1
|
Bayliak MM, Demianchuk OI, Gospodaryov DV, Balatskyi VA, Lushchak VI. Specific and combined effects of dietary ethanol and arginine on Drosophila melanogaster. Drug Chem Toxicol 2023; 46:895-905. [PMID: 35903033 DOI: 10.1080/01480545.2022.2105863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/04/2022] [Accepted: 07/18/2022] [Indexed: 11/03/2022]
Abstract
In this study, we have investigated specific and combined effects of essential amino acid, l-arginine, and ethanol (EtOH), a natural component of Drosophila melanogaster food, on a range of physiological and biochemical parameters of the flies. Rearing of D. melanogaster during two weeks on the food supplemented with 50 mM l-arginine decreased activities of catalase, glucose-6-phosphate dehydrogenase, and glutathione-S-transferase in males by about 28%, 60%, and 60%, respectively. At the same time, arginine-fed males had 40% higher levels of lipid peroxides and arginine-fed females had 36% low-molecular mass thiol levels as compared to the control. Arginine decreased resistance of fruit flies to heat stress in both sexes, resistance to starvation in females, and resistance to sodium nitroprusside (SNP) in males. Nevertheless, arginine increased resistance to SNP in females. Consumption of food supplemented with 10% EtOH increased resistance of fruit flies to starvation but made them more sensitive to SNP. On the contrary, arginine abrogated the ability of EtOH to increase starvation resistance in males and to decrease SNP resistance in both sexes.
Collapse
Affiliation(s)
- Maria M Bayliak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Oleh I Demianchuk
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Dmytro V Gospodaryov
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Vitalii A Balatskyi
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| |
Collapse
|
2
|
Chau KD, Shamekh M, Huisken J, Rehan SM. The effects of maternal care on the developmental transcriptome and metatranscriptome of a wild bee. Commun Biol 2023; 6:904. [PMID: 37709905 PMCID: PMC10502028 DOI: 10.1038/s42003-023-05275-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023] Open
Abstract
Maternal care acts as a strong environmental stimulus that can induce phenotypic plasticity in animals and may also alter their microbial communities through development. Here, we characterize the developmental metatranscriptome of the small carpenter bee, Ceratina calcarata, across developmental stages and in the presence or absence of mothers. Maternal care had the most influence during early development, with the greatest number and magnitude of differentially expressed genes between maternal care treatments, and enrichment for transcription factors regulating immune response in motherless early larvae. Metatranscriptomic data revealed fungi to be the most abundant group in the microbiome, with Aspergillus the most abundant in early larvae raised without mothers. Finally, integrative analysis between host transcriptome and metatranscriptome highlights several fungi correlating with developmental and immunity genes. Our results provide characterizations of the influence of maternal care on gene expression and the microbiome through development in a wild bee.
Collapse
Affiliation(s)
| | | | - Jesse Huisken
- Department of Biology, York University, Toronto, Canada
| | - Sandra M Rehan
- Department of Biology, York University, Toronto, Canada.
| |
Collapse
|
3
|
Khalisova KY, Osadchiy IS, Georgiev PG, Maksimenko OG. TTK Isoforms Interact with Two Regions of the Mep-1 Protein of Drosophila melanogaster. DOKL BIOCHEM BIOPHYS 2021; 498:177-179. [PMID: 34189645 DOI: 10.1134/s1607672921030042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/06/2021] [Accepted: 03/06/2021] [Indexed: 11/23/2022]
Abstract
The Drosophila TTK protein is involved in the processes of cell differentiation and is represented by two isoforms, TTK69 and TTK88, which have a common N-terminal BTB domain and different C-terminal sequences. Earlier, it was shown that TTK69 represses the activity of enhancers and promoters by recruiting a conserved among higher eukaryotes NURD complex to chromatin. The Mep-1 protein was found in the NURD-complex of Drosophila, and this protein can interact with the C-terminal region of TTK69. In the present study, using the yeast two-hybrid system, we mapped the interacting regions of the TTK and Mep-1 proteins. We identified regions in the unique C-terminal regions of TTK isoforms that can interact simultaneously with two regions of the Mep-1 protein. The results show that, despite the low homology of the C-terminal regions, the TTK isoform retains the ability to interact with two conserved regions of the Mep-1 protein, which suggests the functional significance of this interaction.
Collapse
Affiliation(s)
- K Y Khalisova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - I S Osadchiy
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - P G Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - O G Maksimenko
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
4
|
Yin C, Xi R. A Phyllopod-Mediated Feedback Loop Promotes Intestinal Stem Cell Enteroendocrine Commitment in Drosophila. Stem Cell Reports 2017; 10:43-57. [PMID: 29276156 PMCID: PMC5768918 DOI: 10.1016/j.stemcr.2017.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 01/17/2023] Open
Abstract
The intestinal epithelium in the Drosophila midgut is maintained by intestinal stem cells (ISCs), which are capable of generating both enterocytes and enteroendocrine cells (EEs) via alternative cell fate specification. Activation of Delta-Notch signaling directs ISCs for enterocyte generation, but how EEs are generated from ISCs remains poorly understood. Here, we identified Phyllopod (Phyl) as a key regulator that drives EE generation from ISCs. Phyl, which is normally suppressed by Notch, functions as an adaptor protein that bridges Tramtrack 69 (Ttk69) and E3 ubiquitin ligase Sina for degradation. Degradation of Ttk69 allows the activation of the Achaete-Scute Complex (AS-C)-Pros regulatory axis, which promotes EE specification. Interestingly, expression of AS-C genes in turn further induces Phyl expression, thereby establishing a positive feedback loop for continuous EE fate specification and commitment. This positive feedback circuit-driven regulatory mechanism could represent a common strategy for reliable and irreversible cell fate determination from progenitor cells.
Collapse
Affiliation(s)
- Chang Yin
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Rongwen Xi
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China; National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China; Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
5
|
Abstract
Chromatin is a highly dynamic structure that imparts structural organization to the genome and regulates the gene expression underneath. The decade long research in deciphering the significance of epigenetics in maintaining cellular integrity has embarked the focus on chromatin remodeling enzymes. These drivers have been categorized as readers, writers and erasers with each having significance of their own. Largely, on the basis of structure, ATP dependent chromatin remodelers have been grouped into 4 families; SWI/SNF, ISWI, IN080 and CHD. It is still unclear to what degree these enzymes are swayed by local DNA sequences when shifting a nucleosome to different positions. The ability of regulating active and repressive transcriptional state via open and close chromatin architecture has been well studied however, the significance of chromatin remodelers in regulating transcription at each step i.e. initiation, elongation and termination require further attention. The authors have highlighted the significance and role of different chromatin remodelers in transcription, DNA repair and histone variant deposition.
Collapse
Affiliation(s)
- Monica Tyagi
- a Kusuma School of Biological Sciences, Indian Institute of Technology Delhi Hauz Khas , New Delhi , India
| | | | | | | |
Collapse
|
6
|
Wang C, Guo X, Dou K, Chen H, Xi R. Ttk69 acts as a master repressor of enteroendocrine cell specification in Drosophila intestinal stem cell lineages. Development 2015; 142:3321-31. [PMID: 26293304 DOI: 10.1242/dev.123208] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 08/10/2015] [Indexed: 01/15/2023]
Abstract
In adult Drosophila midgut, intestinal stem cells (ISCs) periodically produce progenitor cells that undergo a binary fate choice determined primarily by the levels of Notch activity that they receive, before terminally differentiating into enterocytes (ECs) or enteroendocrine (EE) cells. Here we identified Ttk69, a BTB domain-containing transcriptional repressor, as a master repressor of EE cell specification in the ISC lineages. Depletion of ttk69 in progenitor cells induced ISC proliferation and caused all committed progenitor cells to adopt EE fate, leading to the production of supernumerary EE cells in the intestinal epithelium. Conversely, forced expression of Ttk69 in progenitor cells was sufficient to prevent EE cell specification. The expression of Ttk69 was not regulated by Notch signaling, and forced activation of Notch, which is sufficient to induce EC specification of normal progenitor cells, failed to prevent EE cell specification of Ttk69-depleted progenitors. Loss of Ttk69 led to derepression of the acheate-scute complex (AS-C) genes scute and asense, which then induced prospero expression to promote EE cell specification. These studies suggest that Ttk69 functions in parallel with Notch signaling and acts as a master repressor of EE cell specification in Drosophila ISC lineages primarily by suppressing AS-C genes.
Collapse
Affiliation(s)
- Chenhui Wang
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Xingting Guo
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Kun Dou
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Hongyan Chen
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| | - Rongwen Xi
- National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China
| |
Collapse
|
7
|
Ciglar L, Girardot C, Wilczyński B, Braun M, Furlong EEM. Coordinated repression and activation of two transcriptional programs stabilizes cell fate during myogenesis. Development 2014; 141:2633-43. [PMID: 24961800 PMCID: PMC4146391 DOI: 10.1242/dev.101956] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Molecular models of cell fate specification typically focus on the activation of specific lineage programs. However, the concurrent repression of unwanted transcriptional networks is also essential to stabilize certain cellular identities, as shown in a number of diverse systems and phyla. Here, we demonstrate that this dual requirement also holds true in the context of Drosophila myogenesis. By integrating genetics and genomics, we identified a new role for the pleiotropic transcriptional repressor Tramtrack69 in myoblast specification. Drosophila muscles are formed through the fusion of two discrete cell types: founder cells (FCs) and fusion-competent myoblasts (FCMs). When tramtrack69 is removed, FCMs appear to adopt an alternative muscle FC-like fate. Conversely, ectopic expression of this repressor phenocopies muscle defects seen in loss-of-function lame duck mutants, a transcription factor specific to FCMs. This occurs through Tramtrack69-mediated repression in FCMs, whereas Lame duck activates a largely distinct transcriptional program in the same cells. Lineage-specific factors are therefore not sufficient to maintain FCM identity. Instead, their identity appears more plastic, requiring the combination of instructive repressive and activating programs to stabilize cell fate.
Collapse
Affiliation(s)
- Lucia Ciglar
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Charles Girardot
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Bartek Wilczyński
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Martina Braun
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| |
Collapse
|
8
|
Cipressa F, Cenci G. Effete, an E2 ubiquitin-conjugating enzyme with multiple roles in Drosophila development and chromatin organization. Fly (Austin) 2013; 7:256-62. [PMID: 24088712 DOI: 10.4161/fly.26567] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Drosophila effete gene encodes an extremely conserved class I E2 ubiquitin-conjugating enzyme. Growing evidence indicates that Eff is involved in many cellular processes including eye development, maintenance of female germline stem cells, and regulation of apoptosis. Eff is also a major component of Drosophila chromatin and it is particularly enriched in chromatin with repressive properties. In addition, Eff is required for telomere protection and to prevent telomere fusion. Consistent with its multiple roles in chromatin maintenance, Eff is also one of the rare factors that modulate both telomere-induced and heterochromatin-induced position effect variegation.
Collapse
Affiliation(s)
- Francesca Cipressa
- Dipartimento di Biologia e Biotecnologie "C. Darwin"; SAPIENZA Università di Roma; Roma, Italy
| | - Giovanni Cenci
- Dipartimento di Biologia e Biotecnologie "C. Darwin"; SAPIENZA Università di Roma; Roma, Italy
| |
Collapse
|
9
|
R7 photoreceptor axon growth is temporally controlled by the transcription factor Ttk69, which inhibits growth in part by promoting transforming growth factor-β/activin signaling. J Neurosci 2013; 33:1509-20. [PMID: 23345225 DOI: 10.1523/jneurosci.2023-12.2013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Work on axon growth has classically focused on understanding how extrinsic cues control growth cone dynamics independent of the cell body. However, more recently, neuron-intrinsic transcription factors have been shown to influence both normal and regenerative axon growth, suggesting that understanding their mechanism of action is of clinical importance. We are studying axon targeting in the Drosophila visual system and here show that the BTB/POZ zinc-finger transcription factor Tramtrack69 (Ttk69) plays an instructive role in inhibiting the growth of R7 photoreceptor axon terminals. Although ttk69 mutant R7 axons project to the correct medullar target layer, M6, their terminals fail to remain retinotopically restricted and instead grow laterally within M6. This overgrowth is not caused by an inability to be repelled by neighboring R7 axons or by an inability to recognize and initiate synapse formation with postsynaptic targets. The overgrowth is progressive and occurs even if contact between ttk69 mutant R7 axons and their normal target layer is disrupted. Ttk69 is first expressed in wild-type R7s after their axons have reached the medulla; ttk69 mutant R7 axon terminal overgrowth begins shortly after this time point. We find that expressing Ttk69 prematurely in R7s collapses their growth cones and disrupts axon extension, indicating that Ttk69 plays an instructive role in this process. A TGF-β/Activin pathway was shown previously to inhibit R7 axon terminal growth. We find that Ttk69 is required for normal activation of this pathway but that Ttk69 likely also inhibits R7 axon growth by a TGF-β/Activin-independent mechanism.
Collapse
|
10
|
Enuameh MS, Asriyan Y, Richards A, Christensen RG, Hall VL, Kazemian M, Zhu C, Pham H, Cheng Q, Blatti C, Brasefield JA, Basciotta MD, Ou J, McNulty JC, Zhu LJ, Celniker SE, Sinha S, Stormo GD, Brodsky MH, Wolfe SA. Global analysis of Drosophila Cys₂-His₂ zinc finger proteins reveals a multitude of novel recognition motifs and binding determinants. Genome Res 2013; 23:928-40. [PMID: 23471540 PMCID: PMC3668361 DOI: 10.1101/gr.151472.112] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cys2-His2 zinc finger proteins (ZFPs) are the largest group of transcription factors in higher metazoans. A complete characterization of these ZFPs and their associated target sequences is pivotal to fully annotate transcriptional regulatory networks in metazoan genomes. As a first step in this process, we have characterized the DNA-binding specificities of 129 zinc finger sets from Drosophila using a bacterial one-hybrid system. This data set contains the DNA-binding specificities for at least one encoded ZFP from 70 unique genes and 23 alternate splice isoforms representing the largest set of characterized ZFPs from any organism described to date. These recognition motifs can be used to predict genomic binding sites for these factors within the fruit fly genome. Subsets of fingers from these ZFPs were characterized to define their orientation and register on their recognition sequences, thereby allowing us to define the recognition diversity within this finger set. We find that the characterized fingers can specify 47 of the 64 possible DNA triplets. To confirm the utility of our finger recognition models, we employed subsets of Drosophila fingers in combination with an existing archive of artificial zinc finger modules to create ZFPs with novel DNA-binding specificity. These hybrids of natural and artificial fingers can be used to create functional zinc finger nucleases for editing vertebrate genomes.
Collapse
Affiliation(s)
- Metewo Selase Enuameh
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hainaut M, Sagnier T, Berenger H, Pradel J, Graba Y, Miotto B. The MYST-containing protein Chameau is required for proper sensory organ specification during Drosophila thorax morphogenesis. PLoS One 2012; 7:e32882. [PMID: 22412942 PMCID: PMC3295779 DOI: 10.1371/journal.pone.0032882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 02/04/2012] [Indexed: 12/15/2022] Open
Abstract
The adult thorax of Drosophila melanogaster is covered by a stereotyped pattern of mechanosensory bristles called macrochaetes. Here, we report that the MYST containing protein Chameau (Chm) contributes to the establishment of this pattern in the most dorsal part of the thorax. Chm mutant pupae present extra-dorsocentral (DC) and scutellar (SC) macrochaetes, but a normal number of the other macrochaetes. We provide evidences that chm restricts the singling out of sensory organ precursors from proneural clusters and genetically interacts with transcriptional regulators involved in the regulation of achaete and scute in the DC and SC proneural cluster. This function of chm likely relies on chromatin structure regulation since a protein with a mutation in the conserved catalytic site fails to rescue the formation of supernumerary DC and SC bristles in chm mutant flies. This is further supported by the finding that mutations in genes encoding chromatin modifiers and remodeling factors, including Polycomb group (PcG) and Trithorax group (TrxG) members, dominantly modulate the penetrance of chm extra bristle phenotype. These data support a critical role for chromatin structure modulation in the establishment of the stereotyped sensory bristle pattern in the fly thorax.
Collapse
Affiliation(s)
- Matthieu Hainaut
- Institut de Biologie du Développement de Marseille-Luminy, CNRS UMR6216/Université de la Méditerranée, Marseille, France
| | - Thierry Sagnier
- Institut de Biologie du Développement de Marseille-Luminy, CNRS UMR6216/Université de la Méditerranée, Marseille, France
| | - Hélène Berenger
- Institut de Biologie du Développement de Marseille-Luminy, CNRS UMR6216/Université de la Méditerranée, Marseille, France
| | - Jacques Pradel
- Institut de Biologie du Développement de Marseille-Luminy, CNRS UMR6216/Université de la Méditerranée, Marseille, France
| | - Yacine Graba
- Institut de Biologie du Développement de Marseille-Luminy, CNRS UMR6216/Université de la Méditerranée, Marseille, France
- * E-mail: (YG); (BM)
| | - Benoit Miotto
- Institut de Biologie du Développement de Marseille-Luminy, CNRS UMR6216/Université de la Méditerranée, Marseille, France
- * E-mail: (YG); (BM)
| |
Collapse
|
12
|
Bukharina TA, Furman DP. Asymmetric cell division in the morphogenesis of Drosophila melanogaster macrochaetae. Russ J Dev Biol 2011. [DOI: 10.1134/s1062360411010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Furman DP, Bukharina TA. The gene network determining development of Drosophila melanogaster mechanoreceptors. Comput Biol Chem 2009; 33:231-4. [PMID: 19464954 DOI: 10.1016/j.compbiolchem.2009.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2008] [Revised: 03/30/2009] [Accepted: 04/23/2009] [Indexed: 11/27/2022]
|
14
|
dMec: a novel Mi-2 chromatin remodelling complex involved in transcriptional repression. EMBO J 2009; 28:533-44. [PMID: 19165147 DOI: 10.1038/emboj.2009.3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 12/23/2008] [Indexed: 11/08/2022] Open
Abstract
The ATP-dependent chromatin remodeller Mi-2 functions as a transcriptional repressor and contributes to the suppression of cell fates during development in several model organisms. Mi-2 is the ATPase subunit of the conserved Nucleosome Remodeling and Deacetylation (NuRD) complex, and transcriptional repression by Mi-2 is thought to be dependent on its associated histone deacetylase. Here, we have purified a novel dMi-2 complex from Drosophila that is distinct from dNuRD. dMec (dMEP-1 complex) is composed of dMi-2 and dMEP-1. dMec is a nucleosome-stimulated ATPase that is expressed in embryos, larval tissues and adult flies. Surprisingly, dMec is far more abundant than dNuRD and constitutes the major dMi-2-containing complex. Both dNuRD and dMec associate with proneural genes of the achaete-scute complex. However, despite lacking a histone deacetylase subunit, only dMec contributes to the repression of proneural genes. These results reveal an unexpected complexity in the composition and function of Mi-2 complexes.
Collapse
|
15
|
Abstract
SUMOylation, a reversible process used as a ‘fine-tuning’ mechanism to regulate the role of multiple proteins, is conserved throughout evolution. This post-translational modification affects several cellular processes by the modulation of subcellular localization, activity or stability of a variety of substrates. A growing number of proteins have been identified as targets for SUMOylation, although, for many of them, the role of SUMO conjugation on their function is unknown. The use of model systems might facilitate the study of SUMOylation implications in vivo. In the present paper, we have compiled what is known about SUMOylation in Drosophila melanogaster, where the use of genetics provides new insights on SUMOylation's biological roles.
Collapse
|
16
|
Chang PJ, Hsiao YL, Tien AC, Li YC, Pi H. Negative-feedback regulation of proneural proteins controls the timing of neural precursor division. Development 2008; 135:3021-30. [DOI: 10.1242/dev.021923] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neurogenesis requires precise control of cell specification and division. In Drosophila, the timing of cell division of the sensory organ precursor (SOP) is under strict temporal control. But how the timing of mitotic entry is determined remains poorly understood. Here, we present evidence that the timing of the G2-M transition is determined by when proneural proteins are degraded from SOPs. This process requires the E3 ubiquitin ligase complex, including the RING protein Sina and the adaptor Phyl. In phyl mutants, proneural proteins accumulate, causing delay or arrest in the G2-M transition. The G2-M defect in phyl mutants is rescued by reducing the ac and sc gene doses. Misexpression of phyl downregulates proneural protein levels in a sina-dependent manner. Phyl directly associates with proneural proteins to act as a bridge between proneural proteins and Sina. As phyl is a direct transcriptional target of Ac and Sc, our data suggest that, in addition to mediating cell cycle arrest, proneural protein initiates a negative-feedback regulation to time the mitotic entry of neural precursors.
Collapse
Affiliation(s)
- Pao-Ju Chang
- Department of Life Science, Chang-Gung University, 259 Wen-Hwa 1st Road,Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Yun-Ling Hsiao
- Department of Life Science, Chang-Gung University, 259 Wen-Hwa 1st Road,Kwei-Shan, Tao-Yuan 333, Taiwan
| | - An-Chi Tien
- Program in Developmental Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Yi-Chen Li
- Department of Life Science, Chang-Gung University, 259 Wen-Hwa 1st Road,Kwei-Shan, Tao-Yuan 333, Taiwan
| | - Haiwei Pi
- Department of Life Science, Chang-Gung University, 259 Wen-Hwa 1st Road,Kwei-Shan, Tao-Yuan 333, Taiwan
| |
Collapse
|
17
|
Furman DP, Bukharina TA. Genetic control of macrochaetae development in Drosophila melanogaster. Russ J Dev Biol 2008. [DOI: 10.1134/s1062360408040012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
18
|
Brody T, Rasband W, Baler K, Kuzin A, Kundu M, Odenwald WF. Sequence conservation and combinatorial complexity of Drosophila neural precursor cell enhancers. BMC Genomics 2008; 9:371. [PMID: 18673565 PMCID: PMC2529316 DOI: 10.1186/1471-2164-9-371] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 08/01/2008] [Indexed: 11/10/2022] Open
Abstract
Background The presence of highly conserved sequences within cis-regulatory regions can serve as a valuable starting point for elucidating the basis of enhancer function. This study focuses on regulation of gene expression during the early events of Drosophila neural development. We describe the use of EvoPrinter and cis-Decoder, a suite of interrelated phylogenetic footprinting and alignment programs, to characterize highly conserved sequences that are shared among co-regulating enhancers. Results Analysis of in vivo characterized enhancers that drive neural precursor gene expression has revealed that they contain clusters of highly conserved sequence blocks (CSBs) made up of shorter shared sequence elements which are present in different combinations and orientations within the different co-regulating enhancers; these elements contain either known consensus transcription factor binding sites or consist of novel sequences that have not been functionally characterized. The CSBs of co-regulated enhancers share a large number of sequence elements, suggesting that a diverse repertoire of transcription factors may interact in a highly combinatorial fashion to coordinately regulate gene expression. We have used information gained from our comparative analysis to discover an enhancer that directs expression of the nervy gene in neural precursor cells of the CNS and PNS. Conclusion The combined use EvoPrinter and cis-Decoder has yielded important insights into the combinatorial appearance of fundamental sequence elements required for neural enhancer function. Each of the 30 enhancers examined conformed to a pattern of highly conserved blocks of sequences containing shared constituent elements. These data establish a basis for further analysis and understanding of neural enhancer function.
Collapse
Affiliation(s)
- Thomas Brody
- Neural Cell-Fate Determinants Section, NINDS, NIH, Bethesda, Maryland, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Bowman SK, Rolland V, Betschinger J, Kinsey KA, Emery G, Knoblich JA. The tumor suppressors Brat and Numb regulate transit-amplifying neuroblast lineages in Drosophila. Dev Cell 2008; 14:535-46. [PMID: 18342578 DOI: 10.1016/j.devcel.2008.03.004] [Citation(s) in RCA: 341] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 12/06/2007] [Accepted: 03/05/2008] [Indexed: 01/02/2023]
Abstract
In both vertebrates and insects, neurons typically arise from neural stem cells or terminally dividing intermediate progenitors. Here, we describe another mode of neurogenesis where neural stem cells generate secondary precursors that undergo multiple rounds of self-renewing transit-amplifying divisions. We identify the Posterior Asense-Negative (PAN) neuroblasts, which do not express the transcription factors Asense or Prospero. PAN neuroblasts rely on the segregating determinants Numb and Brat to generate smaller, secondary neuroblasts that in turn give rise to ganglion mother cells (GMCs) and neurons throughout larval development. In brat or numb mutants, misspecified secondary neuroblasts are unable to produce differentiated progeny and initiate tumor-like overgrowth. In prospero mutants, however, tumors arise from GMCs while secondary neuroblasts are correctly specified. Our data describe a transit-amplifying lineage in the Drosophila nervous system and suggest that different vulnerabilities in intermediate cell types can affect the outcome of tumor suppressor loss in stem cell lineages.
Collapse
Affiliation(s)
- Sarah K Bowman
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Dr. Bohr Gasse 3, 1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
20
|
Brown E, Malakar S, Krebs JE. How many remodelers does it take to make a brain? Diverse and cooperative roles of ATP-dependent chromatin-remodeling complexes in development. Biochem Cell Biol 2008; 85:444-62. [PMID: 17713580 DOI: 10.1139/o07-059] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of a metazoan from a single-celled zygote to a complex multicellular organism requires elaborate and carefully regulated programs of gene expression. However, the tight packaging of genomic DNA into chromatin makes genes inaccessible to the cellular machinery and must be overcome by the processes of chromatin remodeling; in addition, chromatin remodeling can preferentially silence genes when their expression is not required. One class of chromatin remodelers, ATP-dependent chromatin-remodeling enzymes, can slide nucleosomes along the DNA to make specific DNA sequences accessible or inaccessible to regulators at a particular stage of development. While all ATPases in the SWI2/SNF2 superfamily share the fundamental ability to alter DNA accessibility in chromatin, they do not act alone, but rather, are subunits of a large assortment of protein complexes. Recent studies illuminate common themes by which the subunit compositions of chromatin-remodeling complexes specify the developmental roles that chromatin remodelers play in specific tissues and at specific stages of development, in response to specific signaling pathways and transcription factors. In this review, we will discuss the known roles in metazoan development of 3 major subfamilies of chromatin-remodeling complexes: the SNF2, ISWI, and CHD subfamilies.
Collapse
Affiliation(s)
- Elvin Brown
- Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, AK 99508, USA
| | | | | |
Collapse
|
21
|
Furman D, Bukharina T. How Drosophila melanogaster Forms its Mechanoreceptors. Curr Genomics 2008; 9:312-23. [PMID: 19471605 PMCID: PMC2685642 DOI: 10.2174/138920208785133271] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 05/17/2008] [Accepted: 05/25/2008] [Indexed: 11/22/2022] Open
Abstract
A strictly determined number of external sensory organs, macrochaetes, acting as mechanoreceptors, are orderly located on drosophila head and body. Totally, they form the bristle pattern, which is a species-specific characteristic of drosophila.Each mechanoreceptor comprises four specialized cells derived from the single sensory organ precursor (SOP) cell. The conserved bristle pattern combined with a comparatively simple structure of each mechanosensory organ makes macrochaetes a convenient model for studying the formation spatial structures with a fixed number of elements at certain positions and the mechanism underlying cell differentiation.The macrochaete morphogenesis consists of three stages. At the first stage, the proneural clusters segregate from the massive of ectodermal cells of the wing imaginal disc. At the second stage, the SOP cell is determined and its position in the cluster is specified. At the third stage, the SOP cell undergoes two asymmetric divisions, and the daughter cells differentiate into the components of mechanoreceptor: shaft, socket, bipolar neuron, and sheath.The critical factor determining the neural pathway of cell development is the content of proneural proteins, products of the achaete-scute (AS-C) gene complex, reaching its maximum in the SOP cell.The experimental data on the main genes and their products involved in the control of bristle pattern formation are systematized. The roles of achaete-scute complex, EGFR and Notch signaling pathways, and selector genes in these processes are considered. An integral scheme describing the functioning of the system controlling macrochaete development in D. melanogaster is proposed based on analysis of literature data.
Collapse
Affiliation(s)
- D.P Furman
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk, 630090 Russia
- Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia
| | - T.A Bukharina
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, pr. Lavrentieva 10, Novosibirsk, 630090 Russia
| |
Collapse
|
22
|
Cooper SE, Murawsky CM, Lowe N, Travers AA. Two modes of degradation of the tramtrack transcription factors by Siah homologues. J Biol Chem 2007; 283:1076-83. [PMID: 17962185 DOI: 10.1074/jbc.m707765200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Siah proteins, mammalian homologues of the Drosophila Sina protein, function as ubiquitin-protein isopeptide ligase enzymes to target a wide range of cellular proteins for degradation. We report here a novel Drosophila protein that is homologous to Sina, named Sina-Homologue (SinaH). We show that it can direct the degradation of the transcriptional repressor Tramtrack (Ttk) using two different mechanisms. One is similar to Sina and requires the adaptor Phyllopod, and the other is a novel mechanism of recognition. This novel mode of targeting for degradation is specific for the 69-kDa Ttk isoform, Ttk69. Ttk69 contains a region that is required for binding of SinaH and for SinaH-directed degradation. This region contains an AXVXP motif, which is the consensus sequence found in Siah substrate proteins. These results suggest that degradation directed by SinaH differs from that directed by Sina and is more similar to that found in vertebrates. We speculate that SinaH may be involved in regulating the levels of developmentally important transcription factors.
Collapse
Affiliation(s)
- Sarah E Cooper
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, United Kingdom.
| | | | | | | |
Collapse
|
23
|
Cooper SE. In vivo function of a novel Siah protein in Drosophila. Mech Dev 2007; 124:584-91. [PMID: 17561381 DOI: 10.1016/j.mod.2007.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 04/23/2007] [Accepted: 04/26/2007] [Indexed: 01/15/2023]
Abstract
The Siah proteins, mammalian homologues of the Drosophila Sina protein, function as E3 ubiquitin ligase enzymes and target a wide range of cellular proteins for degradation. Here, I investigate the in vivo function of the fly protein, Sina-Homologue (SinaH), which is highly similar to Sina. Flies that completely lack SinaH are viable and in combination with a mutation in the gene, Ebi, show an extra dorsal central bristle phenotype. I also show that SinaH and Ebi can interact with each other both in vivo and in vitro suggesting that they act in the same physical complex. Flies that lack both Sina and Sina-Homologue were also created and show visible eye and bristle phenotypes, which can be explained by an inability to degrade the neuronal repressor, Tramtrack. I find no evidence for redundancy in the function of Sina and SinaH.
Collapse
Affiliation(s)
- Sarah E Cooper
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK.
| |
Collapse
|
24
|
Pi H, Chien CT. Getting the edge: neural precursor selection. J Biomed Sci 2007; 14:467-73. [PMID: 17357812 DOI: 10.1007/s11373-007-9156-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 02/09/2007] [Indexed: 01/08/2023] Open
Abstract
A key issue in development is how to specify single isolated precursor cells to adopt a distinct fate from a group of naive cells. Studies on the development of Drosophila external sensory (ES) organs have revealed multiple mechanisms to specify single sensory organ precursors (SOPs) from clusters of cells with equivalent neural potential. Initially single SOPs are selected in part through cell-cell competition from clusters of ectodermal cells that express proneural proteins. To reinforce the singularity, lateral inhibition through the Delta/Notch system and feedback regulations lead to exclusive expression of proneural proteins in SOPs. As transcriptional activators, proneural proteins execute a genetic program in SOP cells for the development of an eventually ES organ. In this article, we will summarize recent advances on how transcriptional regulation, protein degradation, endocytosis and gene silencing by microRNA participate in SOP specification.
Collapse
Affiliation(s)
- Haiwei Pi
- Department of Life Science, Chang-Gung University, 259 Wen-Hwa 1st Road, Kweishan, Tao-Yuan, 333, Taiwan
| | | |
Collapse
|
25
|
Yamasaki Y, Nishida Y. Mi-2 chromatin remodeling factor functions in sensory organ development through proneural gene repression in Drosophila. Dev Growth Differ 2007; 48:411-8. [PMID: 16961588 DOI: 10.1111/j.1440-169x.2006.00880.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mi-2, the central component of the nucleosome remodeling and histone deacetylation (NuRD) complex, is known as an SNF2-type ATP-dependent nucleosome remodeling factor. No morphological mutant phenotype of Drosophila Mi-2 (dMi-2) had been reported previously; however, we found that rare escapers develop into adult flies showing an extra bristle phenotype. The dMi-2 enhanced the phenotype of ac(Hw49c), which is a dominant gain-of-function allele of achaete (ac) and produces extra bristles. Consistent with these observations, the ac-expressing proneural clusters were expanded, and extra sensory organ precursors (SOP) were formed in the dMi-2 mutant wing discs. Immunostaining of polytene chromosomes showed that dMi-2 binds to the ac locus, and dMi-2 and acetylated hisotones distribute on polytene chromosomes in a mutually exclusive manner. The chromatin immunoprecipitation assay of the wing imaginal disc also demonstrated a binding of dMi-2 on the ac locus. These results suggest that the Drosophila Mi-2/NuRD complex functions in neuronal differentiation through the repression of proneural gene expression by chromatin remodeling and histone deacetylation.
Collapse
Affiliation(s)
- Yasutoyo Yamasaki
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | | |
Collapse
|
26
|
Altenhein B, Becker A, Busold C, Beckmann B, Hoheisel JD, Technau GM. Expression profiling of glial genes during Drosophila embryogenesis. Dev Biol 2006; 296:545-60. [PMID: 16762338 DOI: 10.1016/j.ydbio.2006.04.460] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 04/19/2006] [Accepted: 04/21/2006] [Indexed: 11/22/2022]
Abstract
In the central nervous system of Drosophila, the induction of the glial cell fate is dependent on the transcription factor glial cells missing (gcm). Though a considerable number of other genes have been shown to be expressed in all or in subsets of glial cells, the course of glial cell differentiation and subtype specification is only poorly understood. This prompted us to design a whole genome microarray approach comparing gcm gain-of-function and, for the first time, gcm loss-of-function genetics to wildtype in time course experiments along embryogenesis. The microarray data were analyzed with special emphasis on the temporal profile of differential regulation. A comparison of both experiments enabled us to identify more than 300 potential gcm target genes. Validation by in situ hybridization revealed expression in glial cells, macrophages, and tendon cells (all three cell types depend on gcm) for 70 genes, of which more than 50 had been unknown to be under gcm control. Eighteen genes are exclusively expressed in glial cells, and their dependence on gcm was confirmed in situ. Initial considerations regarding the role of the newly discovered glial genes are discussed based on gene ontology and the temporal profile and subtype specificity of their expression. This collection of glial genes provides an important basis for the clarification of the genetic network controlling various aspects of glial development and function.
Collapse
|
27
|
Zhang D, Zhou W, Yin C, Chen W, Ozawa R, Ang LH, Anandan L, Aigaki T, Hing H. Misexpression screen for genes altering the olfactory map in Drosophila. Genesis 2006; 44:189-201. [PMID: 16607613 DOI: 10.1002/dvg.20202] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite the identification of a number of guidance molecules, a comprehensive picture has yet to emerge to explain the precise anatomy of the olfactory map. From a misexpression screen of 1,515 P{GS} lines, we identified 23 genes that, when forcibly expressed in the olfactory receptor neurons, disrupted the stereotyped anatomy of the Drosophila antennal lobes. These genes, which have not been shown previously to control olfactory map development, encode novel proteins as well as proteins with known roles in axonal outgrowth and cytoskeletal remodeling. We analyzed Akap200, which encodes a Protein Kinase A-binding protein. Overexpression of Akap200 resulted in fusion of the glomeruli, while its loss resulted in misshapen and ectopic glomeruli. The requirement of Akap200 validates our screen as an effective approach for recovering genes controlling glomerular map patterning. Our finding of diverse classes of genes reveals the complexity of the mechanisms that underlie olfactory map development.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Cell and Developmental Biology, University of Illinois at Urbana-Champaign, 601 South Goodwin Avenue, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dallman JE, Allopenna J, Bassett A, Travers A, Mandel G. A conserved role but different partners for the transcriptional corepressor CoREST in fly and mammalian nervous system formation. J Neurosci 2005; 24:7186-93. [PMID: 15306652 PMCID: PMC6729183 DOI: 10.1523/jneurosci.0238-04.2004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Identification of conserved proteins that act to establish the neuronal phenotype has relied predominantly on structural homologies of the underlying genes. In the case of the repressor element 1 silencing transcription factor (REST), a central player in blocking the neuronal phenotype in vertebrate non-neural tissue, the invertebrate homolog is absent, raising the possibility that distinct strategies are used to establish the CNS of invertebrates. Using a yeast two-hybrid screen designed specifically to identify functional analogs of REST, we show that Drosophila melanogaster uses a strategy that is functionally similar to, but appears to have evolved independently of, REST. The gene at the center of the strategy in flies encodes the repressor Tramtrack88 (Ttk88), a protein with no discernable homology to REST but that nonetheless is able to interact with the same transcriptional partners. Ttk88 uses the REST corepressor Drosophila CoREST to coordinately regulate a set of genes encoding the same neuronal hallmarks that are regulated by REST in vertebrates. Our findings indicate that repression is an important mechanism for regulating neuronal phenotype across phyla and suggest that co-option of a similar corepressor complex occurred to restrict expression of genes critical for neuronal function to a compartmentalized nervous system.
Collapse
Affiliation(s)
- Julia E Dallman
- Howard Hughes Medical Institute, State University of New York, Stony Brook, Stony Brook, New York 11794, USA
| | | | | | | | | |
Collapse
|
29
|
Weber K, Johnson N, Champlin D, Patty A. Many P-element insertions affect wing shape in Drosophila melanogaster. Genetics 2004; 169:1461-75. [PMID: 15545659 PMCID: PMC1449561 DOI: 10.1534/genetics.104.027748] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A screen of random, autosomal, homozygous-viable P-element insertions in D. melanogaster found small effects on wing shape in 11 of 50 lines. The effects were due to single insertions and remained stable and significant for over 5 years, in repeated, high-resolution measurements. All 11 insertions were within or near protein-coding transcription units, none of which were previously known to affect wing shape. Many sites in the genome can affect wing shape.
Collapse
Affiliation(s)
- Kenneth Weber
- Department of Biological Sciences, University of Southern Maine, Portland, 04104-9300, USA.
| | | | | | | |
Collapse
|
30
|
Pi H, Huang SK, Tang CY, Sun YH, Chien CT. phyllopod is a target gene of proneural proteins in Drosophila external sensory organ development. Proc Natl Acad Sci U S A 2004; 101:8378-83. [PMID: 15148389 PMCID: PMC420402 DOI: 10.1073/pnas.0306010101] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Proneural basic helix-loop-helix (bHLH) proteins initiate neurogenesis in both vertebrates and invertebrates. The Drosophila Achaete (Ac) and Scute (Sc) proteins are among the first identified members of the large bHLH proneural protein family. phyllopod (phyl), encoding an ubiquitin ligase adaptor, is required for ac- and sc-dependent external sensory (ES) organ development. Expression of phyl is directly activated by Ac and Sc. Forced expression of phyl rescues ES organ formation in ac and sc double mutants. phyl and senseless, encoding a Zn-finger transcriptional factor, depend on each other in ES organ development. Our results provide the first example that bHLH proneural proteins promote neurogenesis through regulation of protein degradation.
Collapse
Affiliation(s)
- Haiwei Pi
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | |
Collapse
|
31
|
Edgar AJ, Dover SL, Lodrick MN, McKay IJ, Hughes FJ, Turner W. Bone morphogenetic protein-2 induces expression of murine zinc finger transcription factor ZNF450. J Cell Biochem 2004; 94:202-15. [PMID: 15526281 DOI: 10.1002/jcb.20299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The bone morphogenetic protein-2 (BMP-2) is a potent secreted factor that promotes osteoblast differentiation during development. Exposure to BMP-2 is sufficient to cause a lasting change in cell fate presumably by activating specific target genes. To identify genes downstream of BMP-2 we treated the murine pluripotent embryonic cell line, C3H10T1/2 that can be induced to form an osteoblastic phenotype, with 100 ng/ml BMP-2 for 24 h. Using suppression subtractive hybridisation we found the novel zinc finger transcription factor, ZNF450 was upregulated. The single-copy ZNF450 gene spans 15.6 kb on chromosome 10B1 and consists of seven exons, the first of which is untranslated. The open reading frame encodes a 710 reside protein. Analysis of the protein sequence reveals a highly conserved amino-terminal BTB/POZ dimerisation domain, an AT-hook motif, and eight C2H2 zinc fingers. Library screening identified a second mRNA isoform encoding a short protein isoform with one zinc finger. Using reverse transcriptase-real time PCR to measure mRNA expression we found that ZNF450, Runx2/Cbfa-1, and Sp7/osterix were induced by BMP-2 after 4 h in C2C12 myoblast cells. Treatment of C2C12 cells with BMP-2 causes a shift from a myoblastic to osteoblastic phenotype. ZNF450 was upregulated three to fivefold after 24 h in C3H10T1/2 cells and required 100 ng/ml BMP-2. Expression of the 3 kb major transcript was highest in liver, testis, and kidney. However, ZNF450 mRNA was found also in a wide range of adult tissues. The consistent induction of ZNF450 by BMP-2 after 4 h in three murine pluripotent cell lines suggests that ZNF450 may play a role in the BMP-2 signalling pathway.
Collapse
Affiliation(s)
- Alasdair J Edgar
- Department of Craniofacial Development, GKT Dental Institute, King's College, Guy's Hospital, London SE1 9RT, United Kingdom.
| | | | | | | | | | | |
Collapse
|
32
|
Baonza A, Murawsky CM, Travers AA, Freeman M. Pointed and Tramtrack69 establish an EGFR-dependent transcriptional switch to regulate mitosis. Nat Cell Biol 2002; 4:976-80. [PMID: 12447387 DOI: 10.1038/ncb887] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2002] [Revised: 10/21/2002] [Accepted: 10/21/2002] [Indexed: 02/04/2023]
Abstract
Cell division in animals must be regulated; during development, for example, proliferation often occurs in spatially and temporally restricted patterns, and loss of mitotic control underlies cancer. The epidermal growth factor receptor (EGFR) has been implicated extensively in the control of cell proliferation in metazoans; in addition, hyperactivity of the EGFR and its three relatives, ErbB2-ErbB4, are implicated in many cancers. But little is known about how these receptor tyrosine kinases regulate the cell cycle. In the developing Drosophila melanogaster imaginal eye disc, there is a single patterned mitosis that sweeps across the eye disc epithelium in the third larval instar. This 'second mitotic wave' is triggered by EGFR signalling and depends on expression of String, the Drosophila homologue of Cdc25 phosphatase, the ultimate regulator of mitosis in all eukaryotic cells. Here we show that two antagonistic transcriptional regulators, Pointed, an activator, and Tramtrack69, a repressor, directly regulate the transcription of string. The activity of at least one of these regulators, Pointed, is controlled by EGFR signalling. This establishes a molecular mechanism for how intercellular signalling can control string expression, and thereby cell proliferation.
Collapse
Affiliation(s)
- Antonio Baonza
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK
| | | | | | | |
Collapse
|