1
|
Neahring L, Zallen JA. Three-dimensional rosettes in epithelial formation. Cells Dev 2025:204022. [PMID: 40120722 DOI: 10.1016/j.cdev.2025.204022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/17/2025] [Accepted: 03/19/2025] [Indexed: 03/25/2025]
Abstract
Epithelia are ubiquitous tissues with essential structural, signaling, and barrier functions. How cells transition from individual to collective behaviors as they build and remodel epithelia throughout development is a fundamental question in developmental biology. Recent studies show that three-dimensional multicellular rosettes are key intermediates that provide a solution to the challenge of building tissue-scale epithelia by coordinating local interactions in small groups of cells. These radially polarized rosette structures facilitate epithelial formation by providing a protected environment for cells to acquire apical-basal polarity, establish cell adhesion, and coordinate intercellular signaling. Once formed, rosettes can dynamically expand, move, coalesce, and interact with surrounding tissues to generate a wide range of structures with specialized functions, including epithelial sheets, tubes, cavities, and branched networks. In this review, we describe the mechanisms that regulate rosette assembly and dynamics, and discuss how rosettes serve as versatile intermediates in epithelial morphogenesis. In addition, we present open questions about the molecular, cellular, and biophysical mechanisms that drive rosette behaviors, and discuss the implications of this widely used mode of epithelial formation for understanding embryonic development and human disease.
Collapse
Affiliation(s)
- Lila Neahring
- HHMI and Developmental Biology Program, Sloan Kettering Institute, New York, NY, United States of America
| | - Jennifer A Zallen
- HHMI and Developmental Biology Program, Sloan Kettering Institute, New York, NY, United States of America.
| |
Collapse
|
2
|
Jukic A, Lei Z, Cebul ER, Pinter K, Tadesse Y, Jarysta A, David S, Mosqueda N, Tarchini B, Kindt K. Presynaptic Nrxn3 is essential for ribbon-synapse maturation in hair cells. Development 2024; 151:dev202723. [PMID: 39254120 PMCID: PMC11488651 DOI: 10.1242/dev.202723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024]
Abstract
Hair cells of the inner ear and lateral-line system rely on specialized ribbon synapses to transmit sensory information to the central nervous system. The molecules required to assemble these synapses are not fully understood. We show that Nrxn3, a presynaptic adhesion molecule, is crucial for ribbon-synapse maturation in hair cells. In both mouse and zebrafish models, the loss of Nrxn3 results in significantly fewer intact ribbon synapses. We show in zebrafish that, initially, Nrxn3 loss does not alter pre- and postsynapse numbers but, later, synapses fail to pair, leading to postsynapse loss. We also demonstrate that Nrxn3 subtly influences synapse selectivity in zebrafish lateral-line hair cells that detect anterior flow. Loss of Nrxn3 leads to a 60% loss of synapses in zebrafish, which dramatically reduces pre- and postsynaptic responses. Despite fewer synapses, auditory responses in zebrafish and mice are unaffected. This work demonstrates that Nrxn3 is a crucial and conserved molecule required for the maturation of ribbon synapses. Understanding how ribbon synapses mature is essential to generating new therapies to treat synaptopathies linked to auditory or vestibular dysfunction.
Collapse
Affiliation(s)
- Alma Jukic
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Zhengchang Lei
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Elizabeth R. Cebul
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Katherine Pinter
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Yommi Tadesse
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | | | - Sandeep David
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Natalie Mosqueda
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| | - Basile Tarchini
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Katie Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
Alvarez YD, van der Spuy M, Wang JX, Noordstra I, Tan SZ, Carroll M, Yap AS, Serralbo O, White MD. A Lifeact-EGFP quail for studying actin dynamics in vivo. J Cell Biol 2024; 223:e202404066. [PMID: 38913324 PMCID: PMC11194674 DOI: 10.1083/jcb.202404066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/15/2024] [Accepted: 06/03/2024] [Indexed: 06/25/2024] Open
Abstract
Here, we report the generation of a transgenic Lifeact-EGFP quail line for the investigation of actin organization and dynamics during morphogenesis in vivo. This transgenic avian line allows for the high-resolution visualization of actin structures within the living embryo, from the subcellular filaments that guide cell shape to the supracellular assemblies that coordinate movements across tissues. The unique suitability of avian embryos to live imaging facilitates the investigation of previously intractable processes during embryogenesis. Using high-resolution live imaging approaches, we present the dynamic behaviors and morphologies of cellular protrusions in different tissue contexts. Furthermore, through the integration of live imaging with computational segmentation, we visualize cells undergoing apical constriction and large-scale actin structures such as multicellular rosettes within the neuroepithelium. These findings not only enhance our understanding of tissue morphogenesis but also demonstrate the utility of the Lifeact-EGFP transgenic quail as a new model system for live in vivo investigations of the actin cytoskeleton.
Collapse
Affiliation(s)
- Yanina D. Alvarez
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Marise van der Spuy
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jian Xiong Wang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Ivar Noordstra
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Siew Zhuan Tan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Murron Carroll
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Alpha S. Yap
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Olivier Serralbo
- Commonwealth Scientific and Industrial Research (CSIRO) Health and Biosecurity, Geelong, Australia
| | - Melanie D. White
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
4
|
Brooks PM, Lewis P, Million-Perez S, Yandulskaya AS, Khalil M, Janes M, Porco J, Walker E, Meyers JR. Pharmacological reprogramming of zebrafish lateral line supporting cells to a migratory progenitor state. Dev Biol 2024; 512:70-88. [PMID: 38729405 DOI: 10.1016/j.ydbio.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
In the zebrafish lateral line, non-sensory supporting cells readily re-enter the cell cycle to generate new hair cells and supporting cells during homeostatic maintenance and following damage to hair cells. This contrasts with supporting cells from mammalian vestibular and auditory sensory epithelia which rarely re-enter the cell cycle, and hence loss of hair cells results in permanent sensory deficit. Lateral line supporting cells are derived from multipotent progenitor cells that migrate down the trunk midline as a primordium and are deposited to differentiate into a neuromast. We have found that we can revert zebrafish support cells back to a migratory progenitor state by pharmacologically altering the signaling environment to mimic that of the migratory primordium, with active Wnt signaling and repressed FGF signaling. The reverted supporting cells migrate anteriorly and posteriorly along the horizontal myoseptum and will re-epithelialize to form an increased number of neuromasts along the midline when the pharmacological agents are removed. These data demonstrate that supporting cells can be readily reprogrammed to a migratory multipotent progenitor state that can form new sensory neuromasts, which has important implications for our understanding of how the lateral line system matures and expands in fish and also suggest avenues for returning mammalian supporting cells back to a proliferative state.
Collapse
Affiliation(s)
- Paige M Brooks
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Parker Lewis
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Sara Million-Perez
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Anastasia S Yandulskaya
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Mahmoud Khalil
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Meredith Janes
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Joseph Porco
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Eleanor Walker
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA
| | - Jason R Meyers
- Dept. of Biology and Program in Neuroscience, Colgate University, 13 Oak Drive, Hamilton, NY, 13346, USA.
| |
Collapse
|
5
|
Diana A, Ghilardi A, Del Giacco L. Differentiation and functioning of the lateral line organ in zebrafish require Smpx activity. Sci Rep 2024; 14:7862. [PMID: 38570547 PMCID: PMC10991396 DOI: 10.1038/s41598-024-58138-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
The small muscle protein, X-linked (SMPX) gene encodes a cytoskeleton-associated protein, highly expressed in the inner ear hair cells (HCs), possibly regulating auditory function. In the last decade, several mutations in SMPX have been associated with X-chromosomal progressive non syndromic hearing loss in humans and, in line with this, Smpx-deficient animal models, namely zebrafish and mouse, showed significant impairment of inner ear HCs development, maintenance, and functioning. In this work, we uncovered smpx expression in the neuromast mechanosensory HCs of both Anterior and Posterior Lateral Line (ALL and PLL, respectively) of zebrafish larvae and focused our attention on the PLL. Smpx was subcellularly localized throughout the cytoplasm of the HCs, as well as in their primary cilium. Loss-of-function experiments, via both morpholino-mediated gene knockdown and CRISPR/Cas9 F0 gene knockout, revealed that the lack of Smpx led to fewer properly differentiated and functional neuromasts, as well as to a smaller PLL primordium (PLLp), the latter also Smpx-positive. In addition, the kinocilia of Smpx-deficient neuromast HCs appeared structurally and numerically altered. Such phenotypes were associated with a significant reduction in the mechanotransduction activity of the neuromast HCs, in line with their positivity for Smpx. In summary, this work highlights the importance of Smpx in lateral line development and, specifically, in proper HCs differentiation and/or maintenance, and in the mechanotransduction process carried out by the neuromast HCs. Because lateral line HCs are both functionally and structurally analogous to the cochlear HCs, the neuromasts might represent an invaluable-and easily accessible-tool to dissect the role of Smpx in HCs development/functioning and shed light on the underlying mechanisms involved in hearing loss.
Collapse
Affiliation(s)
- Alberto Diana
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Anna Ghilardi
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy
| | - Luca Del Giacco
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
6
|
Coffin AB, Dale E, Molano O, Pederson A, Costa EK, Chen J. Age-related changes in the zebrafish and killifish inner ear and lateral line. Sci Rep 2024; 14:6670. [PMID: 38509148 PMCID: PMC10954678 DOI: 10.1038/s41598-024-57182-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/14/2024] [Indexed: 03/22/2024] Open
Abstract
Age-related hearing loss (ARHL) is a debilitating disorder for millions worldwide. While there are multiple underlying causes of ARHL, one common factor is loss of sensory hair cells. In mammals, new hair cells are not produced postnatally and do not regenerate after damage, leading to permanent hearing impairment. By contrast, fish produce hair cells throughout life and robustly regenerate these cells after toxic insult. Despite these regenerative abilities, zebrafish show features of ARHL. Here, we show that aged zebrafish of both sexes exhibited significant hair cell loss and decreased cell proliferation in all inner ear epithelia (saccule, lagena, utricle). Ears from aged zebrafish had increased expression of pro-inflammatory genes and significantly more macrophages than ears from young adult animals. Aged zebrafish also had fewer lateral line hair cells and less cell proliferation than young animals, although lateral line hair cells still robustly regenerated following damage. Unlike zebrafish, African turquoise killifish (an emerging aging model) only showed hair cell loss in the saccule of aged males, but both sexes exhibit age-related changes in the lateral line. Our work demonstrates that zebrafish exhibit key features of auditory aging, including hair cell loss and increased inflammation. Further, our finding that aged zebrafish have fewer lateral line hair cells yet retain regenerative capacity, suggests a decoupling of homeostatic hair cell addition from regeneration following acute trauma. Finally, zebrafish and killifish show species-specific strategies for lateral line homeostasis that may inform further comparative research on aging in mechanosensory systems.
Collapse
Affiliation(s)
- Allison B Coffin
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA, 98686, USA.
- Department of Integrative Physiology and Neuroscience, Washington State University Vancouver, Vancouver, WA, 98686, USA.
| | - Emily Dale
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA, 98686, USA
- Neuroimmunology Research, Mayo Clinic, Rochester, MN, 55902, USA
| | - Olivia Molano
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA, 98686, USA
- Neuroscience Graduate Program, Brown University, Providence, RI, 02912, USA
| | - Alexandra Pederson
- College of Arts and Sciences, Washington State University Vancouver, Vancouver, WA, 98686, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Emma K Costa
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
- Neurosciences Interdepartmental Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jingxun Chen
- Department of Genetics, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
7
|
Paquette E, Giacalone JP, Fumo M, Roy NM. Butyl Benzyl Phthalate (BBP) disrupts neuromast development in embryonic zebrafish. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104392. [PMID: 38364935 DOI: 10.1016/j.etap.2024.104392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Butyl benzyl phthalate (BBP) is found in common household and industrial products world-wide. Phthalates are not covalently bound to plastics and continuously leach into the soil, sediment and aquatic environments. The lateral line system of fish is a mechanosensory system composed of neuromasts essential for survival behaviors including rheotaxis, schooling and predator avoidance. Here, we investigated the developmental toxicity of BBP on the developing lateral line neuromasts in zebrafish. Embryos were treated at gastrula stage with BBP and analyzed by DASPEI staining at 4 days post fertilization. We find that BBP negatively affects neuromast development leading to loss of DASPEI signal in neuromasts in a concentration dependent manner.
Collapse
Affiliation(s)
- Evelyn Paquette
- Department of Biology, Sacred Heart University, Fairfield, CT, USA
| | | | - Michael Fumo
- Department of Biology, Sacred Heart University, Fairfield, CT, USA
| | - Nicole M Roy
- Department of Biology, Sacred Heart University, Fairfield, CT, USA.
| |
Collapse
|
8
|
Jukic A, Lei Z, Cebul ER, Pinter K, Mosqueda N, David S, Tarchini B, Kindt K. Presynaptic Nrxn3 is essential for ribbon-synapse assembly in hair cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580267. [PMID: 38410471 PMCID: PMC10896334 DOI: 10.1101/2024.02.14.580267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Hair cells of the inner ear rely on specialized ribbon synapses to transmit sensory information to the central nervous system. The molecules required to assemble these synapses are not fully understood. We show that Nrxn3, a presynaptic adhesion molecule, is critical for ribbon-synapse assembly in hair cells. In both mouse and zebrafish models, loss of Nrxn3 results in significantly fewer intact ribbon synapses. In zebrafish we demonstrate that a 60% loss of synapses in nrxn3 mutants dramatically reduces both presynaptic responses in hair cells and postsynaptic responses in afferent neurons. Despite a reduction in synapse function in this model, we find no deficits in the acoustic startle response, a behavior reliant on these synapses. Overall, this work demonstrates that Nrxn3 is a critical and conserved molecule required to assemble ribbon synapses. Understanding how ribbon synapses assemble is a key step towards generating novel therapies to treat forms of age-related and noise-induced hearing loss that occur due to loss of ribbon synapses.
Collapse
Affiliation(s)
- Alma Jukic
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, 20892, USA
| | - Zhengchang Lei
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, 20892, USA
| | - Elizabeth R Cebul
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, 20892, USA
| | - Katherine Pinter
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, 20892, USA
| | - Natalie Mosqueda
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, 20892, USA
| | - Sandeep David
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, 20892, USA
| | | | - Katie Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, Bethesda, MD, 20892, USA
| |
Collapse
|
9
|
Derrick CJ, Szenker-Ravi E, Santos-Ledo A, Alqahtani A, Yusof A, Eley L, Coleman AHL, Tohari S, Ng AYJ, Venkatesh B, Alharby E, Mansard L, Bonnet-Dupeyron MN, Roux AF, Vaché C, Roume J, Bouvagnet P, Almontashiri NAM, Henderson DJ, Reversade B, Chaudhry B. Functional analysis of germline VANGL2 variants using rescue assays of vangl2 knockout zebrafish. Hum Mol Genet 2024; 33:150-169. [PMID: 37815931 PMCID: PMC10772043 DOI: 10.1093/hmg/ddad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
Developmental studies have shown that the evolutionarily conserved Wnt Planar Cell Polarity (PCP) pathway is essential for the development of a diverse range of tissues and organs including the brain, spinal cord, heart and sensory organs, as well as establishment of the left-right body axis. Germline mutations in the highly conserved PCP gene VANGL2 in humans have only been associated with central nervous system malformations, and functional testing to understand variant impact has not been performed. Here we report three new families with missense variants in VANGL2 associated with heterotaxy and congenital heart disease p.(Arg169His), non-syndromic hearing loss p.(Glu465Ala) and congenital heart disease with brain defects p.(Arg135Trp). To test the in vivo impact of these and previously described variants, we have established clinically-relevant assays using mRNA rescue of the vangl2 mutant zebrafish. We show that all variants disrupt Vangl2 function, although to different extents and depending on the developmental process. We also begin to identify that different VANGL2 missense variants may be haploinsufficient and discuss evidence in support of pathogenicity. Together, this study demonstrates that zebrafish present a suitable pipeline to investigate variants of unknown significance and suggests new avenues for investigation of the different developmental contexts of VANGL2 function that are clinically meaningful.
Collapse
Affiliation(s)
- Christopher J Derrick
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | | | - Adrian Santos-Ledo
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Ahlam Alqahtani
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Amirah Yusof
- Genome Institute of Singapore (GIS), A*STAR, 60 Biopolis St, 138672, Singapore
| | - Lorraine Eley
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Alistair H L Coleman
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Sumanty Tohari
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
| | - Alvin Yu-Jin Ng
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
- MGI Tech Singapore Pte Ltd, 21 Biopolis Rd, 138567, Singapore
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
| | - Essa Alharby
- Center for Genetics and Inherited Diseases, Taibah University, 7534 Abdul Muhsin Ibn Abdul Aziz, Al Ihn, Al-Madinah al-Munawwarah 42318, Saudi Arabia
- Faculty of Applied Medical Sciences, Taibah University, Janadah Bin Umayyah Road, Tayba, Al-Madinah al-Munawwarah 42353, Saudi Arabia
| | - Luke Mansard
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | | | - Anne-Francoise Roux
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | - Christel Vaché
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, 163 Rue Auguste Broussonnet, 34090 Montpellier, France
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, 80 Av. Augustin Fliche, 34000 Montpellier, France
| | - Joëlle Roume
- Département de Génétique, CHI Poissy, St Germain-en-Laye, 10 Rue du Champ Gaillard, 78300 Poissy, France
| | - Patrice Bouvagnet
- CPDPN, Hôpital MFME, CHU de Martinique, Fort de France, Fort-de-France 97261, Martinique, France
| | - Naif A M Almontashiri
- Center for Genetics and Inherited Diseases, Taibah University, 7534 Abdul Muhsin Ibn Abdul Aziz, Al Ihn, Al-Madinah al-Munawwarah 42318, Saudi Arabia
- Faculty of Applied Medical Sciences, Taibah University, Janadah Bin Umayyah Road, Tayba, Al-Madinah al-Munawwarah 42353, Saudi Arabia
| | - Deborah J Henderson
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| | - Bruno Reversade
- Genome Institute of Singapore (GIS), A*STAR, 60 Biopolis St, 138672, Singapore
- Institute of Molecular and Cell Biology, A*STAR, 61 Biopolis Dr, Proteos, 138673, Singapore
- Smart-Health Initiative, BESE, KAUST, Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Medical Genetics Department, Koç Hospital Davutpaşa Caddesi 34010 Topkapı Istanbul, Istanbul, Turkey
| | - Bill Chaudhry
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, United Kingdom
| |
Collapse
|
10
|
Olson HM, Maxfield A, Calistri NL, Heiser LM, Qian W, Knaut H, Nechiporuk AV. RhoA GEF Mcf2lb regulates rosette integrity during collective cell migration. Development 2024; 151:dev201898. [PMID: 38165177 PMCID: PMC10820872 DOI: 10.1242/dev.201898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Multicellular rosettes are transient epithelial structures that serve as important cellular intermediates in the formation of diverse organs. Using the zebrafish posterior lateral line primordium (pLLP) as a model system, we investigated the role of the RhoA GEF Mcf2lb in rosette morphogenesis. The pLLP is a group of ∼150 cells that migrates along the zebrafish trunk and is organized into epithelial rosettes; these are deposited along the trunk and will differentiate into sensory organs called neuromasts (NMs). Using single-cell RNA-sequencing and whole-mount in situ hybridization, we showed that mcf2lb is expressed in the pLLP during migration. Live imaging and subsequent 3D analysis of mcf2lb mutant pLLP cells showed disrupted apical constriction and subsequent rosette organization. This resulted in an excess number of deposited NMs along the trunk of the zebrafish. Cell polarity markers ZO-1 and Par-3 were apically localized, indicating that pLLP cells are properly polarized. In contrast, RhoA activity, as well as signaling components downstream of RhoA, Rock2a and non-muscle Myosin II, were diminished apically. Thus, Mcf2lb-dependent RhoA activation maintains the integrity of epithelial rosettes.
Collapse
Affiliation(s)
- Hannah M. Olson
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, The Knight Cancer Institute, Portland, OR 97239, USA
- Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Amanda Maxfield
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, The Knight Cancer Institute, Portland, OR 97239, USA
| | - Nicholas L. Calistri
- Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
- Biomedical Engineering Graduate Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Laura M. Heiser
- Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Weiyi Qian
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Holger Knaut
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Alex V. Nechiporuk
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, The Knight Cancer Institute, Portland, OR 97239, USA
| |
Collapse
|
11
|
Pezzotta A, Gentile I, Genovese D, Totaro MG, Battaglia C, Leung AYH, Fumagalli M, Parma M, Cazzaniga G, Fazio G, Alcalay M, Marozzi A, Pistocchi A. HDAC6 inhibition decreases leukemic stem cell expansion driven by Hedgehog hyperactivation by restoring primary ciliogenesis. Pharmacol Res 2022; 183:106378. [PMID: 35918044 DOI: 10.1016/j.phrs.2022.106378] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/27/2022] [Accepted: 07/29/2022] [Indexed: 10/16/2022]
Abstract
Aberrant activation of the Hh pathway promotes cell proliferation and multi-drug resistance (MDR) in several cancers, including Acute Myeloid Leukemia (AML). Notably, only one Hh inhibitor, glasdegib, has been approved for AML treatment, and most patients eventually relapse, highlighing the urgent need ti discover new therapeutic targets. Hh signal is transduced through the membrane of the primary cilium, a structure expressed by non-proliferating mammalian cells, whose stabilization depends on the activity of HDAC6. Here we describe a positive correlation between Hh, HDAC6, and MDR genes in a cohort of adult AML patients, human leukemic cell lines, and a zebrafish model of Hh overexpression. The hyper-activation of Hh or HDAC6 in zebrafish drove the increased proliferation of hematopoietic stem and progenitor cells (HSPCs). Interestingly, this phenotype was rescued by inhibition of HDAC6 but not of Hh. Also, in human leukemic cell lines, a reduction in vitality was obtained through HDAC6, but not Hh inhibition. Our data showed the presence of a cross-talk between Hh and HDAC6 mediated by stabilization of the primary cilium, which we detect for the first time in zebrafish HSPCs. Inhibition of HDAC6 activity alone or in combination therapy with the chemotherapeutic agent cytarabine, efficiently rescued the hematopoietic phenotype. Our results open the possibility to introduce HDAC6 as therapeutic target to reduce proliferation of leukemic blasts in AML patients.
Collapse
Affiliation(s)
- Alex Pezzotta
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy
| | - Ilaria Gentile
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy
| | - Donatella Genovese
- Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia IRCCS, Milano, Italy
| | | | - Cristina Battaglia
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy
| | | | - Monica Fumagalli
- Hospital San Gerardo, Clinica Ematologica e Centro Trapianti di Midollo Osseo, Monza, Italy
| | - Matteo Parma
- Hospital San Gerardo, Clinica Ematologica e Centro Trapianti di Midollo Osseo, Monza, Italy
| | - Gianni Cazzaniga
- Centro Ricerca Tettamanti, Clinica Pediatrica Università di Milano-Bicocca, Centro Maria Letizia Verga, Monza, Italy
| | - Grazia Fazio
- Centro Ricerca Tettamanti, Clinica Pediatrica Università di Milano-Bicocca, Centro Maria Letizia Verga, Monza, Italy
| | - Myriam Alcalay
- Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia IRCCS, Milano, Italy; Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Milano, Italy
| | - Anna Marozzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
12
|
Montalbano G, Olivotto I, Germanà A, Randazzo B. Evaluation of the hair cell regeneration and claudin b and phoenix gene expression during exposure to low concentrations of cadmium and zinc in early developing zebrafish larvae. Comp Biochem Physiol C Toxicol Pharmacol 2021; 248:109116. [PMID: 34182097 DOI: 10.1016/j.cbpc.2021.109116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/28/2022]
Abstract
Zebrafish possess hair cells on the body surface similar to that of mammals inner hear, in particular in the neuromasts, and due to its ability in regenerating damaged hair cells, is regularly used as a powerful animal model to study in vivo cytotoxicity. Among the factors leading to hair cell disruption, metal ions are of particular concern since they are important environmental pollutants. To date, several studies on zebrafish hair cell regeneration after metal exposure exist, while no data on regeneration during continuous metal exposure are available. In the present study, neuromast hair cell disruption and regeneration were assessed in zebrafish larvae for the first time during zinc (Zn) and cadmium (Cd) continuous exposure and a visual and molecular approach was adopted. Fluorescent vital dye DASPEI was used to assess hair cell regeneration and the gene expression of claudin b (cldnb) and phoenix (pho), was analyzed. Metallotionein-2 (mt2) gene expression was used as standard molecular marker of metal toxicity and confirmed the higher toxicity of Cd compared to Zn. In addition, Cd caused a delay in hair cell regeneration compared to Zn. Molecular analysis showed cldnb gene expression increased in relation to the metal concentrations used, confirming the involvement of this gene in hair cell regeneration. On the contrary, a dramatic decrease of pho gene expression was observed in Cd exposed groups, suggesting a negative impact of Cd on pho expression, thus negatively interfering with hair cell regeneration in zebrafish larvae exposed to this metal.
Collapse
Affiliation(s)
| | - Ike Olivotto
- Polytechnic University of Marche, Department of Life and Environmental Sciences, Ancona, Italy
| | - Antonino Germanà
- Messina Study University, Department of Veterinary Sciences, Messina, Italy
| | - Basilio Randazzo
- Polytechnic University of Marche, Department of Life and Environmental Sciences, Ancona, Italy.
| |
Collapse
|
13
|
Manuel R, Iglesias Gonzalez AB, Habicher J, Koning HK, Boije H. Characterization of Individual Projections Reveal That Neuromasts of the Zebrafish Lateral Line are Innervated by Multiple Inhibitory Efferent Cells. Front Neuroanat 2021; 15:666109. [PMID: 34234651 PMCID: PMC8255702 DOI: 10.3389/fnana.2021.666109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
The zebrafish lateral line is a sensory system used to detect changes in water flow. It is comprized of clusters of superficial hair cells called neuromasts. Modulation occurs via excitatory and inhibitory efferent neurons located in the brain. Using mosaic transgenic labeling we provide an anatomical overview of the lateral line projections made by individual inhibitory efferent neurons in 5-day old zebrafish larvae. For each hemisphere we estimate there to be six inhibitory efferent neurons located in two different nuclei. Three distinct cell types were classified based on their projections; to the anterior lateral line around the head, to the posterior lateral line along the body, or to both. Our analyses corroborate previous studies employing back-fills, but our transgenic labeling allowed a more thorough characterization of their morphology. We found that individual inhibitory efferent cells connect to multiple neuromasts and that a single neuromast is connected by multiple inhibitory efferent cells. The efferent axons project to the sensory ganglia and follow the sensory axon tract along the lateral line. Time-lapse imaging revealed that inhibitory efferent axons do not migrate with the primordium as the primary sensory afferent does, but follow with an 8–14 h lag. These data bring new insights into the formation of a sensory circuit and support the hypothesis that different classes of inhibitory efferent cells have different functions. Our findings provide a foundation for future studies focussed toward unraveling how and when sensory perception is modulated by different efferent cells.
Collapse
Affiliation(s)
- Remy Manuel
- Department Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Judith Habicher
- Department Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Henrik Boije
- Department Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Current Advances in Comprehending Dynamics of Regenerating Axons and Axon-Glia Interactions after Peripheral Nerve Injury in Zebrafish. Int J Mol Sci 2021; 22:ijms22052484. [PMID: 33801205 PMCID: PMC7957880 DOI: 10.3390/ijms22052484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Following an injury, axons of both the central nervous system (CNS) and peripheral nervous system (PNS) degenerate through a coordinated and genetically conserved mechanism known as Wallerian degeneration (WD). Unlike central axons, severed peripheral axons have a higher capacity to regenerate and reinnervate their original targets, mainly because of the favorable environment that they inhabit and the presence of different cell types. Even though many aspects of regeneration in peripheral nerves have been studied, there is still a lack of understanding regarding the dynamics of axonal degeneration and regeneration, mostly due to the inherent limitations of most animal models. In this scenario, the use of zebrafish (Danio rerio) larvae combined with time-lapse microscopy currently offers a unique experimental opportunity to monitor the dynamics of the regenerative process in the PNS in vivo. This review summarizes the current knowledge and advances made in understanding the dynamics of the regenerative process of PNS axons. By using different tools available in zebrafish such as electroablation of the posterior lateral line nerve (pLLn), and laser-mediated transection of motor and sensory axons followed by time-lapse microscopy, researchers are beginning to unravel the complexity of the spatiotemporal interactions among different cell types during the regenerative process. Thus, understanding the cellular and molecular mechanisms underlying the degeneration and regeneration of peripheral nerves will open new avenues in the treatment of acute nerve trauma or chronic conditions such as neurodegenerative diseases.
Collapse
|
15
|
Dries R, Lange A, Heiny S, Berghaus KI, Bastmeyer M, Bentrop J. Cell Proliferation and Collective Cell Migration During Zebrafish Lateral Line System Development Are Regulated by Ncam/Fgf-Receptor Interactions. Front Cell Dev Biol 2021; 8:591011. [PMID: 33520983 PMCID: PMC7841142 DOI: 10.3389/fcell.2020.591011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/24/2020] [Indexed: 11/27/2022] Open
Abstract
The posterior lateral line system (pLLS) of aquatic animals comprises small clustered mechanosensory organs along the side of the animal. They develop from proneuromasts, which are deposited from a migratory primordium on its way to the tip of the tail. We here show, that the Neural Cell Adhesion Molecule Ncam1b is an integral part of the pathways initiating and regulating the development of the pLLS in zebrafish. We find that morpholino-knockdowns of ncam1b (i) reduce cell proliferation within the primordium, (ii) reduce the expression of Fgf target gene erm, (iii) severely affect proneuromast formation, and (iv) affect primordium migration. Ncam1b directly interacts with Fgf receptor Fgfr1a, and a knockdown of fgfr1a causes similar phenotypic changes as observed in ncam1b-morphants. We conclude that Ncam1b is involved in activating proliferation by triggering the expression of erm. In addition, we demonstrate that Ncam1b is required for the expression of chemokine receptor Cxcr7b, which is crucial for directed primordial migration. Finally, we show that the knockdown of ncam1b destabilizes proneuromasts, suggesting a further function of Ncam1b in strengthening the cohesion of proneuromast cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Joachim Bentrop
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
16
|
A hybrid integro-differential model for the early development of the zebrafish posterior lateral line. J Theor Biol 2021; 514:110578. [PMID: 33417902 DOI: 10.1016/j.jtbi.2020.110578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 11/22/2022]
Abstract
The aim of this work is to provide a mathematical model to describe the early stages of the embryonic development of zebrafish posterior lateral line (PLL). In particular, we focus on evolution of PLL proto-organ (said primordium), from its formation to the beginning of the cyclical behavior that amounts in the assembly of immature proto-neuromasts towards its caudal edge accompanied by the deposition of mature proto-neuromasts at its rostral region. Our approach has an hybrid integro-differential nature, since it integrates a microscopic/discrete particle-based description for cell dynamics and a continuous description for the evolution of the spatial distribution of chemical substances (i.e., the stromal-derived factor SDF1a and the fibroblast growth factor FGF10). Boolean variables instead implement the expression of molecular receptors (i.e., Cxcr4/Cxcr7 and fgfr1). Cell phenotypic transitions and proliferation are included as well. The resulting numerical simulations show that the model is able to qualitatively and quantitatively capture the evolution of the wild-type (i.e., normal) embryos as well as the effect of known experimental manipulations. In particular, it is shown that cell proliferation, intercellular adhesion, FGF10-driven dynamics, and a polarized expression of SDF1a receptors are all fundamental for the correct development of the zebrafish posterior lateral line.
Collapse
|
17
|
Shahab M, Rosati R, Meyer DN, Shields JN, Crofts E, Baker TR, Jamesdaniel S. Cisplatin-induced hair cell loss in zebrafish neuromasts is accompanied by protein nitration and Lmo4 degradation. Toxicol Appl Pharmacol 2020; 410:115342. [PMID: 33245977 DOI: 10.1016/j.taap.2020.115342] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022]
Abstract
Generation of reactive oxygen species, a critical factor in cisplatin-induced ototoxicity, leads to the formation of peroxynitrite, which in turn results in the nitration of susceptible proteins. Previous studies indicated that LMO4, a transcriptional regulator, is the most abundantly nitrated cochlear protein after cisplatin treatment and that LMO4 nitration facilitates ototoxicity in rodents. However, the role of this mechanism in regulating cisplatin-induced hair cell loss in non-mammalian models is unknown. As the mechanosensory hair cells in the neuromasts of zebrafish share many features with mammalian inner ear and is a good model for studying ototoxicity, we hypothesized that cisplatin treatment induces protein nitration and Lmo4 degradation in zebrafish hair cells, thereby facilitating hair cell loss. Immunostaining with anti-parvalbumin revealed a significant decrease in the number of hair cells in the neuromast of cisplatin treated larvae. In addition, cisplatin treatment induced a significant decrease in the expression of Lmo4 protein and a significant increase in nitrotyrosine levels, in the hair cells. The cisplatin-induced changes in Lmo4 and nitrotyrosine levels strongly correlated with hair cell loss, implying a potential link. Furthermore, a significant increase in the expression of activated Caspase-3 in zebrafish hair cells, post cisplatin treatment, suggested that cisplatin-induced decrease in Lmo4 levels is accompanied by apoptosis. These findings suggest that nitrative stress and Lmo4 degradation are important factors in cisplatin-induced hair cell loss in zebrafish neuromasts and that zebrafish could be used as a model to screen the otoprotective efficacy of compounds that inhibit protein nitration.
Collapse
Affiliation(s)
- Monazza Shahab
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | - Rita Rosati
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Danielle N Meyer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | - Jeremiah N Shields
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Emily Crofts
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Tracie R Baker
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA
| | - Samson Jamesdaniel
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; Department of Pharmacology, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
18
|
Dalle Nogare DE, Natesh N, Vishwasrao HD, Shroff H, Chitnis AB. Zebrafish Posterior Lateral Line primordium migration requires interactions between a superficial sheath of motile cells and the skin. eLife 2020; 9:58251. [PMID: 33237853 PMCID: PMC7688310 DOI: 10.7554/elife.58251] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
The Zebrafish Posterior Lateral Line primordium migrates in a channel between the skin and somites. Its migration depends on the coordinated movement of its mesenchymal-like leading cells and trailing cells, which form epithelial rosettes, or protoneuromasts. We describe a superficial population of flat primordium cells that wrap around deeper epithelialized cells and extend polarized lamellipodia to migrate apposed to the overlying skin. Polarization of lamellipodia extended by both superficial and deeper protoneuromast-forming cells depends on Fgf signaling. Removal of the overlying skin has similar effects on superficial and deep cells: lamellipodia are lost, blebs appear instead, and collective migration fails. When skinned embryos are embedded in Matrigel, basal and superficial lamellipodia are recovered; however, only the directionality of basal protrusions is recovered, and migration is not rescued. These observations support a key role played by superficial primordium cells and the skin in directed migration of the Posterior Lateral Line primordium.
Collapse
Affiliation(s)
- Damian E Dalle Nogare
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Naveen Natesh
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| | - Harshad D Vishwasrao
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, United States
| | - Hari Shroff
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, United States.,Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, United States
| | - Ajay B Chitnis
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States
| |
Collapse
|
19
|
He J, Zheng Z, Luo X, Hong Y, Su W, Cai C. Histone Demethylase PHF8 Is Required for the Development of the Zebrafish Inner Ear and Posterior Lateral Line. Front Cell Dev Biol 2020; 8:566504. [PMID: 33330448 PMCID: PMC7719749 DOI: 10.3389/fcell.2020.566504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/14/2020] [Indexed: 11/13/2022] Open
Abstract
Histone demethylase PHF8 is crucial for multiple developmental processes, and hence, the awareness of its function in developing auditory organs needs to be increased. Using in situ hybridization (ISH) labeling, the mRNA expression of PHF8 in the zebrafish lateral line system and otic vesicle was monitored. The knockdown of PHF8 by morpholino significantly disrupted the development of the posterior lateral line system, which impacted cell migration and decreased the number of lateral line neuromasts. The knockdown of PHF8 also resulted in severe malformation of the semicircular canal and otoliths in terms of size, quantity, and position during the inner ear development. The loss of function of PHF8 also induced a defective differentiation in sensory hair cells in both lateral line neuromasts and the inner ear. ISH analysis of embryos that lacked PHF8 showed alterations in the expression of many target genes of several signaling pathways concerning cell migration and deposition, including the Wnt and FGF pathways. In summary, the current findings established PHF8 as a novel epigenetic element in developing auditory organs, rendering it a potential candidate for hearing loss therapy.
Collapse
Affiliation(s)
- Jing He
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China.,Teaching Hospital of Fujian Medical University, Xiamen, China.,Xiamen Key Laboratory of Otolaryngology, Head and Neck Surgery, Xiamen, China
| | - Zhiwei Zheng
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Xianyang Luo
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China.,Teaching Hospital of Fujian Medical University, Xiamen, China.,Xiamen Key Laboratory of Otolaryngology, Head and Neck Surgery, Xiamen, China
| | - Yongjun Hong
- Department of Otorhinolaryngology, Zhongshan Hospital of Xiamen, School of Medicine, Xiamen University, Xiamen, China
| | - Wenling Su
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China.,Teaching Hospital of Fujian Medical University, Xiamen, China.,Xiamen Key Laboratory of Otolaryngology, Head and Neck Surgery, Xiamen, China
| | - Chengfu Cai
- Department of Otorhinolaryngology, Zhongshan Hospital of Xiamen, School of Medicine, Xiamen University, Xiamen, China.,Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, China.,Teaching Hospital of Fujian Medical University, Xiamen, China.,Xiamen Key Laboratory of Otolaryngology, Head and Neck Surgery, Xiamen, China
| |
Collapse
|
20
|
Colombi A, Scianna M, Preziosi L. Collective migration and patterning during early development of zebrafish posterior lateral line. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190385. [PMID: 32713304 DOI: 10.1098/rstb.2019.0385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The morphogenesis of zebrafish posterior lateral line (PLL) is a good predictive model largely used in biology to study cell coordinated reorganization and collective migration regulating pathologies and human embryonic processes. PLL development involves the formation of a placode formed by epithelial cells with mesenchymal characteristics which migrates within the animal myoseptum while cyclically assembling and depositing rosette-like clusters (progenitors of neuromast structures). The overall process mainly relies on the activity of specific diffusive chemicals, which trigger collective directional migration and patterning. Cell proliferation and cascade of phenotypic transitions play a fundamental role as well. The investigation on the mechanisms regulating such a complex morphogenesis has become a research topic, in the last decades, also for the mathematical community. In this respect, we present a multiscale hybrid model integrating a discrete approach for the cellular level and a continuous description for the molecular scale. The resulting numerical simulations are then able to reproduce both the evolution of wild-type (i.e. normal) embryos and the pathological behaviour resulting form experimental manipulations involving laser ablation. A qualitative analysis of the dependence of these model outcomes from cell-cell mutual interactions, cell chemical sensitivity and internalization rates is included. The aim is first to validate the model, as well as the estimated parameter values, and then to predict what happens in situations not tested yet experimentally. This article is part of the theme issue 'Multi-scale analysis and modelling of collective migration in biological systems'.
Collapse
Affiliation(s)
- Annachiara Colombi
- Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Marco Scianna
- Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Luigi Preziosi
- Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
21
|
Karaiwa A, Yamada S, Yamamoto H, Wakasa M, Ishijima H, Akiyama R, Hosokawa Y, Bessho Y, Matsui T. Relationship between surrounding tissue morphology and directional collective migration of the posterior lateral line primordium in zebrafish. Genes Cells 2020; 25:582-592. [PMID: 32516841 DOI: 10.1111/gtc.12793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 11/28/2022]
Abstract
Collective cell migration, in which cells assemble and move together, is an essential process in embryonic development, wound healing and cancer metastasis. Chemokine signaling guides cell assemblies to their destinations. In zebrafish posterior lateral line primordium (PLLP), a model system for collective cell migration, it has been proposed that the chemokine ligand Cxcl12a secreted from muscle pioneer cells (MPs) and muscle fast fibers (MFFs), which are distributed along with the horizontal midline, binds to the receptor Cxcr4b in PLLP and that Cxcl12a-Cxcr4b signaling guides the anterior-to-posterior migration of PLLP along the horizontal midline. However, how the surrounding tissues affect PLLP migration remains to be elucidated. Here, we investigated the relationship between the PLLP and the surrounding tissues and found that a furrow between the dorsal and ventral myotomes is generated by Sonic hedgehog (Shh) signaling-dependent MP and MFF differentiation and that the PLLP migrates in this furrow. When transient inhibition of Shh signaling impaired both the furrow formation and differentiation of cxcl12a-expressing MPs/MFFs, directional PLLP migration was severely perturbed. Furthermore, when differentiated MPs and MFFs were ablated by femtosecond laser irradiations, the furrow remained and PLLP migration was relatively unaffected. These results suggest that the furrow formation between the dorsal and ventral myotomes is associated with the migratory behavior of PLLP.
Collapse
Affiliation(s)
- Akari Karaiwa
- Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Sohei Yamada
- Bio-Process Engineering Laboratory, Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Hodaka Yamamoto
- Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Mizuho Wakasa
- Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Hannosuke Ishijima
- Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Ryutaro Akiyama
- Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Yoichiroh Hosokawa
- Bio-Process Engineering Laboratory, Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Yasumasa Bessho
- Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Takaaki Matsui
- Gene Regulation Research, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
22
|
Rathbun LI, Colicino EG, Manikas J, O'Connell J, Krishnan N, Reilly NS, Coyne S, Erdemci-Tandogan G, Garrastegui A, Freshour J, Santra P, Manning ML, Amack JD, Hehnly H. Cytokinetic bridge triggers de novo lumen formation in vivo. Nat Commun 2020; 11:1269. [PMID: 32152267 PMCID: PMC7062744 DOI: 10.1038/s41467-020-15002-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 02/14/2020] [Indexed: 02/03/2023] Open
Abstract
Multicellular rosettes are transient epithelial structures that serve as intermediates during diverse organ formation. We have identified a unique contributor to rosette formation in zebrafish Kupffer's vesicle (KV) that requires cell division, specifically the final stage of mitosis termed abscission. KV utilizes a rosette as a prerequisite before forming a lumen surrounded by ciliated epithelial cells. Our studies identify that KV-destined cells remain interconnected by cytokinetic bridges that position at the rosette's center. These bridges act as a landmark for directed Rab11 vesicle motility to deliver an essential cargo for lumen formation, CFTR (cystic fibrosis transmembrane conductance regulator). Here we report that premature bridge cleavage through laser ablation or inhibiting abscission using optogenetic clustering of Rab11 result in disrupted lumen formation. We present a model in which KV mitotic cells strategically place their cytokinetic bridges at the rosette center, where Rab11-associated vesicles transport CFTR to aid in lumen establishment.
Collapse
Affiliation(s)
- L I Rathbun
- Biology Department, Syracuse University, Syracuse, New York, USA
| | - E G Colicino
- Biology Department, Syracuse University, Syracuse, New York, USA
- Department of Cell and Developmental Biology, SUNY Upstate Medical School, Syracuse, New York, USA
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - J Manikas
- Biology Department, Syracuse University, Syracuse, New York, USA
| | - J O'Connell
- Biology Department, Syracuse University, Syracuse, New York, USA
| | - N Krishnan
- Biology Department, Syracuse University, Syracuse, New York, USA
| | - N S Reilly
- Department of Physics and Astronomy, University of Rochester, Rochester, New York, USA
| | - S Coyne
- Department of Cell and Developmental Biology, SUNY Upstate Medical School, Syracuse, New York, USA
- Department of Biology, SUNY Geneseo, Geneseo, New York, USA
| | | | - A Garrastegui
- Biology Department, Syracuse University, Syracuse, New York, USA
| | - J Freshour
- Biology Department, Syracuse University, Syracuse, New York, USA
| | - P Santra
- Department of Cell and Developmental Biology, SUNY Upstate Medical School, Syracuse, New York, USA
| | - M L Manning
- Department of Physics, Syracuse University, Syracuse, New York, USA
| | - J D Amack
- Department of Cell and Developmental Biology, SUNY Upstate Medical School, Syracuse, New York, USA
| | - H Hehnly
- Biology Department, Syracuse University, Syracuse, New York, USA.
| |
Collapse
|
23
|
Dalle Nogare D, Chitnis AB. NetLogo agent-based models as tools for understanding the self-organization of cell fate, morphogenesis and collective migration of the zebrafish posterior Lateral Line primordium. Semin Cell Dev Biol 2019; 100:186-198. [PMID: 31901312 DOI: 10.1016/j.semcdb.2019.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 12/20/2019] [Accepted: 12/21/2019] [Indexed: 01/25/2023]
Abstract
Interactions between primordium cells and their environment determines the self-organization of the zebrafish posterior Lateral Line primordium as it migrates under the skin from the ear to the tip of the tail forming and depositing neuromasts to spearhead formation of the posterior Lateral Line sensory system. In this review we describe how the NetLogo agent-based programming environment has been used in our lab to visualize and explore how self-generated chemokine gradients determine collective migration, how the dynamics of Wnt signaling can be used to predict patterns of neuromast deposition, and how previously defined interactions between Wnt and Fgf signaling systems have the potential to determine the periodic formation of center-biased Fgf signaling centers in the wake of a shrinking Wnt system. We also describe how NetLogo was used as a database for storing and visualizing the results of in toto lineage analysis of all cells in the migrating primordium. Together, the models illustrate how this programming environment can be used in diverse ways to integrate what has been learnt from biological experiments about the nature of interactions between cells and their environment, and explore how these interactions could potentially determine emergent patterns of cell fate specification, morphogenesis and collective migration of the zebrafish posterior Lateral Line primordium.
Collapse
Affiliation(s)
- Damian Dalle Nogare
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD USA
| | - Ajay B Chitnis
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD USA.
| |
Collapse
|
24
|
PCP and Wnt pathway components act in parallel during zebrafish mechanosensory hair cell orientation. Nat Commun 2019; 10:3993. [PMID: 31488837 PMCID: PMC6728366 DOI: 10.1038/s41467-019-12005-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/05/2019] [Indexed: 12/03/2022] Open
Abstract
Planar cell polarity (PCP) plays crucial roles in developmental processes such as gastrulation, neural tube closure and hearing. Wnt pathway mutants are often classified as PCP mutants due to similarities between their phenotypes. Here, we show that in the zebrafish lateral line, disruptions of the PCP and Wnt pathways have differential effects on hair cell orientations. While mutations in the PCP genes vangl2 and scrib cause random orientations of hair cells, mutations in wnt11f1, gpc4 and fzd7a/b induce hair cells to adopt a concentric pattern. This concentric pattern is not caused by defects in PCP but is due to misaligned support cells. The molecular basis of the support cell defect is unknown but we demonstrate that the PCP and Wnt pathways work in parallel to establish proper hair cell orientation. Consequently, hair cell orientation defects are not solely explained by defects in PCP signaling, and some hair cell phenotypes warrant re-evaluation. Planar cell polarity (PCP) regulates hair cell orientation in the zebrafish lateral line. Here, the authors show that mutating Wnt pathway genes (wnt11f1, fzd7a/b, and gpc4) causes concentric hair cell patterns not regulated by PCP, thus showing PCP/Wnt pathway genes have different consequences on hair cell orientation.
Collapse
|
25
|
Carrillo JA, Murakawa H, Sato M, Togashi H, Trush O. A population dynamics model of cell-cell adhesion incorporating population pressure and density saturation. J Theor Biol 2019; 474:14-24. [PMID: 31059713 DOI: 10.1016/j.jtbi.2019.04.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/03/2019] [Accepted: 04/29/2019] [Indexed: 12/25/2022]
Abstract
We discuss several continuum cell-cell adhesion models based on the underlying microscopic assumptions. We propose an improvement on these models leading to sharp fronts and intermingling invasion fronts between different cell type populations. The model is based on basic principles of localized repulsion and nonlocal attraction due to adhesion forces at the microscopic level. The new model is able to capture both qualitatively and quantitatively experiments by Katsunuma et al. (2016). We also review some of the applications of these models in other areas of tissue growth in developmental biology. We finally explore the resulting qualitative behavior due to cell-cell repulsion.
Collapse
Affiliation(s)
- Jose A Carrillo
- Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - Hideki Murakawa
- Department of Applied Mathematics and Informatics, Ryukoku University, Seta Otsu 520-2194, Japan.
| | - Makoto Sato
- Laboratory of Developmental Neurobiology, Graduate School of Medical Sciences, Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan.
| | - Hideru Togashi
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1, Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan.
| | - Olena Trush
- Laboratory of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan.
| |
Collapse
|
26
|
Nam YH, Moon HW, Lee YR, Kim EY, Rodriguez I, Jeong SY, Castañeda R, Park JH, Choung SY, Hong BN, Kang TH. Panax ginseng (Korea Red Ginseng) repairs diabetic sensorineural damage through promotion of the nerve growth factor pathway in diabetic zebrafish. J Ginseng Res 2019; 43:272-281. [PMID: 30976165 PMCID: PMC6437664 DOI: 10.1016/j.jgr.2018.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 01/31/2018] [Accepted: 02/12/2018] [Indexed: 01/29/2023] Open
Abstract
Background Diabetic sensorineural damage is a complication of the sensory neural system, resulting from long-term hyperglycemia. Red ginseng (RG) has shown efficacy for treatment of various diseases, including diabetes mellitus; however, there is little research about its benefit for treating sensorineural damage. Therefore, we aim to evaluate RG efficacy in alloxan-induced diabetic neuromast (AIDN) zebrafish. Methods In this study, we developed and validated an AIDN zebrafish model. To assess RG effectiveness, we observed morphological changes in live neuromast zebrafish. Also, zebrafish has been observed to have an ultrastructure of hair-cell cilia under scanning electron microscopy. Thus, we recorded these physiological traits to assess hair cell function. Finally, we confirmed that RG promoted neuromast recovery via nerve growth factor signaling pathway markers. Results First, we established an AIDN zebrafish model. Using this model, we showed via live neuromast imaging that RG fostered recovery of sensorineural damage. Damaged hair cell cilia were recovered in AIDN zebrafish. Furthermore, RG rescued damaged hair cell function through cell membrane ion balance. Conclusion Our data suggest that RG potentially facilitates recovery in AIDN zebrafish, and its mechanism seems to be promotion of the nerve growth factor pathway through increased expression of topomyosin receptor kinase A, transient receptor potential channel vanilloid subfamily type 1, and mitogen-activated protein kinase phosphorylation.
Collapse
Affiliation(s)
- Youn Hee Nam
- Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea
| | - Hyo Won Moon
- Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea
| | - Yeong Ro Lee
- Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea
| | - Eun Young Kim
- Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea
| | - Isabel Rodriguez
- Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea
| | - Seo Yule Jeong
- Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea
| | - Rodrigo Castañeda
- Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea
| | - Ji-Ho Park
- Graduate School of East-West Medical Science, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea
| | - Se-Young Choung
- Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Bin Na Hong
- Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea
| | - Tong Ho Kang
- Department of Oriental Medicine Biotechnology, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Global Campus, Gyeonggi, Republic of Korea
| |
Collapse
|
27
|
Wang Y, Han Y, Xu P, Ding S, Li G, Jin H, Meng Y, Meng A, Jia S. prpf4 is essential for cell survival and posterior lateral line primordium migration in zebrafish. J Genet Genomics 2018; 45:443-453. [DOI: 10.1016/j.jgg.2018.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/20/2018] [Accepted: 05/17/2018] [Indexed: 11/16/2022]
|
28
|
Leighton PLA, Kanyo R, Neil GJ, Pollock NM, Allison WT. Prion gene paralogs are dispensable for early zebrafish development and have nonadditive roles in seizure susceptibility. J Biol Chem 2018; 293:12576-12592. [PMID: 29903907 DOI: 10.1074/jbc.ra117.001171] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 06/07/2018] [Indexed: 11/06/2022] Open
Abstract
Normally folded prion protein (PrPC) and its functions in healthy brains remain underappreciated compared with the intense study of its misfolded forms ("prions," PrPSc) during the pathobiology of prion diseases. This impedes the development of therapeutic strategies in Alzheimer's and prion diseases. Disrupting the zebrafish homologs of PrPC has provided novel insights; however, mutagenesis of the zebrafish paralog prp2 did not recapitulate previous dramatic developmental phenotypes, suggesting redundancy with the prp1 paralog. Here, we generated zebrafish prp1 loss-of-function mutant alleles and dual prp1-/-;prp2-/- mutants. Zebrafish prp1-/- and dual prp1-/-;prp2-/- mutants resemble mammalian Prnp knockouts insofar as they lack overt phenotypes, which surprisingly contrasts with reports of severe developmental phenotypes when either prp1 or prp2 is knocked down acutely. Previous studies suggest that PrPC participates in neural cell development/adhesion, including in zebrafish where loss of prp2 affects adhesion and deposition patterns of lateral line neuromasts. In contrast with the expectation that prp1's functions would be redundant to prp2, they appear to have opposing functions in lateral line neurodevelopment. Similarly, loss of prp1 blunted the seizure susceptibility phenotypes observed in prp2 mutants, contrasting the expected exacerbation of phenotypes if these prion gene paralogs were serving redundant roles. In summary, prion mutant fish lack the overt phenotypes previously predicted, and instead they have subtle phenotypes similar to mammals. No evidence was found for functional redundancy in the zebrafish prion gene paralogs, and the phenotypes observed when each gene is disrupted individually are consistent with ancient functions of prion proteins in neurodevelopment and modulation of neural activity.
Collapse
Affiliation(s)
- Patricia L A Leighton
- From the Department of Biological Sciences and the Centre for Prion and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Richard Kanyo
- From the Department of Biological Sciences and the Centre for Prion and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Gavin J Neil
- From the Department of Biological Sciences and the Centre for Prion and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - Niall M Pollock
- From the Department of Biological Sciences and the Centre for Prion and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| | - W Ted Allison
- From the Department of Biological Sciences and the Centre for Prion and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2E9, Canada
| |
Collapse
|
29
|
Carrillo JA, Colombi A, Scianna M. Adhesion and volume constraints via nonlocal interactions determine cell organisation and migration profiles. J Theor Biol 2018; 445:75-91. [DOI: 10.1016/j.jtbi.2018.02.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 02/18/2018] [Accepted: 02/20/2018] [Indexed: 12/17/2022]
|
30
|
Hříbková H, Grabiec M, Klemová D, Slaninová I, Sun YM. Five steps to form neural rosettes: structure and function. J Cell Sci 2018; 131:jcs.206896. [DOI: 10.1242/jcs.206896] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/18/2017] [Indexed: 12/25/2022] Open
Abstract
Neural rosette formation is a critical morphogenetic process during neural development, whereby neural stem cells are enclosed in rosette niches to equipoise proliferation and differentiation. How neural rosettes form and provide a regulatory micro-environment remains to be elucidated. We employed the human embryonic stem cell-based neural rosette system to investigate the structural development and function of neural rosettes. Our study shows that neural rosette formation consists of 5 types of cell movements: intercalation, constriction, polarization, elongation, and lumen formation. Ca2+ signaling plays a pivotal role in the five steps by regulating the actions of the cytoskeletal complexes, ACTIN, MYOSIN II, and TUBULIN during intercalation, constriction, and elongation. These in turn control the polarizing elements, ZO-1, PARD3, and β-CATENIN during polarization and lumen formation in neural rosette formation. We further demonstrated that the dismantlement of neural rosettes, mediated by the destruction of cytoskeletal elements, promoted neurogenesis and astrogenesis prematurely, indicating that an intact rosette structure is essential for orderly neural development.
Collapse
Affiliation(s)
- Hana Hříbková
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marta Grabiec
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Dobromila Klemová
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Iva Slaninová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Yuh-Man Sun
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| |
Collapse
|
31
|
Dalle Nogare D, Chitnis AB. A framework for understanding morphogenesis and migration of the zebrafish posterior Lateral Line primordium. Mech Dev 2017; 148:69-78. [PMID: 28460893 PMCID: PMC10993927 DOI: 10.1016/j.mod.2017.04.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022]
Abstract
A description of zebrafish posterior Lateral Line (pLL) primordium development at single cell resolution together with the dynamics of Wnt, FGF, Notch and chemokine signaling in this system has allowed us to develop a framework to understand the self-organization of cell fate, morphogenesis and migration during its early development. The pLL primordium migrates under the skin, from near the ear to the tip of the tail, periodically depositing neuromasts. Nascent neuromasts, or protoneuromasts, form sequentially within the migrating primordium, mature, and are deposited from its trailing end. Initially broad Wnt signaling inhibits protoneuromast formation. However, protoneuromasts form sequentially in response to FGF signaling, starting from the trailing end, in the wake of a progressively shrinking Wnt system. While proliferation adds to the number of cells, the migrating primordium progressively shrinks as its trailing cells stop moving and are deposited. As it shrinks, the length of the migrating primordium correlates with the length of the leading Wnt system. Based on these observations we show how measuring the rate at which the Wnt system shrinks, the proliferation rate, the initial size of the primordium, its speed, and a few additional parameters allows us to predict the pattern of neuromast formation and deposition by the migrating primordium in both wild-type and mutant contexts. While the mechanism that links the length of the leading Wnt system to that of the primordium remains unclear, we discuss how it might be determined by access to factors produced in the leading Wnt active zone that are required for collective migration of trailing cells. We conclude by reviewing how FGFs, produced in response to Wnt signaling in leading cells, help determine collective migration of trailing cells, while a polarized response to a self-generated chemokine gradient serves as an efficient mechanism to steer primordium migration along its relatively long journey.
Collapse
Affiliation(s)
- Damian Dalle Nogare
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Ajay B Chitnis
- Section on Neural Developmental Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA.
| |
Collapse
|
32
|
Suijkerbuijk SJE, van Rheenen J. From good to bad: Intravital imaging of the hijack of physiological processes by cancer cells. Dev Biol 2017; 428:328-337. [PMID: 28473106 DOI: 10.1016/j.ydbio.2017.04.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/21/2017] [Accepted: 04/23/2017] [Indexed: 12/23/2022]
Abstract
Homeostasis of tissues is tightly regulated at the cellular, tissue and organismal level. Interestingly, tumor cells have found ways to hijack many of these physiological processes at all the different levels. Here we review how intravital microscopy techniques have provided new insights into our understanding of tissue homeostasis and cancer progression. In addition, we highlight the different strategies that tumor cells have adopted to use these physiological processes for their own benefit. We describe how visualization of these dynamic processes in living mice has broadened to our view on cancer initiation and progression.
Collapse
Affiliation(s)
- Saskia J E Suijkerbuijk
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands; Cancer Genomics Netherlands, 3584 CG Utrecht, The Netherlands
| | - Jacco van Rheenen
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, 3584 CT Utrecht, The Netherlands; Cancer Genomics Netherlands, 3584 CG Utrecht, The Netherlands.
| |
Collapse
|
33
|
Knutsdottir H, Zmurchok C, Bhaskar D, Palsson E, Dalle Nogare D, Chitnis AB, Edelstein-Keshet L. Polarization and migration in the zebrafish posterior lateral line system. PLoS Comput Biol 2017; 13:e1005451. [PMID: 28369079 PMCID: PMC5393887 DOI: 10.1371/journal.pcbi.1005451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 04/17/2017] [Accepted: 03/13/2017] [Indexed: 12/19/2022] Open
Abstract
Collective cell migration plays an important role in development. Here, we study the posterior lateral line primordium (PLLP) a group of about 100 cells, destined to form sensory structures, that migrates from head to tail in the zebrafish embryo. We model mutually inhibitory FGF-Wnt signalling network in the PLLP and link tissue subdivision (Wnt receptor and FGF receptor activity domains) to receptor-ligand parameters. We then use a 3D cell-based simulation with realistic cell-cell adhesion, interaction forces, and chemotaxis. Our model is able to reproduce experimentally observed motility with leading cells migrating up a gradient of CXCL12a, and trailing (FGF receptor active) cells moving actively by chemotaxis towards FGF ligand secreted by the leading cells. The 3D simulation framework, combined with experiments, allows an investigation of the role of cell division, chemotaxis, adhesion, and other parameters on the shape and speed of the PLLP. The 3D model demonstrates reasonable behaviour of control as well as mutant phenotypes.
Collapse
Affiliation(s)
- Hildur Knutsdottir
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| | - Cole Zmurchok
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dhananjay Bhaskar
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eirikur Palsson
- Department of Biology, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Damian Dalle Nogare
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Ajay B. Chitnis
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, United States of America
| | - Leah Edelstein-Keshet
- Department of Mathematics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
34
|
Ionizing Radiation Blocks Hair Cell Regeneration in Zebrafish Lateral Line Neuromasts by Preventing Wnt Signaling. Mol Neurobiol 2017; 55:1639-1651. [DOI: 10.1007/s12035-017-0430-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/27/2017] [Indexed: 02/06/2023]
|
35
|
Campbell K, Casanova J. A common framework for EMT and collective cell migration. Development 2016; 143:4291-4300. [DOI: 10.1242/dev.139071] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During development, cells often switch between static and migratory behaviours. Such transitions are fundamental events in development and are linked to harmful consequences in pathology. It has long been considered that epithelial cells either migrate collectively as epithelial cells, or undergo an epithelial-to-mesenchymal transition and migrate as individual mesenchymal cells. Here, we assess what is currently known about in vivo cell migratory phenomena and hypothesise that such migratory behaviours do not fit into alternative and mutually exclusive categories. Rather, we propose that these categories can be viewed as the most extreme cases of a general continuum of morphological variety, with cells harbouring different degrees or combinations of epithelial and mesenchymal features and displaying an array of migratory behaviours.
Collapse
Affiliation(s)
- Kyra Campbell
- Institut de Biologia Molecular de Barcelona (CSIC), C/Baldiri Reixac 10, Barcelona, Catalonia 08028, Spain
- Institut de Recerca Biomèdica de Barcelona, C/Baldiri Reixac 10, Barcelona, Catalonia 08028, Spain
| | - Jordi Casanova
- Institut de Biologia Molecular de Barcelona (CSIC), C/Baldiri Reixac 10, Barcelona, Catalonia 08028, Spain
- Institut de Recerca Biomèdica de Barcelona, C/Baldiri Reixac 10, Barcelona, Catalonia 08028, Spain
| |
Collapse
|
36
|
Venero Galanternik M, Lush ME, Piotrowski T. Glypican4 modulates lateral line collective cell migration non cell-autonomously. Dev Biol 2016; 419:321-335. [DOI: 10.1016/j.ydbio.2016.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 09/02/2016] [Accepted: 09/02/2016] [Indexed: 01/01/2023]
|
37
|
Sánchez M, Ceci ML, Gutiérrez D, Anguita-Salinas C, Allende ML. Mechanosensory organ regeneration in zebrafish depends on a population of multipotent progenitor cells kept latent by Schwann cells. BMC Biol 2016; 14:27. [PMID: 27055439 PMCID: PMC4823859 DOI: 10.1186/s12915-016-0249-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/22/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Regenerating damaged tissue is a complex process, requiring progenitor cells that must be stimulated to undergo proliferation, differentiation and, often, migratory behaviors and morphological changes. Multiple cell types, both resident within the damaged tissue and recruited to the lesion site, have been shown to participate. However, the cellular and molecular mechanisms involved in the activation of progenitor cell proliferation and differentiation after injury, and their regulation by different cells types, are not fully understood. The zebrafish lateral line is a suitable system to study regeneration because most of its components are fully restored after damage. The posterior lateral line (PLL) is a mechanosensory system that develops embryonically and is initially composed of seven to eight neuromasts distributed along the trunk and tail, connected by a continuous stripe of interneuromastic cells (INCs). The INCs remain in a quiescent state owing to the presence of underlying Schwann cells. They become activated during development to form intercalary neuromasts. However, no studies have described if INCs can participate in a regenerative event, for example, after the total loss of a neuromast. RESULTS We used electroablation in transgenic larvae expressing fluorescent proteins in PLL components to completely ablate single neuromasts in larvae and adult fish. This injury results in discontinuity of the INCs, Schwann cells, and the PLL nerve. In vivo imaging showed that the INCs fill the gap left after the injury and can regenerate a new neuromast in the injury zone. Further, a single INC is able to divide and form all cell types in a regenerated neuromast and, during this process, it transiently expresses the sox2 gene, a neural progenitor cell marker. We demonstrate a critical role for Schwann cells as negative regulators of INC proliferation and neuromast regeneration, and that this inhibitory property is completely dependent on active ErbB signaling. CONCLUSIONS The potential to regenerate a neuromast after damage requires that progenitor cells (INCs) be temporarily released from an inhibitory signal produced by nearby Schwann cells. This simple yet highly effective two-component niche offers the animal robust mechanisms for organ growth and regeneration, which can be sustained throughout life.
Collapse
Affiliation(s)
- Mario Sánchez
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Las Palmeras 3425, Santiago, Chile
| | - Maria Laura Ceci
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Las Palmeras 3425, Santiago, Chile
| | - Daniela Gutiérrez
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Las Palmeras 3425, Santiago, Chile
| | - Consuelo Anguita-Salinas
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Las Palmeras 3425, Santiago, Chile
| | - Miguel L Allende
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Las Palmeras 3425, Santiago, Chile.
| |
Collapse
|
38
|
Wang X, Guo Y, Wei H, Wang K, Zhang A, Zhou H. Regulatory roles of grass carp EpCAM in cell morphology, proliferation and migration. FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:423-430. [PMID: 26497717 DOI: 10.1007/s10695-015-0148-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/19/2015] [Indexed: 06/05/2023]
Abstract
Epithelial cell adhesion molecule (EpCAM) is a Ca(2+)-independent and relatively weak adhesion molecule, which has been extensively investigated in mammalian models. However, the functional roles of its fish homolog are largely unknown. In the present study, we explored the biological properties of grass carp EpCAM (gcEpCAM) in a fish kidney cell line (CIK) via overexpression of gcEpCAM or gcEpCAM intracellular domain (gcEpICD) deletion mutant. Results showed that gcEpCAM overexpression significantly changed the cell morphology, and the proliferation of the cells transfected with gcEpCAM was significantly decreased when compared to the control cells, which is unexpectedly opposite to the increasing effects induced by its mammalian homolog. Moreover, overexpression of gcEpICD deletion mutant had no effect on cell proliferation, indicating gcEpICD's involvement in the cell growth control that is concerted with its role in mammalian model. Additionally, gcEpCAM overexpression increased cell migration which is at least partially consistent with the findings in mammalian cells in which EpCAM expression both positively and negatively affects cell migration. It is worth noting that gcEpICD was not essential to the stimulatory effect of gcEpCAM on cell migration, but overexpression of human EpICD in tumor cells increases cell migration, suggesting the functional discrepancy of EpICD in fish and mammals. In conclusion, we elucidated the cellular functionality of EpCAM in fish cells which will be of benefit to defining the functions of fish EpCAM and also provide rewarding information on the functional evolution of EpCAM in vertebrates.
Collapse
Affiliation(s)
- Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| | - Yafei Guo
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - He Wei
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Ke Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Anying Zhang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| |
Collapse
|
39
|
Olt J, Ordoobadi AJ, Marcotti W, Trapani JG. Physiological recordings from the zebrafish lateral line. Methods Cell Biol 2016; 133:253-79. [PMID: 27263416 DOI: 10.1016/bs.mcb.2016.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During sensory transduction, external physical stimuli are translated into an internal biological signal. In vertebrates, hair cells are specialized mechanosensory receptors that transduce sound, gravitational forces, and head movements into electrical signals that are transmitted with remarkable precision and efficiency to afferent neurons. Hair cells have a conserved structure between species and are also found in the lateral line system of fish, including zebrafish, which serve as an ideal animal model to study sensory transmission in vivo. In this chapter, we describe the methods required to investigate the biophysical properties underlying mechanosensation in the lateral line of the zebrafish in vivo from microphonic potentials and single hair cell patch-clamp recordings to single afferent neuron recordings. These techniques provide real-time measurements of hair-cell transduction and transmission following delivery of controlled and defined stimuli and their combined use on the intact zebrafish provides a powerful platform to investigate sensory encoding in vivo.
Collapse
Affiliation(s)
- J Olt
- University of Sheffield, Sheffield, United Kingdom
| | | | - W Marcotti
- University of Sheffield, Sheffield, United Kingdom
| | | |
Collapse
|
40
|
He Y, Wang Z, Sun S, Tang D, Li W, Chai R, Li H. HDAC3 Is Required for Posterior Lateral Line Development in Zebrafish. Mol Neurobiol 2015; 53:5103-17. [PMID: 26395281 DOI: 10.1007/s12035-015-9433-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/10/2015] [Indexed: 01/03/2023]
Abstract
Histone deacetylases (HDACs) are involved in multiple developmental processes, but their functions in the development of mechanosensory organs are largely unknown. In the present study, we report the presence of HDAC3 in the zebrafish posterior lateral line primordium and newly deposited neuromasts. We used morpholinos to show that HDAC3 knockdown severely disrupts the development of the posterior lateral line and reduces the numbers of neuromasts and sensory hair cells within these organs. In HDAC3 morphants, we also observed decreased cell proliferation and increased apoptosis, which might lead to these defects. Finally, we show that HDAC3 deficiency results in attenuated Fgf signaling in the migrating primordium. In situ hybridizations indicate aberrant expression patterns of Notch signaling pathway genes in HDAC3 morphants. In addition, inhibition of HDAC3 function diminishes cxcr7b and alters cxcl12a expression in the migrating primordium. Our results indicate that HDAC3 plays a crucial role in regulating posterior lateral line (PLL) formation and provide evidence for epigenetic regulation in auditory organ development.
Collapse
Affiliation(s)
- Yingzi He
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China
| | - Zhengmin Wang
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China. .,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission, Shanghai, People's Republic of China.
| | - Shaoyang Sun
- Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, People's Republic of China
| | - Dongmei Tang
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China
| | - Wenyan Li
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China
| | - Renjie Chai
- Co-innovation Center of Neuroregeneration, Key Laboratory for Developmental Genes and Human Disease, Institute of Life Sciences, Southeast University, Nanjing, Jiangsu, 210096, People's Republic of China
| | - Huawei Li
- Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China. .,Key Laboratory of Hearing Medicine of National Health and Family Planning Commission, Shanghai, People's Republic of China. .,State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, 200031, People's Republic of China. .,Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
41
|
Abstract
Insulin-producing β cells within the vertebrate fetal pancreas acquire their fate in a step-wise manner. Whereas the intrinsic factors dictating the transcriptional or epigenetic status of pancreatic lineages have been intensely examined, less is known about cell-cell interactions that might constitute a niche for the developing β cell lineage. It is becoming increasingly clear that understanding and recapitulating these steps may instruct in vitro differentiation of embryonic stem cells and/or therapeutic regeneration. Indeed, directed differentiation techniques have improved since transitioning from 2D to 3D cultures, suggesting that the 3D microenvironment in which β cells are born is critical. However, to date, it remains unknown whether the changing architecture of the pancreatic epithelium impacts the fate of cells therein. An emerging challenge in the field is to elucidate how progenitors are allocated during key events, such as the stratification and subsequent resolution of the pre-pancreatic epithelium, as well as the formation of lumens and branches. Here, we assess the progenitor epithelium and examine how it might influence the emergence of pancreatic multipotent progenitors (MPCs), which give rise to β cells and other pancreatic lineages.
Collapse
Affiliation(s)
- Leilani Marty-Santos
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas (LMS,OC)
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas (LMS,OC)
| |
Collapse
|
42
|
Lehoux C, Cloutier R. Building blocks of a fish head: Developmental and variational modularity in a complex system. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:614-28. [DOI: 10.1002/jez.b.22639] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 07/01/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Caroline Lehoux
- Laboratoire de biologie évolutive; Université du Québec à Rimouski; Rimouski Québec Canada
| | - Richard Cloutier
- Laboratoire de biologie évolutive; Université du Québec à Rimouski; Rimouski Québec Canada
| |
Collapse
|
43
|
Xing C, Gong B, Xue Y, Han Y, Wang Y, Meng A, Jia S. TGFβ1a regulates zebrafish posterior lateral line formation via Smad5 mediated pathway. J Mol Cell Biol 2015; 7:48-61. [PMID: 25603803 DOI: 10.1093/jmcb/mjv004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The zebrafish sensory posterior lateral line (pLL) has become an attractive model for studying collective cell migration and cell morphogenesis. Recent studies have indicated that chemokine, Wnt/β-catenin, Fgf, and Delta-Notch signaling pathways participate in regulating pLL development. However, it remains unclear whether TGFβ signaling pathway is involved in pLL development. Here we report a critical role of TGFβ1 in regulating morphogenesis of the pLL primordium (pLLP). The tgfβ1a gene is abundantly expressed in the lateral line primordium. Knockdown or knockout of tgfβ1a leads to a reduction of neuromast number, an increase of inter-neuromast distance, and a reduced number of hair cells. The aberrant morphogenesis in embryos depleted of tgfβ1a correlates with the reduced expression of atoh1a, deltaA, and n-cadherin/cdh2, which are known important regulators of the pLLP morphogenesis. Like tgfβ1a depletion, knockdown of smad5 that expresses in the pLLP, affects pLLP development whereas overexpression of a constitutive active Smad5 isoform rescues the defects in embryos depleted of tgfβ1a, indicating that Smad5 mediates tgfβ1a function in pLLP development. Therefore, TGFβ/Smad5 signaling plays an important role in the zebrafish lateral line formation.
Collapse
Affiliation(s)
- Cencan Xing
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Bo Gong
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yu Xue
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yanchao Han
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yixia Wang
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anming Meng
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shunji Jia
- State Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
44
|
Zebrafish prion protein PrP2 controls collective migration process during lateral line sensory system development. PLoS One 2014; 9:e113331. [PMID: 25436888 PMCID: PMC4249873 DOI: 10.1371/journal.pone.0113331] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 10/27/2014] [Indexed: 12/05/2022] Open
Abstract
Prion protein is involved in severe neurodegenerative disorders but its physiological role is still in debate due to an absence of major developmental defects in knockout mice. Previous reports in zebrafish indicate that the two prion genes, PrP1 and PrP2, are both involved in several steps of embryonic development thus providing a unique route to discover prion protein function. Here we investigate the role of PrP2 during development of a mechano-sensory system, the posterior lateral line, using morpholino knockdown and PrP2 targeted inactivation. We confirm the efficiency of the translation blocking morpholino at the protein level. Development of the posterior lateral line is altered in PrP2 morphants, including nerve axonal outgrowth and primordium migration defects. Reduced neuromast deposition was observed in PrP2 morphants as well as in PrP2−/− mutants. Rosette formation defects were observed in PrP2 morphants, strongly suggesting an abnormal primordium organization and reflecting loss of cell cohesion during migration of the primordium. In addition, the adherens junction proteins, E-cadherin and ß-catenin, were mis-localized after reduction of PrP2 expression and thus contribute to the primordium disorganization. Consequently, hair cell differentiation and number were affected and this resulted in reduced functional neuromasts. At later developmental stages, myelination of the posterior lateral line nerve was altered. Altogether, our study reports an essential role of PrP2 in collective migration process of the primordium and in neuromast formation, further implicating a role for prion protein in cell adhesion.
Collapse
|
45
|
Allena R, Maini PK. Reaction–Diffusion Finite Element Model of Lateral Line Primordium Migration to Explore Cell Leadership. Bull Math Biol 2014; 76:3028-50. [DOI: 10.1007/s11538-014-0043-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 11/05/2014] [Indexed: 02/04/2023]
|
46
|
Ceci ML, Mardones-Krsulovic C, Sánchez M, Valdivia LE, Allende ML. Axon-Schwann cell interactions during peripheral nerve regeneration in zebrafish larvae. Neural Dev 2014; 9:22. [PMID: 25326036 PMCID: PMC4214607 DOI: 10.1186/1749-8104-9-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/29/2014] [Indexed: 01/13/2023] Open
Abstract
Background Peripheral nerve injuries can severely affect the way that animals perceive signals from the surrounding environment. While damage to peripheral axons generally has a better outcome than injuries to central nervous system axons, it is currently unknown how neurons re-establish their target innervations to recover function after injury, and how accessory cells contribute to this task. Here we use a simple technique to create reproducible and localized injury in the posterior lateral line (pLL) nerve of zebrafish and follow the fate of both neurons and Schwann cells. Results Using pLL single axon labeling by transient transgene expression, as well as transplantation of glial precursor cells in zebrafish larvae, we individualize different components in this system and characterize their cellular behaviors during the regenerative process. Neurectomy is followed by loss of Schwann cell differentiation markers that is reverted after nerve regrowth. We show that reinnervation of lateral line hair cells in neuromasts during pLL nerve regeneration is a highly dynamic process with promiscuous yet non-random target recognition. Furthermore, Schwann cells are required for directional extension and fasciculation of the regenerating nerve. We provide evidence that these cells and regrowing axons are mutually dependant during early stages of nerve regeneration in the pLL. The role of ErbB signaling in this context is also explored. Conclusion The accessibility of the pLL nerve and the availability of transgenic lines that label this structure and their synaptic targets provides an outstanding in vivo model to study the different events associated with axonal extension, target reinnervation, and the complex cellular interactions between glial cells and injured axons during nerve regeneration.
Collapse
Affiliation(s)
| | | | | | | | - Miguel L Allende
- FONDAP Center for Genome Regulation, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
| |
Collapse
|
47
|
Harding MJ, McGraw HF, Nechiporuk A. The roles and regulation of multicellular rosette structures during morphogenesis. Development 2014; 141:2549-58. [PMID: 24961796 DOI: 10.1242/dev.101444] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multicellular rosettes have recently been appreciated as important cellular intermediates that are observed during the formation of diverse organ systems. These rosettes are polarized, transient epithelial structures that sometimes recapitulate the form of the adult organ. Rosette formation has been studied in various developmental contexts, such as in the zebrafish lateral line primordium, the vertebrate pancreas, the Drosophila epithelium and retina, as well as in the adult neural stem cell niche. These studies have revealed that the cytoskeletal rearrangements responsible for rosette formation appear to be conserved. By contrast, the extracellular cues that trigger these rearrangements in vivo are less well understood and are more diverse. Here, we review recent studies of the genetic regulation and cellular transitions involved in rosette formation. We discuss and compare specific models for rosette formation and highlight outstanding questions in the field.
Collapse
Affiliation(s)
- Molly J Harding
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR 97239, USA Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR 97239, USA
| | - Hillary F McGraw
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alex Nechiporuk
- Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
48
|
Dalle Nogare D, Somers K, Rao S, Matsuda M, Reichman-Fried M, Raz E, Chitnis AB. Leading and trailing cells cooperate in collective migration of the zebrafish posterior lateral line primordium. Development 2014; 141:3188-96. [PMID: 25063456 DOI: 10.1242/dev.106690] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Collective migration of cells in the zebrafish posterior lateral line primordium (PLLp) along a path defined by Cxcl12a expression depends on Cxcr4b receptors in leading cells and on Cxcr7b in trailing cells. Cxcr7b-mediated degradation of Cxcl12a by trailing cells generates a local gradient of Cxcl12a that guides PLLp migration. Agent-based computer models were built to explore how a polarized response to Cxcl12a, mediated by Cxcr4b in leading cells and prevented by Cxcr7b in trailing cells, determines unidirectional migration of the PLLp. These chemokine signaling-based models effectively recapitulate many behaviors of the PLLp and provide potential explanations for the characteristic behaviors that emerge when the PLLp is severed by laser to generate leading and trailing fragments. As predicted by our models, the bilateral stretching of the leading fragment is lost when chemokine signaling is blocked in the PLLp. However, movement of the trailing fragment toward the leading cells, which was also thought to be chemokine dependent, persists. This suggested that a chemokine-independent mechanism, not accounted for in our models, is responsible for this behavior. Further investigation of trailing cell behavior shows that their movement toward leading cells depends on FGF signaling and it can be re-oriented by exogenous FGF sources. Together, our observations reveal the simple yet elegant manner in which leading and trailing cells coordinate migration; while leading cells steer PLLp migration by following chemokine cues, cells further back play follow-the-leader as they migrate toward FGFs produced by leading cells.
Collapse
Affiliation(s)
- Damian Dalle Nogare
- Section on Neural Developmental Dynamics, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2790, USA
| | - Katherine Somers
- Section on Neural Developmental Dynamics, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2790, USA
| | - Swetha Rao
- Section on Neural Developmental Dynamics, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2790, USA
| | - Miho Matsuda
- Section on Neural Developmental Dynamics, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2790, USA Department of Cell Biology and Molecular Medicine, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 17101-1709, USA
| | - Michal Reichman-Fried
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, 48149 Münster, Germany
| | - Erez Raz
- Institute of Cell Biology, Center for Molecular Biology of Inflammation, 48149 Münster, Germany
| | - Ajay B Chitnis
- Section on Neural Developmental Dynamics, Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-2790, USA
| |
Collapse
|
49
|
Sang Q, Zhang J, Feng R, Wang X, Li Q, Zhao X, Xing Q, Chen W, Du J, Sun S, Chai R, Liu D, Jin L, He L, Li H, Wang L. Ildr1b is essential for semicircular canal development, migration of the posterior lateral line primordium and hearing ability in zebrafish: implications for a role in the recessive hearing impairment DFNB42. Hum Mol Genet 2014; 23:6201-11. [PMID: 24990150 DOI: 10.1093/hmg/ddu340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Immunoglobulin-like domain containing receptor 1 (ILDR1) is a poorly characterized gene that was first identified in lymphoma cells. Recently, ILDR1 has been found to be responsible for autosomal recessive hearing impairment DFNB42. Patients with ILDR1 mutations cause bilateral non-progressive moderate-to-profound sensorineural hearing impairment. However, the etiology and mechanism of ILDR1-related hearing loss remains to be elucidated. In order to uncover the pathology of DFNB42 deafness, we used the morpholino injection technique to establish an ildr1b-morphant zebrafish model. Ildr1b-morphant zebrafish displayed defective hearing and imbalanced swimming, and developmental delays were seen in the semicircular canals of the inner ear. The gene expression profile and real-time PCR revealed down-regulation of atp1b2b (encoding Na(+)/K(+) transporting, beta 2b polypeptide) in ildr1b-morphant zebrafish. We found that injection of atp1b2b mRNA into ildr1b-knockdown zebrafish could rescue the phenotype of developmental delay of the semicircular canals. Moreover, ildr1b-morphant zebrafish had reduced numbers of lateral line neuromasts due to the disruption of lateral line primordium migration. In situ hybridization showed the involvement of attenuated FGF signaling and the chemokine receptor 4b (cxcr4b) and chemokine receptor 7b (cxcr7b) in posterior lateral line primordium of ildr1b-morphant zebrafish. We concluded that Ildr1b is crucial for the development of the inner ear and the lateral line system. This study provides the first evidence for the mechanism of Ildr1b on hearing in vivo and sheds light on the pathology of DFNB42.
Collapse
Affiliation(s)
- Qing Sang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200032, PR China, Institutes of Biomedical Sciences, Fudan University, No 138 Yixueyuan Road, Shanghai 200032, PR China
| | - Junyu Zhang
- Institutes of Biomedical Sciences, Fudan University, No 138 Yixueyuan Road, Shanghai 200032, PR China
| | - Ruizhi Feng
- Institutes of Biomedical Sciences, Fudan University, No 138 Yixueyuan Road, Shanghai 200032, PR China
| | - Xu Wang
- The Key Laboratory of Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qiaoli Li
- Institutes of Biomedical Sciences, Fudan University, No 138 Yixueyuan Road, Shanghai 200032, PR China
| | - Xinzhi Zhao
- Institutes of Biomedical Sciences, Fudan University, No 138 Yixueyuan Road, Shanghai 200032, PR China
| | - Qinghe Xing
- Institutes of Biomedical Sciences, Fudan University, No 138 Yixueyuan Road, Shanghai 200032, PR China
| | - Weiyu Chen
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China
| | - Jiulin Du
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China
| | - Shan Sun
- Department of Otolaryngology, Eye and ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, PR China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China and
| | - Dong Liu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, 19 Qixiu Road, Nantong 226001, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200032, PR China
| | - Lin He
- Institutes of Biomedical Sciences, Fudan University, No 138 Yixueyuan Road, Shanghai 200032, PR China, Bio-X Center, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Huawei Li
- Department of Otolaryngology, Eye and ENT Hospital, Fudan University, 83 Fenyang Road, Shanghai 200031, PR China,
| | - Lei Wang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai 200032, PR China, Institutes of Biomedical Sciences, Fudan University, No 138 Yixueyuan Road, Shanghai 200032, PR China,
| |
Collapse
|
50
|
Wada H, Iwasaki M, Kawakami K. Development of the lateral line canal system through a bone remodeling process in zebrafish. Dev Biol 2014; 392:1-14. [PMID: 24836859 DOI: 10.1016/j.ydbio.2014.05.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/25/2014] [Accepted: 05/06/2014] [Indexed: 11/16/2022]
Abstract
The lateral line system of teleost fish is composed of mechanosensory receptors (neuromasts), comprising superficial receptors and others embedded in canals running under the skin. Canal diameter and size of the canal neuromasts are correlated with increasing body size, thus providing a very simple system to investigate mechanisms underlying the coordination between organ growth and body size. Here, we examine the development of the trunk lateral line canal system in zebrafish. We demonstrated that trunk canals originate from scales through a bone remodeling process, which we suggest is essential for the normal growth of canals and canal neuromasts. Moreover, we found that lateral line cells are required for the formation of canals, suggesting the existence of mutual interactions between the sensory system and surrounding connective tissues.
Collapse
Affiliation(s)
- Hironori Wada
- Division of Molecular and Developmental Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan.
| | - Miki Iwasaki
- Division of Molecular and Developmental Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|