1
|
Zhai R, Liang Y, Shi R, Xie H. Challenges and improvements in multi-layer mucosa-adhesive films for oral diseases treatment and prognosis. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:663-687. [PMID: 39508677 DOI: 10.1080/09205063.2024.2422213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
Due to the complexity of oral physiology and pathology, the treatment of oral diseases faces multiple and complex clinical requirements. Mucosa-adhesive films (MAFs) with a single layer have demonstrated considerable potential in delivering therapeutic bioactive ingredients directly to the site of oral diseases. However, their functions are often hindered by certain factors such as limited loading capacity, poor site specificity, and sensitivity to mechanical stimuli. To overcome these limitations, the development of multi-layer MAFs has become a focal point for recent research. This involves the improvement of construction methods for multi-layer MAFs to minimize potential health risks from residual solvents, and conducting comprehensive in vivo studies to evaluate their safety and therapeutic efficacy more accurately, thus paving the way for their commercialization. Additionally, the exploration of multi-layer MAFs as personalized drug delivery systems could further broaden their application prospect. Precisely, multi-layer MAFs compensate for the shortcomings of current therapeutic strategies for oral diseases to a great extent, indicating a promising future in the market.
Collapse
Affiliation(s)
- Ruohan Zhai
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yaxian Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Ruijianghan Shi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Huixu Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Aza MK, Suberu A, Balogun M, Adegbola G, Sankoh MA, Oyediran T, Aderinto N, Olatunji G, Kokori E, Agbo CE. Nanotheranostics for gynecological cancers: a path forward for Africa. Med Oncol 2024; 42:34. [PMID: 39704911 DOI: 10.1007/s12032-024-02582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/07/2024] [Indexed: 12/21/2024]
Abstract
Nanoparticle-based therapies represent a transformative approach to managing gynecological cancers, offering targeted treatment strategies that minimize harm to healthy tissues while maximizing therapeutic efficacy. Despite their potential, implementing these advanced treatments in Africa is needed by a complex interplay of technological, economic, regulatory, and ethical challenges. This paper examines the current landscape of nanoparticle-based therapies, identifying critical barriers to their adoption, including inadequate infrastructure, high costs, and insufficient regulatory frameworks. Technological deficiencies manifest as a need for advanced nanoparticle synthesis, delivery, and diagnostics equipment, impeding research and clinical applications. Economically, the high production costs of nanoparticles, compounded by limited access to advanced diagnostic and treatment facilities, create significant financial barriers for healthcare systems and patients alike. Additionally, the regulatory environment needs to be more cohesive, characterized by a lack of established protocols and expertise to evaluate the unique properties of nanomedicines. However, opportunities for advancement exist through focused research and development initiatives. Targeted drug delivery systems, early detection methods, and immunotherapy integration are promising avenues to enhance treatment outcomes. Collaborative partnerships between African institutions and international research entities, alongside public-private collaborations, could bolster local capabilities in nanomedicine. To facilitate the integration of nanoparticle-based therapies, African governments must prioritize funding for nanomedicine research, create robust regulatory frameworks, and ensure equitable access to these innovative treatments. A concerted effort involving policy reforms, investment, and collaboration is essential for overcoming existing barriers and realizing the full potential of nanoparticle-based therapies in improving health outcomes for gynecological cancer patients across Africa.
Collapse
Affiliation(s)
- Mutia Kehwalla Aza
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | | | | | | | | | | | | | - Gbolahan Olatunji
- Johns Hopkins University, Bloomberg School of Public Health, Baltimore, USA
| | | | | |
Collapse
|
3
|
Soe HMSH, Loftsson T, Jansook P. The application of cyclodextrins in drug solubilization and stabilization of nanoparticles for drug delivery and biomedical applications. Int J Pharm 2024; 666:124787. [PMID: 39362296 DOI: 10.1016/j.ijpharm.2024.124787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Nanoparticles (NPs) have gained significant attention in recent years due to their potential applications in pharmaceutical formulations, drug delivery systems, and various biomedical fields. The versatility of colloidal NPs, including their ability to be tailored with various components and synthesis methods, enables drug delivery systems to achieve controlled release patterns, improved solubility, and increased bioavailability. The review discusses various types of NPs, such as nanocrystals, lipid-based NPs, and inorganic NPs (i.e., gold, silver, magnetic NPs), each offering unique advantages for drug delivery. Despite the promising potential of NPs, challenges such as physical instability and the need for surface stabilization remain. Strategies to overcome these challenges include the use of surfactants, polymers, and cyclodextrins (CDs). This review highlights the role of CDs in stabilizing colloidal NPs and enhancing drug solubility. The combination of CDs with NPs presents a synergistic approach that enhances drug delivery and broadens the range of biomedical applications. Additionally, the potential of CDs to enhance the stability and therapeutic efficacy of colloidal NPs, making them promising candidates for advanced drug delivery systems, is comprehensively reviewed.
Collapse
Affiliation(s)
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Phatsawee Jansook
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, 254 Phyathai Road, Pathumwan, Bangkok 10330, Thailand; Cyclodextrin Application and Nanotechnology-based Delivery Systems Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
4
|
Rykowska I, Michałkiewicz O, Nowak I, Nowak R. Drug-Modified Contact Lenses-Properties, Release Kinetics, and Stability of Active Substances with Particular Emphasis on Cyclosporine A: A Review. Molecules 2024; 29:2609. [PMID: 38893485 PMCID: PMC11173495 DOI: 10.3390/molecules29112609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The following review focuses on the manufacturing and parameterizing of ocular drug delivery systems (DDS) using polymeric materials to create soft contact lenses. It discusses the types of drugs embedded into contact lenses, the various polymeric materials used in their production, methods for assessing the mechanical properties of polymers, and techniques for studying drug release kinetics. The article also explores strategies for investigating the stability of active substances released from contact lenses. It specifically emphasizes the production of soft contact lenses modified with Cyclosporine A (CyA) for the topical treatment of specific ocular conditions. The review pays attention to methods for monitoring the stability of Cyclosporine A within the discussed DDS, as well as investigating the influence of polymer matrix type on the stability and release of CyA.
Collapse
Affiliation(s)
- Iwona Rykowska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (I.R.); (I.N.)
| | - Ola Michałkiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (I.R.); (I.N.)
| | - Iwona Nowak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (I.R.); (I.N.)
| | - Rafał Nowak
- Department of Ophthalmology, Military Institute of Medicine, ul. Szaserów 128, 04-141 Warsaw, Poland;
| |
Collapse
|
5
|
Arınmış K, Kıyan HT, Öztürk AA. Preparation, Characterization, Antioxidant Activities, and Determination of Anti-Alzheimer Effects of PLGA-Based DDSs Containing Ferulic Acid. ACS OMEGA 2024; 9:11321-11338. [PMID: 38497027 PMCID: PMC10938454 DOI: 10.1021/acsomega.3c07289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 03/19/2024]
Abstract
Nanoparticle (NP) systems have attracted the attention of researchers in recent years due to their advantages, such as modified release features, increased therapeutic efficacy, and reduced side effects. Ferulic acid (FA) has therapeutic effects such as anti-inflammatory, anti-Alzheimer's, antioxidant, antimicrobial, anticancer, antihyperlipidemic, and antidiabetic. In this study, FA-loaded PLGA-based NPs were prepared by a nanoprecipitation method and the effect of varying concentrations of Poloxamer 188 and Span 60 on NP properties was investigated. FA-loaded A-FA coded formulation was chosen as optimum. High encapsulation efficiency has been achieved due to the low affinity of FA to the water phase and, therefore, its lipophilic nature, which tends to migrate to the organic phase. It was determined that the release of FA from the A-FA was slower than pure FA and prolonged release in 24 h. Antioxidant and anti-Alzheimer's effects of A-FA coded NP formulation were investigated by biological activity studies. A-FA coded NP formulation showed strong DPPH free radical scavenging, ABTS cation decolorizing, and reducing antioxidant activity. Since it has both AChE inhibitor and antioxidant properties according to the results of its anti-Alzheimer activity, it was concluded that the formulation prepared in this study shows promise in the treatment of both oxidative stress-related diseases and Alzheimer's.
Collapse
Affiliation(s)
- Kübra
Nur Arınmış
- Graduate
School of Health Sciences, Faculty of Pharmacy, Department of Pharmaceutical
Technology, Anadolu University, Eskişehir 26470, Türkiye
| | - H. Tuba Kıyan
- Faculty
of Pharmacy, Department of Pharmacognosy, Anadolu University, Eskişehir 26470, Türkiye
| | - A. Alper Öztürk
- Faculty
of Pharmacy, Department of Pharmaceutical Technology, Anadolu University, Eskişehir 26470, Türkiye
| |
Collapse
|
6
|
Patel H, Li J, Bo L, Mehta R, Ashby CR, Wang S, Cai W, Chen ZS. Nanotechnology-based delivery systems to overcome drug resistance in cancer. MEDICAL REVIEW (2021) 2024; 4:5-30. [PMID: 38515777 PMCID: PMC10954245 DOI: 10.1515/mr-2023-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/24/2024] [Indexed: 03/23/2024]
Abstract
Cancer nanomedicine is defined as the application of nanotechnology and nanomaterials for the formulation of cancer therapeutics that can overcome the impediments and restrictions of traditional chemotherapeutics. Multidrug resistance (MDR) in cancer cells can be defined as a decrease or abrogation in the efficacy of anticancer drugs that have different molecular structures and mechanisms of action and is one of the primary causes of therapeutic failure. There have been successes in the development of cancer nanomedicine to overcome MDR; however, relatively few of these formulations have been approved by the United States Food and Drug Administration for the treatment of cancer. This is primarily due to the paucity of knowledge about nanotechnology and the fundamental biology of cancer cells. Here, we discuss the advances, types of nanomedicines, and the challenges regarding the translation of in vitro to in vivo results and their relevance to effective therapies.
Collapse
Affiliation(s)
- Harsh Patel
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Jiaxin Li
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan Province, China
| | - Letao Bo
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Riddhi Mehta
- St. John’s College of Liberal Arts and Sciences, St. John’s University, New York, NY, USA
| | - Charles R. Ashby
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Shanzhi Wang
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| | - Wei Cai
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, Hunan Province, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John’s University, New York, NY, USA
| |
Collapse
|
7
|
van Gent ME, Kłodzińska SN, Severin M, Ali M, van Doodewaerd BR, Bos E, Koning RI, Drijfhout JW, Nielsen HM, Nibbering PH. Encapsulation into hyaluronic acid-based nanogels improves the selectivity index of the snake cathelicidin Ab-Cath. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 52:102694. [PMID: 37394107 DOI: 10.1016/j.nano.2023.102694] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/20/2023] [Accepted: 06/15/2023] [Indexed: 07/04/2023]
Affiliation(s)
- Miriam E van Gent
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, the Netherlands.
| | - Sylvia N Kłodzińska
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Maureen Severin
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Muhanad Ali
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Bjorn R van Doodewaerd
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Erik Bos
- Electron Microscopy Facility, Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Roman I Koning
- Electron Microscopy Facility, Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Jan Wouter Drijfhout
- Department of Immunology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| | - Hanne M Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery (BioDelivery), Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Peter H Nibbering
- Department of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
| |
Collapse
|
8
|
Development of Solid Lipid Nanoparticles as Dry Powder: Characterization and Formulation Considerations. Molecules 2023; 28:molecules28041545. [PMID: 36838532 PMCID: PMC9967033 DOI: 10.3390/molecules28041545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Solid lipid nanoparticles (SLNs) are lipid-based colloidal systems used for the delivery of active compounds. Although SLNs have many benefits, they show important issues due to physical and chemical instability phenomena during storage. For these reasons, it is highly desirable to have a dried SLN formulation available. Therefore, the aim of the project was to identify suitable methods to obtain a dry powder formulation from an SLN suspension. The nanoparticle suspension was dried using both freeze- and spray-drying techniques. The suitability of these methods in obtaining SLN dry powders was evaluated from the analyses of nanotechnological parameters, system morphology and thermal behavior using differential scanning calorimetry. Results pointed out that both drying techniques, although at different yields, were able to produce an SLN dry powder suitable for pharmaceutical applications. Noteworthily, the freeze-drying of SLNs under optimized conditions led to a dry powder endowed with good reconstitution properties and technological parameters similar to the starting conditions. Moreover, freeze-thaw cycles were carried out as a pretest to study the protective effect of different cryoprotectants (e.g., glucose and mannitol with a concentration ranging from 1% to 10% w/v). Glucose proved to be the most effective in preventing particle growth during freezing, thawing, and freeze-drying processes; in particular, the optimum concentration of glucose was 1% w/v.
Collapse
|
9
|
Shin YB, Choi JY, Shin DH, Lee JW. Anticancer Evaluation of Methoxy Poly(Ethylene Glycol)- b-Poly(Caprolactone) Polymeric Micelles Encapsulating Fenbendazole and Rapamycin in Ovarian Cancer. Int J Nanomedicine 2023; 18:2209-2223. [PMID: 37152471 PMCID: PMC10162106 DOI: 10.2147/ijn.s394712] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/25/2023] [Indexed: 05/09/2023] Open
Abstract
Purpose We aimed to inhibit ovarian cancer (OC) development by interfering with microtubule polymerization and inhibiting mTOR signaling. To achieve this, previously developed micelles containing fenbendazole and rapamycin were applied. Methods Herein, we prepared micelles for drug delivery using fenbendazole and rapamycin at a 1:2 molar ratio and methoxy poly(ethylene glycol)-b-poly(caprolactone)(mPEG-b-PCL) via freeze-drying. We revealed their long-term storage capacity of up to 120 days. Furthermore, a cytotoxicity test was performed on the OC cell line HeyA8, and an orthotopic model was established for evaluating in vivo antitumor efficacy. Results Fenbendazole/rapamycin-loaded mPEG-b-PCL micelle (M-FR) had an average particle size of 37.2 ± 1.10 nm, a zeta potential of -0.07 ± 0.09 mV, and a polydispersity index of 0.20 ± 0.02. Additionally, the average encapsulation efficiency of fenbendazole was 75.7 ± 4.61% and that of rapamycin was 98.0 ± 1.97%. In the clonogenic assay, M-FR was 6.9 times more effective than that free fenbendazole/rapamycin. The in vitro drug release profile showed slower release in the combination formulation than in the single formulation. Conclusion There was no toxicity, and tumor growth was suppressed substantially by our formulation compared with that seen with the control. The findings of our study lay a foundation for using fenbendazole and rapamycin for OC treatment.
Collapse
Affiliation(s)
- Yu Been Shin
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
| | - Ju-Yeon Choi
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Dae Hwan Shin
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Republic of Korea
- Correspondence: Dae Hwan Shin, College of Pharmacy, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, 28160, Republic of Korea, Tel +82 43 261 2820, Fax +82 43 268 2732, Email
| | - Jeong-Won Lee
- Research Institute for Future Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Jeong-Won Lee, Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81, Irwon-ro, Gangnam-gu, Seoul, 06351, South Korea, Tel +82-2-3410-1382, Fax +82-2-3410-0630, Email
| |
Collapse
|
10
|
Ullah F, Iqbal Z, Khan A, Khan SA, Ahmad L, Alotaibi A, Ullah R, Shafique M. Formulation Development and Characterization of pH Responsive Polymeric Nano-Pharmaceuticals for Targeted Delivery of Anti-Cancer Drug (Methotrexate). Front Pharmacol 2022; 13:911771. [PMID: 35860013 PMCID: PMC9291017 DOI: 10.3389/fphar.2022.911771] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/11/2022] [Indexed: 11/15/2022] Open
Abstract
Oral administration of pH sensitive/stimuli responsive nanoparticles are gaining importance because of the limited side effects, minimum dose and controlled drug release. The objective of this study was to develop and evaluate pH sensitive polymeric nanoparticles for methotrexate with the aim to maximize the drug release at target site. In the presented study, pH sensitive polymeric nanoparticles of methotrexate were developed through modified solvent evaporation technique using polymer Eudragit S100. Different process parameters like drug to polymer ratio, speed of sonication, concentration of surfactant and time of sonication were optimized by evaluating their effects on particle size, PDI, zeta potential, entrapment/encapsulation efficiency. The developed formulations were evaluated for their size, polydispersity (PDI), zeta potential, encapsulation efficiency, XRD, scanning electron microscopy, in-vitro drug release and stability studies. Best results were obtained with poloxamer-407 and PVA and were selected as surfactants. Physicochemical characterization of the developed formulations showed that the particle size lies in the range 165.7 ± 1.85–330.4 ± 4.19, PDI 0.119 ± 0.02–0.235 ± 0.008, zeta potential −0.163 ± 0.11–−5.64 ± 0.36 mV, and encapsulation efficiency more than 61%. The results of scanning electron microscopy revealed that nanoparticles have regular geometry with spherical shape. Initially the drug release occur through diffusion followed by erosion. The present studies showed that MTX-ES100 nanoparticles prepared during this study have the desired physicochemical properties, surface morphology and release characteristics used to target the desired organs.
Collapse
Affiliation(s)
- Farhad Ullah
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Zafar Iqbal
- Department of Pharmacy, University of Peshawar, Peshawar, Pakistan
| | - Amjad Khan
- Department of Pharmacy, Kohat University of Science and Technology (KUST), Kohat, Pakistan
- *Correspondence: Amjad Khan, ; Muhammad Shafique,
| | - Saeed Ahmad Khan
- Department of Pharmacy, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | - Lateef Ahmad
- Department of Pharmacy, University of Swabi, Swabi, Pakistan
| | - Amal Alotaibi
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Riaz Ullah
- Medicinal, Aromatic, and Poisonous Plants Research Center, Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muhammad Shafique
- Department of Pharmaceutical Sciences, College of Pharmacy-Boys, Al-Dawadmi Campus, Shaqra University, Shaqra, Saudi Arabia
- *Correspondence: Amjad Khan, ; Muhammad Shafique,
| |
Collapse
|
11
|
Nasrpour S, Yousefi G, Niakosari M, Aminlari M. Nanoencapsulation of saffron crocin into chitosan/alginate interpolyelectrolyte complexes for oral delivery: A Taguchi approach to design optimization. J Food Sci 2022; 87:1148-1160. [PMID: 35150139 DOI: 10.1111/1750-3841.16052] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/22/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022]
Abstract
Crocin, as a nutraceutical component of saffron (Crocus sativus L.), possesses numerous therapeutic effects. In the current study, a crocin-loaded chitosan/alginate (CS/ALG) nanocarrier was developed for oral delivery. The influence of preparation variables including pH and the concentrations of CS, ALG, and calcium chloride (CaCl2 ) on encapsulation efficiency (EE%) and loading efficiency (LE%) of CS/ALG nanoparticles (NPs) was evaluated by L9 Taguchi orthogonal array (OA). The results showed that at 0.25% w/v CS, 0.1% w/v ALG, pH 4.5, and absence of CaCl2 , crocin was loaded into CS/ALG NPs with EE% and LE% of 91.5% and 27.4%, respectively. Ultrasonication reduced the particle sizes (PSs) up to 100 nm, and freeze-dried NPs reproduced the particles with average size of 90 nm. Scanning electron microscopy (SEM) was successfully used to characterize the structure and morphology of freeze-dried NPs, confirming very fine NPs having sizes less than 100 nm. Crocin loaded into NPs showed higher stability in simulated gastric pH 2 compared to free crocin (2.1% and 7.5% degradation at 60 min, respectively). Furthermore, a pH-dependent sustained crocin release was observed with faster release at pH 2. Overall, the very small PS along with high encapsulation efficiency and stability can enhance crocin oral bioavailability making CS/ALG nanovehicles promising as an effective delivery system. PRACTICAL APPLICATION: Crocin as a functional component of Saffron is not sufficiently stable in gastrointestinal tract and its absorption is not complete. Chitosan/Alginate nanoparticles can encapsulate it efficiently, protect it and enhance its absorption orally. The availability and simplicity of the materials and equipments employed in current research provide the possibility to industrial scale up of the Crocin nanoparticles.
Collapse
Affiliation(s)
- Samira Nasrpour
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Gholamhossein Yousefi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.,Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrdad Niakosari
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Mahmoud Aminlari
- Department of Food Science and Technology, College of Agriculture, Shiraz University, Shiraz, Iran.,Department of Biochemistry, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
12
|
Terada T, Kanou M, Hashimoto Y, Tanimoto M, Sugimoto M. Microfluidic Preparation of Nanoparticles Using Poly(ethylene Glycol)-distearoylphosphatidylethanolamine for Solubilizing Poorly Soluble Drugs. J Pharm Sci 2021; 111:1709-1718. [PMID: 34863973 DOI: 10.1016/j.xphs.2021.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
Microfluidic systems have shown promise for the production of nanoparticles from mixtures of aqueous and organic solutions, including liposomes, oil-in-water nanoemulsions, and lipid nanoparticles. They offer important practical advantages, including low reagent consumption, parallelization, and automation, and are ideally suited to high-throughput optimization and scale-up. In this study, we developed a new method for the formulation of nanoparticles of poorly soluble drug compounds. The nanoparticles, prepared by microfluidic mixing using only poly(ethylene glycol)-distearoylphosphatidylethanolamine (PEG-DSPE), were highly stable and uniform in size. By mixing an organic solution of poorly soluble cyclosporine A and PEG-DSPE with water in the microfluidic device, amorphous cyclosporine A nanoparticles (CsA-NPs), with an encapsulation efficiency of approximately 90% and a particle size of 100-200 nm, were obtained. Analysis of the microfluidic process parameters revealed that particle size distribution was significantly controlled by the flow rate ratio. The obtained CsA-NPs were stable for up to 150 days at room temperature, and the pharmacokinetic profile was similar to that of the commercial formulation containing Cremophor EL, which has been reported to induce serious adverse effects after intravenous administration. These findings provide a useful technical platform for the safe solubilization of poorly soluble compounds and their subsequent pharmaceutical development.
Collapse
Affiliation(s)
- Takeshi Terada
- Pharmaceutical Research Department, Mitsubishi Tanabe Pharma Corporation, 3-16-89, Kashima, Yodogawa-ku, Osaka-shi, Osaka, 532-8505, Japan..
| | - Masahito Kanou
- Pharmaceutical Research Department, Mitsubishi Tanabe Pharma Corporation, 3-16-89, Kashima, Yodogawa-ku, Osaka-shi, Osaka, 532-8505, Japan
| | - Yousuke Hashimoto
- Pharmaceutical Research Department, Mitsubishi Tanabe Pharma Corporation, 3-16-89, Kashima, Yodogawa-ku, Osaka-shi, Osaka, 532-8505, Japan
| | - Masahiko Tanimoto
- Pharmaceutical Research Department, Mitsubishi Tanabe Pharma Corporation, 3-16-89, Kashima, Yodogawa-ku, Osaka-shi, Osaka, 532-8505, Japan
| | - Masaaki Sugimoto
- Pharmaceutical Research Department, Mitsubishi Tanabe Pharma Corporation, 3-16-89, Kashima, Yodogawa-ku, Osaka-shi, Osaka, 532-8505, Japan
| |
Collapse
|
13
|
Gao X, Gong J, Cai Y, Wang J, Wen J, Peng L, Ji H, Jiang S, Guo D. Chitosan modified squalene nanostructured lipid carriers as a promising adjuvant for freeze-dried ovalbumin vaccine. Int J Biol Macromol 2021; 188:855-862. [PMID: 34411614 DOI: 10.1016/j.ijbiomac.2021.08.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/30/2021] [Accepted: 08/10/2021] [Indexed: 02/07/2023]
Abstract
As immune adjuvants assisting vaccines, nanoparticle delivery systems have been widely exploited. Squalene, the major ingredient of approved adjuvant MF59, has great potential in activating immune responses. In the current study, model antigen ovalbumin (OVA) was encapsulated into squalene-based nanostructured lipid carriers (NLCs), and the chitosan, a cationic polysaccharide, was used for modifying nanoparticles to develop a functionalized and cationic nanoparticle delivery system (OVA-csNLCs). Firstly, the optimal formulation of csNLCs was successfully screened out, and had hydrodynamic diameter of 235.80 ± 5.99 nm and zeta potential of 34.90 ± 6.95 mV. Then, the generated OVA-csNLCs had no significant difference in hydrodynamic diameter and exhibited lower zeta potential of 19.03 ± 0.31 mV and high encapsulation efficiency of 83.4%. Sucrose (10%, w/w) was selected as optimal lyoprotectant, exhibiting good stability of OVA-csNLCs in the form of freeze-dried powder. More importantly, the OVA-csNLCs effectively promoted OVA antigen uptake by macrophage, significantly enhanced the level of OVA-specific IgG, and induced a Th2-based immune response in vivo. Furthermore, mice immunization experiment demonstrated that OVA-csNLCs had well biocompatibility and facilitated spleen lymphocytes proliferation. Above findings indicate that chitosan modified squalene nanostructured lipid carriers show promise as antigen delivery system and an open adjuvant platform.
Collapse
Affiliation(s)
- Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jiahao Gong
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Ying Cai
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jiacai Wang
- Shandong Vocational Animal Science and Veterinary College, 88 Shengli East Street, Weifang 261061, China
| | - Jia Wen
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Lin Peng
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Hui Ji
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Shanxiang Jiang
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, Center for Veterinary Drug Research and Evaluation, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.
| |
Collapse
|
14
|
Iles B, Ribeiro de Sá Guimarães Nolêto I, Dourado FF, de Oliveira Silva Ribeiro F, de Araújo AR, de Oliveira TM, Souza JMT, Barros AB, Sousa GC, de Jesus Oliveira AC, da Silva Martins C, de Oliveira Viana Veras M, de Carvalho Leitão RF, de Souza de Almeida Leite JR, da Silva DA, Medeiros JVR. Alendronate sodium-polymeric nanoparticles display low toxicity in gastric mucosal of rats and Ofcol II cells. NANOIMPACT 2021; 24:100355. [PMID: 35559814 DOI: 10.1016/j.impact.2021.100355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 06/15/2023]
Abstract
The use of bisphosphonates constitutes the gold-standard therapy for the control and treatment of bone diseases. However, its long-term use may lead to gastric problems, which limits the treatment. Thus, this study aimed to formulate a nanostructured system with biodegradable polymers for the controlled release of alendronate sodium. The nanoparticles were characterized, and its gastric toxicity was investigated in rats. The synthesis process proved to be effective for encapsulating alendronate sodium, exhibiting nanoparticles with an average size of 51.02 nm and 98.5% of alendronate sodium incorporation. The release tests demonstrated a controlled release of the drug in 420 min, while the morphological analyzes showed spherical shapes and no apparent roughness. The biological tests demonstrated that the alendronate sodium nanoformulation reversed the gastric lesions, maintaining the normal levels of malondialdehyde and myeloperoxidase. Also, the encapsulated alendronate sodium showed no toxicity in murine osteoblastic cells, even at high concentrations.
Collapse
Affiliation(s)
- Bruno Iles
- Laboratory of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil; Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Isabela Ribeiro de Sá Guimarães Nolêto
- Laboratory of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil; Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Flaviane França Dourado
- Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Fábio de Oliveira Silva Ribeiro
- Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Alyne Rodrigues de Araújo
- Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Taiane Maria de Oliveira
- Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Jessica Maria Teles Souza
- Parnaíba Delta Cell Culture Laboratory (LCC-Delta), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Ayslan Batista Barros
- Parnaíba Delta Cell Culture Laboratory (LCC-Delta), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Gabrielle Costa Sousa
- Laboratory of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil; Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Antônia Carla de Jesus Oliveira
- Quality Control Center for Medicines and Correlates - NCQMC, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Av. Prof. Moraes Rego, 1235 - University City, Recife, PE 50670-901, Brazil
| | - Conceição da Silva Martins
- Nucleus of Studies in Microscopy and Image Processing - NEMPI, Federal University of Ceará, Rua Alexandre Baraúna, 994 - Rodolfo Teófilo, Fortaleza, CE 60430-160, Brazil
| | - Mariana de Oliveira Viana Veras
- Nucleus of Studies in Microscopy and Image Processing - NEMPI, Federal University of Ceará, Rua Alexandre Baraúna, 994 - Rodolfo Teófilo, Fortaleza, CE 60430-160, Brazil
| | - Renata Ferreira de Carvalho Leitão
- Nucleus of Studies in Microscopy and Image Processing - NEMPI, Federal University of Ceará, Rua Alexandre Baraúna, 994 - Rodolfo Teófilo, Fortaleza, CE 60430-160, Brazil
| | - José Roberto de Souza de Almeida Leite
- Center for Research in Applied Morphology and Immunology - NuPMIA, University of Brasilia, Campus Darcy Ribeiro - Asa Norte-Brasília-DF, CEP 70.910-900 Brasilia, Brazil
| | - Durcilene Alves da Silva
- Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Jand Venes Rolim Medeiros
- Laboratory of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of the Parnaíba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil; Biotechnology and Biodiversity Research Center (Biotec), Federal University of the Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil.
| |
Collapse
|
15
|
Modelling and Control of Corticotropin Permeation from Hydrogels across a Natural Membrane in the Presence of Albumin. Processes (Basel) 2021. [DOI: 10.3390/pr9091674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
(1) Background: Skin is a difficult barrier to overcome, especially for molecules with masses greater than 500 Da. It has been suggested that albumin may contribute to more effective penetration of many therapeutic substances. In this study, an attempt was made to use albumin in semi-solid formulations to increase the skin penetration of another peptide—corticotropin (ACTH). (2) Methods: Hydrogels were prepared at two concentrations: 15 mg/g and 20 mg/g corticotropin, then albumin was added to them in different stoichiometric ratios. The degree of ACTH release from hydrogels, both with and without albumin addition, was investigated. For selected hydrogels the process of corticotropin permeation through a model membrane, i.e., pig skin, was examined. (3) Results: The study of corticotropin release showed that the addition of albumin, depending on its amount, may delay or increase the release process. Similarly, a study of ACTH permeation through porcine skin showed that albumin can delay or increase and accelerate ACTH permeation. (4) Conclusions: Hydrogel, applicated on the skin surface, may prove to be a beneficial and convenient solution for patients. It is an innovative way of application ACTH that bypasses the gastrointestinal tract and may result in increased availability of the peptide and its efficacy.
Collapse
|
16
|
Lyophilization of Nanocapsules: Instability Sources, Formulation and Process Parameters. Pharmaceutics 2021; 13:pharmaceutics13081112. [PMID: 34452072 PMCID: PMC8400524 DOI: 10.3390/pharmaceutics13081112] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 01/20/2023] Open
Abstract
Polymeric nanocapsules have gained more and more interest in the medical sciences. Their core-shell structure offers numerous advantages, especially regarding their use as drug delivery systems. This review begins by presenting the different intrinsic sources of the instability of nanocapsules. The physical and chemical potential instabilities of nanocapsules reduce their shelf-life and constitute a barrier to their clinical use and to their commercialization. To overcome these issues, lyophilization is often used as a process of choice in the pharmaceutical industry especially when labile compounds are used. The state of the art of lyophilization nanocapsules is reviewed. The formulation properties and the process parameters are discussed for a complete understanding of their impact on the stability and storage of the final dried product. To assess the quality of the dried product, various characterization methods are also discussed.
Collapse
|
17
|
Hosseinpour S, Cao Y, Liu J, Xu C, Walsh LJ. Efficient transfection and long-term stability of rno-miRNA-26a-5p for osteogenic differentiation by large pore sized mesoporous silica nanoparticles. J Mater Chem B 2021; 9:2275-2284. [PMID: 33606863 DOI: 10.1039/d0tb02756a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNA (miRNA) based therapy for bone repair has shown promising results for regulating stem cell proliferation and differentiation, an efficient and stable vector for delivery of microRNA delivery is needed. The present study explored the stability and functionality of lyophilized mesoporous silica nanoparticles with core-cone structure and coated with polyethylenimine (MSN-CC-PEI) as a system for delivering Rattus norvegicus (rno)-miRNA-26a-5p into rat marrow mesenchymal cells (rBMSCs) to promote their osteogenic differentiation. We assessed the cellular uptake and transfection efficiency of nanoparticles loaded with labelled miRNA using confocal laser scanning microscopy and flow cytometry, and the cell viability using the MTT assay. The expression levels of osteogenic genes after one and two weeks were analysed by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Extracellular matrix deposition and mineralization at 3 weeks were evaluated using Picro Sirius red and Alizarin red staining. We also assessed the performance of the delivery system after long term storage, by freeze drying rno-miRNA-26a-5p@MSN-CC-PEI with 5% trehalose and keeping them at -30 °C for 3 and 6 months. Osteogenic differentiation, matrix deposition, and mineralization were all significantly increased by rno-miRNA-26a-5p. In addition, this enhancement was not significantly altered by lyophilization and storage. Overall, these findings support the concept of MSN-CC-PEI as a delivery system for gene therapy. The complex of rno-miRNA-26a-5p@MSN-CC-PEI could efficiently transfect rBMSCs and enhance their osteogenic differentiation. In addition, the lyophilized complexes remain functional after 6 months of storage.
Collapse
Affiliation(s)
- Sepanta Hosseinpour
- School of Dentistry, The University of Queensland, Herston QLD 4006, Australia.
| | - Yuxue Cao
- School of Dentistry, The University of Queensland, Herston QLD 4006, Australia.
| | - Jingyu Liu
- Taiyuan University of Technology, Taiyuan, 030024, China
| | - Chun Xu
- School of Dentistry, The University of Queensland, Herston QLD 4006, Australia.
| | - Laurence J Walsh
- School of Dentistry, The University of Queensland, Herston QLD 4006, Australia.
| |
Collapse
|
18
|
Lei C, Liu XR, Chen QB, Li Y, Zhou JL, Zhou LY, Zou T. Hyaluronic acid and albumin based nanoparticles for drug delivery. J Control Release 2021; 331:416-433. [DOI: 10.1016/j.jconrel.2021.01.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/22/2022]
|
19
|
Fathi F, Chaghamirzaei P, Allahveisi S, Ahmadi-Kandjani S, Rashidi MR. Investigation of optical and physical property in opal films prepared by colloidal and freeze-dried microspheres. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Hakeem EA, El-Mahrouk GM, Abdelbary G, Teaima MH. Freeze-Dried Clopidogrel Loaded Lyotropic Liquid Crystal: Box-Behnken Optimization, In-Vitro and In-Vivo Evaluation. Curr Drug Deliv 2021; 17:207-217. [PMID: 31969101 DOI: 10.2174/1567201817666200122161433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/20/2019] [Accepted: 12/31/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Clopidogrel (CLP) suffers from extensive first pass metabolism results in a negative impact on its oral systemic bioavailability. Cubosomes are Lyotropic Liquid Crystalline (LLC) nano-systems comprising monoolein, a steric stabilizer and an aqueous system, it considered a promising carrier for different pharmaceutical compounds. Box-Behnken Design (BBD) is an efficient tool for process analysis and optimization skipping forceful treatment combinations. OBJECTIVE The study was designed to develop freeze-dried clopidogrel loaded LLC (cubosomes) for enhancement of its oral bioavailability. METHODS A 33 BBD was adopted, the studied independent factors were glyceryl monooleate (GMO lipid phase), Pluronic F127 (PL F127steric stabilizer) and polyvinyl alcohol powder (stabilizer). Particle Size (PS), Polydispersity Index (PDI) and Zeta Potential (ZP) were set as independent response variables. Seventeen formulae were prepared in accordance with the bottom up approach and in-vitro evaluated regarding PS, PDI and ZP. Statistical analysis and optimization were achieved using design expert software®, then the optimum suggested formula was prepared, in-vitro revaluated, freeze-dried with 3% mannitol (cryoprotectant), solid state characterized and finally packed in hard gelatin capsule for comparative in-vitro release and in-vivo evaluation to Plavix®. RESULTS Results of statistical analysis of each individual response revealed a quadratic model for PS and PDI where a linear model for ZP. The optimum suggested formula with desirability factor equal 0.990 consisting of (200 mg GMO, 78.15 mg PL F127 and 2% PVA). LC/MS/MS study confirmed significant higher Cmax, AUC0-24h and AUC0-∞ than that of Plavix®. CONCLUSION The results confirm the capability of developed carrier to overcome the low oral bioavailability.
Collapse
Affiliation(s)
- Eman A Hakeem
- Department of pharmaceutics and pharmaceutical industry, Faculty of pharmacy, Cairo University, Cairo, Egypt
| | - Galal M El-Mahrouk
- Department of pharmaceutics and pharmaceutical industry, Faculty of pharmacy, Cairo University, Cairo, Egypt
| | - Ghada Abdelbary
- Department of pharmaceutics and pharmaceutical industry, Faculty of pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud H Teaima
- Department of pharmaceutics and pharmaceutical industry, Faculty of pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
21
|
Shen AM, Minko T. Pharmacokinetics of inhaled nanotherapeutics for pulmonary delivery. J Control Release 2020; 326:222-244. [PMID: 32681948 PMCID: PMC7501141 DOI: 10.1016/j.jconrel.2020.07.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/25/2020] [Accepted: 07/10/2020] [Indexed: 10/23/2022]
Abstract
Pulmonary delivery of lipid-based nanotherapeutics by inhalation presents an advantageous alternative to oral and intravenous routes of administration that avoids enzymatic degradation in gastrointestinal tract and hepatic first pass metabolism and also limits off-target adverse side effects upon heathy tissues. For lung-related indications, inhalation provides localized delivery in order to enhance therapeutic efficacy at the site of action. Optimization of physicochemical properties, selected drug and inhalation format can greatly influence the pharmacokinetic behavior of inhaled nanoparticle systems and their payloads. The present review analyzes a wide range of nanoparticle systems, their formulations and consequent effect on pharmacokinetic distribution of delivered active components after inhalation.
Collapse
Affiliation(s)
- Andrew M Shen
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Tamara Minko
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA; Environmental and Occupational Health Science Institute, Piscataway, NJ 08854, USA.
| |
Collapse
|
22
|
Mohammady M, Mohammadi Y, Yousefi G. Freeze-Drying of Pharmaceutical and Nutraceutical Nanoparticles: The Effects of Formulation and Technique Parameters on Nanoparticles Characteristics. J Pharm Sci 2020; 109:3235-3247. [PMID: 32702373 DOI: 10.1016/j.xphs.2020.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/23/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
Abstract
Nanoparticles (NPs) are of the most interesting novel vehicles for effective drug delivery to humans. Freeze drying is known as an engaging process to improve the long lasting stability of NPs formulations. This study aims to elucidate the importance of various parameters involving in freeze-drying of the most common pharmaceutical/nutraceutical NPs including nanosuspensions, nanocrystals (NCs), cocrystals/nanococrystals, nanoemulsions (NEs), nanocapsules (NCPs) and nanospheres (NSPs). Regarding this, the therapeutic goals of NPs and specifications of drug must be considered. According to our survey, the most influential factors for achieving optimum results include type and concentration of cryoprotectant/lyoprotectant, stabilizer structure and concentration, the NPs concentration in solution, freezing, annealing, and drying rate, the interaction between protectants and stabilizer, solvent type and antisolvent to solvent ratio. The study shows that for each class of NPs, specific variables are of highest significance and should be optimized. For instance, about NCs, freezing rate and antisolvent/solvent ratio should be particularly considered and for emulsified NPs, the best results have been obtained by 5-20% of saccharides as cryoprotectants. These findings suggest that to obtain a product with the lowest aggregation and particle size (PS), optimization of the effective factors in formulation and lyophilization process are essential.
Collapse
Affiliation(s)
- Mohsen Mohammady
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Yasaman Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran
| | - Gholamhossein Yousefi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, P.O. Box 71345-1583, Shiraz, Iran; Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
23
|
Concentration of Polymer Nanoparticles Through Dialysis: Efficacy and Comparison With Lyophilization for PEGylated and Zwitterionic Systems. J Pharm Sci 2020; 109:2607-2614. [PMID: 32422318 DOI: 10.1016/j.xphs.2020.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/15/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022]
Abstract
Biodegradable polymeric nanoparticles (NPs) are attracting increasing attention as carriers for drug delivery. However, one of the main factors limiting their transition to the market is their premature degradation and release of the payload during the storage. Therefore, for increasing the formulation shelf-life, the removal of water is of paramount importance. In this work, we synthesized both polyethylene glycol (PEG)-stabilized and zwitterionic NPs via Reversible Addition Fragmentation Chain Transfer (RAFT) Polymerization. We demonstrated that lyophilization leads the PEGylated NPs to irreversible aggregation, while the stability of the zwitterionic NPs was preserved only using a cryoprotectant. Therefore, we developed an alternative method for the NP concentration, based on the dialysis against a concentrated PEG solution. This method was optimized in terms of concentration factor (Fc), the ratio between the final and initial NP concentration, by acting on the PEG concentration in the dialysis medium, on its volume and on the initial NP concentration. With this approach, Fc up to 40 can be achieved in less than 10 h, preserving the possibility of redispersing the NPs to their original particle size distribution. Therefore, the dialysis proposed herein is a valuable alternative to lyophilization for the concentration of polymer NPs preserving their stability.
Collapse
|
24
|
Elechalawar CK, Hossen MN, Shankarappa P, Peer CJ, Figg WD, Robertson JD, Bhattacharya R, Mukherjee P. Targeting Pancreatic Cancer Cells and Stellate Cells Using Designer Nanotherapeutics in vitro. Int J Nanomedicine 2020; 15:991-1003. [PMID: 32103952 PMCID: PMC7025663 DOI: 10.2147/ijn.s234112] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/15/2020] [Indexed: 01/05/2023] Open
Abstract
INTRODUCTION AND OBJECTIVE Pancreatic cancer (PC) is characterized by a robust desmoplastic environment, which limits the uptake of the standard first-line chemotherapeutic drug gemcitabine. Enhancing gemcitabine delivery to the complex tumor microenvironment (TME) is a major clinical challenge. Molecular crosstalk between pancreatic cancer cells (PCCs) and pancreatic stellate cells (PSCs) plays a critical role in desmoplastic reaction in PCs. Herein, we report the development of a targeted drug delivery system to inhibit the proliferation of PCCs and PSCs in vitro. Using gold nanoparticles as the delivery vehicle, the anti-EGFR antibody cetuximab (C225/C) as a targeting agent, gemcitabine as drug and polyethylene glycol (PEG) as a stealth molecule, we created a series of targeted drug delivery systems. METHODS Fabricated nanoconjugates were characterized by various physicochemical techniques such as UV-Visible spectroscopy, transmission electron microscopy, HPLC and instrumental neutron activation analysis (INAA). RESULTS AND CONCLUSION Targeted gemcitabine delivery systems containing mPEG-SH having molecular weights of 550 Da or 1000 Da demonstrated superior efficacy in reducing the viability of both PCCs and PSCs as compared to their non-targeted counterparts. EGFR-targeted pathway was further validated by pre-treating cells with C225 followed by determining cellular viability. Taken together, in our current study we have developed a PEGylated targeted nanoconjugate ACG44P1000 that showed enhanced selectivity towards pancreatic cancer cells and pancreatic stellate cells, among others, for gemcitabine delivery. We will investigate the ability of these optimized conjugates to inhibit desmoplasia and tumor growth in vivo in our future studies.
Collapse
Affiliation(s)
- Chandra Kumar Elechalawar
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK73104, USA
| | - Md Nazir Hossen
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK73104, USA
| | - Priya Shankarappa
- Clinical Pharmacology Program, National Cancer Institute, Bethesda, MD20892, USA
| | - Cody J Peer
- Clinical Pharmacology Program, National Cancer Institute, Bethesda, MD20892, USA
| | - William D Figg
- Clinical Pharmacology Program, National Cancer Institute, Bethesda, MD20892, USA
| | - J David Robertson
- Department of Chemistry and University of Missouri Research Reactor, University of Missouri, Columbia, MO65211, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK73104, USA
| | - Priyabrata Mukherjee
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK73104, USA
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK73104, USA
| |
Collapse
|
25
|
Roces CB, Hussain MT, Schmidt ST, Christensen D, Perrie Y. Investigating Prime-Pull Vaccination through a Combination of Parenteral Vaccination and Intranasal Boosting. Vaccines (Basel) 2019; 8:vaccines8010010. [PMID: 31906072 PMCID: PMC7157738 DOI: 10.3390/vaccines8010010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/24/2019] [Accepted: 12/26/2019] [Indexed: 01/09/2023] Open
Abstract
Formulation of inhalable delivery systems containing tuberculosis (TB) antigens to target the site of infection (lungs) have been considered for the development of subunit vaccines. Inert delivery systems such as poly (lactic-co-glycolic acid) (PLGA) are an interesting approach due to its approval for human use. However, PLGA suffers hydrolytic degradation when stored in a liquid environment for prolonged time. Therefore, in this study, nano- and microparticles composed of different PLGA copolymers (50:50, 75:25 and 85:15), sucrose (10% w/v) and L-leucine (1% w/v) encapsulating H56 TB vaccine candidate were produced as dried powders. In vitro studies in three macrophage cell lines (MH-S, RAW264.7 and THP-1) showed the ability of these cells to take up the formulated PLGA:H56 particles and process the antigen. An in vivo prime-pull immunisation approach consisting of priming with CAF01:H56 (2 × subcutaneous (s.c.) injection) followed by a mucosal boost with PLGA:H56 (intranasal (i.n.) administration) demonstrated the retention of the immunogenicity of the antigen encapsulated within the lyophilised PLGA delivery system, although no enhancing effect could be observed compared to the administration of antigen alone as a boost. The work here could provide the foundations for the scale independent manufacture of polymer delivery systems encapsulating antigens for inhalation/aerolisation to the lungs.
Collapse
Affiliation(s)
- Carla B. Roces
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (C.B.R.); (M.T.H.)
| | - Maryam T. Hussain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (C.B.R.); (M.T.H.)
| | - Signe T. Schmidt
- Center for Vaccine Research, Statens Serum Institut, 2300 Copenhagen, Denmark; (S.T.S.); (D.C.)
| | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut, 2300 Copenhagen, Denmark; (S.T.S.); (D.C.)
| | - Yvonne Perrie
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (C.B.R.); (M.T.H.)
- Correspondence:
| |
Collapse
|
26
|
Ayat NR, Sun Z, Sun D, Yin M, Hall RC, Vaidya AM, Liu X, Schilb AL, Scheidt JH, Lu ZR. Formulation of Biocompatible Targeted ECO/siRNA Nanoparticles with Long-Term Stability for Clinical Translation of RNAi. Nucleic Acid Ther 2019; 29:195-207. [PMID: 31140918 PMCID: PMC6686697 DOI: 10.1089/nat.2019.0784] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 03/29/2019] [Indexed: 12/22/2022] Open
Abstract
Nanoparticle based siRNA formulations often suffer from aggregation and loss of function during storage. We in this study report a frozen targeted RGD-polyethylene glycol (PEG)-ECO/siβ3 nanoparticle formulation with a prolonged shelf life and preserved nanoparticle functionality. The targeted RGD-PEG-ECO/siβ3 nanoparticles are formed by step-wised self-assembly of RGD-PEG-maleimide, ECO, and siRNA. The nanoparticles have a diameter of 224.5 ± 9.41 nm and a zeta potential to 45.96 ± 3.67 mV in water and a size of 234.34 ± 3.01 nm and a near neutral zeta potential in saline solution. The addition of sucrose does not affect their size and zeta potential and substantially preserves the integrity and biological activities of frozen and lyophilized formulations of the targeted nanoparticles. The frozen formulation with as low as 5% sucrose retains nanoparticle integrity (90% siRNA encapsulation), size distribution (polydispersity index [PDI] ≤20%), and functionality (at least 75% silencing efficiency) at -80°C for at least 1 year. The frozen RGD-PEG-ECO/siβ3 nanoparticle formulation exhibits excellent biocompatibility, with no adverse effects on hemocompatibility and minimal immunogenicity. As RNAi holds the promise in treating the previously untreatable diseases, the frozen nanoparticle formulation with the low sucrose concentration has the potential to be a delivery platform for clinical translation of RNAi therapeutics.
Collapse
Affiliation(s)
- Nadia R. Ayat
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Zhanhu Sun
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Da Sun
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Michelle Yin
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Ryan C. Hall
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Amita M. Vaidya
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Xujie Liu
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Andrew L. Schilb
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Josef H. Scheidt
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio
| | - Zheng-Rong Lu
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
27
|
McComiskey KPM, McDonagh A, Tajber L. Isolation of Itraconazole Nanostructured Microparticles via Spray Drying with Rational Selection of Optimum Base for Successful Reconstitution and Compaction. AAPS PharmSciTech 2019; 20:217. [PMID: 31172323 DOI: 10.1208/s12249-019-1436-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/23/2019] [Indexed: 11/30/2022] Open
Abstract
The addition of matrix formers within a formulation provides a means for enhancing the redispersibility of nanoparticles (NPs) enabling them to retain their advantageous properties imparted onto them by their sub-micron size. In this work, NPs were isolated in the solid state via spray drying with a range of sugars. The processed powders were characterized, establishing that itraconazole (ITR) nanostructured microparticles (NMPs) spray dried in the presence of mannitol and trehalose had favorable redispersibility confirmed by dynamic light scattering and nanoparticle tracking analysis. Solid-state analysis confirmed the crystalline nature of NMPs based on mannitol and the amorphous character of trehalose-based NMPs. The NMPs powders were compacted at a range of pressures, producing tablets with high tensile strength without compromising their disintegration time. A greater amount of ITR was solubilized from trehalose NMPs compared to the mannitol-based compacts in 0.1 M HCl, showing a promise for enhanced in vivo activity. Overall, as trehalose exhibited superior carrier properties for ITR NMPs, this type of excipient included in the formulation warrants careful consideration. The structured approach to matrix former selection and tabletting studies can reduce the amount of material and time required for testing in the initial stages of product development.
Collapse
|
28
|
Chong YK, Zainol I, Ng CH, Ooi IH. Miktoarm star polymers nanocarrier: synthesis, characterisation, and in-vitro drug release study. JOURNAL OF POLYMER RESEARCH 2019. [DOI: 10.1007/s10965-019-1726-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Ruiz-Montañez G, Calderón-Santoyo M, Chevalier-Lucia D, Picart-Palmade L, Jimenez-Sánchez DE, Ragazzo-Sánchez JA. Ultrasound-assisted microencapsulation of jackfruit extract in eco-friendly powder particles: characterization and antiproliferative activity. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1566923] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Gabriela Ruiz-Montañez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México - Instituto Tecnológico de Tepic, Tepic, Nayarit, México
| | - Montserrat Calderón-Santoyo
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México - Instituto Tecnológico de Tepic, Tepic, Nayarit, México
| | | | | | - Darvin Ervey Jimenez-Sánchez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México - Instituto Tecnológico de Tepic, Tepic, Nayarit, México
| | - Juan Arturo Ragazzo-Sánchez
- Laboratorio Integral de Investigación en Alimentos, Tecnológico Nacional de México - Instituto Tecnológico de Tepic, Tepic, Nayarit, México
| |
Collapse
|
30
|
Development and characterization of benznidazole nano- and microparticles: A new tool for pediatric treatment of Chagas disease? Colloids Surf B Biointerfaces 2019; 177:169-177. [PMID: 30731393 DOI: 10.1016/j.colsurfb.2019.01.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/11/2019] [Accepted: 01/19/2019] [Indexed: 12/31/2022]
Abstract
Benznidazole (BNZ) is the drug of choice for the treatment of Chagas disease in many countries. However, its low water solubility produces low and/or variable oral bioavailability. Thus, the aim of this work was to formulate micro- and nanoparticles based on Eudragit® RS PO and Eudragit® RL PO as a convenient approach to increase the dissolution rate of BNZ. The microparticles were obtained by means of spray-drying process while the nanoparticles were prepared through the nanoprecipitation technique and further freeze-drying. The results indicated that nanoparticles were obtained in 86% yield while microparticles were obtained in 68% yield. In both cases, the encapsulation efficiency of particles was greater than 78% while drug loading capacity was nearly 24% w/w and 18% w/w, after spray-drying and freeze-drying procedures, respectively. Images of scanning electron microscopy showed that the particles obtained by spray-drying and freeze-drying were in the micrometer and nanometer scale, respectively. FT-IR spectra of BNZ-loaded particles obtained by both methods showed characteristic bands of BNZ confirming that part of drug remained on their surface. Thermal analysis revealed that the drug crystallinity after both methods decreased. Physical stability evaluation of the nanoparticles confirmed that Pluronic® F68 was suitable to keep the particles size in a range of 300 nm after 70 days storage at 4 ± 2 °C. In-vitro release studies showed increased dissolution rate of drug from the particles obtained by both methods respect to untreated BNZ. The kinetics of drug release in acid media followed the Higuchi kinetics indicating drug diffusion mechanism from particles.
Collapse
|
31
|
Chemical stability, mass loss and hydrolysis mechanism of sterile and non-sterile lipid-core nanocapsules: The influence of the molar mass of the polymer wall. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Costabile G, Gasteyer KI, Nadithe V, Van Denburgh K, Lin Q, Sharma S, Reineke JJ, Firestine SM, Merkel OM. Physicochemical and In Vitro Evaluation of Drug Delivery of an Antibacterial Synthetic Benzophenone in Biodegradable PLGA Nanoparticles. AAPS PharmSciTech 2018; 19:3561-3570. [PMID: 30255472 DOI: 10.1208/s12249-018-1187-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/13/2018] [Indexed: 01/31/2023] Open
Abstract
Due to the increasing incidents of antimicrobial-resistant pathogens, the development of new antibiotics and their efficient formulation for suitable administration is crucial. Currently, one group of promising antimicrobial compounds are the benzophenone tetra-amides which show good activity even against gram-positive, drug-resistant pathogens. These compounds suffer from poor water solubility and bioavailability. It is therefore important to develop dosage forms which can address this disadvantage while also maintaining efficacy and potentially generating long-term exposures to minimize frequent dosing. Biodegradable nanoparticles provide one solution, and we describe here the encapsulation of the experimental benzophenone-based antibiotic, SV7. Poly-lactic-co-glycolic-acid (PLGA) nanoparticles were optimized for their physicochemical properties, their encapsulation efficiency, sustained drug release as well as antimicrobial activity. The optimized formulation contained particles smaller than 200 nm with a slightly negative zeta potential which released 39% of their drug load over 30 days. This formulation maintains the antibacterial activity of SV7 while minimizing the impact on mammalian cells.
Collapse
|
33
|
Kusuma GD, Barabadi M, Tan JL, Morton DAV, Frith JE, Lim R. To Protect and to Preserve: Novel Preservation Strategies for Extracellular Vesicles. Front Pharmacol 2018; 9:1199. [PMID: 30420804 PMCID: PMC6215815 DOI: 10.3389/fphar.2018.01199] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/28/2018] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles (EVs)-based therapeutics are based on the premise that EVs shed by stem cells exert similar therapeutic effects and these have been proposed as an alternative to cell therapies. EV-mediated delivery is an effective and efficient system of cell-to-cell communication which can confer therapeutic benefits to their target cells. EVs have been shown to promote tissue repair and regeneration in various animal models such as, wound healing, cardiac ischemia, diabetes, lung fibrosis, kidney injury, and many others. Given the unique attributes of EVs, considerable thought must be given to the preservation, formulation and cold chain strategies in order to effectively translate exciting preclinical observations to clinical and commercial success. This review summarizes current understanding around EV preservation, challenges in maintaining EV quality, and also bioengineering advances aimed at enhancing the long-term stability of EVs.
Collapse
Affiliation(s)
- Gina D. Kusuma
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Mehri Barabadi
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Jean L. Tan
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | | | - Jessica E. Frith
- Department of Materials Science and Engineering, Monash University, Clayton, VIC, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
34
|
Manuja A, Dilbaghi N, Kaur H, Saini R, Barnela M, Chopra M, Manuja BK, Kumar R, Kumar S, T. R, Singh SK, Yadav SC. Chitosan quinapyramine sulfate nanoparticles exhibit increased trypanocidal activity in mice. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.nanoso.2018.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Ngamcherdtrakul W, Sangvanich T, Reda M, Gu S, Bejan D, Yantasee W. Lyophilization and stability of antibody-conjugated mesoporous silica nanoparticle with cationic polymer and PEG for siRNA delivery. Int J Nanomedicine 2018; 13:4015-4027. [PMID: 30022824 PMCID: PMC6045907 DOI: 10.2147/ijn.s164393] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction Long-term stability of therapeutic candidates is necessary toward their clinical applications. For most nanoparticle systems formulated in aqueous solutions, lyophilization or freeze-drying is a common method to ensure long-term stability. While lyophilization of lipid, polymeric, or inorganic nanoparticles have been studied, little has been reported on lyophilization and stability of hybrid nanoparticle systems, consisting of polymers, inorganic particles, and antibody. Lyophilization of complex nanoparticle systems can be challenging with respect to preserving physicochemical properties and the biological activities of the materials. We recently reported an effective small-interfering RNA (siRNA) nanoparticle carrier consisting of 50-nm mesoporous silica nanoparticles decorated with a copolymer of polyethylenimine and polyethyleneglycol, and antibody. Materials and methods Toward future personalized medicine, the nanoparticle carriers were lyophilized alone and loaded with siRNA upon reconstitution by a few minutes of simple mixing in phosphate-buffered saline. Herein, we optimize the lyophilization of the nanoparticles in terms of buffers, lyoprotectants, reconstitution, and time and temperature of freezing and drying steps, and monitor the physical and chemical properties (reconstitution, hydrodynamic size, charge, and siRNA loading) and biological activities (gene silencing, cancer cell killing) of the materials after storing at various temperatures and times. Results The material was best formulated in Tris-HCl buffer with 5% w/w trehalose. Freezing step was performed at −55°C for 3 h, followed by a primary drying step at −40°C (100 µBar) for 24 h and a secondary drying step at 20°C (20 µBar) for 12 h. The lyophilized material can be stored stably for 2 months at 4°C and at least 6 months at −20°C. Conclusion We successfully developed the lyophilization process that should be applicable to other similar nanoparticle systems consisting of inorganic nanoparticle cores modified with cationic polymers, PEG, and antibodies.
Collapse
Affiliation(s)
- Worapol Ngamcherdtrakul
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA, .,Nanomedicine Research Unit, PDX Pharmaceuticals, LLC, Portland, OR, USA,
| | - Thanapon Sangvanich
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA,
| | - Moataz Reda
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA,
| | - Shenda Gu
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA,
| | - Daniel Bejan
- Nanomedicine Research Unit, PDX Pharmaceuticals, LLC, Portland, OR, USA,
| | - Wassana Yantasee
- Department of Biomedical Engineering, Oregon Health and Science University, Portland, OR, USA, .,Nanomedicine Research Unit, PDX Pharmaceuticals, LLC, Portland, OR, USA,
| |
Collapse
|
36
|
Griffin S, Sarfraz M, Hartmann SF, Pinnapireddy SR, Nasim MJ, Bakowsky U, Keck CM, Jacob C. Resuspendable Powders of Lyophilized Chalcogen Particles with Activity against Microorganisms. Antioxidants (Basel) 2018; 7:E23. [PMID: 29382037 PMCID: PMC5836013 DOI: 10.3390/antiox7020023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 11/17/2022] Open
Abstract
Many organic sulfur, selenium and tellurium compounds show considerable activity against microorganisms, including bacteria and fungi. This pronounced activity is often due to the specific, oxidizing redox behavior of the chalcogen-chalcogen bond present in such molecules. Interestingly, similar chalcogen-chalcogen motifs are also found in the elemental forms of these elements, and while those materials are insoluble in aqueous media, it has recently been possible to unlock their biological activities using naturally produced or homogenized suspensions of respective chalcogen nanoparticles. Those suspensions can be employed readily and often effectively against common pathogenic microorganisms, still their practical uses are limited as such suspensions are difficult to transport, store and apply. Using mannitol as stabilizer, it is now possible to lyophilize such suspensions to produce solid forms of the nanoparticles, which upon resuspension in water essentially retain their initial size and exhibit considerable biological activity. The sequence of Nanosizing, Lyophilization and Resuspension (NaLyRe) eventually provides access to a range of lyophilized materials which may be considered as easy-to-handle, ready-to-use and at the same time as bioavailable, active forms of otherwise insoluble or sparingly substances. In the case of elemental sulfur, selenium and tellurium, this approach promises wider practical applications, for instance in the medical or agricultural arena.
Collapse
Affiliation(s)
- Sharoon Griffin
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany.
| | - Muhammad Sarfraz
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | - Steffen F Hartmann
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany.
| | | | - Muhammad Jawad Nasim
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany.
| | - Cornelia M Keck
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35037 Marburg, Germany.
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| |
Collapse
|
37
|
Elsayed I, Sayed S. Tailored nanostructured platforms for boosting transcorneal permeation: Box-Behnken statistical optimization, comprehensive in vitro, ex vivo and in vivo characterization. Int J Nanomedicine 2017; 12:7947-7962. [PMID: 29133980 PMCID: PMC5669792 DOI: 10.2147/ijn.s150366] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Ocular drug delivery systems suffer from rapid drainage, intractable corneal permeation and short dosing intervals. Transcorneal drug permeation could increase the drug availability and efficiency in the aqueous humor. The aim of this study was to develop and optimize nanostructured formulations to provide accurate doses, long contact time and enhanced drug permeation. Nanovesicles were designed based on Box-Behnken model and prepared using the thin film hydration technique. The formed nanodispersions were evaluated by measuring the particle size, polydispersity index, zeta potential, entrapment efficiency and gelation temperature. The obtained desirability values were utilized to develop an optimized nanostructured in situ gel and insert. The optimized formulations were imaged by transmission and scanning electron microscopes. In addition, rheological characters, in vitro drug diffusion, ex vivo and in vivo permeation and safety of the optimized formulation were investigated. The optimized insert formulation was found to have a relatively lower viscosity, higher diffusion, ex vivo and in vivo permeation, when compared to the optimized in situ gel. So, the lyophilized nanostructured insert could be considered as a promising carrier and transporter for drugs across the cornea with high biocompatibility and effectiveness.
Collapse
Affiliation(s)
- Ibrahim Elsayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| | - Sinar Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
38
|
Levit SL, Stwodah RM, Tang C. Rapid, Room Temperature Nanoparticle Drying and Low-Energy Reconstitution via Electrospinning. J Pharm Sci 2017; 107:807-813. [PMID: 29107044 DOI: 10.1016/j.xphs.2017.10.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/29/2017] [Accepted: 10/17/2017] [Indexed: 11/19/2022]
Abstract
Nanoparticle formulations offer advantages over free drugs; however, stability of the nanoparticle dispersions is a significant obstacle, and drying is often required for long-term size stability. The main limitation of current drying methods is particle aggregation upon reconstitution which can be overcome with sonication (impractical in a clinical setting) or large amounts of cryoprotectants (result in hypertonic dispersions). Therefore, new approaches to nanoparticle drying are necessary. We demonstrate conversion of nanoparticle dispersions to a dry, thermostable form via electrospinning. As a proof-of-concept, polyethylene glycol stabilized nanoparticles and polyvinyl alcohol were blended and electrospun into ∼300 nm fibers. Following electrospinning, nanoparticles were stored for at least 7 months and redispersed with low osmolarity to their original size without sonication. The nanoparticles redisperse to their original size when the fiber diameter and nanoparticle diameter are comparable (nanoparticle:nanofiber ratio ∼1). Nanoparticles with liquid cores and larger particles better maintained their size when compared to nanoparticles with solid cores and smaller particles, respectively. Storing the nanoparticles within nanofibers appears to prevent Ostwald ripening improving thermostability. Overall, this novel approach enables rapid, continuous drying of nanoparticles at room temperature to facilitate long-term nanoparticle storage. Improved nanoparticle drying techniques will enhance clinical translation of nanomedicines.
Collapse
Affiliation(s)
- Shani L Levit
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 West Main Street, Box 843028, Richmond, Virginia 23284
| | - Ratib M Stwodah
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 West Main Street, Box 843028, Richmond, Virginia 23284
| | - Christina Tang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 West Main Street, Box 843028, Richmond, Virginia 23284.
| |
Collapse
|
39
|
Kuskov AN, Kulikov PP, Goryachaya AV, Tzatzarakis MN, Tsatsakis AM, Velonia K, Shtilman MI. Self-assembled amphiphilic poly-N
-vinylpyrrolidone nanoparticles as carriers for hydrophobic drugs: Stability aspects. J Appl Polym Sci 2017. [DOI: 10.1002/app.45637] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andrey N. Kuskov
- Biomaterials, Mendeleyev University of Chemical Technology of Russia; Miusskaya Sqr. 9, Moscow 125047 Russian Federation
- ChemBioTech, Moscow Polytechnic University; Bolshaya Semenovskaya 38, Moscow 107023 Russian Federation
| | - Pavel P. Kulikov
- Biomaterials, Mendeleyev University of Chemical Technology of Russia; Miusskaya Sqr. 9, Moscow 125047 Russian Federation
| | - Anastasia V. Goryachaya
- Biomaterials, Mendeleyev University of Chemical Technology of Russia; Miusskaya Sqr. 9, Moscow 125047 Russian Federation
| | - Manolis N. Tzatzarakis
- Laboratory of Toxicology; Medical School, University of Crete, Voutes; Heraklion Crete 71003 Greece
| | - Aristidis M. Tsatsakis
- Laboratory of Toxicology; Medical School, University of Crete, Voutes; Heraklion Crete 71003 Greece
| | - Kelly Velonia
- Department of Materials Science and Technology; School of Sciences and Engineering, University of Crete, University Campus Voutes; Heraklion Crete 71003 Greece
| | - Mikhail I. Shtilman
- Biomaterials, Mendeleyev University of Chemical Technology of Russia; Miusskaya Sqr. 9, Moscow 125047 Russian Federation
| |
Collapse
|
40
|
Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: challenges and opportunities. Acta Pharmacol Sin 2017; 38:782-797. [PMID: 28504252 DOI: 10.1038/aps.2017.34] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/04/2017] [Indexed: 12/11/2022]
Abstract
Lung cancer is the second most prevalent and the deadliest among all cancer types. Chemotherapy is recommended for lung cancers to control tumor growth and to prolong patient survival. Systemic chemotherapy typically has very limited efficacy as well as severe systemic adverse effects, which are often attributed to the distribution of anticancer drugs to non-targeted sites. In contrast, inhalation routes permit the delivery of drugs directly to the lungs providing high local concentrations that may enhance the anti-tumor effect while alleviating systemic adverse effects. Preliminary studies in animals and humans have suggested that most inhaled chemotherapies are tolerable with manageable pulmonary adverse effects, including cough and bronchospasm. Promoting the deposition of anticancer drugs in tumorous cells and minimizing access to healthy lung cells can further augment the efficacy and reduce the risk of local toxicities caused by inhaled chemotherapy. Sustained release and tumor localization characteristics make nanoparticle formulations a promising candidate for the inhaled delivery of chemotherapeutic agents against lung cancers. However, the physiology of respiratory tracts and lung clearance mechanisms present key barriers for the effective deposition and retention of inhaled nanoparticle formulations in the lungs. Recent research has focused on the development of novel formulations to maximize lung deposition and to minimize pulmonary clearance of inhaled nanoparticles. This article systematically reviews the challenges and opportunities for the pulmonary delivery of nanoparticle formulations for the treatment of lung cancers.
Collapse
|
41
|
Ngoy JM, Daramola MO, Chitsiga TL, Falcon R, Wagner N. CO2 adsorption using water-soluble polyaspartamide. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2017. [DOI: 10.1016/j.sajce.2017.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
42
|
Campos DA, Madureira AR, Sarmento B, Pintado MM, Gomes AM. Technological stability of solid lipid nanoparticles loaded with phenolic compounds: Drying process and stability along storage. J FOOD ENG 2017. [DOI: 10.1016/j.jfoodeng.2016.10.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Ali ME, Lamprecht A. Spray freeze drying as an alternative technique for lyophilization of polymeric and lipid-based nanoparticles. Int J Pharm 2017; 516:170-177. [DOI: 10.1016/j.ijpharm.2016.11.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/12/2016] [Accepted: 11/08/2016] [Indexed: 12/01/2022]
|
44
|
Sponchioni M, Morosi L, Lupi M, Capasso Palmiero U. Poly(HPMA)-based copolymers with biodegradable side chains able to self assemble into nanoparticles. RSC Adv 2017. [DOI: 10.1039/c7ra11179g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Biocompatible PCL-based nanoparticles able to degrade into completely water soluble poly(HPMA) chains are produced via the inverse macromonomer method.
Collapse
Affiliation(s)
- Mattia Sponchioni
- Department of Chemistry
- Materials and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- 20131 Milano
- Italy
| | - Lavinia Morosi
- Department of Oncology
- IRCCS
- Istituto di Ricerche Farmacologiche Mario Negri
- 20156 Milano
- Italy
| | - Monica Lupi
- Department of Oncology
- IRCCS
- Istituto di Ricerche Farmacologiche Mario Negri
- 20156 Milano
- Italy
| | - Umberto Capasso Palmiero
- Department of Chemistry
- Materials and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- 20131 Milano
- Italy
| |
Collapse
|
45
|
Hanna LA, Basalious EB, ELGazayerly ON. Respirable controlled release polymeric colloid (RCRPC) of bosentan for the management of pulmonary hypertension: in vitro aerosolization, histological examination and in vivo pulmonary absorption. Drug Deliv 2016; 24:188-198. [PMID: 28156176 PMCID: PMC8241195 DOI: 10.1080/10717544.2016.1239661] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 09/12/2016] [Accepted: 09/19/2016] [Indexed: 12/28/2022] Open
Abstract
Bosentan is an endothelin receptor antagonist (ERA) prescribed for patients with pulmonary arterial hypertension (PAH). The oral delivery of bosentan possesses several drawbacks such as low bioavailability (about 50%), short duration of action, frequent administration, hepatotoxicity and systemic hypotension. The pulmonary administration would circumvent the pre-systemic metabolism thus improving the bioavailability and avoids the systemic adverse effects of oral bosentan. However, the short duration of action and the frequent administration are the major drawbacks of inhalation therapy. Thus, the aim of this work is to explore the potential of respirable controlled release polymeric colloid (RCRPC) for effective, safe and sustained pulmonary delivery of bosentan. Central composite design was adopted to study the influence of formulation and process variables on nanoparticles properties. The particle size, polydispersity index (PDI), entrapment efficiency (EE) and in vitro bosentan released were selected as dependent variables. The optimized RCRPC showed particle size of 420 nm, PDI of 0.39, EE of 60.5% and sustained release pattern where only 31.0% was released after 16 h. The in vitro nebulization of RCRPC indicated that PLGA nanoparticles could be incorporated into respirable nebulized droplets better than drug solution. Pharmacokinetics and histopathological examination were determined after intratracheal administration of the developed RCRPC to male albino rats compared to the oral bosentan suspension. Results revealed the great improvement of bioavailability (12.71 folds) and sustained vasodilation effect on the pulmonary blood vessels (more than 12 h). Bosentan-loaded RCRPC administered via the pulmonary route may therefore constitute an advance in the management of PAH.
Collapse
Affiliation(s)
- Lydia A. Hanna
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Emad B. Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Omaima N. ELGazayerly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
46
|
Moreno-Sastre M, Pastor M, Esquisabel A, Sans E, Viñas M, Bachiller D, Pedraz JL. Stability study of sodium colistimethate-loaded lipid nanoparticles. J Microencapsul 2016; 33:636-645. [PMID: 27682964 DOI: 10.1080/02652048.2016.1242665] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In the last decades, the encapsulation of antibiotics into nanoparticulate carriers has gained increasing attention for the treatment of infectious diseases. Sodium colistimethate-loaded solid lipid nanoparticles (Colist-SLNs) and nanostructured lipid carriers (Colist-NLCs) were designed aiming to treat the pulmonary infection associated to cystic fibrosis patients. The nanoparticles were freeze-dried using trehalose as cryoprotectant. The stability of both nanoparticles was analysed over one year according to the International Conference of Harmonisation (ICH) guidelines by determining the minimum inhibitory concentration (MIC) against clinically isolated Pseudomonas aeruginosa strains and by studying their physico-chemical characteristics. The results showed that Colist-SLNs lost their antimicrobial activity at the third month; on the contrary, the antibacterial activity of Colist-NLCs was maintained throughout the study within an adequate range (MIC ≤16 μg/mL). In addition, Colist-NLCs exhibited suitable physico-chemical properties at 5 °C and 25 °C/60% relative humidity over one year. Altogether, Colist-NLCs proved to have better stability than Colist-SLNs.
Collapse
Affiliation(s)
- M Moreno-Sastre
- a NanoBioCel Group, Laboratory of Pharmaceutics , School of Pharmacy, University of the Basque Country (UPV/EHU) , Vitoria-Gasteiz , Spain.,b Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz , Spain
| | - M Pastor
- a NanoBioCel Group, Laboratory of Pharmaceutics , School of Pharmacy, University of the Basque Country (UPV/EHU) , Vitoria-Gasteiz , Spain.,b Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz , Spain
| | - A Esquisabel
- a NanoBioCel Group, Laboratory of Pharmaceutics , School of Pharmacy, University of the Basque Country (UPV/EHU) , Vitoria-Gasteiz , Spain.,b Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz , Spain
| | - E Sans
- c Department of Pathology and Experimental Therapeutics , Medical School, University of Barcelona - IDIBELL , Barcelona , Spain
| | - M Viñas
- c Department of Pathology and Experimental Therapeutics , Medical School, University of Barcelona - IDIBELL , Barcelona , Spain.,d IINFACTS, CESPU , Gandra , Portugal
| | - D Bachiller
- e Development and Regeneration Programme , Fundación Investigaciones Sanitarias Islas Baleares (FISIB) , Bunyola (Balearic Islands) , Spain.,f Consejo Superior de Investigaciones Científicas (CSIC) , Bunyola (Balearic Islands) , 7110 , S pain
| | - J L Pedraz
- a NanoBioCel Group, Laboratory of Pharmaceutics , School of Pharmacy, University of the Basque Country (UPV/EHU) , Vitoria-Gasteiz , Spain.,b Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN) , Vitoria-Gasteiz , Spain
| |
Collapse
|
47
|
Fonte P, Reis S, Sarmento B. Facts and evidences on the lyophilization of polymeric nanoparticles for drug delivery. J Control Release 2016; 225:75-86. [PMID: 26805517 DOI: 10.1016/j.jconrel.2016.01.034] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 12/28/2022]
Abstract
Lyophilization has been used to improve the long-term stability of polymeric nanoparticles for drug delivery applications, avoiding their instability in suspension. However, this dehydration process may induce stresses to nanoparticles, mitigated by the use of some excipients such as cryo- and lyoprotectants. Still, the lyophilization of polymeric nanoparticles is frequently based in empirical principles, without considering the physical-chemical properties of formulations and the engineering principles of lyophilization. Therefore, the optimization of formulations and the lyophilization cycle is crucial to obtain a good lyophilizate, and guarantee the preservation of nanoparticle stability. The proper characterization of the lyophilizate and nanoparticles has a great importance in achieving these purposes. This review updates the fundaments involved in the optimization procedures for lyophilization of polymeric nanoparticles, with the aim of obtaining the maximum stability of formulations. Different characterization methods to obtain and guarantee a good lyophilized product are also discussed. A special focus is given to encapsulated therapeutic proteins. Overall, this review is a contribution for the understanding of the parameters involved in the lyophilization of polymeric nanoparticles. This may definitely help future works to obtain lyophilized nanoparticles with good quality and with improved therapeutic benefits.
Collapse
Affiliation(s)
- Pedro Fonte
- UCIBIO, REQUIMTE, Department of Chemical Sciences - Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-113 Porto, Portugal; CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde and Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra-Prd, Portugal.
| | - Salette Reis
- UCIBIO, REQUIMTE, Department of Chemical Sciences - Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-113 Porto, Portugal
| | - Bruno Sarmento
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde and Instituto Universitário de Ciências da Saúde, Rua Central de Gandra 1317, 4585-116 Gandra-Prd, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal.
| |
Collapse
|
48
|
Alihosseini F, Ghaffari S, Dabirsiaghi AR, Haghighat S. Freeze-drying of ampicillin solid lipid nanoparticles using mannitol as cryoprotectant. BRAZ J PHARM SCI 2015. [DOI: 10.1590/s1984-82502015000400005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
abstract Solid lipid nanoparticles (SLNs) are interesting colloidal drug-delivery systems, since they have all the advantages of the lipid and polymeric nanoparticles. Freeze-drying is a widely used process for improving the stability of SLNs. Cryoprotectants have been used to decrease SLN aggregations during freeze-drying. In this study Ampicillin was chosen to be loaded in a cholesterol carrier with nano size range. To support the stability of SLNs, freeze-drying was done using mannitol. Particle size, drug release profile and antibacterial effects were studied after freeze-drying in comparison with primary SLNs. Preparations with 5% mannitol showed the least particle size enlargement. The average particle size was 150 and 187 nm before and after freeze-drying, respectively. Freeze-drying did not affect the release profile of drug loaded nanopartilces. Also our study showed that lyophilization did not change the antimicrobial effect of ampicillin SLNs. DSC analysis showed probability of chemical interaction between ampicillin and cholesterol.
Collapse
Affiliation(s)
| | - Solmaz Ghaffari
- Islamic Azad University, Iran; Islamic Azad University, Iran
| | | | | |
Collapse
|
49
|
Üstündağ-Okur N, Yurdasiper A, Gündoğdu E, Gökçe EH. Modification of solid lipid nanoparticles loaded with nebivolol hydrochloride for improvement of oral bioavailability in treatment of hypertension: polyethylene glycol versus chitosan oligosaccharide lactate. J Microencapsul 2015; 33:30-42. [PMID: 26444187 DOI: 10.3109/02652048.2015.1094532] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nebivolol (NB)-loaded solid lipid nanoparticles (SLNs) were prepared and modified with chitosan oligosaccharide lactate (COL) and polyethylene glycol (PEG) stearate for improvement of its oral bioavailability. Compritol, poloxamer and lecithin were used for the preparation of SLNs by homogenisation method. After in vitro characterisation effect of lipase, pepsin, or pancreatin on degradation and release rate were investigated. Cytotoxicity and permeation were studied on Caco-2 cells. As COL concentration increased in SLNs, size and zeta potential increased. PEG concentration was reversely proportional to particle size with no change in zeta potential. Encapsulation efficiencies (EEs) were determined as 84-98%. DSC confirmed solubilisation of NB in lipid matrix. A sustained release with no burst effect was determined. The presence of enzymes affected the release. SLNs did not reveal cytotoxicity and highest permeability was obtained with PEG modification. PEG-modified SLNs could be offered as a promising strategy for oral delivery of NB.
Collapse
Affiliation(s)
- Neslihan Üstündağ-Okur
- a Department of Pharmaceutical Technology , Faculty of Pharmacy, University of Ege , Bornova , Izmir , Turkey and
| | - Aysu Yurdasiper
- a Department of Pharmaceutical Technology , Faculty of Pharmacy, University of Ege , Bornova , Izmir , Turkey and
| | - Evren Gündoğdu
- b Department of Radiopharmacy , Faculty of Pharmacy, University of Ege , Bornova , Izmir , Turkey
| | - Evren Homan Gökçe
- a Department of Pharmaceutical Technology , Faculty of Pharmacy, University of Ege , Bornova , Izmir , Turkey and
| |
Collapse
|
50
|
Rahaiee S, Shojaosadati SA, Hashemi M, Moini S, Razavi SH. Improvement of crocin stability by biodegradeble nanoparticles of chitosan-alginate. Int J Biol Macromol 2015; 79:423-32. [DOI: 10.1016/j.ijbiomac.2015.04.041] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 03/31/2015] [Accepted: 04/08/2015] [Indexed: 01/15/2023]
|