1
|
Parveen A, Subedi L, Kim HW, Khan Z, Zahra Z, Farooqi MQ, Kim SY. Phytochemicals Targeting VEGF and VEGF-Related Multifactors as Anticancer Therapy. J Clin Med 2019; 8:E350. [PMID: 30871059 PMCID: PMC6462934 DOI: 10.3390/jcm8030350] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/27/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023] Open
Abstract
The role of vascular endothelial growth factor (VEGF) in cancer cells is not limited to angiogenesis; there are also multiple factors, such as neuropilins (non-tyrosine kinases receptors), tyrosine kinases receptors, immunodeficiencies, and integrins, that interact with VEGF signaling and cause cancer initiation. By combating these factors, tumor progression can be inhibited or limited. Natural products are sources of several bioactive phytochemicals that can interact with VEGF-promoting factors and inhibit them through various signaling pathways, thereby inhibiting cancer growth. This review provides a deeper understanding of the relation and interaction of VEGF with cancer-promoting factors and phytochemicals in order to develop multi-targeted cancer prevention and treatment.
Collapse
Affiliation(s)
- Amna Parveen
- Department of Pharmacognosy, Faculty of Pharmaceutical Science, Government College University, Faisalabad, Faisalabad 38000, Pakistan.
- College of Pharmacy, Gachon University, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea.
| | - Lalita Subedi
- College of Pharmacy, Gachon University, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea.
| | - Heung Wan Kim
- College of Pharmacy, Gachon University, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea.
| | - Zahra Khan
- College of Pharmacy, Gachon University, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea.
| | - Zahra Zahra
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Sector H-12, Islamabad 44000, Pakistan.
| | | | - Sun Yeou Kim
- College of Pharmacy, Gachon University, No. 191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea.
- Gachon Institute of Pharmaceutical Science, Gachon University, No. 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Korea.
| |
Collapse
|
2
|
Larive RM, Urbach S, Poncet J, Jouin P, Mascré G, Sahuquet A, Mangeat PH, Coopman PJ, Bettache N. Phosphoproteomic analysis of Syk kinase signaling in human cancer cells reveals its role in cell-cell adhesion. Oncogene 2009; 28:2337-47. [PMID: 19421152 DOI: 10.1038/onc.2009.99] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The spleen tyrosine kinase Syk has predominantly been studied in hematopoietic cells in which it is involved in immunoreceptor-mediated signaling. Recently, Syk expression was evidenced in numerous nonhematopoietic cells and shown to be involved in tumor formation and progression. The Syk downstream signaling effectors in nonhematopoietic cells remain, however, to be uncovered, and were investigated using MS-based quantitative phosphoproteomics. Two strategies, based on the inhibition of the Syk catalytic activity and on the loss of Syk expression were employed to identify phosphotyrosine-dependent complexes. Quantitative measurements were obtained on 350 proteins purified with phosphotyrosine affinity columns using the SILAC method. Forty-one proteins are dependent on both Syk expression and catalytic activity and were selected as signaling effectors. They are involved in a variety of biological processes such as signal transduction, cell-cell adhesion and cell polarization. We investigated the functional involvement of Syk in cell-cell adhesion and demonstrated the phosphorylation of E-cadherin and alpha-catenin. In addition, Syk is localized at cell-cell contacts, and Syk-mediated phosphorylation of E-cadherin seems to be important for the proper localization of p120-catenin at adherens junctions. Identification of the biochemical pathways regulated by Syk in human cancer cells will help to uncover its role in tumor formation and progression.
Collapse
Affiliation(s)
- R M Larive
- Centre de Recherche de Biochimie Macromoléculaire, CNRS UMR 5237, IFR 122, Equipe Labellisée 2007 Ligue Nationale contre le Cancer, Universités Montpellier 1 and 2, Montpellier Cedex 5, France
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Schymeinsky J, Then C, Sindrilaru A, Gerstl R, Jakus Z, Tybulewicz VLJ, Scharffetter-Kochanek K, Walzog B. Syk-mediated translocation of PI3Kdelta to the leading edge controls lamellipodium formation and migration of leukocytes. PLoS One 2007; 2:e1132. [PMID: 17987119 PMCID: PMC2063580 DOI: 10.1371/journal.pone.0001132] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 10/10/2007] [Indexed: 12/19/2022] Open
Abstract
The non-receptor tyrosine kinase Syk is mainly expressed in the hematopoietic system and plays an essential role in beta(2) integrin-mediated leukocyte activation. To elucidate the signaling pathway downstream of Syk during beta2 integrin (CD11/CD18)-mediated migration and extravasation of polymorphonuclear neutrophils (PMN), we generated neutrophil-like differentiated HL-60 (dHL-60) cells expressing a fluorescently tagged Syk mutant lacking the tyrosine residue at the position 323 (Syk-Tyr323) that is known to be required for the binding of the regulatory subunit p85 of the phosphatidylinositol 3-kinase (PI3K) class I(A). Syk-Tyr323 was found to be critical for the enrichment of the catalytic subunit p110delta of PI3K class I(A) as well as for the generation of PI3K products at the leading edge of the majority of polarized cells. In accordance, the translocation of PI3K p110delta to the leading edge was diminished in Syk deficient murine PMN. Moreover, the expression of EGFP-Syk Y323F interfered with proper cell polarization and it impaired efficient migration of dHL-60 cells. In agreement with a major role of beta2 integrins in the recruitment of phagocytic cells to sites of lesion, mice with a Syk-deficient hematopoietic system demonstrated impaired PMN infiltration into the wounded tissue that was associated with prolonged cutaneous wound healing. These data imply a novel role of Syk via PI3K p110delta signaling for beta2 integrin-mediated migration which is a prerequisite for efficient PMN recruitment in vivo.
Collapse
Affiliation(s)
- Jürgen Schymeinsky
- Department of Physiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Cornelia Then
- Department of Physiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anca Sindrilaru
- Department of Dermatology and Allergic Diseases, University of Ulm, Ulm, Germany
| | - Ronald Gerstl
- Department of Physiology, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Zoltán Jakus
- Department of Physiology, Semmelweis University School of Medicine, Budapest, Hungary
| | - Victor L. J. Tybulewicz
- Division of Immune Cell Biology, National Institute for Medical Research, London, United Kingdom
| | | | - Barbara Walzog
- Department of Physiology, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
4
|
Yaghini FA, Li F, Malik KU. Expression and mechanism of spleen tyrosine kinase activation by angiotensin II and its implication in protein synthesis in rat vascular smooth muscle cells. J Biol Chem 2007; 282:16878-90. [PMID: 17442668 DOI: 10.1074/jbc.m610494200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Syk, a 72-kDa tyrosine kinase, is involved in development, differentiation, and signal transduction of hematopoietic and some non-hematopoietic cells. This study determined if Syk is expressed in vascular smooth muscle cells (VSMC) and contributes to angiotensin II (Ang II) signaling and protein synthesis. Syk was found in VSMC and was phosphorylated by Ang II through AT1 receptor. Ang II-induced Syk phosphorylation was inhibited by piceatannol and dominant negative but not wild type Syk mutant. Syk phosphorylation by Ang II was attenuated by cytosolic phospholipase A(2) (cPLA(2)) inhibitor pyrrolidine-1 and retrovirus carrying small interfering RNAs (shRNAs) of this enzyme. Arachidonic acid (AA) increased Syk phosphorylation, and AA- and Ang II-induced phosphorylation was diminished by inhibitors of AA metabolism (5,8,11,14-eicosatetraynoic acid) and lipoxygenase (LO; baicalein) but not cyclooxygenase (indomethacin). AA metabolites formed via LO, 5(S)-, 12(S)-, and 15(S)-hydroxyeicosatetraenoic acids, which activate p38 MAPK, increased Syk phosphorylation. p38 MAPK inhibitor SB202190, and dominant negative p38 MAPK mutant attenuated Ang II- and AA-induced Syk phosphorylation. Adenovirus dominant negative c-Src mutant abolished Ang II - and AA-induced Syk phosphorylation and SB202190, and dominant negative p38 MAPK mutant inhibited Ang II-induced c-Src phosphorylation. Syk dominant negative mutant but not epidermal growth factor receptor blocker AG1478 also inhibited Ang II-induced VSMC protein synthesis. These data suggest that Syk expressed in VSMC is activated by Ang II through p38 MAPK-activated c-Src subsequent to cytosolic phospholipase A(2) and generation of AA metabolites via LO, and it mediates Ang II-induced protein synthesis independent of epidermal growth factor receptor transactivation (Ang II --> cPLA(2) --> AA metabolites of LO --> p38 MAPK --> c-Src --> Syk --> protein synthesis).
Collapse
Affiliation(s)
- Fariborz A Yaghini
- Department of Pharmacology and Centers of Vascular Biology and Connective Tissue Diseases, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|
5
|
Cho ML, Kang JW, Moon YM, Nam HJ, Jhun JY, Heo SB, Jin HT, Min SY, Ju JH, Park KS, Cho YG, Yoon CH, Park SH, Sung YC, Kim HY. STAT3 and NF-kappaB signal pathway is required for IL-23-mediated IL-17 production in spontaneous arthritis animal model IL-1 receptor antagonist-deficient mice. THE JOURNAL OF IMMUNOLOGY 2006; 176:5652-61. [PMID: 16622035 DOI: 10.4049/jimmunol.176.9.5652] [Citation(s) in RCA: 249] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IL-23 is a heterodimeric cytokine composed of a p19 subunit and the p40 subunit of IL-12. IL-23 has proinflammatory activity, inducing IL-17 secretion from activated CD4(+) T cells and stimulating the proliferation of memory CD4(+) T cells. We investigated the pathogenic role of IL-23 in CD4(+) T cells in mice lacking the IL-1R antagonist (IL-1Ra(-/-)), an animal model of spontaneous arthritis. IL-23 was strongly expressed in the inflamed joints of IL-1Ra(-/-) mice. Recombinant adenovirus expressing mouse IL-23 (rAd/mIL-23) significantly accelerated this joint inflammation and joint destruction. IL-1beta further increased the production of IL-23, which induced IL-17 production and OX40 expression in splenic CD4(+) T cells of IL-1Ra(-/-) mice. Blocking IL-23 with anti-p19 Ab abolished the IL-17 production induced by IL-1 in splenocyte cultures. The process of IL-23-induced IL-17 production in CD4(+) T cells was mediated via the activation of Jak2, PI3K/Akt, STAT3, and NF-kappaB, whereas p38 MAPK and AP-1 did not participate in the process. Our data suggest that IL-23 is a link between IL-1 and IL-17. IL-23 seems to be a central proinflammatory cytokine in the pathogenesis of this IL-1Ra(-/-) model of spontaneous arthritis. Its intracellular signaling pathway could be useful therapeutic targets in the treatment of autoimmune arthritis.
Collapse
Affiliation(s)
- Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, Catholic University of Korea, 505 Banpo-Dong, Seocho-Ku, 137-040 Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Takada Y, Mukhopadhyay A, Kundu GC, Mahabeleshwar GH, Singh S, Aggarwal BB. Hydrogen peroxide activates NF-kappa B through tyrosine phosphorylation of I kappa B alpha and serine phosphorylation of p65: evidence for the involvement of I kappa B alpha kinase and Syk protein-tyrosine kinase. J Biol Chem 2003; 278:24233-41. [PMID: 12711606 DOI: 10.1074/jbc.m212389200] [Citation(s) in RCA: 408] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although it is well established that reactive oxygen intermediates mediate the NF-kappaB activation induced by most agents, how H2O2 activates this transcription factor is not well understood. We found that treatment of human myeloid KBM-5 cells with H2O2 activated NF-kappaB in a dose- and time-dependent manner much as tumor necrosis factor (TNF) did but unlike TNF, H2O2 had no effect on IkappaBalpha degradation. Unexpectedly, however, like TNF-induced activation, H2O2-induced NF-kappaB activation was blocked by the calpain inhibitor N-Ac-Leu-Leu-norleucinal, suggesting that a proteosomal pathway was involved. Although H2O2 activated IkappaBalpha kinase, it did not induce the serine phosphorylation of IkappaBalpha. Like TNF, H2O2 induced the serine phosphorylation of the p65 subunit of NF-kappaB, leading to its nuclear translocation. We found that H2O2 induced the tyrosine phosphorylation of IkappaBalpha, which is needed for NF-kappaB activation. We present several lines of evidence to suggest that the Syk protein-tyrosine kinase is involved in H2O2-induced NF-kappaB activation. First, H2O2 activated Syk in KBM-5 cells; second, H2O2 failed to activate NF-kappaB in cells that do not express Syk protein; third, overexpression of Syk increased H2O2-induced NF-kappaB activation; and fourth, reduction of Syk transcription using small interfering RNA inhibited H2O2-induced NF-kappaB activation. We also showed that Syk induced the tyrosine phosphorylation of IkappaBalpha, which caused the dissociation, phosphorylation, and nuclear translocation of p65. Thus, overall, our results demonstrate that H2O2 induces NF-kappaB activation, not through serine phosphorylation or degradation of IkappaBalpha, but through Syk-mediated tyrosine phosphorylation of IkappaBalpha
Collapse
Affiliation(s)
- Yasunari Takada
- Department of Bioimmunotherapy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
7
|
Jiang K, Zhong B, Ritchey C, Gilvary DL, Hong-Geller E, Wei S, Djeu JY. Regulation of Akt-dependent cell survival by Syk and Rac. Blood 2003; 101:236-44. [PMID: 12393431 DOI: 10.1182/blood-2002-04-1251] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Interleukin-2 (IL-2) prevents cell apoptosis and promotes survival, but the involved mechanisms have not been completely defined. Although phosphatidylinositide 3-kinase (PI 3-kinase) has been implicated in IL-2-mediated survival mechanisms, none of the 3 chains of the IL-2 receptor (IL-2R) expresses a binding site for PI 3-kinase. However, IL-2Rbeta does express a Syk-binding motif. By using an IL-2-dependent natural killer (NK) cell line, followed by validation of the results in fresh human NK cells, we identified Syk as a critical effector essential for IL-2-mediated prosurvival signaling in NK cells. Down-regulation of Syk by piceatannol treatment impaired NK cellular viability and induced prominent apoptosis as effectively as suppression of PI 3-kinase function by LY294002. Expression of kinase-deficient Syk or pretreatment with piceatannol markedly suppressed IL-2-stimulated activation of PI 3-kinase and Akt, demonstrating that Syk is upstream of PI 3-kinase and Akt. However, constitutively active PI 3-kinase reversed this loss of Akt function caused by kinase-deficient Syk or piceatannol. Thus, Syk appears to regulate PI 3-kinase, which controls Akt activity during IL-2 stimulation. More important, we observed Rac1 activation by IL-2 and found that it mediated PI 3-kinase activation of Akt. This conclusion came from experiments in which dominant-negative Rac1 significantly decreased IL-2-induced Akt activation, whereas constitutively active Rac1 reelevated Akt activity not only in Syk-impaired but also in PI 3-kinase-impaired NK cells. These results constitute the first report of a Syk --> PI3K --> Rac1 --> Akt signal cascade controlled by IL-2 that mediates NK cell survival.
Collapse
Affiliation(s)
- Kun Jiang
- Immunology Program, H. Lee Moffitt Cancer Center, Department of Interdisciplinary Oncology, University of South Florida College of Medicine, Tampa 33612, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Jiang K, Zhong B, Gilvary DL, Corliss BC, Vivier E, Hong-Geller E, Wei S, Djeu JY. Syk regulation of phosphoinositide 3-kinase-dependent NK cell function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:3155-64. [PMID: 11907067 DOI: 10.4049/jimmunol.168.7.3155] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Emerging evidence suggests that NK-activatory receptors use KARAP/DAP12, CD3zeta, and FcepsilonRIgamma adaptors that contain immunoreceptor tyrosine-based activatory motifs to mediate NK direct lysis of tumor cells via Syk tyrosine kinase. NK cells may also use DAP10 to drive natural cytotoxicity through phosphoinositide 3-kinase (PI3K). In contrast to our recently identified PI3K pathway controlling NK cytotoxicity, the signaling mechanism by which Syk associates with downstream effectors to drive NK lytic function has not been clearly defined. In NK92 cells, which express DAP12 but little DAP10/NKG2D, we now show that Syk acts upstream of PI3K, subsequently leading to the specific signaling of the PI3K-->Rac1-->PAK1-->mitogen-activated protein/extracellular signal-regulated kinase (ERK) kinase-->ERK cascade that we earlier described. Tumor cell ligation stimulated DAP12 tyrosine phosphorylation and its association with Syk in NK92 cells; Syk tyrosine phosphorylation and activation were also observed. Inhibition of Syk function by kinase-deficient Syk or piceatannol blocked target cell-induced PI3K, Rac1, PAK1, mitogen-activated protein/ERK kinase, and ERK activation, perforin movement, as well as NK cytotoxicity, indicating that Syk is upstream of all these signaling events. Confirming that Syk does not act downstream of PI3K, constitutively active PI3K reactivated all the downstream effectors as well as NK cytotoxicity suppressed in Syk-impaired NK cells. Our results are the first report documenting the instrumental role of Syk in control of PI3K-dependent natural cytotoxicity.
Collapse
Affiliation(s)
- Kun Jiang
- Immunology Program, H. Lee Moffitt Cancer Center, Department of Interdisciplinary Oncology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Desaulniers P, Fernandes M, Gilbert C, Bourgoin SG, Naccache PH. Crystal‐induced neutrophil activation. VII. Involvement of Syk in the responses to monosodium urate crystals. J Leukoc Biol 2001. [DOI: 10.1189/jlb.70.4.659] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Philippe Desaulniers
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUL, and Departments of Medecine and Université Laval, Québec, Canada
| | - Maria Fernandes
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUL, and Departments of Medecine and Université Laval, Québec, Canada
| | - Caroline Gilbert
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUL, and Departments of Medecine and Université Laval, Québec, Canada
| | - Sylvain G. Bourgoin
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUL, and Departments of Medecine and Université Laval, Québec, Canada
- Physiology, Faculty of Medecine, Université Laval, Québec, Canada
| | - Paul H. Naccache
- Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du CHUL, and Departments of Medecine and Université Laval, Québec, Canada
| |
Collapse
|
10
|
Jiang K, Zhong B, Gilvary DL, Corliss BC, Hong-Geller E, Wei S, Djeu JY. Pivotal role of phosphoinositide-3 kinase in regulation of cytotoxicity in natural killer cells. Nat Immunol 2000; 1:419-25. [PMID: 11062502 DOI: 10.1038/80859] [Citation(s) in RCA: 277] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mitogen-activated protein kinase-extracellular signal-regulated kinase signaling element (MAPK-ERK) plays a critical role in natural killer (NK) cell lysis of tumor cells, but its upstream effectors were previously unknown. We show that inhibition of phosphoinositide-3 kinase (PI3K) in NK cells blocks p21-activated kinase 1 (PAK1), MAPK kinase (MEK) and ERK activation by target cell ligation, interferes with perforin and granzyme B movement toward target cells and suppresses NK cytotoxicity. Dominant-negative N17Rac1 and PAK1 mimic the suppressive effects of PI3K inhibitors, whereas constitutively active V12Rac1 has the opposite effect. V12Rac1 restores the activity of downstream effectors and lytic function in LY294002- or wortmannin-treated, but not PD98059-treated, NK cells. These results document a specific PI3K-->Rac1-->PAK1-->MEK-->ERK pathway in NK cells that effects lysis.
Collapse
Affiliation(s)
- K Jiang
- Immunology Program, H. Lee Moffitt Cancer Center, Department of Interdisciplinary Oncology, University of South Florida College of Medicine, Tampa, FL 33612, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Wei S, Gilvary DL, Corliss BC, Sebti S, Sun J, Straus DB, Leibson PJ, Trapani JA, Hamilton AD, Weber MJ, Djeu JY. Direct tumor lysis by NK cells uses a Ras-independent mitogen-activated protein kinase signal pathway. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:3811-9. [PMID: 11034387 DOI: 10.4049/jimmunol.165.7.3811] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Destruction of tumor cells is a key function of lymphocytes, but the molecular processes driving it are unclear. Analysis of signal molecules indicated that mitogen-activated protein kinase (MAPK)/extracellular regulated kinase 2 critically controlled lytic function in human NK cells. We now have evidence to indicate that target ligation triggers a Ras-independent MAPK pathway that is required for lysis of the ligated tumor cell. Target engagement caused NK cells to rapidly activate MAPK within 5 min, and PD098059 effectively blocked both MAPK activation and tumoricidal function in NK cells. Target engagement also rapidly activated Ras, detected as active Ras-GTP bound to GST-Raf-RBD, a GST fusion protein linked to the Raf protein fragment containing the Ras-GTP binding domain. However, Ras inactivation by pharmacological disruption with the farnesyl transferase inhibitor, FTI-277, had no adverse effect on the ability of NK cells to lyse tumor cells or to express MAPK activation upon target conjugation. Notably, MAPK inactivation with PD098059, but not Ras inactivation with FTI-277, could interfere with perforin and granzyme B polarization within NK cells toward the contacted target cell. Using vaccinia delivery of N17 Ras into NK cells, we demonstrated that IL-2 activated a Ras-dependent MAPK pathway, while target ligation used a Ras-independent MAPK pathway to trigger lysis in NK cells.
Collapse
Affiliation(s)
- S Wei
- H. Lee Moffitt Cancer Center, Department of Biochemistry and Molecular Biology, University of South Florida College of Medicine, Tampa 33612, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Rakhit S, Pyne S, Pyne NJ. The platelet-derived growth factor receptor stimulation of p42/p44 mitogen-activated protein kinase in airway smooth muscle involves a G-protein-mediated tyrosine phosphorylation of Gab1. Mol Pharmacol 2000; 58:413-20. [PMID: 10908310 DOI: 10.1124/mol.58.2.413] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using cultured airway smooth muscle cells, we showed previously that the platelet-derived growth factor (PDGF) receptor uses the G-protein, G(i), to stimulate Grb-2-associated phosphoinositide 3-kinase (PI3K) activity. We also showed that this was an intermediate step in the activation of p42/p44 mitogen-activated protein kinase (p42/p44 MAPK) by PDGF. We now present two lines of evidence that provide further support for this model. First, we report that PDGF stimulates the G(i)-mediated tyrosine phosphorylation of the Grb-2 adaptor protein, Gab1. This phosphorylation appears to be necessary for association of PI3K1a with the Gab1-Grb-2 complex. Second, PI3K appears to promote the subsequent association of dynamin II (which is involved in clathrin-mediated endocytic processing) with the complex. Furthermore, inhibitors of PI3K and clathrin-mediated endocytosis reduced the PDGF-dependent activation of p42/p44 MAPK, suggesting a role for PI3K in the endocytic signaling process leading to stimulation of p42/p44 MAPK. Together, these results begin to define a common signaling model for certain growth factor receptors (e.g., PDGF, insulin, insulin-like growth factor-1, and fibroblast growth factor) which use G(i) to transmit signals to p42/p44 MAPK.
Collapse
Affiliation(s)
- S Rakhit
- Department of Physiology and Pharmacology, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, United Kingdom
| | | | | |
Collapse
|
13
|
Abstract
Extracellular regulated kinase (ERK) transduce growth factor signals while c-Jun NH(2)-terminal kinase (JNK) delivers stress signals into the nuclei for regulation of gene expression. These signaling pathways were studied by laser-scanning confocal microcopy and Western blot analysis using phospho-specific antibodies on rat brains that were subjected to 15 minutes transient forebrain ischemia followed by varied periods of reperfusion. Extracellular regulated kinase was activated at 30 minutes and 4 hours of reperfusion in the nuclei and dendrites of surviving dentate gyrus (DG) cells, but not in dying CA1 neurons after ischemia. Tyrosine phosphorylation of Trk kinase, an ERK upstream growth factor receptor, was elevated in the DG tissue, and to a lesser extent in the CA1 region. In addition, phosphorylation of activating transcription factor-2 (ATF-2) and c-Jun was selectively increased in CA1 dying neurons during the late period of reperfusion. These findings suggested that the Trk-ERK signaling pathway might be neuroprotective for dentate granule cells. The activation of ATF-2 and c-Jun pathways in the late period of reperfusion in CA1 dying neurons might reflect damage signals in these neurons. These results suggested that the lack of protective signals acting in concert with the presence of damage signals in CA1 neurons after ischemia might contribute to delayed neuronal death after transient forebrain ischemia.
Collapse
Affiliation(s)
- B R Hu
- Laboratory of Neurochemistry, Center for the Study of Neurological Disease, The Queen's Medical Center, Honolulu, Hawaii 96813, USA
| | | | | |
Collapse
|
14
|
Abstract
Studies with motheaten mice, which lack the SHP1 protein tyrosine phosphatase, indicate that this enzyme plays an important negative role in T cell antigen receptor (TCR) signaling. The physiological substrates for SHP1 in T lymphocytes, however, have remained unclear or controversial. To define these targets for SHP1 we have compared the effects of constitutively active and inactive mutants of SHP1 on TCR signaling. Expression of wild-type SHP1 had a very small effect on the TCR-induced tyrosine phosphorylation of ZAP-70 and Syk, even when SHP1 was overexpressed 20 - 100-fold over endogenous SHP1. Inactive SHP1-D421A and wild-type SHP2 were without effects. Constitutively active SHP1-DeltaSH2 had a more pronounced effect on ZAP-70 and Syk, even when expressed at near physiological levels. SHP1-DeltaSH2 also inhibited events downstream of ZAP-70 and Syk, such as activation of the mitogen-activated protein kinase Erk2 and the transcriptional activation of the interleukin-2 gene. In contrast, a constitutively active SHP2-DeltaSH2 had no statistically significant effect (although it caused a slight augmentation in some individual experiments). None of the constructs influenced the anti-CD3-induced tyrosine phosphorylation of the TCR zeta-chain or phospholipase Cgamma1, indicating that Src family kinase function was intact. Taken together, our findings support the notion that ZAP-70 and Syk can be direct substrates for SHP1 in intact cells. However, the two SH2 domains of SHP1 did not facilitate its recognition of ZAP-70 and Syk as substrates in intact cells. Therefore, we suggest that SHP1 is not actively recruited to inhibit TCR signaling induced by ligation of this receptor alone. Instead, we propose that ligation of a distinct inhibitory receptor leads to the recruitment of SHP1 via its SH2 domains, activation of SHP1 and subsequently inhibition of TCR signals if the inhibitory receptor is juxtaposed to the TCR.
Collapse
Affiliation(s)
- J Brockdorff
- La Jolla Institute for Allergy and Immunology, San Diego, California, USA
| | | | | | | |
Collapse
|