pathways that oppose them-with noncytotoxic agents. Since multiple pathways are dysfunctional in most cancers, and cancers accumulate new oncogenic mutations as they progress, the greatest and most durable therapeutic benefit will likely be achieved with combination regimens that address several targets. Thus, a multifocal signal modulation therapy (MSMT) of cancer is proposed. This concept has already been documented by researchers who have shown that certain combinations of signal modulators-of limited utility when administered individually-can achieve dramatic suppression of tumor growth in rodent xenograft models. The present essay attempts to guide development of MSMTs for prostate cancer. Androgen ablation is a signal-modulating measure already in standard use in the management of delocalized prostate cancer. The additional molecular targets considered here include the type 1 insulin-like growth factor receptor, the epidermal growth factor receptor, mammalian target of rapamycin, NF-kappaB, hypoxia-inducible factor-1alpha, hsp90, cyclooxygenase-2, protein kinase A type I, vascular endothelial growth factor, 5-lipoxygenase, 12-lipoxygenase, angiotensin II receptor type 1, bradykinin receptor type 1, c-Src, interleukin-6, ras, MDM2, bcl-2/bclxL, vitamin D receptor, estrogen receptor-beta, and PPAR-. Various nutrients and phytochemicals suspected to have potential utility in prostate cancer prevention and therapy, but whose key molecular targets are still unknown, might reasonably be incorporated into MSMTs for prostate cancer; these include lycopene, selenium, green tea polyphenols, genistein, and silibinin. MSMTs can be developed systematically by testing various combinations of signal-modulating agents, in concentrations that can feasibly be achieved and maintained clinically, on human prostate cancer cell lines; combinations that appear promising can then be tested in xenograft models and, ultimately, in the clinic. Some signal modulators can increase response to cytotoxic drugs by upregulating effectors of apoptosis. When MSMTs fail to raise the spontaneous apoptosis rate sufficiently to achieve tumor stasis or regression, incorporation of appropriate cytotoxic agents into the regimen may improve the clinical outcome.
Collapse
|
29
|
Kim J, Adam RM, Solomon KR, Freeman MR. Involvement of cholesterol-rich lipid rafts in interleukin-6-induced neuroendocrine differentiation of LNCaP prostate cancer cells. Endocrinology 2004; 145:613-9. [PMID: 14563701 DOI: 10.1210/en.2003-0772] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-6 is an inflammatory cytokine that has been linked to aggressive prostate cancer (PCa). Previous studies have demonstrated that IL-6 can enhance the differentiation of PCa cells toward a neuroendocrine (NE) phenotype, a possible indicator of hormone-refractory disease. In this report, we present evidence that the mechanism of IL-6-stimulated NE differentiation employs a detergent-resistant (lipid raft) membrane compartment for signal transduction in LNCaP PCa cells. Signal transducer and activator of transcription (STAT)3, a mediator of IL-6 signaling, was rapidly phosphorylated and translocated to the nucleus in LNCaP cells treated with IL-6. Both processes were inhibited by filipin, a cholesterol-binding compound that disrupts plasma membrane lipid rafts. Isolation of Triton X-100-insoluble raft fractions from LNCaP cells by discontinuous sucrose gradient centrifugation demonstrated that the 80-kDa IL-6 receptor localized almost exclusively to the raft compartment. Although STAT3 was located predominantly in the Triton X-100-soluble subcellular fraction in exponentially growing cells, abundant phosphorylated STAT3 was detected in the raft fraction after stimulation with IL-6. Increases in expression of the NE marker, neuron-specific enolase, and neuron-specific enolase promoter activity after IL-6 treatment were reduced after membrane rafts were disrupted by filipin treatment. LNCaP cells expressed the raft-resident proteins flotillin-2 and G(ialpha2), but notably not caveolins, the predominant structural protein present in caveolar membrane rafts in many tissues and tumor cells. These results are the first to define a role for lipid raft membrane microdomains in signal transduction mechanisms capable of promoting the NE phenotype in PCa cells, and they demonstrate that the raft compartment is capable of mediating such signals in the absence of caveolins. Our results also suggest a mechanistic role for membrane cholesterol in cell signaling events relevant to PCa progression.
Collapse
Affiliation(s)
- Jayoung Kim
- The Urologic Laboratory, John F. Enders Research Laboratories, Room 1161, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
30
|
Gutiérrez-Cañas I, Rodríguez-Henche N, Bolaños O, Carmena MJ, Prieto JC, Juarranz MG. VIP and PACAP are autocrine factors that protect the androgen-independent prostate cancer cell line PC-3 from apoptosis induced by serum withdrawal. Br J Pharmacol 2003; 139:1050-8. [PMID: 12839880 PMCID: PMC1573913 DOI: 10.1038/sj.bjp.0705317] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. In the present study, we describe the expression of the neuropeptides vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) as well as their receptors in PC-3 cells, a human prostate cancer cell line. In addition, we have investigated their role in apoptosis induced by serum starvation. 2. By RT-PCR and immunocytochemistry assays, we have demonstrated the production of VIP and PACAP in PC-3 cells. 3. We have demonstrated by RT-PCR and binding assays the expression of common PACAP/VIP (VPAC(1) and VPAC(2)) receptors, but not PACAP-specific (PAC(1)) receptors. The pharmacological profile of [(125)I]-VIP binding assays was as follows: VPAC(1) antagonist=VPAC(1) agonist>VIP>VPAC(2) agonist (IC(50)=1.2, 1.5, 2.3 and 30 nM, respectively). In addition, both receptor subtypes are functional since VIP, PACAP-27 or VPAC(1) and VPAC(2) agonists all increased the intracellular levels of cAMP. 4. The expression of both peptides and their receptors is similar in serum-cultured and serum-deprived PC-3 cells. The treatment of serum-deprived PC-3 cells with exogenous VIP or PACAP-27 increases cell number and viability in a dose-dependent manner, as demonstrated by cellular counting and MTT assays. The increased cell survival is exerted through the VPAC(1) receptor, since a VPAC(1), but not VPAC(2), receptor agonist, mimics the effects and a VPAC(1) receptor antagonist blocks it. Moreover, VIP and PACAP-27 inhibit genomic DNA fragmentation in PC-3 cells triggered by serum starvation, and increase the immunoreactivity of the antiapoptotic protein bcl-2. 5. Our results suggest that VIP and PACAP are autocrine/paracrine factors that protect PC-3 cells from apoptosis through VPAC1 receptors.
Collapse
Affiliation(s)
- Irene Gutiérrez-Cañas
- Department of Biochemistry and Molecular Biology, University of Alcalá, E-28871 Alcalá de Henares, Spain
| | - Nieves Rodríguez-Henche
- Department of Biochemistry and Molecular Biology, University of Alcalá, E-28871 Alcalá de Henares, Spain
| | - Oscar Bolaños
- Department of Biochemistry and Molecular Biology, University of Alcalá, E-28871 Alcalá de Henares, Spain
| | - María J Carmena
- Department of Biochemistry and Molecular Biology, University of Alcalá, E-28871 Alcalá de Henares, Spain
| | - Juan C Prieto
- Department of Biochemistry and Molecular Biology, University of Alcalá, E-28871 Alcalá de Henares, Spain
- Author for correspondence:
| | - María G Juarranz
- Department of Cellular Biology, Faculty of Biology, Complutente University, Madrid, Spain
| |
Collapse
|
31
|
Farini D, Puglianiello A, Mammi C, Siracusa G, Moretti C. Dual effect of pituitary adenylate cyclase activating polypeptide on prostate tumor LNCaP cells: short- and long-term exposure affect proliferation and neuroendocrine differentiation. Endocrinology 2003; 144:1631-43. [PMID: 12639948 DOI: 10.1210/en.2002-221009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that elicits the increase of intracellular cAMP levels and protein kinase A activity in various cell systems. Here we show that the pattern of cAMP elevation triggered by PACAP is critical for the fate of LNCaP prostate cancer cells. We demonstrate that these cells express PACAP and its type 1 receptor. A short-term stimulation with PACAP, which generates a transient cAMP rise, induces proliferation of LNCaP cells through a protein kinase A-dependent activation of the MAPK cascade. On the contrary, we observed that chronic PACAP stimulation, giving rise to a sustained cAMP accumulation, leads to proliferation arrest and neuroendocrine differentiation. Moreover, PACAP stimulates phosphory-lation and activation of the cAMP response element binding transcription factor (CREB), and MAPK activation is necessary for its full transcriptional activity, indicating a direct involvement of cAMP response element in PACAP action. These findings demonstrate that a crucial event determining the outcome of prostatic cancer cells progression is the sustained vs. transient intracellular cAMP increase.
Collapse
Affiliation(s)
- Donatella Farini
- Department of Public Health and Cellular Biology, Unit of Histology, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | | | | | | |
Collapse
|
32
|
García-Fernández MO, Bodega G, Solano RM, Ruíz-Villaespesa A, Sánchez-Chapado M, Carmena MJ, Prieto JC. Expression and distribution of pituitary adenylate cyclase-activating peptide in human prostate and prostate cancer tissues. REGULATORY PEPTIDES 2002; 110:9-15. [PMID: 12468104 DOI: 10.1016/s0167-0115(02)00108-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The presence, expression and distribution of pituitary adenylate cyclase-activating peptide (PACAP) in human prostate cancer and healthy tissue were investigated by means of biochemical and morphological procedures. Reverse transcription-polymerase chain reaction (RT-PCR) analysis demonstrated the presence of its precursor encoding mRNA in both normal and pathological conditions (amplification products with 577 or 226 bp were identified). Immunochemistry using an appropriate antibody served to detect in both classes of tissues a 19.9-kDa product corresponding to the PACAP preproprotein and another protein of 14.6 kDa that may represent a product partially processed by convertases. However, a 5-kDa band characteristic of PACAP-38 peptide was not observed. Immunohistochemistry on tissue sections indicated the location of PACAP in the epithelial layer of prostate glands (and in some scarce leucocytes) but not in the stroma, either in normal or carcinomatous tissues. No clear differences could be established when comparing samples from patients with different tumor Gleason grades. These results are the first demonstration of the localization of PACAP or its precursors and its mRNA in the human prostate gland and their presence during the progression of prostate carcinoma.
Collapse
Affiliation(s)
- M Olga García-Fernández
- Molecular Neuroendocrinology Unit, Department of Biochemistry and Molecular Biology, University of Alcalá, 28871 Alcalá de Henares, Spain
| | | | | | | | | | | | | |
Collapse
|