1
|
Radulescu D, Mihai FD, Trasca MET, Caluianu EI, Calafeteanu CDM, Radulescu PM, Mercut R, Ciupeanu-Calugaru ED, Marinescu GA, Siloşi CA, Nistor CCE, Danoiu S. Oxidative Stress in Military Missions-Impact and Management Strategies: A Narrative Analysis. Life (Basel) 2024; 14:567. [PMID: 38792589 PMCID: PMC11121804 DOI: 10.3390/life14050567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
This narrative review comprehensively examines the impact of oxidative stress on military personnel, highlighting the crucial role of physical exercise and tailored diets, particularly the ketogenic diet, in minimizing this stress. Through a meticulous analysis of the recent literature, the study emphasizes how regular physical exercise not only enhances cardiovascular, cognitive, and musculoskeletal health but is also essential in neutralizing the effects of oxidative stress, thereby improving endurance and performance during long-term missions. Furthermore, the implementation of the ketogenic diet provides an efficient and consistent energy source through ketone bodies, tailored to the specific energy requirements of military activities, and significantly contributes to the reduction in reactive oxygen species production, thus protecting against cellular deterioration under extreme stress. The study also underlines the importance of integrating advanced technologies, such as wearable devices and smart sensors that allow for the precise and real-time monitoring of oxidative stress and physiological responses, thus facilitating the customization of training and nutritional regimes. Observations from this review emphasize significant variability among individuals in responses to oxidative stress, highlighting the need for a personalized approach in formulating intervention strategies. It is crucial to develop and implement well-monitored, personalized supplementation protocols to ensure that each member of the military personnel receives a regimen tailored to their specific needs, thereby maximizing the effectiveness of measures to combat oxidative stress. This analysis makes a valuable contribution to the specialized literature, proposing a detailed framework for addressing oxidative stress in the armed forces and opening new directions for future research with the aim of optimizing clinical practices and improving the health and performance of military personnel under stress and specific challenges of the military field.
Collapse
Affiliation(s)
- Dumitru Radulescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Florina-Diana Mihai
- Doctoral School, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania;
| | - Major Emil-Tiberius Trasca
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Elena-Irina Caluianu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Captain Dan Marian Calafeteanu
- Department of Ortopedics, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania;
| | - Patricia-Mihaela Radulescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Razvan Mercut
- Department of Plastic and Reconstructive Surgery, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| | | | - Georgiana-Andreea Marinescu
- Department of Surgery, The Military Emergency Clinical Hospital ‘Dr. Stefan Odobleja’ Craiova, 200749 Craiova, Romania; (D.R.); (E.-I.C.); (P.-M.R.); (G.-A.M.)
| | - Cristian-Adrian Siloşi
- Doctoral School, University of Medicine and Pharmacy of Craiova, 2 Petru Rares Street, 200349 Craiova, Romania;
| | | | - Suzana Danoiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania;
| |
Collapse
|
2
|
Nersesova LS, Petrosyan MS, Gasparyan SS, Gazaryants MG, Akopian JI. Adaptation Plasticity of Creatine Kinase in the Brain and Liver of Rats Exposed to Total X-Ray Irradiation. BIOL BULL+ 2022. [DOI: 10.1134/s1062359022110152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
3
|
Kong F, Li Y, Zhang Y, Zeng Q, Guo X. Elucidation of the potential antioxidant compound and mechanism of mung bean using network pharmacology and in vitro anti-oxidative activity. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1000916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mung bean is rich in bioactive components, but the main compound and pharmacological mechanism in reducing oxidative and free radical damage are unclear. Network pharmacology and 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) radical scavenging activities were employed to uncover the antioxidant mechanism of potentially active compounds, considering the interactions between mung bean targets and oxidative and free radical damage. These key targets were analyzed by protein–protein interactions (PPIs), and key genes were used to find the biological pathway and therapeutic mechanism by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The results showed that five antioxidant components and 18 mung bean targets were screened. β-carotene and vitexin both played a crucial role in mung bean against oxidative and free radical damage, and the ABTS radical scavenging activities of β-carotene and vitexin were 94.84 and 87.79%, which were equivalent to those of vitamin C. Key targets may be AR, HSP90AA1, MYC, and CASP3 for mung bean to exert antioxidant activity. GO and KEGG indicated that mung bean may mainly act on thyroid hormone signaling pathway, estrogen signaling pathway, p53 signaling pathway, etc. In vitro antioxidant activity tests showed that the bioactive ingredients of mung beans had great antioxidant activity. Network pharmacology analysis also revealed the underlying molecular mechanisms of oxidative and free radical damage. This study provides new insights and evidence to explore the bioactive compounds and biological functions of food cereals and legumes, as well as a reference for the functional evaluation of food ingredients and the development of functional foods.
Collapse
|
4
|
Calbet JAL, Martín-Rodríguez S, Martin-Rincon M, Morales-Alamo D. An integrative approach to the regulation of mitochondrial respiration during exercise: Focus on high-intensity exercise. Redox Biol 2020; 35:101478. [PMID: 32156501 PMCID: PMC7284910 DOI: 10.1016/j.redox.2020.101478] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 12/14/2022] Open
Abstract
During exercise, muscle ATP demand increases with intensity, and at the highest power output, ATP consumption may increase more than 100-fold above the resting level. The rate of mitochondrial ATP production during exercise depends on the availability of O2, carbon substrates, reducing equivalents, ADP, Pi, free creatine, and Ca2+. It may also be modulated by acidosis, nitric oxide and reactive oxygen and nitrogen species (RONS). During fatiguing and repeated sprint exercise, RONS production may cause oxidative stress and damage to cellular structures and may reduce mitochondrial efficiency. Human studies indicate that the relatively low mitochondrial respiratory rates observed during sprint exercise are not due to lack of O2, or insufficient provision of Ca2+, reduced equivalents or carbon substrates, being a suboptimal stimulation by ADP the most plausible explanation. Recent in vitro studies with isolated skeletal muscle mitochondria, studied in conditions mimicking different exercise intensities, indicate that ROS production during aerobic exercise amounts to 1-2 orders of magnitude lower than previously thought. In this review, we will focus on the mechanisms regulating mitochondrial respiration, particularly during high-intensity exercise. We will analyze the factors that limit mitochondrial respiration and those that determine mitochondrial efficiency during exercise. Lastly, the differences in mitochondrial respiration between men and women will be addressed.
Collapse
Affiliation(s)
- Jose A L Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017, Las Palmas de Gran Canaria, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" (s/n), 35017, Las Palmas de Gran Canaria, Canary Islands, Spain; Department of Physical Performance, The Norwegian School of Sport Sciences, Postboks, 4014 Ulleval Stadion, 0806 Oslo, Norway.
| | - Saúl Martín-Rodríguez
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017, Las Palmas de Gran Canaria, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" (s/n), 35017, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Marcos Martin-Rincon
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017, Las Palmas de Gran Canaria, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" (s/n), 35017, Las Palmas de Gran Canaria, Canary Islands, Spain
| | - David Morales-Alamo
- Department of Physical Education, University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017, Las Palmas de Gran Canaria, Spain; Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera Felipe "Físico" (s/n), 35017, Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
5
|
Heyck M, Bonsack B, Zhang H, Sadanandan N, Cozene B, Kingsbury C, Lee JY, Borlongan CV. The brain and eye: Treating cerebral and retinal ischemia through mitochondrial transfer. Exp Biol Med (Maywood) 2019; 244:1485-1492. [PMID: 31604382 DOI: 10.1177/1535370219881623] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Stroke remains a devastating disease with limited treatment options, despite our growing understanding of its pathology. While ischemic stroke is traditionally characterized by a blockage of blood flow to the brain, this may coincide with reduced blood circulation to the eye, resulting in retinal ischemia, which may in turn lead to visual impairment. Although effective treatment options for retinal ischemia are similarly scarce, new evidence suggests that deleterious changes to mitochondrial structure and function play a major role in both cerebral and retinal ischemia pathologies. Prior studies establish that astrocytes transfer healthy mitochondria to ischemic neurons following stroke; however, this alone is not enough to significantly mitigate the damage caused by primary and secondary cell death. Thus, stem cell-based regenerative medicine targeting amelioration of ischemia-induced mitochondrial dysfunction via the transfer of functional mitochondria to injured neural cells represents a promising approach to improve stroke outcomes for both cerebral and retinal ischemia. In this review, we evaluate recent laboratory evidence supporting the remedial capabilities of mitochondrial transfer as an innovative stroke treatment. In particular, we examine exogenous stem cell transplants in their potential role as suppliers of healthy mitochondria to neurons, brain endothelial cells, and retinal cells.Impact statementStroke constitutes a global health crisis, yet potent, applicable therapeutic options remain effectively inaccessible for many patients. To this end, stem cell transplants stand as a promising stroke treatment and as an emerging subject of research for cell-based regenerative medicine. This is the first review to synthesize the implications of stem cell-derived mitochondrial transfer in both the brain and the eye. As such, this report carries fresh insight into the commonalities between the two stroke-affected organs. We present the findings of this developing area of research inquiry with the hope that our evaluation may advance the use of stem cell transplants as viable therapeutic alternatives for ischemic stroke and related disorders characterized by mitochondrial dysfunction. Such lab-to-clinic translational advancement has the potential to save and improve the ever increasing millions of lives affected by stroke.
Collapse
Affiliation(s)
- Matt Heyck
- Center of Excellence for Aging and Brain Repair University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Brooke Bonsack
- Center of Excellence for Aging and Brain Repair University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Henry Zhang
- Center of Excellence for Aging and Brain Repair University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Nadia Sadanandan
- Center of Excellence for Aging and Brain Repair University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Blaise Cozene
- Center of Excellence for Aging and Brain Repair University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Chase Kingsbury
- Center of Excellence for Aging and Brain Repair University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Jea-Young Lee
- Center of Excellence for Aging and Brain Repair University of South Florida College of Medicine, Tampa, FL 33612, USA
| | - Cesar V Borlongan
- Center of Excellence for Aging and Brain Repair University of South Florida College of Medicine, Tampa, FL 33612, USA
| |
Collapse
|
6
|
Petrosyan MS, Nersesova LS, Adamyan NA, Gazaryants MG, Akopyan ZI. The Effect of Ionizing Radiation on the Creatine–Creatine Kinase System in the Rat Brain and the Radioprotective Effect of Creatine. NEUROCHEM J+ 2019. [DOI: 10.1134/s1819712419030115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Aronia melanocarpa (Michx.) Elliot fruit juice reveals neuroprotective effect and improves cognitive and locomotor functions of aged rats. Food Chem Toxicol 2019; 132:110674. [PMID: 31306687 DOI: 10.1016/j.fct.2019.110674] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023]
Abstract
The aim of the study was to investigate the effect of polyphenol-rich Aronia melanocarpa (Michx.) Elliot juice (AMJ) on learning ability and memory, and brain morphology of aged rats. A model of healthy male Wistar rats (24 months of age) divided in 2 groups was used: AMJ group supplemented orally with AMJ (10 mL/kg for 105 days) and old control (CO) group without supplementation. Activity cage test showed that AMJ supplemented rats increased the number of vertical movements compared with old controls (p < 0.05). In active avoidance test, supplemented rats increased the number of avoidances on 3rd, 4th and 5th days of learning session, compared with the respective day of old controls (p < 0.05). AMJ supplementation did not affect the mean neuronal number in the dentate gyrus but significantly increased the density of nerve fibers in the perforant path of the hippocampus (p < 0.05). AMJ supplementation increased acetylcholinesterase activity in hippocampus, which is a marker of improved functional activity of the cholinergic neurons. These results indicate that AMJ induced ameliorating changes in the ability of old rats to learn tasks and improved their locomotor functions. AMJ showed a neuroprotective effect by increasing the density of nerve fibers in the hippocampal perforant pathway.
Collapse
|
8
|
Intestinal injury caused by Eimeria spp. impairs the phosphotransfer network and gain weight in experimentally infected chicken chicks. Parasitol Res 2019; 118:1573-1579. [PMID: 30815727 DOI: 10.1007/s00436-019-06221-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/17/2019] [Indexed: 02/04/2023]
Abstract
Parasitic infections caused by protozoan belonging to genus Eimeria are considered important for the poultry industry, due to their severe intestinal lesions and high mortality rates, causing significant economic losses. Although several mechanisms of coccidiosis pathogenesis are known, the effects of this infection on intestinal enzymes linked to adenosine triphosphate (ATP) metabolism, as creatine kinase (CK), adenylate kinase (AK), and pyruvate kinase (PK), remain unknown. Thus, the aim of this study was to evaluate whether coccidiosis impairs enzymes linked ATP metabolism in the intestine of chicken chicks. For this, 42 animals that were 2 days old were divided into two groups: uninfected (the negative control group) and experimentally infected on second day of life (the positive control group). On days 5, 10, and 15 post-infection (PI), fecal samples were collected for oocyst counts; intestinal tissue was collected in order to evaluate CK, AK, and PK activities, as well as parameters of the oxidative stress and histopathology. On days 10 and 15 PI, infected animals showed high counts of oocysts in fecal samples and intestinal lesions compared to the control group. Cytosolic CK activity was higher in infected animals on days 10 and 15 PI compared to the control group, while mitochondrial CK activity was lower on days 5, 10, and 15 PI. Also, AK activity was lower in infected animals on days 10 and 15 PI compared to control group, while no differences were observed between groups regarding PK activity. In relation to parameters of oxidative stress, intestinal lipid peroxidation and reactive oxygen species levels were higher in infected animals on days 10 and 15 PI compared to the control group, while non-protein thiol levels were lower on day 10 PI. On the 15th day, infected animals had lower body weight (P < 0.05). Based on this evidence, inhibition of mitochondrial CK activity causes an impairment of intestinal energetic homeostasis possibly through depletion on ATP levels, although the cytosolic CK activity acted as an attempt to restore the mitochondrial ATP levels through a feedback mechanism. Moreover, the impairment on energy metabolism appears to be mediated by excessive production of intestinal ROS, as well as oxidation of lipids and thiol groups.
Collapse
|
9
|
Souza CF, Baldissera MD, Zeppenfeld CC, Descovi S, Stefani LM, Baldisserotto B, da Silva AS. Oxidative stress mediated the inhibition of cerebral creatine kinase activity in silver catfish fed with aflatoxin B 1-contaminated diet. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:63-70. [PMID: 29978351 DOI: 10.1007/s10695-018-0534-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
Aflatoxin B1 (AFB1) is an environmental toxicant and neurotoxic compound that induces the production of free radicals, causing oxidative stress. Creatine kinase (CK) is a central controller of energy metabolism in tissues with a large and fluctuating energy demand, and it is highly susceptible to inactivation by free radicals and oxidative damage. Thus, the aim of this study was to evaluate whether a diet for freshwater silver catfish (Rhamdia quelen) containing AFB1 inhibits cerebral CK activity, as well as the involvement of the oxidative stress on this inhibition. Brain CK activity was lower on days 14 and 21 post-feeding in animals that received AFB1-contaminated diet compared to the control group (basal diet), similarly to the brain sodium-potassium pump (Na+, K+-ATPase) activity. On the other hand, lipid peroxidation and protein carbonylation levels were higher on days 14 and 21 post-feeding in animals fed with AFB1-contaminated feed compared to the control group, while the antioxidant capacity against peroxyl radicals and thiol content was lower. Based on these evidences, the data demonstrated that diet containing AFB1 severely affects CK activity, an essential enzyme that plays an important role in brain energy homeostasis. Also, the impairment of energetic homeostasis linked with the use and generation of ATP via inhibition of CK activity elicited an inhibition of enzymes ATP-dependent, such as Na+, K+-ATPase. Moreover, the inhibition of brain CK activity appears to be mediated by the oxidation of lipids, proteins, and thiol group, as well as by a reduction in the antioxidant capacity.
Collapse
Affiliation(s)
- Carine F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Graduate Program in Toxicological Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Matheus D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Carla C Zeppenfeld
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Sharine Descovi
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Lenita M Stefani
- Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, RS, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Aleksandro S da Silva
- Graduate Program in Toxicological Biochemistry and Molecular Biology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, RS, Brazil
| |
Collapse
|
10
|
Margaritelis NV, Paschalis V, Theodorou AA, Kyparos A, Nikolaidis MG. Antioxidants in Personalized Nutrition and Exercise. Adv Nutr 2018; 9:813-823. [PMID: 30256898 PMCID: PMC6247356 DOI: 10.1093/advances/nmy052] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The present review highlights the idea that antioxidant supplementation can be optimized when tailored to the precise antioxidant status of each individual. A novel methodologic approach involving personalized nutrition, the mechanisms by which antioxidant status regulates human metabolism and performance, and similarities between antioxidants and other nutritional supplements are described. The usefulness of higher-level phenotypes for data-driven personalized treatments is also explained. We conclude that personally tailored antioxidant interventions based on specific antioxidant inadequacies or deficiencies could result in improved exercise performance accompanied by consistent alterations in redox profile.
Collapse
Affiliation(s)
- Nikos V Margaritelis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece,Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece,Address correspondence to NVM (e-mail: )
| | - Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasios A Theodorou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
11
|
Baldissera MD, Souza CF, De Matos AFIM, Baldisserotto B, da Silva AS, Monteiro SG. Tissue oxidative damage mediates impairment on phosphotransfer network during thymol intake: Effects on hepatic and renal bioenergetics. Chem Biol Interact 2018; 296:83-88. [PMID: 30243740 DOI: 10.1016/j.cbi.2018.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/11/2018] [Accepted: 09/18/2018] [Indexed: 01/05/2023]
Abstract
Recent evidences demonstrated that ingestion of several monoterpenes cause hepatic and renal damage due to impairment on mitochondrial energy production, eliciting a collapse on adenosine triphosphate (ATP) synthesis and consequently impairment on bioenergetic homeostasis. Thus, the aim of this study was to evaluate whether phosphotransfer network, catalyzed by creatine kinase (CK), adenylate kinase (AK), and pyruvate kinase (PK), can be a pathway to explain hepatic and renal bioenergetics homeostasis impairment due to thymol ingestion. Daily intake of thymol (40 mg/kg) significantly cause a decreased kidney weight and relative kidney weight compared to control group. The same dose of thymol inhibited renal cytosolic and mitochondrial CK activity as well as renal PK activity compared to control group. Finally, thymol (40 mg/kg) elicited a significant increase on renal reactive oxygen species and lipid damage levels, as well as an inhibition on antioxidant capacity against peroxyl radicals and non-protein thiol levels, which did not occur liver. Doses of 10 and 20 mg/kg of thymol administered orally for 30 consecutive days non-changed these variables. Based on these evidence, the data supported that intake of a high dose of thymol severely inhibits cytosolic and mitochondrial CK activity, a crucial enzyme to maintain cellular energy homeostasis. Moreover, high dietary thymol intake impaired communication between CK isoenzymes, which inhibits the attempts to regenerate ATP or to facilitate the CK/PCr shuttle to improve the intracellular ATP utilization and consumption. Moreover, the inhibition of renal CK and PK activities appears to be mediated by the renal oxidation of lipids and thiol groups, as well as by the reduction of the renal antioxidant capacity.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Carine F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Aleksandro S da Silva
- Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, RS, Brazil
| | - Silvia G Monteiro
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
12
|
Kourtzidis IA, Dolopikou CF, Tsiftsis AN, Margaritelis NV, Theodorou AA, Zervos IA, Tsantarliotou MP, Veskoukis AS, Vrabas IS, Paschalis V, Kyparos A, Nikolaidis MG. Nicotinamide riboside supplementation dysregulates redox and energy metabolism in rats: Implications for exercise performance. Exp Physiol 2018; 103:1357-1366. [PMID: 30007015 DOI: 10.1113/ep086964] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 07/11/2018] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the central question of this study? The aim was to investigate the potential metabolic and redox mechanisms that impaired exercise performance after 21 days of supplementation with 300 mg (kg body weight)-1 of nicotinamide riboside in rats. What is the main finding and its importance? Nicotinamide riboside disturbed energy and redox metabolism and impaired exercise performance in heathy rats. Exogenously administered redox agents in heathy populations might lead to adverse effects. ABSTRACT Nicotinamide riboside is a recently discovered form of vitamin B3 that can increase NAD(P) levels. NAD(P) plays key roles in energy metabolism, and its main function is the transfer of electrons in various cellular reactions. Research in aged or diseased mice reported that nicotinamide riboside increases NAD(H) levels, reduces morbidity and improves health and muscle function. We have recently shown that in healthy young rats, chronic administration of nicotinamide riboside marginally non-significantly decreased exercise performance by 35% (P = 0.071). As a follow-up to this finding, we analysed samples from these animals, in an attempt to reveal the potential mechanisms driving this adverse effect, focusing on redox homeostasis and bioenergetics. Thirty-eight Wistar rats were divided into four groups: control (n = 10), exercise (n = 9), nicotinamide riboside (n = 10) and exercise plus nicotinamide riboside (n = 9). Nicotinamide riboside was administered for 21 days [300 mg (kg body weight)-1 daily]. At the end of administration, the exercise and the exercise plus nicotinamide riboside groups performed an incremental swimming performance test until exhaustion. Nicotinamide riboside supplementation increased the levels of NADPH in the liver (P = 0.050), increased the levels of F2 -isoprostanes in plasma (P = 0.047), decreased the activity of glutathione peroxidase (P = 0.017), glutathione reductase (P < 0.001) and catalase (P = 0.024) in erythrocytes, increased the level of glycogen in the liver (P < 0.001) and decreased the concentration of glucose (P = 0.016) and maximal lactate accumulation in plasma (P = 0.084). These findings support the prevailing idea that exogenously administered redox agents in heathy populations might lead to adverse effects and not necessarily to beneficial or neutral effects.
Collapse
Affiliation(s)
- I A Kourtzidis
- School of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - C F Dolopikou
- School of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - A N Tsiftsis
- School of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Serres, Greece.,Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece
| | - N V Margaritelis
- School of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Serres, Greece.,Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece
| | - A A Theodorou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - I A Zervos
- Department of Animal Structure and Function, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - M P Tsantarliotou
- Department of Animal Structure and Function, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - A S Veskoukis
- School of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Serres, Greece.,Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - I S Vrabas
- School of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - V Paschalis
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus.,School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - A Kyparos
- School of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - M G Nikolaidis
- School of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| |
Collapse
|
13
|
Jaguezeski AM, Baldissera MD, Rhoden LA, Gomes TMA, Mendes RE, Bottari NB, Morsch VM, Schetinger MRC, Stefani LM, Giongo JL, Vaucher RA, Da Silva AS. Listeria monocytogenes impairs enzymes of the phosphotransfer network and alters antioxidant/oxidant status in cattle brain structures. Microb Pathog 2018; 124:284-290. [PMID: 30142467 DOI: 10.1016/j.micpath.2018.08.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/29/2018] [Accepted: 08/20/2018] [Indexed: 01/24/2023]
Abstract
Several evidences have suggested the involvement of enzymes belonging to the phosphotransfer network, formed by creatine kinase (CK), pyruvate kinase (PK) and adenylate kinase (AK), as well the oxidative stress on the pathogenesis of infectious diseases associated with the central nervous system (CNS). Thus, the aim of this study was to evaluate whether listeriosis alters the brain energy metabolism and/or causes oxidative stress in different brain structures of cattle experimentally infected by Listeria monocytogenes. The cytosolic CK activity was inhibited in the cerebral cortex, cerebellum, brainstem and hippocampus of infected animals compared to uninfected animals, while the mitochondrial CK activity was increased. The PK activity was inhibited in all brain structures of infected animals, while the AK activity was unchanged. Na+, K+-ATPase activity decreased in the cerebral cortex, cerebellum and hippocampus of animals infected by L. monocytogenes. Regarding the oxidative strees variables, the cerebellum and brainstem of infected animals showed increased thiobarbituric acid reactive substances, while the catalase activity was inhibited. Glutathione S-transferarase was inhibited in the cerebral cortex and brainstem of infected animals, and it was increased in the cerebellum. L. monocytogenes was quantified in the liver (n = 5/5) and cerebral cortex (n = 4/5) of the infected cattle. Based on these evidences, the nucleocytoplasmic communication between CK isoenzymes was insufficient to avoid an impairment of cerebral bioenergetics. Moreover, the inhibition on brain PK activity caused an impairment in the communication between sites of ATP generation and ATP utilization. The lipid peroxidation and alteration on antioxidant status observed in some brain structures were also involved during the disease. In summary, these alterations contribute to disease pathogenesis linked to CNS during cattle listeriosis.
Collapse
Affiliation(s)
- Antonise M Jaguezeski
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina, Chapecó, Santa Catarina, Brazil
| | - Matheus D Baldissera
- Department of Microbiology and Parasitology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Leandro A Rhoden
- Laboratory of Pathology, Instituto Federal Catarinense, Concórdia, Santa Catarina, Brazil
| | - Teane M A Gomes
- Laboratory of Pathology, Instituto Federal Catarinense, Concórdia, Santa Catarina, Brazil
| | - Ricardo E Mendes
- Laboratory of Pathology, Instituto Federal Catarinense, Concórdia, Santa Catarina, Brazil
| | - Nathieli B Bottari
- Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Vera M Morsch
- Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Maria Rosa C Schetinger
- Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Lenita M Stefani
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina, Chapecó, Santa Catarina, Brazil
| | - Janice L Giongo
- Pharmacy Laboratory, Faculdade Anhanguera, Pelotas, RS, Brazil
| | - Rodrigo A Vaucher
- Laboratory of Biochemistry Research and Molecular Biology of Microorganisms (LaPeBBiOM), Universidade Federal de Pelotas, RS, Brazil
| | - Aleksandro Schafer Da Silva
- Graduate Program in Animal Science, Universidade do Estado de Santa Catarina, Chapecó, Santa Catarina, Brazil; Graduate Program in Toxicological Biochemistry, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
14
|
Paschalis V, Theodorou AA, Margaritelis NV, Kyparos A, Nikolaidis MG. N-acetylcysteine supplementation increases exercise performance and reduces oxidative stress only in individuals with low levels of glutathione. Free Radic Biol Med 2018; 115:288-297. [PMID: 29233792 DOI: 10.1016/j.freeradbiomed.2017.12.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 01/05/2023]
Abstract
Most of the evidence indicates that chronic antioxidant supplementation induces negative effects in healthy individuals. However, it is currently unknown whether specific redox deficiencies exist and whether targeted antioxidant interventions in deficient individuals can induce positive effects. We hypothesized that the effectiveness of antioxidant supplements to decrease oxidative stress and promote exercise performance depends on the redox status of the individuals that receive the antioxidant treatment. To this aim, we investigated whether N-acetylcysteine (NAC) supplementation would enhance exercise performance by increasing glutathione concentration and by reducing oxidative stress only in individuals with low resting levels of glutathione. We screened 100 individuals for glutathione levels and formed three groups with low, moderate and high levels (N = 36, 12 per group). After by-passing the regression to the mean artifact, by performing a second glutathione measurement, the individuals were supplemented with NAC (2 × 600mg, twice daily, for 30 days) or placebo using a double-blind cross-over design. We performed three whole-body performance tests (VO2max, time trial and Wingate), measured two systemic oxidative stress biomarkers (F2-isoprostanes and protein carbonyls) and assessed glutathione-dependent redox metabolism in erythrocytes (glutathione, glutathione peroxidase, glutathione reductase, superoxide dismutase, catalase and NADPH). The low glutathione group improved after NAC supplementation in VO2max, time trial and Wingate by 13.6%, 15.4% and 11.4%, respectively. Thirty days of NAC supplementation were sufficient to restore baseline glutathione concentration, reduce systemic oxidative stress and improve erythrocyte glutathione metabolism in the low glutathione group. On the contrary, the 30-day supplementation period did not affect performance and redox state of the moderate and high glutathione groups, although few both beneficial and detrimental effects in performance were observed. In conclusion, individuals with low glutathione levels were linked with decreased physical performance, increased oxidative stress and impaired redox metabolism of erythrocytes. NAC supplementation restored both performance and redox homeostasis.
Collapse
Affiliation(s)
- Vassilis Paschalis
- School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Greece
| | - Anastasios A Theodorou
- Department of Health Sciences, School of Sciences, European University Cyprus, Nicosia, Cyprus
| | - Nikos V Margaritelis
- Intensive Care Unit, 424 General Military Hospital of Thessaloniki, Thessaloniki, Greece; Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Antonios Kyparos
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece
| | - Michalis G Nikolaidis
- Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Serres, Greece.
| |
Collapse
|
15
|
Lebda MA, Sadek KM, El-Sayed YS. Aspartame and Soft Drink-Mediated Neurotoxicity in Rats: Implication of Oxidative Stress, Apoptotic Signaling Pathways, Electrolytes and Hormonal Levels. Metab Brain Dis 2017; 32:1639-1647. [PMID: 28660358 DOI: 10.1007/s11011-017-0052-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/16/2017] [Indexed: 01/06/2023]
Abstract
A significant association between fructose corn syrup in sweetened beverages consumption and increased risk of detrimental central nervous system effects has been recently reported. We hypothesized that the aspartame and soft drink induced disturbances in energy production and endocrine function, which play a role in the induction of brain damage. Therefore, we aimed to assess the effect of aspartame and soft drink on brain function and the link between energy status in the brain, oxidative stress and molecular pathways of apoptosis. Thirty rats were randomly assigned to drink water, aspartame (240 mg/kg orally) and cola soft drinks (free access) daily for two months. Subchronic intake of aspartame and soft drink significantly disrupted the brain energy production, as indicated by inhibited serum and brain creatine kinase, specifically in soft drink-received rats. Moreover, they substantially altered serum electrolytes (increased Ca and Na, and depleted Cu, Fe, Zn and K levels), and accordingly the related hormonal status (increased T4 and PTH, and lowered T3 and aldosterone levels), particularly in soft drink-received rats reflecting brain damage. Additionally, significant increment of acetylcholine esterase activity concomitant with the reduction of antioxidant molecules (SOD, CAT, GSH-Px and GSH), and induction of malondialdehyde level are precisely indicative of oxidative brain damage. Brain mRNA transcripts of target genes showed that aspartame and soft drink induced upregulation of BAX, Casp3, P27 and Mdm2 (1.5-fold) and down-regulation of Bcl2, suggesting an activation of cellular apoptosis. Collectively, subchronic aspartame and soft drink-induced brain damage in rats may be driven via a mechanism that involves energy production disruption, electrolytes and hormonal imbalance, increased oxidative stress and activation of molecular pathway of neuronal apoptosis.
Collapse
Affiliation(s)
- Mohamed A Lebda
- Department of Biochemistry, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Kadry M Sadek
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Yasser S El-Sayed
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| |
Collapse
|
16
|
Siebert C, Kolling J, Scherer EBS, Schmitz F, da Cunha MJ, Mackedanz V, de Andrade RB, Wannmacher CMD, Wyse ATS. Effect of physical exercise on changes in activities of creatine kinase, cytochrome c oxidase and ATP levels caused by ovariectomy. Metab Brain Dis 2014; 29:825-35. [PMID: 24810635 DOI: 10.1007/s11011-014-9564-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 04/30/2014] [Indexed: 12/13/2022]
Abstract
The reduction in the secretion of ovarian hormones, principally estrogen, is a consequence of menopause. Estrogens act primarily as female sex hormones, but also exert effects on different physiological systems including the central nervous system. The treatment normally used to reduce the symptoms of menopause is the hormone therapy, which seems to be effective in treating symptoms, but it may be responsible for adverse effects. Based on this, there is an increasing demand for alternative therapies that minimize signs and symptoms of menopause. In the present study we investigated the effect of ovariectomy and/or physical exercise on the activities of energy metabolism enzymes, such as creatine kinase (cytosolic and mitochondrial fractions), pyruvate kinase, succinate dehydrogenase, complex II, cytochrome c oxidase, as well as on ATP levels in the hippocampus of adult rats. Adult female Wistar rats with 90 days of age were subjected to ovariectomy (an animal model widely used to mimic the postmenopausal changes). Thirty days after the procedure, the rats were submitted to the exercise protocol, which was performed three times a week for 30 days. Twelve hours after the last training session, the rats were decapitated for subsequent biochemical analyzes. Results showed that ovariectomy did not affect the activities of pyruvate kinase, succinate dehydrogenase and complex II, but decreased the activities of creatine kinase (cytosolic and mitochondrial fractions) and cytochrome c oxidase. ATP levels were also reduced. Exercise did not produce the expected results since it was only able to partially reverse the activity of creatine kinase cytosolic fraction. The results of this study suggest that estrogen deficiency, which occurs as a result of ovariectomy, affects generation systems and energy homeostasis, reducing ATP levels in hippocampus of adult female rats.
Collapse
Affiliation(s)
- Cassiana Siebert
- Laboratório de Neuroproteção e Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
de Andrade RB, Gemelli T, Rojas DB, Bonorino NF, Costa BML, Funchal C, Dutra-Filho CS, Wannmacher CMD. Creatine and Pyruvate Prevent the Alterations Caused by Tyrosine on Parameters of Oxidative Stress and Enzyme Activities of Phosphoryltransfer Network in Cerebral Cortex of Wistar Rats. Mol Neurobiol 2014; 51:1184-94. [DOI: 10.1007/s12035-014-8791-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/15/2014] [Indexed: 12/01/2022]
|
18
|
Gurji HA, White DW, Hoxha B, Sun J, Harbor JP, Schulz DR, Williams AG, Olivencia-Yurvati AH, Mallet RT. Pyruvate-enriched resuscitation: metabolic support of post-ischemic hindlimb muscle in hypovolemic goats. Exp Biol Med (Maywood) 2014; 239:240-9. [PMID: 24414481 DOI: 10.1177/1535370213514329] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Tourniquet-imposed ischemia-reperfusion of extremities generates reactive oxygen and nitrogen species (RONS), which can disrupt intermediary metabolism and ATP production. This study tested the hypothesis that fluid resuscitation with pyruvate, a natural antioxidant and metabolic fuel, ameliorates the deleterious effects of ischemia-reperfusion on intermediary metabolism in skeletal muscle. Anesthetized male goats (∼25 kg) were bled to a mean arterial pressure of 48 ± 1 mmHg and then subjected to 90 min hindlimb ischemia with a tourniquet and femoral crossclamp, followed by 4-h reperfusion. Lactated Ringers (LR) or pyruvate Ringers (PR) was infused intravenous for 90 min, from 30 min ischemia to 30 min reperfusion, to deliver 0.05 mmol kg(-1) min(-1) lactate or pyruvate. Time controls (TC) underwent neither hemorrhage nor hindlimb ischemia. Lipid peroxidation product 8-isoprostane, RONS-sensitive aconitase and creatine kinase activities, antioxidant superoxide dismutase activity, and phosphocreatine phosphorylation potential ([PCr]/[{Cr}{P(i)}]), an index of tissue energy state, were measured in reperfused gastrocnemius at 90 min resuscitation (n = 6 all groups) and 3.5 h post-resuscitation (n = 8 TC, 9 LR, 10 PR). PR more effectively than LR suppressed 8-isoprostane formation, prevented inactivation of aconitase and creatine kinase, doubled superoxide dismutase activity, and augmented [PCr]/([Cr][P(i)]). Pyruvate-enriched Ringer's is metabolically superior to Ringer's lactate for fluid resuscitation of tourniqueted muscle.
Collapse
Affiliation(s)
- Hunaid A Gurji
- Department of Integrative Physiology, University of North Texas Health Science Center, Fort Worth, TX 76107-2699, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Bala Sakthi Janani MM, Selvakumar K, Suganya S, Fariya Yasmine AB, Krishnamoorthy G, Arunakaran J. Protective role of lycopene against PCBs-induced nitrosative stress in cerebral cortex of adult male rats. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.biomag.2012.10.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Brioschi M, Polvani G, Fratto P, Parolari A, Agostoni P, Tremoli E, Banfi C. Redox proteomics identification of oxidatively modified myocardial proteins in human heart failure: implications for protein function. PLoS One 2012; 7:e35841. [PMID: 22606238 PMCID: PMC3351458 DOI: 10.1371/journal.pone.0035841] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 03/27/2012] [Indexed: 12/13/2022] Open
Abstract
Increased oxidative stress in a failing heart may contribute to the pathogenesis of heart failure (HF). The aim of this study was to identify the oxidised proteins in the myocardium of HF patients and analyse the consequences of oxidation on protein function. The carbonylated proteins in left ventricular tissue from failing (n = 14) and non-failing human hearts (n = 13) were measured by immunoassay and identified by proteomics. HL-1 cardiomyocytes were incubated in the presence of stimuli relevant for HF in order to assess the generation of reactive oxygen species (ROS), the induction of protein carbonylation, and its consequences on protein function. The levels of carbonylated proteins were significantly higher in the HF patients than in the controls (p<0.01). We identified two proteins that mainly underwent carbonylation: M-type creatine kinase (M-CK), whose activity is impaired, and, to a lesser extent, α-cardiac actin. Exposure of cardiomyocytes to angiotensin II and norepinephrine led to ROS generation and M-CK carbonylation with loss of its enzymatic activity. Our findings indicate that protein carbonylation is increased in the myocardium during HF and that these oxidative changes may help to explain the decreased CK activity and consequent defects in energy metabolism observed in HF.
Collapse
Affiliation(s)
| | - Gianluca Polvani
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Cardiovascular Science, University of Milan, Milan, Italy
| | | | - Alessandro Parolari
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Cardiovascular Science, University of Milan, Milan, Italy
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Cardiovascular Science, University of Milan, Milan, Italy
- Department of Clinical Care and Respiratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - Elena Tremoli
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | - Cristina Banfi
- Centro Cardiologico Monzino IRCCS, Milan, Italy
- * E-mail:
| |
Collapse
|
21
|
Tyrosine impairs enzymes of energy metabolism in cerebral cortex of rats. Mol Cell Biochem 2012; 364:253-61. [PMID: 22311600 DOI: 10.1007/s11010-012-1225-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2011] [Accepted: 01/04/2012] [Indexed: 10/14/2022]
Abstract
Tyrosine levels are abnormally elevated in tissues and physiological fluids of patients with inborn errors of tyrosine catabolism, especially in tyrosinemia type II, which is caused by deficiency of tyrosine aminotransferase and provokes eyes, skin, and central nervous system disturbances. Considering that the mechanisms of brain damage in these disorders are poorly known, in this study, we investigated the in vivo and in vitro effects of tyrosine on some parameters of energy metabolism in cerebral cortex of 14-day-old Wistar rats. We observed that 2 mM tyrosine inhibited in vitro the pyruvate kinase (PK) activity and that this inhibition was prevented by 1 mM reduced glutathione with 30, 60, and 90 min of preincubation. Moreover, administration of tyrosine methyl ester (TME) (0.5 mg/g of body weight) decreased the activity of PK and this reduction was prevented by pre-treatment with creatine (Cr). On the other hand, tyrosine did not alter adenylate kinase (AK) activity in vitro, but administration of TME enhanced AK activity not prevented by Cr pre-treatment. Finally, TME administration decreased the activity of CK from cytosolic and mitochondrial fractions and this diminution was prevented by Cr pre-treatment. The results suggest that tyrosine alters essential sulfhydryl groups necessary for CK and PK functions, possibly through oxidative stress. In case this also occurs in the patients, it is possible that energy metabolism alterations may contribute, along with other mechanisms, to the neurological dysfunction of hypertyrosinemias.
Collapse
|
22
|
Selvakumar K, Bavithra S, Krishnamoorthy G, Venkataraman P, Arunakaran J. Polychlorinated biphenyls-induced oxidative stress on rat hippocampus: a neuroprotective role of quercetin. ScientificWorldJournal 2012; 2012:980314. [PMID: 22272182 PMCID: PMC3259506 DOI: 10.1100/2012/980314] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 11/22/2011] [Indexed: 12/22/2022] Open
Abstract
Present study is aimed to evaluate the ameliorative role of quercetin on PCBs-induced oxidative stress in hippocampus of Wistar rats. Group I rats received vehicle (corn oil) intraperitoneally (i.p); Group II received quercetin 50 mg/kg bwt/day (gavage); Group III received PCB 2 mg/kg bwt/day (i.p); Group IV received PCB (i.p) and simultaneously quercetin through gavage. After 30 days, rats were euthanized and hippocampus was dissected from each rat brain. Oxidative stress was assessed by determining the levels of H2O2, LPO, Pcc, and alteration in the functional markers such as CK, AchE, and ATPases activities in the hippocampus of control and experimental animals. A significant increase in the levels of stress markers and decrease in level of functional markers were observed in PCBs-treated rats. Moreover DNA fragmentation and histological studies were ascertained to confirm PCBs toxicity. In conclusion, quercetin shows a protective role against PCBs-induced oxidative damage in rat hippocampus.
Collapse
Affiliation(s)
- Kandaswamy Selvakumar
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113, India
| | | | | | | | | |
Collapse
|
23
|
de Andrade RB, Gemelli T, Rojas DB, Funchal C, Dutra-Filho CS, Wannmacher CMD. Tyrosine inhibits creatine kinase activity in cerebral cortex of young rats. Metab Brain Dis 2011; 26:221-7. [PMID: 21789565 DOI: 10.1007/s11011-011-9255-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 07/13/2011] [Indexed: 10/18/2022]
Abstract
Tyrosine accumulates in inborn errors of tyrosine catabolism, especially in tyrosinemia type II, where tyrosine levels are highly elevated in tissues and physiological fluids of affected patients. Tyrosinemia type II is a disorder of autosomal recessive inheritance characterized by neurological symptoms similar to those observed in patients with creatine deficiency syndromes. Considering that the mechanisms of brain damage in these disorders are poorly known, in the present study our main objective was to investigate the in vivo and in vitro effects of different concentrations and preincubation times of tyrosine on cytosolic and mitochondrial creatine kinase activities of the cerebral cortex from 14-day-old Wistar rats. The cytosolic CK was reduced by 15% at 1 mM and 32% at 2 mM tyrosine. Similarly, the mitochondrial CK was inhibited by 15% at 1 mM and 22% at 2 mM tyrosine. We observed that the inhibition caused by tyrosine was concentration-dependent and was prevented by reduced glutathione. Results also indicated that mitochondrial, but not cytosolic creatine kinase activity was inhibited by tyrosine in a time-dependent way. Finally, a single injection of L-Tyrosine methyl ester administered i.p. decreased cytosolic (31%) and mitochondrial (18%) creatine kinase activities of brain cortex from rats. Considering that creatine kinase is an enzyme dependent of thiol residues for its function and tyrosine induces oxidative stress, the results suggest that the inhibition caused by tyrosine might occur by oxidation of essential sulfhydryl groups of the enzyme. In case this also occurs in patients with tyrosinemia, it is possible that creatine kinase inhibition may contribute to the neurological dysfunction characteristic of tyrosinemia.
Collapse
Affiliation(s)
- Rodrigo Binkowski de Andrade
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600-Anexo, Porto Alegre, RS, Brasil
| | | | | | | | | | | |
Collapse
|
24
|
Polychlorinated Biphenyl (PCBs)-Induced Oxidative Stress Plays a Critical Role on Cerebellar Dopaminergic Receptor Expression: Ameliorative Role of Quercetin. Neurotox Res 2011; 21:149-59. [DOI: 10.1007/s12640-011-9253-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/15/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
|
25
|
Role of Quercetin on PCBs (Aroclor-1254) Induced Impairment of Dopaminergic Receptor mRNA Expression in Cerebral Cortex of Adult Male Rats. Neurochem Res 2011; 36:1344-52. [DOI: 10.1007/s11064-011-0449-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2011] [Indexed: 01/28/2023]
|
26
|
de Andrade RB, Gemelli T, Guerra RB, Funchal C, Duval Wannmacher CM. Inhibition of creatine kinase activity by 3-butyl-1-phenyl-2-(phenyltelluro)oct-en-1-one in the cerebral cortex and cerebellum of young rats. J Appl Toxicol 2010; 30:611-6. [DOI: 10.1002/jat.1533] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
27
|
Motawi TM, Sadik NA, Refaat A. Cytoprotective effects of DL-alpha-lipoic acid or squalene on cyclophosphamide-induced oxidative injury: An experimental study on rat myocardium, testicles and urinary bladder. Food Chem Toxicol 2010; 48:2326-36. [DOI: 10.1016/j.fct.2010.05.067] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 05/09/2010] [Accepted: 05/24/2010] [Indexed: 11/24/2022]
|
28
|
Morozov VN. Electrospray deposition of biomolecules. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 119:115-62. [PMID: 19343305 DOI: 10.1007/10_2008_44] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
This chapter describes the basic physics underlying the newly emerging technique of electrospray deposition (ESD) as applied to biological macromolecules. Fabrication of protein films and microarrays are considered as the most important applications of this technology. All the major stages in the ESD process (solution electrification, formation of a cloud of charged microdroplets, transformation of microdroplets into ions and charged clusters, deposition, and neutralization) are discussed to reveal the physical processes involved, such as space charge effects, dissipation of energy upon landing and neutralization mechanisms. Fundamentals of ESD are presented together with a discussion of potential practical problems in realizing ESD through dielectric masks. Retention of structure and functional properties of protein molecules in ESD-fabricated films and microarrays is discussed in detail.
Collapse
Affiliation(s)
- Victor N Morozov
- The National Center for Biodefense and Infectious Diseases, George Mason University, 10900 University Blvd. MS 4E3, Manassas, VA, 20110, USA,
| |
Collapse
|
29
|
Venkataraman P, Krishnamoorthy G, Selvakumar K, Arunakaran J. Oxidative stress alters creatine kinase system in serum and brain regions of polychlorinated biphenyl (Aroclor 1254)-exposed rats: protective role of melatonin. Basic Clin Pharmacol Toxicol 2009; 105:92-7. [PMID: 19389042 DOI: 10.1111/j.1742-7843.2009.00406.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Polychlorinated biphenyls are one of the environmental toxicants and neurotoxic compounds which induce the production of free radicals. Creatine kinase plays a key role in energy metabolism of nervous tissue and might be one of the targets for reactive oxygen species. Melatonin, an indoleamine, plays an important role in neurodegenerative diseases as an antioxidant and neuroprotector. The objective of the present study was to investigate the protective role of melatonin on polychlorinated biphenyl (Aroclor 1254)-induced oxidative stress and the changes in creatine kinase activity in brain regions of adult rats. Group I: rats were intraperitoneally (i.p.) administered with corn oil (vehicle) for 30 days. Group II: rats injected i.p. with Aroclor 1254 at 2 mg/kg body weight (bw)/day for 30 days. Groups III and IV: rats i.p. received melatonin (5 or 10 mg/kg bw/day) simultaneously with Aroclor 1254 for 30 days. After 30 days, rats were killed and the brain regions were dissected to cerebral cortex, cerebellum and hippocampus. Lipid peroxidation, hydroxyl radical and hydrogen peroxide (H2O2) levels were determined. The activity of creatine kinase was assayed in serum and brain regions, and its isoenzymes in serum were separated electrophoretically. Activity of creatine kinase was decreased while an increase in H2O2, hydroxyl radical and lipid peroxidation was observed in brain regions of polychlorinated biphenyl-treated rats. Also polychlorinated biphenyl exposure showed a significant increase in serum creatine kinase level and its isoforms such as BB-creatine kinase, MB-creatine kinase, and MM-creatine kinase. Administration of melatonin prevented these alterations induced by polychlorinated biphenyl by its free radical scavenging mechanism. Thus, polychlorinated biphenyl alters creatine kinase activity by inducing oxidative stress in brain regions, which can be protected by melatonin.
Collapse
Affiliation(s)
- Prabhu Venkataraman
- Department of Endocrinology, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, India
| | | | | | | |
Collapse
|
30
|
Guanidinoacetate Decreases Antioxidant Defenses and Total Protein Sulfhydryl Content in Striatum of Rats. Neurochem Res 2008; 33:1804-10. [DOI: 10.1007/s11064-008-9636-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 02/20/2008] [Indexed: 11/27/2022]
|
31
|
Snow LM, Fugere NA, Thompson LV. Advanced Glycation End-Product Accumulation and Associated Protein Modification in Type II Skeletal Muscle With Aging. J Gerontol A Biol Sci Med Sci 2007; 62:1204-10. [DOI: 10.1093/gerona/62.11.1204] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
32
|
Pereira Oliveira PR, Rodrigues-Junior V, Rech VC, Duval Wannmacher CM. Cystine Inhibits Creatine Kinase Activity in Pig Retina. Arch Med Res 2007; 38:164-9. [PMID: 17227724 DOI: 10.1016/j.arcmed.2006.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2006] [Accepted: 09/23/2006] [Indexed: 01/15/2023]
Abstract
BACKGROUND Cystinosis is an autosomal recessive disorder associated with lysosomal cystine accumulation caused by defective cystine efflux. Visual deficit is a possible consequence of cystine accumulation in cornea and retina. Fibroblasts from cystinotic patients present ATP deficit with intact mitochondrial energy-generating capacity by an unknown mechanism. Considering that creatine kinase is a thiol enzyme crucial for energy homeostasis in retina, and disulfides like cystine may alter thiol enzymes, the main objective of the present study was to investigate the effect of cystine and cysteamine, the drug used for treatment of cystinotic patients, on creatine kinase activity in cytosolic and mitochondrial fractions of the retina from adult pigs. METHODS Retina was isolated from 6-month-old Landrace pigs, homogenized and mitochondrial and cytosolic fractions separated by centrifugation. Cytosolic and mitochondrial creatine kinase activities were determined in the presence of different concentrations of cystine and/or cysteamine. RESULTS Cystine inhibited the enzyme activity in a dose- and time-dependent manner and cysteamine prevented and reversed the inhibition caused by cystine, suggesting that cystine inhibits creatine kinase activity by oxidation of the sulfhydryl groups of the enzyme. CONCLUSIONS Considering that creatine kinase is a crucial enzyme for retina energy homeostasis, in case cystine leaves lysosome these results provide a possible mechanism for cystine toxicity and also another beneficial effect for the use of cysteamine in patients with cystinosis.
Collapse
|
33
|
Malone J, Ullrich R. Novel Radiation Response Genes Identified in Gene-Trapped MCF10A Mammary Epithelial Cells. Radiat Res 2007; 167:176-84. [PMID: 17390725 DOI: 10.1667/rr0656.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We have used a gene-trapping strategy to screen human mammary epithelial cells for radiation response genes. Relative mRNA expression levels of five candidate genes in MCF10A cells were analyzed, both with and without exposure to radiation. In all five cases, the trapped genes were significantly down-regulated after radiation treatment. Sequence analysis of the fusion transcripts identified the trapped genes: (1) the human androgen receptor, (2) the uncharacterized DREV1 gene, which has known homology to DNA methyltransferases, (3) the human creatine kinase gene, (4) the human eukaryotic translation elongation factor 1 beta 2, and (5) the human ribosomal protein L27. All five genes were down-regulated significantly after treatment with varying doses of ionizing radiation (0.10 to 4.0 Gy) and at varying times (2-30 h after treatment). The genes were also analyzed in human fibroblast and lymphoblastoid cell lines to determine whether the radiation response being observed was cell-type specific. The results verified that the observed radiation response was not a cell-type-specific phenomenon, suggesting that the genes play essential roles in the radiation damage control pathways. This study demonstrates the potential of the gene-trap approach for the identification and functional analysis of novel radiation response genes.
Collapse
Affiliation(s)
- Jennifer Malone
- Department of Pathology, University of Colorado Health Sciences Center, Aurora, Colorado 80045-0508, USA.
| | | |
Collapse
|
34
|
Opii WO, Joshi G, Head E, William Milgram N, Muggenburg BA, Klein JB, Pierce WM, Cotman CW, Allan Butterfield D. Proteomic identification of brain proteins in the canine model of human aging following a long-term treatment with antioxidants and a program of behavioral enrichment: relevance to Alzheimer's disease. Neurobiol Aging 2006; 29:51-70. [PMID: 17055614 PMCID: PMC2203613 DOI: 10.1016/j.neurobiolaging.2006.09.012] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2006] [Revised: 09/06/2006] [Accepted: 09/14/2006] [Indexed: 01/28/2023]
Abstract
Aging and age-related disorders such as Alzheimer's disease (AD) are usually accompanied by oxidative stress as one of the main mechanisms contributing to neurodegeneration and cognitive decline. Aging canines develop cognitive dysfunction and neuropathology similar to those seen in humans, and the use of antioxidants results in reductions in oxidative damage and in improvement in cognitive function in this canine model of human aging. In the present study, the effect of a long-term treatment with an antioxidant-fortified diet and a program of behavioral enrichment on oxidative damage was studied in aged canines. To identify the neurobiological mechanisms underlying these treatment effects, the parietal cortex from 23 beagle dogs (8.1-12.4 years) were treated for 2.8 years in one of four treatment groups: i.e., control food-control behavioral enrichment (CC); control food-behavioral enrichment (CE); antioxidant food-control behavioral enrichment (CA); enriched environment-antioxidant-fortified food (EA). We analyzed the levels of the oxidative stress biomarkers, i.e., protein carbonyls, 3-nitrotyrosine (3-NT), and the lipid peroxidation product, 4-hydroxynonenal (HNE), and observed a decrease in their levels on all treatments when compared to control, with the most significant effects found in the combined treatment, EA. Since EA treatment was most effective, we also carried out a comparative proteomics study to identify specific brain proteins that were differentially expressed and used a parallel redox proteomics approach to identify specific brain proteins that were less oxidized following EA. The specific protein carbonyl levels of glutamate dehydrogenase [NAD (P)], glyceraldehyde-3-phosphate dehydrogenase (GAPDH), alpha-enolase, neurofilament triplet L protein, glutathione-S-transferase (GST) and fascin actin bundling protein were significantly reduced in brain of EA-treated dogs compared to control. We also observed significant increases in expression of Cu/Zn superoxide dismutase, fructose-bisphosphate aldolase C, creatine kinase, glutamate dehydrogenase and glyceraldehyde-3-phosphate dehydrogenase. The increased expression of these proteins and in particular Cu/Zn SOD correlated with improved cognitive function. In addition, there was a significant increase in the enzymatic activities of glutathione-S-transferase (GST) and total superoxide dismutase (SOD), and significant increase in the protein levels of heme oxygenase (HO-1) in EA treated dogs compared to control. These findings suggest that the combined treatment reduces the levels of oxidative damage and improves the antioxidant reserve systems in the aging canine brain, and may contribute to improvements in learning and memory. These observations provide insights into a possible neurobiological mechanism underlying the effects of the combined treatment. These results support the combination treatments as a possible therapeutic approach that could be translated to the aging human population who are at risk for age-related neurodegenerative disorders, including Alzheimer's disease.
Collapse
Affiliation(s)
- Wycliffe. O. Opii
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington KY 40506-0055
| | - Gururaj Joshi
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington KY 40506-0055
| | - Elizabeth Head
- Institute for Brain Aging and Dementia, Department of Neurology, University of California, Irvine, California, 92697-4540
| | - N William Milgram
- Division of Life Sciences, University of Toronto, Toronto, Canada, M1C 1A4
| | | | - Jon B. Klein
- Department of Medicine, Kidney Disease Program, University of Louisville, Louisville, KY
| | | | - Carl. W. Cotman
- Institute for Brain Aging and Dementia, Department of Neurology, University of California, Irvine, California, 92697-4540
| | - D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington KY 40506-0055
- *Address Correspondence to: Prof. D. Allan Butterfield, Department of Chemistry, Center of Membrane Sciences, and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40506, USA, Ph: 859-257-3184; FAX: 859-257-5876; E-Mail:
| |
Collapse
|
35
|
Rech VC, Athaydes GA, Feksa LR, Dornelles PKB, Rodrigues-Junior V, Dutra-Filho CS, De Souza Wyse AT, Wajner M, Wannmacher CMD. Inhibition of creatine kinase activity by cystine in the kidney of young rats. Pediatr Res 2006; 60:190-5. [PMID: 16864702 DOI: 10.1203/01.pdr.0000227442.78881.47] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nephropathic cystinosis is a lethal genetic disease caused by a lysosomal transport disorder leading to intralysosomal cystine accumulation in all tissues. Cystinosis is the most common inherited cause of Fanconi syndrome, but the mechanisms by which cystine causes tissue damage are not fully understood. Thiol-containing enzymes are critical for renal energy metabolism and may be altered by disulfides like cystine. Therefore, in the present study our main objective was to investigate the in vivo and in vitro effects of cystine on creatine kinase, which contains critical thiol groups in its structure, in the kidney of young Wistar rats. We observed that cystine inhibited in vivo and in vitro the enzyme activity and that this inhibition was prevented by cysteamine and glutathione. The results suggest oxidation of essential sulfhydryl groups necessary for creatine kinase function by cystine. Considering that creatine kinase and other thiol-containing enzymes are crucial for renal energy metabolism, and programmed cell death occurs in situations of energy deficiency, the enzyme inhibition caused by cystine released from lysosomes might be a mechanism of tissue damage in patients with cystinosis.
Collapse
Affiliation(s)
- Virginia Cielo Rech
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Schlattner U, Tokarska-Schlattner M, Wallimann T. Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta Mol Basis Dis 2006; 1762:164-80. [PMID: 16236486 DOI: 10.1016/j.bbadis.2005.09.004] [Citation(s) in RCA: 451] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2005] [Revised: 08/09/2005] [Accepted: 09/13/2005] [Indexed: 01/23/2023]
Abstract
Mitochondrial creatine kinase (MtCK), together with cytosolic creatine kinase isoenzymes and the highly diffusible CK reaction product, phosphocreatine, provide a temporal and spatial energy buffer to maintain cellular energy homeostasis. Mitochondrial proteolipid complexes containing MtCK form microcompartments that are involved in channeling energy in form of phosphocreatine rather than ATP into the cytosol. Under situations of compromised cellular energy state, which are often linked to ischemia, oxidative stress and calcium overload, two characteristics of mitochondrial creatine kinase are particularly relevant: its exquisite susceptibility to oxidative modifications and the compensatory up-regulation of its gene expression, in some cases leading to accumulation of crystalline MtCK inclusion bodies in mitochondria that are the clinical hallmarks for mitochondrial cytopathies. Both of these events may either impair or reinforce, respectively, the functions of mitochondrial MtCK complexes in cellular energy supply and protection of mitochondria form the so-called permeability transition leading to apoptosis or necrosis.
Collapse
Affiliation(s)
- Uwe Schlattner
- Institute of Cell Biology, Swiss Federal Institute of Technology (ETH Zürich), Hönggerberg HPM, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
37
|
Stark G. Functional consequences of oxidative membrane damage. J Membr Biol 2005; 205:1-16. [PMID: 16245038 DOI: 10.1007/s00232-005-0753-8] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 07/19/2005] [Indexed: 12/12/2022]
Abstract
The interaction of reactive oxygen species with biological membranes is known to produce a great variety of different functional modifications. Part of these modifications may be classified as direct effects. They are due to direct interaction of the reactive species with the molecular machinery under study with a subsequent chemical and functional modification of these molecules. An important part of the observed functional modifications are, however, indirect effects. They are the consequence of an oxidative modification of the environment of biological macromolecules. Lipid peroxidation-via its generation of chemically reactive products-contributes to the loss of cellular functions through the inactivation of membrane enzymes and even of cytoplasmic (i.e., water soluble) proteins. Oxidation of membrane lipids may, however, also increase the efficiency of membrane functions. This was observed for a series of transport systems. Lipid peroxidation was accompanied by activation of certain types of ion channels and ion carriers. The effect is due to an increase of the polarity of the membrane interior by accumulation of polar oxidation products. The concomitant change of the dielectric constant, which may be detected via the increase of the membrane capacitance, facilitates the opening of membrane channels and lowers the inner membrane barrier for the movement of ions across the membrane. The predominant effect, however, at least at a greater extent of lipid peroxidation, is the inhibition of membrane functions. The strong increase of the leak conductance contributes to the depolarization of the membrane potential, it destroys the barrier properties of the membrane and it may finally lead, via an increase of cytoplasmic Ca(2+) concentration, to cell death. The conclusions were derived from experiments performed with different systems: model systems in planar lipid membranes, native ion channels either reconstituted in lipid membranes or investigated in their natural environment by the patch-clamp method, and two important ion pumps, the Na/K-ATPase and the sarcoplasmic reticulum (SR) Ca-ATPase.
Collapse
Affiliation(s)
- G Stark
- Department of Biology, University of Konstanz, Box M638, D-78457 Konstanz, Germany.
| |
Collapse
|
38
|
Mythili Y, Sudharsan PT, Varalakshmi P. Cytoprotective role of DL-α-Lipoic acid in cyclophosphamide induced myocardial toxicity. Mol Cell Biochem 2005; 276:39-44. [PMID: 16132683 DOI: 10.1007/s11010-005-2735-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Accepted: 02/23/2005] [Indexed: 10/25/2022]
Abstract
Cyclophosphamide (CP), a potent antitumor drug is known to cause severe cardiotoxicity. The present study is aimed at evaluating the cardioprotective role of lipoic acid in CP induced toxicity. Male albino rats of Wistar strain were divided into four groups and treated as follows: Group I served as control, Group II received a single dose of CP (200 mg/kg b.wt., i.p.), Group III received lipoic acid (25 mg/kg b.wt., orally) for 10 days, Group IV received CP immediately followed by lipoic acid for 10 days. In CP administered rats, the activities of tissue marker enzymes (creatine phosphokinase, lactate dehydrogenase, aspartate transaminase and alanine transaminase) were significantly (p<0.001) reduced, ATPases suffered loss in enzyme activity and thiols were depleted. Histopathological observations were also in agreement with the above abnormal changes. Lipoic acid effectively reverted these abnormal biochemical changes and minimized the histopathological lesions in heart. These observations highlight the protective role of lipoic acid in CP induced cardiac injury.
Collapse
Affiliation(s)
- Y Mythili
- Department of Medical Biochemistry, Dr. ALM. Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, 600 113, India,
| | | | | |
Collapse
|
39
|
Fleck RMM, Rodrigues Junior V, Giacomazzi J, Parissoto D, Dutra-Filho CS, de Souza Wyse AT, Wajner M, Wannmacher CMD. Cysteamine prevents and reverses the inhibition of creatine kinase activity caused by cystine in rat brain cortex. Neurochem Int 2005; 46:391-7. [PMID: 15737437 DOI: 10.1016/j.neuint.2004.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2004] [Revised: 11/15/2004] [Accepted: 11/27/2004] [Indexed: 11/15/2022]
Abstract
Cystinosis is a disorder associated with lysosomal cystine accumulation caused by defective cystine efflux. Cystine accumulation provokes a variable degree of symptoms depending on the involved tissues. Adult patients may present brain cortical atrophy. However, the mechanisms by which cystine is toxic to the tissues are not fully understood. Considering that brain damage may be developed by energy deficiency, creatine kinase is a thiolic enzyme crucial for energy homeostasis, and disulfides like cystine may alter thiolic enzymes by thiol/disulfide exchange, the main objective of the present study was to investigate the effect of cystine on creatine kinase activity in total homogenate, cytosolic and mitochondrial fractions of the brain cortex from 21-day-old Wistar rats. We performed kinetic studies and investigated the effects of GSH, a biologically occurring thiol group protector, and cysteamine, the drug used for cystinosis treatment, to better understand the effect of cystine on creatine kinase activity. Results showed that cystine inhibited the enzyme activity non-competitively in a dose- and time-dependent way. GSH partially prevented and reversed CK inhibition caused by cystine and cysteamine fully prevented and reversed this inhibition, suggesting that cystine inhibits creatine kinase activity by interaction with the sulfhydryl groups of the enzyme. Considering that creatine kinase is a crucial enzyme for brain cortex energy homeostasis, these results provide a possible mechanism for cystine toxicity and also a new possible beneficial effect for the use of cysteamine in cystinotic patients.
Collapse
Affiliation(s)
- Rochele M Müller Fleck
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600 - Anexo, CEP 90.035-003 Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Pivotal participation of nitrogen dioxide in L-arginine induced acute necrotizing pancreatitis: protective role of superoxide scavenger 4-OH-TEMPO. Biochem Biophys Res Commun 2005; 326:313-20. [PMID: 15582579 DOI: 10.1016/j.bbrc.2004.11.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2004] [Indexed: 11/16/2022]
Abstract
For the first time, a direct sensitive method of *NO(2) detection and measurement in biological material has been established. It is based on the interaction of this radical with the coordination compound of Cr(III) with aminodeoxysugar as biosensor. Our new method makes it possible to precisely assess *NO(2) level in experimental acute necrotizing pancreatitis induced by L-arginine, where oxidative and nitrosative stresses are supposed to play a key role in the pathomechanism of the disease. As much as 20 nmol of *NO(2)/mg protein was detected which correlated with severe deterioration of pancreatic acinar cell ultrastructure. Protective effect of superoxide radical scavenger 4-OH-TEMPO expressed as *NO(2) level decrease confirmed by preserved acinar cell ultrastructure and decreased pancreatic amylase release to blood serum is demonstrated. This study reveals a possible pathomechanism of L-arginine induced acute pancreatitis.
Collapse
|
41
|
Cornelio AR, Rodrigues V, de Souza Wyse AT, Dutra-Filho CS, Wajner M, Wannmacher CMD. Tryptophan reduces creatine kinase activity in the brain cortex of rats. Int J Dev Neurosci 2004; 22:95-101. [PMID: 15036384 DOI: 10.1016/j.ijdevneu.2003.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Revised: 12/09/2003] [Accepted: 12/10/2003] [Indexed: 11/17/2022] Open
Abstract
Hypertryptophanemia is a rare inherited metabolic disorder probably caused by a blockage in the conversion of tryptophan to kynurenine, resulting in the accumulation of tryptophan and some of its metabolites in plasma and tissues of affected patients. The patients present mild-to-moderate mental retardation with exaggerated affective responses, periodic mood swings, and apparent hypersexual behavior. Creatine kinase plays a key role in energy metabolism of tissues with intermittently high and fluctuating energy requirements, such as nervous tissue. The main objective of the present study was to investigate the effect of acute administration of tryptophan on creatine kinase activity in brain cortex of Wistar rats. We also studied the in vitro effect of this amino acid on creatine kinase activity in the brain cortex of non-treated rats. The results indicated that tryptophan inhibits creatine kinase in vitro and in vivo. We also observed that the in vitro inhibition was fully prevented but not reversed by pre-incubation with reduced glutathione, suggesting that the inhibitory effect of tryptophan on CK activity is possibly mediated by oxidation of essential thiol groups of the enzyme and/or long-lasting adduct formation. Considering the importance of creatine kinase for the maintenance of energy homeostasis in the brain, it is conceivable that an inhibition of this enzyme activity in the brain may be one of the mechanisms by which tryptophan might be neurotoxic.
Collapse
Affiliation(s)
- Andrea Renata Cornelio
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, CEP 90.035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
PURPOSE This study examined whether plasma total glutathione levels could explain the intersubject variability in the creatine kinase (CK) response to eccentric exercise. We hypothesized that the increase in plasma CK activity after eccentric exercise would be lower for individuals with low plasma total glutathione (<2.5 micromol x L-1) compared with individuals with high total glutathione (>3.8 micromol x L-1), but other indicators of muscle damage would be the same between groups. METHODS Resting blood samples were obtained over 2 d from 60 subjects and analyzed for plasma total glutathione. Eight subjects who had total glutathione values below 2.5 micromol x L-1 (LG), and nine who had values above 3.8 micromol x L-1 (HG) performed 50 maximal eccentric actions of the elbow flexors. Maximal voluntary isometric contraction (MVC), relaxed arm angle (RANG), and blood samples for CK, myoglobin (Mb), and total glutathione were obtained pre, post (except blood samples), 24, 48, 72, 96, and 120 h after exercise. RESULTS There was a significant group-by-time interaction in analysis of MVC, RANG, total glutathione, CK, and Mb response to exercise. Although LG showed a smaller CK response to eccentric exercise compared with HG, LG also showed a smaller increase in plasma Mb, a faster recovery of MVC and RANG, and an increase in plasma total glutathione. CONCLUSION Subjects with low plasma total glutathione levels had a smaller plasma CK and Mb response and a faster recovery from eccentric exercise compared with subjects having high plasma total glutathione levels. We suggest that a blunted inflammatory response in subjects with low plasma glutathione may be one explanation for these findings.
Collapse
Affiliation(s)
- Joohyung Lee
- Department of Exercise Science, University of Massachusetts, Amherst 01003, USA.
| | | |
Collapse
|
43
|
Hudson CA, Cao L, Kasten-Jolly J, Kirkwood JN, Lawrence DA. Susceptibility of lupus-prone NZM mouse strains to lead exacerbation of systemic lupus erythematosus symptoms. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2003; 66:895-918. [PMID: 12825236 DOI: 10.1080/15287390306456] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
It has been repeatedly shown that the heavy metal mercury can induce or exacerbate lupus like autoimmunity in susceptible strains of rats and mice. A hallmark of such autoimmune induction is the accompaniment of an immune shift, in which there is usually an initial skewing toward a Th2-like immune environment. Another heavy metal, lead (Pb), has also been found to induce a Th2 shift in mice. However, exposure of normal mouse strains to Pb does not appear to induce autoimmunity. In order to investigate whether mice genetically predisposed to murine systemic lupus erythematosus (SLE) are susceptible to a Pb-induced exacerbation of lupus, males and females of four New Zealand mixed (NZM) mouse strains, along with BALB/c and C57Bl/6 controls, were administered three 100-microliter intraperitoneal injections of either 1.31 mM lead or sodium acetate per week for 3 wk. The four NZM strains chosen, NZM391, NZM2328, NZM88, and NZM2758, have differential genetic penetrance for SLE with variances in certain manifestations of the disease, but all of these strains naturally develop glomerulonephritis and produce high titers of anti-nuclear autoantibodies. The mice were prebled for baseline values and were bled directly after the injection period (d 1) and monthly thereafter for 5 mo. Sera were assessed for anti-double-stranded DNA titers, urea nitrogen levels, and creatine kinase activity, as well as four total immunoglobulin (Ig) G2a and IgG1 levels. Mortality and morbidity of the mice were also recorded. All NZM strains showed an acute, non-gender-based, susceptibility to Pb at d 1, but the control strains were unaffected. Over time, it became apparent that the strains diverged: The NZM391 strain showed gender-independent susceptibility to Pb enhancement of lupus manifestations and mortality; the NZM2328 strain exhibited gender-independent Pb susceptibility to manifestations, although only females had increased mortality; the NZM2758 strain exhibited non-gender-based elevations in urea nitrogen and creatine kinase activity levels; and the NZM88 strain displayed male susceptibility to anti-DNA and life span. Surprisingly, Pb increased the longevity of NZM88 and NZM2758 females. These results indicate that Pb indeed can exacerbate SLE in lupus-prone mice; however, even among lupus-prone strains, genetic differences determine the degree of exacerbation. Using the known phenotype and genetic differences, one can identify and characterize possible traits and loci associated with Pb susceptibility.
Collapse
Affiliation(s)
- Chad A Hudson
- Wadsworth Center, New York State Department of Health, Empire State Plaza, PO Box 509, Albany, NY 12201, USA
| | | | | | | | | |
Collapse
|
44
|
Sandoval M, Okuhama NN, Angeles FM, Melchor VV, Condezo LA, Lao J, Miller MJ. Antioxidant activity of the cruciferous vegetable Maca (Lepidium meyenii). Food Chem 2002. [DOI: 10.1016/s0308-8146(02)00133-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Stolz M, Hornemann T, Schlattner U, Wallimann T. Mutation of conserved active-site threonine residues in creatine kinase affects autophosphorylation and enzyme kinetics. Biochem J 2002; 363:785-92. [PMID: 11964180 PMCID: PMC1222532 DOI: 10.1042/0264-6021:3630785] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Muscle-type creatine kinase (MM-CK) is a member of an isoenzyme family with key functions in cellular energetics. It has become a matter of debate whether the enzyme is autophosphorylated, as reported earlier [Hemmer, Furter-Graves, Frank, Wallimann and Furter (1995) Biochim. Biophys. Acta 1251, 81-90], or exclusively nucleotidylated. In the present paper, we demonstrate unambiguously that CK is indeed autophosphorylated. However, this autophosphorylation is not solely responsible for the observed microheterogeneity of MM-CK on two-dimensional isoelectric focusing gels. Using phosphoamino-acid analysis of (32)P-labelled CK isoforms, phosphothreonine (P-Thr) residues were identified as the only product of autophosphorylation for all CK isoenzymes. The phosphorylated residues in chicken MM-CK were allocated to a region in the vicinity of the active site, where five putative phosphorylation sites were identified. Site-directed threonine-valine-replacement mutants reveal that autophosphorylation is not specific for one particular residue but occurs at all examined threonine residues. The enzyme kinetic parameters indicate that the autophosphorylation of CK exerts a modulatory effect on substrate binding and the equilibrium constant, rather than on the catalytic mechanism itself.
Collapse
Affiliation(s)
- Martin Stolz
- Blood Transfusion Service SRC Bern Ltd., PCR diagnostics, Murtenstrasse 133, 3008 Bern, Switzerland
| | | | | | | |
Collapse
|
46
|
Aksenova M, Butterfield DA, Zhang SX, Underwood M, Geddes JW. Increased protein oxidation and decreased creatine kinase BB expression and activity after spinal cord contusion injury. J Neurotrauma 2002; 19:491-502. [PMID: 11990354 DOI: 10.1089/08977150252932433] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic injury to the spinal cord triggers several secondary effects, including oxidative stress and compromised energy metabolism, which play a major role in biochemical and pathological changes in spinal cord tissue. Free radical generation and lipid peroxidation have been shown to be early events subsequent to spinal cord injury. In the present study, we demonstrated that protein oxidation increases in rat spinal cord tissue after experimental injury. As early as h after injury, the level of protein carbonyls at the injury epicenter was significantly higher than in control (169%, p < 0.05) and increased gradually over the next 4 weeks to 1260% of control level. Both caudal and rostral parts of the injured spinal cord demonstrated a mild increase of protein carbonyls by 4 weeks postinjury (135-138%, p < 0.05). Immunocytochemical analysis of protein carbonyls in the spinal cord cross-sections showed increased protein carbonyl immunoreactivity in the epicenter section compared to rostral and caudal sections of the same animal or control laminectomy animals. Increased protein carbonyl formation in damaged spinal cord tissue was associated with changes in activity and expression of an oxidative sensitive enzyme, creatine kinase BB, which plays an important role in the maintenance of ATP level in the CNS tissue. Damage to CK function in the CNS may severely aggravate the impairment of energy metabolism. The results of our study indicate that events associated with oxidative damage are triggered immediately after spinal cord trauma but continue to occur over the subsequent 4 weeks. These results suggest that antioxidant therapeutic strategies may be beneficial to lessen the consequences of the injury and potentially improve the restoration of neurological function.
Collapse
Affiliation(s)
- Marina Aksenova
- Department of Pharmacology, University of Kentucky, Lexington 40506-0055, USA
| | | | | | | | | |
Collapse
|
47
|
Tokarska-Schlattner M, Wallimann T, Schlattner U. Multiple interference of anthracyclines with mitochondrial creatine kinases: preferential damage of the cardiac isoenzyme and its implications for drug cardiotoxicity. Mol Pharmacol 2002; 61:516-23. [PMID: 11854431 DOI: 10.1124/mol.61.3.516] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Anthracyclines are among the most efficient drugs of cancer chemotherapy, but their use is limited by a significant risk of cardiotoxicity, which is still far from being understood. This study investigates whether impairment of mitochondrial creatine kinase (MtCK), a key enzyme in cellular energy metabolism, could be involved in anthracycline cardiotoxicity. We have analyzed the effects of three anthracyclines, doxorubicin, daunorubicin, and idarubicin, on two MtCK isoenzymes, sarcomeric/cardiac sMtCK and ubiquitous uMtCK, from human and chicken. Using surface plasmon resonance, gel filtration, and enzyme assays, we have quantified properties that are of basic importance for MtCK functioning in vivo: membrane binding, octameric state, and enzymatic activity. Anthracyclines significantly impaired all three properties with differences in dose-, time-, and drug-dependence. Membrane binding and enzymatic activity were already affected at low anthracycline concentrations (5-100 microM), indicating high clinical relevance. Effects on membrane binding were immediate, probably because of competitive binding of the drug to cardiolipin. In contrast, dissociation of MtCK octamers into dimers, enzymatic inactivation and cross-linking occurred only after hours to days. Different protection assays suggest that the deleterious effects were caused by oxidative damage, mainly affecting the highly susceptible MtCK cysteines, followed by generation of free oxygen radicals at higher drug concentrations. Enzymatic inactivation occurred mainly at the active site and involved Cys278, as indicated by experiments with protective agents and sMtCK mutant C278G. All anthracycline effects were significantly more pronounced for sMtCK than for uMtCK. These in vitro results suggest that sMtCK damage may play a role in anthracycline cardiotoxicity.
Collapse
|
48
|
Puccia E, Mansueto C, Cangialosi MV, Fiore T, Di Stefano R, Pellerito C, Triolo F, Pellerito L. Organometallic complexes with biological molecules. XV. Effects of tributyltin(IV)chloride on enzyme activity, Ca2+, and biomolecule and synthesis inCiona intestinalis (Urochordata) ovary. Appl Organomet Chem 2001. [DOI: 10.1002/aoc.130] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
49
|
Cui DX, Zeng GY, Wang F, Xu JR, Ren DQ, Guo YH, Tian FR, Yan XJ, Hou Y, Su CZ. Mechanism of exogenous nucleic acids and their precursors improving the repair of intestinal epithelium after gamma-irradiation in mice. World J Gastroenterol 2000; 6:709-717. [PMID: 11819679 PMCID: PMC4688848 DOI: 10.3748/wjg.v6.i5.709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2000] [Revised: 05/20/2000] [Accepted: 06/02/2000] [Indexed: 02/06/2023] Open
Abstract
AIM:To clone expressed genes associated with repair of irradiation-damaged mice intestinal gland cells treated by small intestinal RNA, and to explore the molecular mechanism of exogenous nucleic acids improving repair of intestinal crypt.METHODS:The animal mode of test group and control group was established, forty-five mice being irradiated by gamma ray were treated with small intestinal RNA as test group, forty mice being irradiated by gamma ray were treated with physiological saline as control group,five mice without irradiation were used as normal control, their jejunal specimens were collected respectively at 6h, 12h,24h, 4d and 8d after irradiation. Then by using LD-PCR based on subtractive hybridization, these gene fragments differentially expressed between test group and control group were obtained, and then were cloned into T vectors as well as being sequenced. Obtained sequences were screened against. GeneBank, if being new sequences, they were submitted to GeneBank.RESULTS:Ninety clones were associated with repair of irradiation-damaged intestinal gland cells treated by intestinal RNA. These clones from test group of 6h, 12h, 24h, 4d and 8d were respectively 18, 22, 25, 13, 12. By screening against GeneBank, 18 of which were new sequences, the others were dramatically similar to the known sequences, mainly similar to hsp, Nmi,Dutt1, alkaline phosphatase, homeobox, anti-CEA ScFv antibody, arginine/serine kinase and BMP-4,repA. Eighteen gene fragments were new sequences,their accept numbers in GeneBank were respectively AF240164-AF240181.CONCLUSION:Ninety clones were obtained to be associated with repair of irradiation damaged mice intestinal gland cells treated by small intestinal RNA, which may be related to abnormal expression of genes and matched proteins of hsp, Nmi, Dutt1, Na, K-ATPase,alkalineph-osphatase, glkA, single stranded replicative centromeric gene as well as 18 new sequences.
Collapse
|