1
|
Tijani NA, Hokello J, Eilu E, Akinola SA, Afolabi AO, Makeri D, Lukwago TW, Mutuku IM, Mwesigwa A, Baguma A, Adebayo IA. Metallic nanoparticles: a promising novel therapeutic tool against antimicrobial resistance and spread of superbugs. Biometals 2025; 38:55-88. [PMID: 39446237 DOI: 10.1007/s10534-024-00647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
In recent years, antimicrobial resistance (AMR) has become an alarming threat to global health as notable increase in morbidity and mortality has been ascribed to the emergence of superbugs. The increase in microbial resistance because of harboured or inherited resistomes has been complicated by the lack of new and effective antimicrobial agents, as well as misuse and failure of existing ones. These problems have generated severe and growing public health concern, due to high burden of bacterial infections resulting from scarce financial resources and poor functioning health systems, among others. It is therefore, highly pressing to search for novel and more efficacious alternatives for combating the action of these super bacteria and their infection. The application of metallic nanoparticles (MNPs) with their distinctive physical and chemical attributes appears as promising tools in fighting off these deadly superbugs. The simple, inexpensive and eco-friendly model for enhanced biologically inspired MNPs with exceptional antimicrobial effect and diverse mechanisms of action againsts multiple cell components seems to offer the most promising option and said to have enticed many researchers who now show tremendous interest. This synopsis offers critical discussion on application of MNPs as the foremost intervening strategy to curb the menace posed by the spread of superbugs. As such, this review explores how antimicrobial properties of the metallic nanoparticles which demonstrated considerable efficacy against several multi-drugs resistant bacteria, could be adopted as promising approach in subduing the threat of AMR and harvoc resulting from the spread of superbugs.
Collapse
Affiliation(s)
- Naheem Adekilekun Tijani
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Joseph Hokello
- Department of Biology, Faculty of Science and Education, Busitema University, Tororo, Uganda
| | - Emmanuel Eilu
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Saheed Adekunle Akinola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Abdullateef Opeyemi Afolabi
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Danladi Makeri
- Department of Microbiology and Immunology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Tonny Wotoyitide Lukwago
- Department of Pharmacology and Toxicology, Kampala International University, Western Campus, Bushenyi, Uganda
| | - Irene M Mutuku
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Alex Mwesigwa
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | - Andrew Baguma
- Department of Microbiology, School of Medicine, Kabale University, Kabale, Uganda
| | | |
Collapse
|
2
|
Maddheshiya AK, Kumar M, Tufail A, Yadav PS, Deswal Y, Yadav N, Yadav TP, Dubey A. Synergistic Activity of Noble Trimetallic Nanofluids: Unveiling Unprecedented Antimicrobial Potential and Computational Insights. ACS APPLIED BIO MATERIALS 2024; 7:5906-5924. [PMID: 38722351 DOI: 10.1021/acsabm.3c01268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Nanofluids hold significant promise in diverse applications, particularly in biomedicine, where noble trimetallic nanofluids outperformed their monometallic counterparts. The composition, morphology, and size of these nanofluids play pivotal roles in their functionality. Controlled synthesis methods have garnered attention, focusing on precise morphology, content, biocompatibility, and versatile chemistry. Understanding how reaction parameters such as time, reducing agents, stabilizers, precursor concentration, temperature, and pH affect size and shape during synthesis is crucial. Trimetallic nanofluids, with their ideal composition, size, surface structure, and synergistic properties, are gaining traction in antimicrobial applications. These nanofluids were tested against seven microorganisms, demonstrating a heightened antimicrobial efficacy. Computational analyses, including molecular docking, dynamics, density functional theory (DFT), molecular electrostatic potential (MESP) analysis, and absorption, distribution, metabolism, elimination, and toxicology studies (ADMET) provided insights into binding interactions, energy, reactivity, and safety profiles, affirming the antimicrobial potential of trimetallic nanofluids. These findings emphasize the importance of controlled synthesis and computational validation in harnessing the unique properties of trimetallic nanofluids for biomedical applications.
Collapse
Affiliation(s)
- Ajit Kumar Maddheshiya
- Department of Physics, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Manish Kumar
- Department of Biochemistry, Iswar Saran Degree College (A Constituent PG College of University of Allahabad), Teliarganj, Prayagraj 211004, India
| | - Aisha Tufail
- Department of Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida 201310, India
| | - Phool Singh Yadav
- Department of Physics, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Yogesh Deswal
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar 125001, India
| | - Navneet Yadav
- Department of Physics, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Thakur Prasad Yadav
- Department of Physics, Faculty of Science, University of Allahabad, Prayagraj 211002, India
| | - Amit Dubey
- Department of Pharmacology, Saveetha Dental College, and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
3
|
Haque M, Kalita M, Chamlagai D, Lyndem S, Koley S, Kumari P, Aguan K, Singha Roy A. Human serum albumin directed formation of cadmium telluride quantum dots: Applications in biosensing, anti-bacterial activities and cell cytotoxicity measurements. Int J Biol Macromol 2024; 268:131862. [PMID: 38670183 DOI: 10.1016/j.ijbiomac.2024.131862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Although cadmium-based quantum dots (QDs) are highly promising candidates for numerous biological applications, their intrinsic toxicity limits their pertinency in living systems. Surface functionalization of QDs with appropriate molecules could reduce the toxicity level. Herein, we have synthesized the smaller sized (1-5 nm) aqueous-compatible biogenic CdTe QDs using human serum albumin (HSA) as a surface passivating agent via a greener approach. HSA-functionalized CdTe QDs have been explored in multiple in vitro sensing and biological applications, namely, (1) sensing, (2) anti-bacterial and (3) anti-cancer properties. Using CdTe-HSA QDs as a fluorescence probe, a simple fluorometric method has been developed for highly sensitive and selective detection of blood marker bilirubin and hazardous Hg2+ ion with a limit of detection (LOD) of 3.38 and 0.53 ng/mL, respectively. CdTe-HSA QDs also acts as a sensor for standard antibiotics, tetracycline and rifampicin with LOD values of 41.34 and 114.99 ng/mL, respectively. Nano-sized biogenic CdTe-HSA QDs have shown promising anti-bacterial activities against both gram-negative, E. coli and gram-positive, E. faecalis strains confirming more effectiveness against E. faecalis strains. The treatment of human cervical cancer cell lines (HeLa cells) with the synthesized QDs reflected the proficient cytotoxic properties of QDs.
Collapse
Affiliation(s)
- Mahabul Haque
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Mitul Kalita
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Dipak Chamlagai
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - Sona Lyndem
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, India
| | - Sudipta Koley
- Department of Physics, Amity Institute of Applied Sciences, Amity University, Kolkata 700135, India
| | - Puja Kumari
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Kripamoy Aguan
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Atanu Singha Roy
- Department of Chemistry, National Institute of Technology Meghalaya, Shillong 793003, India.
| |
Collapse
|
4
|
Nawaz MZ, Alghamdi HA, Zahoor M, Rashid F, Alshahrani AA, Alghamdi NS, Pugazhendhi A, Zhu D. Synthesis of novel metal silica nanoparticles exhibiting antimicrobial potential and applications to combat periodontitis. ENVIRONMENTAL RESEARCH 2024; 241:117415. [PMID: 37844684 DOI: 10.1016/j.envres.2023.117415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/03/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Periodontitis is a severe form of gum disease caused by bacterial plaque that affects millions of people and has substantial worldwide health and economic implications. However, current clinical antiseptic and antimicrobial drug therapies are insufficient because they frequently have numerous side effects and contribute to widespread bacterial resistance. Recently, nanotechnology has shown promise in the synthesis of novel periodontal therapeutic materials. Nanoparticles are quickly replacing antibiotics in the treatment of bacterial infections, and their potential application in dentistry is immense. The alarming increases in antimicrobial resistance further emphasize the importance of exploring and utilizing nanotechnology in the fight against tooth diseases particularly periodontitis. We developed 16 different combinations of mesoporous silica nanomaterials in this study by ageing, drying, and calcining them with 11 different metals including silver, zinc, copper, gold, palladium, ruthenium, platinum, nickel, cerium, aluminium, and zirconium. The antibacterial properties of metal-doped silica were evaluated using four distinct susceptibility tests. The agar well diffusion antibacterial activity test, which measured the susceptibility of the microbes being tested, as well as the antibacterial efficacy of mesoporous silica with different silica/metal ratios, were among these studies. The growth kinetics experiment was used to investigate the efficacy of various metal-doped silica nanoparticles on microbial growth. To detect growth inhibitory effects, the colony-forming unit assay was used. Finally, MIC and MBC tests were performed to observe the inhibition of microbial biofilm formation. Our findings show that silver- and zinc-doped silica nanoparticles synthesized using the sol-gel method can be effective antimicrobial agents against periodontitis-causing microbes. This study represents the pioneering work reporting the antimicrobial properties of metal-loaded TUD-1 mesoporous silica, which could be useful in the fight against other infectious diseases too.
Collapse
Affiliation(s)
- Muhammad Zohaib Nawaz
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Huda Ahmed Alghamdi
- Department of Biology, College of Sciences, King Khalid University, Abha, 61413, Saudi Arabia.
| | - Mehvish Zahoor
- Technische Universität Berlin, Faculty III Process Sciences, Institute of Material Science and Technology, Chair of Advanced Ceramic Materials, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Fizzah Rashid
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Atheer Ahmed Alshahrani
- Department of Biology, College of Sciences, King Khalid University, Abha, 61413, Saudi Arabia
| | - Nuha S Alghamdi
- Department of Restorative Dental Science, Collage of Dentistry, King Khalid University, Abha, Saudi Arabia
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
5
|
Amin YA, Abdelaziz SG, Said AH. Treatment of postpartum endometritis induced by multidrug-resistant bacterial infection in dairy cattle by green synthesized zinc oxide nanoparticles and in vivo evaluation of its broad spectrum antimicrobial activity in cow uteri. Res Vet Sci 2023; 165:105074. [PMID: 37948844 DOI: 10.1016/j.rvsc.2023.105074] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
Postpartum endometritis significantly affects the health and productivity of cattle, causing significant economic loss that is speculated to exceed billions of dollars annually. Treatment of postpartum endometritis, which is linked to various bacterial infections in the uterus after delivery and has an alarmingly high risk of antibiotic treatment failure for unidentified reasons, represents a great challenge. Several studies have demonstrated that various disease complications, such as multidrug-resistant (MDR) bacterial strains, prolonged infection treatment, and increased mortality risk, have emerged as a result of the extensive use of antibiotics to treat uterine infections and other microbial-related diseases. Recent research has led to the development of zinc oxide nanoparticles (ZnO NPs) that exhibit broad-spectrum antibacterial efficacy against bacterial pathogens, including MDR bacteria, without producing mutants that are resistant to zinc oxide (ZnO). In the present work, we biologically synthesized ZnO NPs from a green natural source of Helianthus annuus seeds for the treatment of endometritis caused by MDR bacterial strains in dairy cattle. We examined ZnO's potential as a substitute antimicrobial agent to treat cow endometritis by testing its ability to sustain potent antimicrobial activity against pathogenic bacteria, including Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), in cow uteri. Among uterine bacteria, ZnO significantly decreased E. coli and S. aureus, which are known pathogenic bacteria within the uterus and achieved a high cure rate that was associated with the induction of estrous and pregnancy. Taken together, our observations of ZnO's broad range of antibacterial activity in-vivo with an animal model and subsequent evaluations of its therapeutic efficacy in cows with endometritis shed light on its potential to be used as a substitute antimicrobial agent for the treatment of uterine illness.
Collapse
Affiliation(s)
- Yahia A Amin
- Department of Theriogenology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt.
| | - Sahar Gamal Abdelaziz
- Microbiology Department, Animal Health Research Institute (AHRI), Agriculture Research Centre (ARC), Qena, Egypt
| | - Alaa H Said
- Electronic and Nano Devices Lab, Faculty of Science, South Valley University, Qena, Egypt
| |
Collapse
|
6
|
Sri Varalakshmi G, Pawar C, Selvam R, Gem Pearl W, Manikantan V, Sumohan Pillai A, Alexander A, Rajendra Prasad N, Enoch IVMV, Dhanaraj P. Nickel sulfide and dysprosium-doped nickel sulfide nanoparticles: Dysprosium-induced variation in properties, in vitro chemo-photothermal behavior, and antibacterial activity. Int J Pharm 2023; 643:123282. [PMID: 37524253 DOI: 10.1016/j.ijpharm.2023.123282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Newer materials for utilization in multi-directional therapeutic actions are investigated, considering delicate design principles involving size and shape control, surface modification, and controllable drug loading and release. Multi-faceted properties are imparted to the engineered nanoparticles, like magnetism, near-infrared absorption, photothermal efficiency, and suitable size and shape. This report presents nickel sulfide and dysprosium-doped nickel sulfide nanoparticles with poly-β-cyclodextrin polymer coating. The nanoparticles belong to the orthorhombic crystal systems, as indicated by X-ray diffraction studies. The size and shape of the nanoparticles are investigated using Transmission Electron Microscope (TEM) and a particle-size analyzer. The particles show soft ferromagnetic characteristics with definite and moderate saturation magnetization values. The nickel sulfide nanoparticles' in vitro anticancer and antibacterial activities are investigated in free and 5-fluorouracil/penicillin benzathine-loaded forms. The 5-fluorouracil-encapsulation efficiency of the nanoparticles is around 87%, whereas it is above 92% in the case of penicillin benzathine. Both drugs are released slowly in a controlled fashion. The dysprosium-doped nickel sulfide nanoparticles show better anticancer activity, and the efficacy is more significant than the free drug. The nanoparticles are irradiated with a low-power 808 nm laser. The dysprosium-doped nickel sulfide nanoparticles attain a higher temperature on irradiation, i.e., above 59 °C. The photothermal conversion efficiency of this material is determined, and the significance of dysprosium doping is discussed. Contrarily, the undoped nickel sulfide nanoparticles show more significant antibacterial activity. This study presents a novel designed nanoparticle system and the exciting variation of properties on dysprosium doping in nickel sulfide nanoparticles.
Collapse
Affiliation(s)
- Govindaraj Sri Varalakshmi
- Department of Applied Chemistry, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Charansingh Pawar
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram 608002, Tamil Nadu, India
| | - Rajakar Selvam
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Wrenit Gem Pearl
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Varnitha Manikantan
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Archana Sumohan Pillai
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - Aleyamma Alexander
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India
| | - N Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Chidambaram 608002, Tamil Nadu, India
| | - Israel V M V Enoch
- Centre for Nanoscience and Genomics, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India.
| | - Premnath Dhanaraj
- Department of Biotechnology, Karunya Institute of Technology and Sciences (Deemed University), Coimbatore 641114, Tamil Nadu, India.
| |
Collapse
|
7
|
Huang Z, Chen S, Ali HE, Elkamchouchi DH, Hu J, Ali E, Zhang J, Huang Y. Application of CNN and ANN in assessment the effect of chemical components of biological nanomaterials in treatment of infection of inner ear and environmental sustainability. CHEMOSPHERE 2023; 331:138458. [PMID: 36966931 DOI: 10.1016/j.chemosphere.2023.138458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/23/2023] [Accepted: 03/17/2023] [Indexed: 05/05/2023]
Abstract
Nanoparticles (NPs) are a promising alternative to antibiotics for targeting microorganisms, especially in the case of difficult-to-treat bacterial illnesses. Antibacterial coatings for medical equipment, materials for infection prevention and healing, bacterial detection systems for medical diagnostics, and antibacterial immunizations are potential applications of nanotechnology. Infections in the ear, which can result in hearing loss, are extremely difficult to cure. The use of nanoparticles to enhance the efficacy of antimicrobial medicines is a potential option. Various types of inorganic, lipid-based, and polymeric nanoparticles have been produced and shown beneficial for the controlled administration of medication. This article focuses on the use of polymeric nanoparticles to treat frequent bacterial diseases in the human body. Using machine learning models such as artificial neural networks (ANNs) and convolutional neural networks (CNNs), this 28-day study evaluates the efficacy of nanoparticle therapy. An innovative application of advanced CNNs, such as Dense Net, for the automatic detection of middle ear infections is reported. Three thousand oto-endoscopic images (OEIs) were categorized as normal, chronic otitis media (COM), and otitis media with effusion (OME). Comparing middle ear effusions to OEIs, CNN models achieved a classification accuracy of 95%, indicating great promise for the automated identification of middle ear infections. The hybrid CNN-ANN model attained an overall accuracy of more than 0.90 percent, with a sensitivity of 95 percent and a specificity of 100 percent in distinguishing earwax from illness, and provided nearly perfect measures of 0.99 percent. Nanoparticles are a promising treatment for difficult-to-treat bacterial diseases, such as ear infections. The application of machine learning models, such as ANNs and CNNs, can improve the efficacy of nanoparticle therapy, especially for the automated detection of middle ear infections. Polymeric nanoparticles, in particular, have shown efficacy in treating common bacterial infections in children, indicating great promise for future treatments.
Collapse
Affiliation(s)
- Zhongguan Huang
- Department of Otolaryngology, Pingyang Hospital Affiliated to Wenzhou Medical University, Pingyang, Zhejiang, 325400, China
| | - Shuainan Chen
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - H Elhosiny Ali
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, Saudi Arabia
| | - Dalia H Elkamchouchi
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Jun Hu
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Elimam Ali
- Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Jie Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Yideng Huang
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
8
|
Wakweya B, Jifar WW. In vitro Evaluation of Antibacterial Activity of Synthetic Zeolite Supported AgZno Nanoparticle Against a Selected Group of Bacteria. J Exp Pharmacol 2023; 15:139-147. [PMID: 36941893 PMCID: PMC10024489 DOI: 10.2147/jep.s396118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
Background The development of novel and intriguing nanoparticle (NP)-based materials with antibacterial activity has recently received attention due to the problem of bacterial resistance to conventional antibiotics becoming more and more frequent. Thus, this study aimed to investigate the antibacterial effectiveness of a synthetic zeolite-supported AgZnO nanoparticle against selected bacteria in vitro. Methods Using the disc diffusion method, the antibacterial activity of synthetic zeolite-supported AgZnO nanoparticles was assessed against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). Zinc oxide (ZnO) and Ag/ZnO nanoparticles were used to create the zeolite-supported Ag/ZnO composite. Chloramphenicol was used as a standard drug. The nanoparticles and composites were characterized using powder X-ray diffraction (XRD), Fourier transform infrared (FTIR), and atomic absorption spectroscopy (AAS). Results Synthetic zeolite-supported AgZnO nanoparticles showed promising antibacterial properties with the largest zone of inhibition against S. aureus bacteria in comparison to E. coli. The synthetic zeolite-supported AgZnO nanoparticle displayed a zone of inhibition against S. aureus and E. coli without a remarkable difference compared to the respective standard drug (Chloramphenicol). Zinc peaks were visible in the X-ray diffractograms, which supported the theory that the characteristic hexagonal wurtzite structure of zinc oxide was present. Conclusion All types of ZnO, AgZnO, and AgZnO-Zeolite showed wide-spectrum activity with better effect against gram-positive bacteria, while the Zeolite-Ag/ZnO composite showed even better antibacterial activity. The findings suggest a potential bactericide that needs further evaluation in future studies was observed in synthetic zeolite-supported Ag/ZnO nanoparticles.
Collapse
Affiliation(s)
- Berhanu Wakweya
- Department of Chemistry, College of Natural and Computational Sciences, Mattu University, Mettu, Oromia, Ethiopia
| | - Wakuma Wakene Jifar
- Department of Pharmacy, College of Health Sciences, Mattu University, Mettu, Oromia, Ethiopia
| |
Collapse
|
9
|
Varma A, Warghane A, Dhiman NK, Paserkar N, Upadhye V, Modi A, Saini R. The role of nanocomposites against biofilm infections in humans. Front Cell Infect Microbiol 2023; 13:1104615. [PMID: 36926513 PMCID: PMC10011468 DOI: 10.3389/fcimb.2023.1104615] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023] Open
Abstract
The use of nanomaterials in several fields of science has undergone a revolution in the last few decades. It has been reported by the National Institutes of Health (NIH) that 65% and 80% of infections are accountable for at least 65% of human bacterial infections. One of their important applications in healthcare is the use of nanoparticles (NPs) to eradicate free-floating bacteria and those that form biofilms. A nanocomposite (NC) is a multiphase stable fabric with one or three dimensions that are much smaller than 100 nm, or systems with nanoscale repeat distances between the unique phases that make up the material. Using NC materials to get rid of germs is a more sophisticated and effective technique to destroy bacterial biofilms. These biofilms are refractory to standard antibiotics, mainly to chronic infections and non-healing wounds. Materials like graphene and chitosan can be utilized to make several forms of NCs, in addition to different metal oxides. The ability of NCs to address the issue of bacterial resistance is its main advantage over antibiotics. This review highlights the synthesis, characterization, and mechanism through which NCs disrupt Gram-positive and Gram-negative bacterial biofilms, and their relative benefits and drawbacks. There is an urgent need to develop materials like NCs with a larger spectrum of action due to the rising prevalence of human bacterial diseases that are multidrug-resistant and form biofilms.
Collapse
Affiliation(s)
- Anand Varma
- Arundeep Akshay Urja Pvt. Ltd. Gorakhpur, Uttar Pradesh, India
| | - Ashish Warghane
- School of Applied Sciences and Technology (SAST), Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Neena K. Dhiman
- Department of Zoology, Gargi College, University of Delhi, Delhi, India
| | - Neha Paserkar
- Faculty of Life Sciences, Mandsaur University, Mandsaur, Madhya Pradesh, India
| | - Vijay Upadhye
- Centre of Research for Development (CR4D), Parul University, Vadodara, Gujarat, India
| | - Anupama Modi
- School of Applied Sciences and Technology (SAST), Gujarat Technological University, Ahmedabad, Gujarat, India
| | - Rashmi Saini
- Department of Zoology, Gargi College, University of Delhi, Delhi, India
| |
Collapse
|
10
|
Improved Antibacterial Activity of Water-Soluble Nanoformulated Kaempferol and Combretastatin Polyphenolic Compounds. INT J POLYM SCI 2021. [DOI: 10.1155/2021/5682182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Kaempferol and combretastatin are polyphenolic compounds derived from plant sources which are known for their antibacterial activity. However, owing to their large size and water insolubility, their antibacterial activity is limited. In this context, the present study focused on the nanoformulation of kaempferol (NF-k) and combretastatin (NF-c) and their influence on water solubility and antibacterial properties. The NF-k and NF-c were prepared using the solvent evaporation method and were thoroughly characterized for evaluating the morphology, molecular vibrations, size, etc. Based on the results, it is observed that the pristine forms of kaempferol and combretastatin drugs get nanoformulated and completely soluble in water. Using particle size analyzer, the particle sizes of NF-k and NF-c were estimated as 334 nm and 260 nm, respectively, which are very fine compared to pristine kaempferol and combretastatin (5193 nm and 1217 nm, respectively). The molecular vibrations that exist in NF-k and NF-c were confirmed by the Fourier transform infrared spectra, where the nanoformulated drug showed lower intensities than the pristine form of kaempferol and combretastatin. The drug release kinetics of the nanoformulated drugs were carried out using the dialysis membrane method and were compared with their pristine forms. Owing to the size effect, the NF-k and NF-c release up to 50% of the drug in a sustained manner till 50 h showing twofold higher concentration than the control where it released 25%. The antibacterial activity was assessed by measuring the optical density at 600 nm using UV-vis spectrophotometer and displayed significant activity against gram-positive Staphylococcus aureus strain. The mechanisms behind the antibacterial activity of NF-k and NF-c were discussed in detail. The activation of ATP-dependent efflux pump system and the blockage of porin channels could be the cause for the bactericidal activity. Our understanding of efflux pumps and their role in antibacterial activity is still in its early stages. No studies have been performed to date using nanoformulations of kaempferol and combretastatin to investigate their roles. This complicates the determination of the exact mechanisms acting against bacterial growth when using nanoformulation drugs. Our increasing knowledge of water-soluble nanoformulation drugs and their roles in reduced bacterial activity will pave the way to developing effective treatments in the future.
Collapse
|
11
|
Synthesis of zirconia nanoparticles using Laurus nobilis for use as an antimicrobial agent. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02041-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Amin F, Fozia, Khattak B, Alotaibi A, Qasim M, Ahmad I, Ullah R, Bourhia M, Gul A, Zahoor S, Ahmad R. Green Synthesis of Copper Oxide Nanoparticles Using Aerva javanica Leaf Extract and Their Characterization and Investigation of In Vitro Antimicrobial Potential and Cytotoxic Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:5589703. [PMID: 34239581 PMCID: PMC8235967 DOI: 10.1155/2021/5589703] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/26/2021] [Accepted: 06/04/2021] [Indexed: 11/17/2022]
Abstract
The development of green technology is creating great interest for researchers towards low-cost and environmentally friendly methods for the synthesis of nanoparticles. Copper oxide nanoparticles (CuO-NPs) attracted many researchers due to their electric, catalytic, optical, textile, photonic, monofluid, and pharmacological activities that depend on the shape and size of the nanoparticles. This investigation aims copper oxide nanoparticles synthesis using Aerva javanica plant leaf extract. Characterization of copper oxide nanoparticles synthesized by green route was performed by three different techniques: X-Ray Diffraction (XRD), Fourier Transform Infrared (FTIR) Spectroscopy, and Scanning Electron Microscopy (SEM). X-ray diffraction (XRD) reveals the crystalline morphology of CuO-NPs and the average crystal size obtained is 15 nm. SEM images showed the spherical nature of the particles and size is lying in the 15-23 nm range. FTIR analysis confirms the functional groups of active components present in the extract which are responsible for reducing and capping agents for the synthesis of CuO-NPs. The synthesized CuO-NPs were studied for their antimicrobial potential against different bacterial as well as fungal pathogens. The results indicated that CuO-NPs show maximum antimicrobial activities against all the selected bacterial and fungal pathogens. Antimicrobial activities of copper oxide nanoparticles were compared with standard drugs Norfloxacin and amphotericin B antibiotics. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of copper oxide nanoparticles were 128 μg/mL against all selected bacterial pathogens. MIC of fungus and minimum fungicidal concentration (MFC) of CuO-NPs were 160 μg/mL. Thus, CuO-NPs can be utilized as a broad-spectrum antimicrobial agent. The cytotoxic activity of the synthesized CuO-NPs suggested that toxicity was negligible at concentrations below 60 μg/mL.
Collapse
Affiliation(s)
- Fozia Amin
- Department of Microbiology, Kohat University of Science & Technology, Kohat, Pakistan
| | - Fozia
- Biochemistry Department, KMU Institute of Medical Sciences, Kohat, Pakistan
| | - Baharullah Khattak
- Department of Microbiology, Kohat University of Science & Technology, Kohat, Pakistan
| | - Amal Alotaibi
- Basic Science Department, College of Medicine, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Muhammad Qasim
- Department of Microbiology, Kohat University of Science & Technology, Kohat, Pakistan
| | - Ijaz Ahmad
- Department of Chemistry, Kohat University of Science & Technology, Kohat, Pakistan
| | - Riaz Ullah
- Department of Pharmacognosy (MAPPRC), College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Laboratory of Chemistry-Biochemistry, Environment, Nutrition, and Health, Faculty of Medicine and Pharmacy, Hassan II University, B.P. 5696, Casablanca, Morocco
| | - Anadil Gul
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical Engineering, Beijing University of Technology, Beijing 100124, China
| | - Saira Zahoor
- Department of Pharmaceutics, College of Clinical Pharmacy, Imam Abdulrehman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Rizwan Ahmad
- Department of Natural Products and Alternative Medicines, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
13
|
Tang Y, Qin Z, Yin S, Sun H. Transition metal oxide and chalcogenide-based nanomaterials for antibacterial activities: an overview. NANOSCALE 2021; 13:6373-6388. [PMID: 33885521 DOI: 10.1039/d1nr00664a] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A new battle line is drawn where antibiotic misuse and mismanagement have made treatment of bacterial infection a thorny issue. It is highly desirable to develop active antibacterial materials for bacterial control and destruction without drug resistance. A large amount of effort has been devoted to transition metal oxide and chalcogenide (TMO&C) nanomaterials as possible candidates owing to their unconventional physiochemical, electronic and optical properties and feasibility of functional architecture assembly. This review expounds multiple TMO&C-based strategies to combat pathogens, opening up new possibilities for the design of simple, yet highly effective systems that are crucial for antimicrobial treatment. A special emphasis is placed on the multiple mechanisms of these nanoagents, including mechanical rupture, photocatalytic/photothermal activity, Fenton-type reaction, nanozyme-assisted effect, released metal ions and the synergistic action of TMO&C in combination with other antibacterial agents. The applications of TMO&C nanomaterials mostly in air/water purification and wound healing along with their bactericidal activities and mechanisms are also described. Finally, the contemporary challenges and trends in the development of TMO&C-based antibacterial strategies are proposed.
Collapse
Affiliation(s)
- Yanan Tang
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun, Jilin Province 130022, PR China.
| | | | | | | |
Collapse
|
14
|
Sayed MA, El-Bassuony AAH, Abdelsalam HK. Evaluation of antimicrobial properties of a novel synthesized nanometric delafossite. Braz J Microbiol 2020; 51:1475-1482. [PMID: 32822003 PMCID: PMC7688873 DOI: 10.1007/s42770-020-00366-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022] Open
Abstract
Antibiotics and other antimicrobial compounds are the backbone of clinical medicine. Antimicrobial resistance can cause serious diseases to man. Nanotechnology can improve therapeutic potential of medicinal molecules and related agents. Widespread application of antibiotics and other antimicrobial compounds led to development of multidrug-resistant microbes, so there is need to develop novel therapeutic agents. Novel synthesized nanometric delafossite was assayed against two Gram-positive bacteria (Staphylococcus aureus and Micrococcus luteus), two Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae), four opportunistic fungi (Aspergillus flavus, A. fumigatus, A. niger, and Fusarium solani), and four Candida species (C. albicans, C. parapsilosis, C. krusei, and C. tropicalis) using diffusion assay method. The minimum inhibitory concentration (MIC) of the novel synthesized nanometric delafossite was determined using the dilution method. The assayed compounds showed different degrees of antifungal and antibacterial activities, depending on the annealing temperature of preparation of these compounds. Compounds prepared at room temperature showed greater antimicrobial activities than those prepared at higher temperatures. The antimicrobial activity depends also on the susceptibility of the test microbe.
Collapse
Affiliation(s)
- Mohsen A Sayed
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt
| | | | - H K Abdelsalam
- Basic Science Department, Higher Institute of Applied Arts 5th Settlement, New Cairo, Egypt
| |
Collapse
|
15
|
Shkodenko L, Kassirov I, Koshel E. Metal Oxide Nanoparticles Against Bacterial Biofilms: Perspectives and Limitations. Microorganisms 2020; 8:E1545. [PMID: 33036373 PMCID: PMC7601517 DOI: 10.3390/microorganisms8101545] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/17/2022] Open
Abstract
At present, there is an urgent need in medicine and industry to develop new approaches to eliminate bacterial biofilms. Considering the low efficiency of classical approaches to biofilm eradication and the growing problem of antibiotic resistance, the introduction of nanomaterials may be a promising solution. Outstanding antimicrobial properties have been demonstrated by nanoparticles (NPs) of metal oxides and their nanocomposites. The review presents a comparative analysis of antibiofilm properties of various metal oxide NPs (primarily, CuO, Fe3O4, TiO2, ZnO, MgO, and Al2O3 NPs) and nanocomposites, as well as mechanisms of their effect on plankton bacteria cells and biofilms. The potential mutagenicity of metal oxide NPs and safety problems of their wide application are also discussed.
Collapse
Affiliation(s)
- Liubov Shkodenko
- Microbiology Lab of SCAMT Institute, ITMO University, Lomonosova st. 9, 191002 St. Petersburg, Russia; (L.S.); (I.K.)
| | - Ilia Kassirov
- Microbiology Lab of SCAMT Institute, ITMO University, Lomonosova st. 9, 191002 St. Petersburg, Russia; (L.S.); (I.K.)
- Department of Epidemiology, Pasteur Institute, 197101 St. Petersburg, Russia
| | - Elena Koshel
- Microbiology Lab of SCAMT Institute, ITMO University, Lomonosova st. 9, 191002 St. Petersburg, Russia; (L.S.); (I.K.)
| |
Collapse
|
16
|
Yang Y, Wan K, Yang Z, Li D, Li G, Zhang S, Wang L, Yu X. Inactivation of antibiotic resistant Escherichia coli and degradation of its resistance genes by glow discharge plasma in an aqueous solution. CHEMOSPHERE 2020; 252:126476. [PMID: 32229364 DOI: 10.1016/j.chemosphere.2020.126476] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 06/10/2023]
Abstract
Emerging contaminants such as antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) are becoming a global environmental problem. In this study, the glow discharge plasma (GDP) was applied for degrading antibiotic resistant Escherichia coli (E. coli) with resistance genes (tetA, tetR, aphA) and transposase gene (tnpA) in 0.9% sterile saline. The results showed that GDP was able to inactivate the antibiotic resistant E. coli and remove the ARGs and reduce the risk of gene transfer. The levels of E. coli determined by 16S rRNA decreased by approximately 4.7 logs with 15 min of discharge treatment. Propidium monoazide - quantitative polymerase chain reaction (PMA-qPCR) tests demonstrated that the cellular structure of 4.8 more logs E. coli was destroyed in 15 min. The reduction of tetA, tetR, aphA, tnpA genes was increased to 5.8, 5.4, 5.3 and 5.5 logs with 30 min discharge treatment, respectively. The removal of ARGs from high salinity wastewater was also investigated. The total abundance of ARGs was reduced by 3.9 logs in 30 min. Scavenging tests indicated that hydroxyl radicals (·OH) was the most probable agents for bacteria inactivation and ARGs degradation. In addition, the active chlorine (Cl· and Cl2) which formed during the discharge may also contribute to the inactivation and degradation.
Collapse
Affiliation(s)
- Ye Yang
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, P. R. China; College of Geography & Environmental Sciences, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Kun Wan
- Key Lab of Urban Environment & Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P. R. China; College of the Environment & Ecology, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhipeng Yang
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, P. R. China
| | - Dailin Li
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, P. R. China
| | - Guoxin Li
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, P. R. China
| | - Songlin Zhang
- College of Geography & Environmental Sciences, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Lei Wang
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, P. R. China.
| | - Xin Yu
- Key Lab of Urban Environment & Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, P. R. China; College of the Environment & Ecology, Xiamen University, Xiamen, 361005, P. R. China.
| |
Collapse
|
17
|
Sayed MA, Abdelsalam HK, El-Bassuony AAH. Antimicrobial activity of Novel spinel nanoferrites against pathogenic fungi and bacteria. World J Microbiol Biotechnol 2020; 36:25. [DOI: 10.1007/s11274-020-2803-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/16/2020] [Indexed: 10/25/2022]
|
18
|
Wang R, Lou J, Li J. A mobile restriction modification system consisting of methylases on the IncA/C plasmid. Mob DNA 2019; 10:26. [PMID: 31182978 PMCID: PMC6555945 DOI: 10.1186/s13100-019-0168-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND IncA/C plasmids play important roles in the development and dissemination of multidrug resistance in bacteria. These plasmids carry three methylase genes, two of which show cytosine specificity. The effects of such a plasmid on the host methylome were observed by single-molecule, real-time (SMRT) and bisulfite sequencing in this work. RESULTS The results showed that the numbers of methylation sites on the host chromosomes were changed, as were the sequences recognized by MTase. The host chromosomes were completely remodified by the plasmid with a methylation pattern different from that of the host itself. When the three dcm genes were deleted, the transferability of the plasmid into other Vibrio cholerae and Escherichia coli strains was lost. During deletion of the dcm genes, except for the wild-type strains and the targeted deletion strains, 18.7%~ 38.5% of the clones lost the IncA/C plasmid and changed from erythromycin-, azithromycin- and tetracycline-resistant strains to strains that were sensitive to these antibiotics. CONCLUSIONS Methylation of the IncA/C plasmid was a new mobile restriction modification (RM) barrier against foreign DNA. By actively changing the host's methylation pattern, the plasmid crossed the barrier of the host's RM system, and this might be the simplest and most universal method by which plasmids acquire a broad host range. Elimination of plasmids by destruction of plasmid stability could be a new effective strategy to address bacterial multidrug resistance.
Collapse
Affiliation(s)
- Ruibai Wang
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changbai Road 155, Changping, Beijing, 102206 People’s Republic of China
| | - Jing Lou
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changbai Road 155, Changping, Beijing, 102206 People’s Republic of China
| | - Jie Li
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changbai Road 155, Changping, Beijing, 102206 People’s Republic of China
| |
Collapse
|
19
|
Shaikh S, Nazam N, Rizvi SMD, Ahmad K, Baig MH, Lee EJ, Choi I. Mechanistic Insights into the Antimicrobial Actions of Metallic Nanoparticles and Their Implications for Multidrug Resistance. Int J Mol Sci 2019; 20:E2468. [PMID: 31109079 PMCID: PMC6566786 DOI: 10.3390/ijms20102468] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
Multiple drug-resistant bacteria are a severe and growing public health concern. Because relatively few antibiotics have been approved over recent years and because of the inability of existing antibiotics to combat bacterial infections fully, demand for unconventional biocides is intense. Metallic nanoparticles (NPs) offer a novel potential means of fighting bacteria. Although metallic NPs exert their effects through membrane protein damage, superoxide radicals and the generation of ions that interfere with the cell granules leading to the formation of condensed particles, their antimicrobial potential, and mechanisms of action are still debated. This article discusses the action of metallic NPs as antibacterial agents, their mechanism of action, and their effect on bacterial drug resistance. Based on encouraging data about the antibacterial effects of NP/antibiotic combinations, we propose that this concept be thoroughly researched to identify means of combating drug-resistant bacteria.
Collapse
Affiliation(s)
- Sibhghatulla Shaikh
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| | - Nazia Nazam
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201313, India.
| | | | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| | - Mohammad Hassan Baig
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea.
| |
Collapse
|
20
|
Shin W, Han HS, Le NTK, Kang K, Jang H. Antibacterial nanoparticles: enhanced antibacterial efficiency of coral-like crystalline rhodium nanoplates. RSC Adv 2019; 9:6241-6244. [PMID: 35517250 PMCID: PMC9060943 DOI: 10.1039/c9ra00214f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/14/2019] [Indexed: 11/26/2022] Open
Abstract
This paper deals with the newly found antibacterial efficiency of coral-like crystalline Rh nanoplates. Rh nanoplates with rough surface morphology synthesized by inverse-directional galvanic replacement exhibited highly enhanced antibacterial efficiency compared to Rh3+ ion and Rh nanospheres. The observed antibacterial efficiency was comparable to Ag nanoplates, a well-known anticancer nano-agent. Results clearly demonstrate that the composition and morphology of a nanostructure play significant roles in antibacterial effects. This paper deals with the newly found antibacterial efficiency of coral-like crystalline Rh nanoplates.![]()
Collapse
Affiliation(s)
- Woojun Shin
- Department of Chemistry
- Kwangwoon University
- Seoul 01897
- Republic of Korea
| | - Hyuk Seung Han
- Department of Applied Chemistry
- Kyung Hee University
- Yongin
- Republic of Korea
| | - Nghia T. K. Le
- Department of Applied Chemistry
- Kyung Hee University
- Yongin
- Republic of Korea
| | - Kyungtae Kang
- Department of Applied Chemistry
- Kyung Hee University
- Yongin
- Republic of Korea
| | - Hongje Jang
- Department of Chemistry
- Kwangwoon University
- Seoul 01897
- Republic of Korea
| |
Collapse
|
21
|
Antimicrobial Silver Nanoparticles: Future of Nanomaterials. NANOTECHNOLOGY IN THE LIFE SCIENCES 2019. [DOI: 10.1007/978-3-030-16534-5_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Fathima JB, Pugazhendhi A, Venis R. Synthesis and characterization of ZrO 2 nanoparticles-antimicrobial activity and their prospective role in dental care. Microb Pathog 2017; 110:245-251. [PMID: 28666841 DOI: 10.1016/j.micpath.2017.06.039] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/26/2017] [Accepted: 06/26/2017] [Indexed: 12/13/2022]
Abstract
Nanomaterials are exerting a pull on deal with biological and pharmaceutical applications. Biomedical grade of zirconia reveals potential mechanical features of oxide ceramics. In this study, antimicrobial activity and anti-tooth decay applications of the synthesized NPs of ZrO2 were determined. The as-prepared ZrO2 NPs were characterized by UV-vis spectroscopy, FTIR and XRD, which determined the formation of ZrO2NPs and their crystalline nature. SEM analysis further revealed spherical shaped NPs and TEM analysis determined the size of the particles in the range of 15-21 nm, respectively. The antimicrobial activity of different concentrations of the synthesized ZrO2NPs was examined against gram positive bacteria (Bacillus subtilis and Staphylococcus aureus), gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa), respectively. The synthesized ZrO2NPs displayed a better inhibitory action against Pseudomonas aeruginosa (inhibition zone size of 20 mm) at the concentration of 100 μg/ml compared to other bacteria due to the negatively charged P. aeruginosa cell wall readily attracting positively charged ZrO2NPs and thereby inhibiting microbial actions. Moreover, the concentration of ZrO2NPs was directly proportional to their inhibitory actions against the tested microorganisms. Finally, the preventive role of ZrO2NPs in a tooth decay pathway has been elucidated. Hence, it could be concluded that the as-prepared ZrO2NPs possess viable biomedical applications.
Collapse
Affiliation(s)
- John Bani Fathima
- Department of Chemistry, St. Joseph's College, Tiruchirappalli, Tamil Nadu, India
| | - Arivalagan Pugazhendhi
- Green Processing, Bioremediation and Alternative Energies Research Group (GPBAE), Faculty of Environment and Labour Safety, Ton Duc Thang University (TDTU), Ho Chi Minh City, Viet Nam.
| | - Rose Venis
- Department of Chemistry, St. Joseph's College, Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
23
|
Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 2017; 12:1227-1249. [PMID: 28243086 PMCID: PMC5317269 DOI: 10.2147/ijn.s121956] [Citation(s) in RCA: 1732] [Impact Index Per Article: 216.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are increasingly used to target bacteria as an alternative to antibiotics. Nanotechnology may be particularly advantageous in treating bacterial infections. Examples include the utilization of NPs in antibacterial coatings for implantable devices and medicinal materials to prevent infection and promote wound healing, in antibiotic delivery systems to treat disease, in bacterial detection systems to generate microbial diagnostics, and in antibacterial vaccines to control bacterial infections. The antibacterial mechanisms of NPs are poorly understood, but the currently accepted mechanisms include oxidative stress induction, metal ion release, and non-oxidative mechanisms. The multiple simultaneous mechanisms of action against microbes would require multiple simultaneous gene mutations in the same bacterial cell for antibacterial resistance to develop; therefore, it is difficult for bacterial cells to become resistant to NPs. In this review, we discuss the antibacterial mechanisms of NPs against bacteria and the factors that are involved. The limitations of current research are also discussed.
Collapse
Affiliation(s)
- Linlin Wang
- Department of Stomatology, Hainan General Hospital, Haikou, Hainan
| | - Chen Hu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Longquan Shao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
24
|
Qasim M, Singh BR, Naqvi AH, Paik P, Das D. Silver nanoparticles embedded mesoporous SiO₂ nanosphere: an effective anticandidal agent against Candida albicans 077. NANOTECHNOLOGY 2015; 26:285102. [PMID: 26119911 DOI: 10.1088/0957-4484/26/28/285102] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Candida albicans is a diploid fungus that causes common infections such as denture stomatitis, thrush, urinary tract infections, etc. Immunocompromised patients can become severely infected by this fungus. Development of an effective anticandidal agent against this pathogenic fungus, therefore, will be very useful for practical application. In this work, Ag-embedded mesoporous silica nanoparticles (mSiO2@AgNPs) have successfully been synthesized and their anticandidal activities against C. albicans have been studied. The mSiO2@AgNPs nanoparticles (d ∼ 400 nm) were designed using pre-synthesized Ag nanoparticles and tetraethyl orthosilicate (TEOS) as a precursor for SiO2 in the presence of cetyltrimethyl ammonium bromide (CTAB) as an easily removable soft template. A simple, cost-effective, and environmentally friendly approach has been adopted to synthesize silver (Ag) nanoparticles using silver nitrate and leaf extract of Azadirachta indica. The mesopores, with size-equivalent diameter of the micelles (d = 4-6 nm), were generated on the SiO2 surface by calcination after removal of the CTAB template. The morphology and surface structure of mSiO2@AgNPs were characterized through x-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), particle size analysis (PSA), atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM), Brunauer-Emmett-Teller (BET) and high-resolution transmission electron microscopy (HRTEM). The HRTEM micrograph reveals the well-ordered mesoporous structure of the SiO2 sphere. The antifungal activities of mSiO2@AgNPs on the C. albicans cell have been studied through microscopy and are seen to increase with increasing dose of mSiO2@AgNPs, suggesting mSiO2@AgNPs to be a potential antifungal agent for C. albicans 077.
Collapse
Affiliation(s)
- M Qasim
- School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046, India
| | | | | | | | | |
Collapse
|
25
|
Ecofriendly production of silver nanoparticles using Candida utilis and its mechanistic action against pathogenic microorganisms. 3 Biotech 2015; 5:33-38. [PMID: 28324356 PMCID: PMC4327747 DOI: 10.1007/s13205-014-0196-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/10/2014] [Indexed: 12/04/2022] Open
Abstract
Silver nanoparticles (AgNPs) have attracted great interest due to their applications in various areas. In the present study ecofriendly biosynthesis of extracellular silver nanoparticles was carried out using Candida utilis NCIM 3469. Characterization of synthesized AgNPs was done by UV–visible spectroscopy, Scanning electron microscopy and antibacterial activity. AgNPs are found spherical in shape with size in the range of 20–80 nm. AgNPs showed antibacterial activity against pathogenic organisms such as Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli. The SEM analysis confirms the antibacterial activity of Ag nanoparticles due to damage of cytoplasmic membrane. AgNPs synthesized by C. utilis could be applicable in the development of antibacterial water filters for treatment of water.
Collapse
|
26
|
Lai CC, Lee K, Xiao Y, Ahmad N, Veeraraghavan B, Thamlikitkul V, Tambyah PA, Nelwan RHH, Shibl AM, Wu JJ, Seto WH, Hsueh PR. High burden of antimicrobial drug resistance in Asia. J Glob Antimicrob Resist 2014; 2:141-147. [PMID: 27873720 DOI: 10.1016/j.jgar.2014.02.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 01/17/2014] [Accepted: 02/09/2014] [Indexed: 02/02/2023] Open
Abstract
The rapid development of antimicrobial resistance among micro-organisms is a serious public health concern. Moreover, the dissemination of antibiotic-resistant bacteria makes this issue a global problem, and Asia is no exception. For example, since New Delhi metallo-β-lactamase (NDM)-producing Enterobacteriaceae were identified in India, further spread of NDM has become a worldwide threat. However, the epidemiology of antibiotic-resistant bacteria in Asia may be different to other regions, and clinical condition may be worse than in western countries. Antibiotic-resistant bacteria, including community-acquired and hospital-acquired meticillin-resistant Staphylococcus aureus (MRSA), vancomycin-intermediate S. aureus (VISA), vancomycin-resistant enterococci, macrolide- and penicillin-resistant Streptococcus pneumoniae, extend-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae, carbapenem-resistant Enterobacteriaceae, and multidrug-resistant Pseudomonas aeruginosa and Acinetobacter spp., are becoming prevalent in many countries in Asia. Moreover, the prevalence of each antibiotic-resistant bacterium in each country is not identical. This review provides useful information regarding the critical condition of antibiotic resistance in Asia and emphasises the importance of continuous surveillance of resistance data.
Collapse
Affiliation(s)
- Chi-Cheng Lai
- Department of Intensive Care Medicine, Chi-Mei Medical Center, Liouying, Tainan, Taiwan
| | - Kyungwon Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Norazah Ahmad
- Institute for Medical Research, Kuala Lumpur, Malaysia
| | | | | | | | - R H H Nelwan
- Division of Tropical and Infectious Diseases, Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Dr Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | | | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, National Cheng-Kung University, Tainan, Taiwan
| | | | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, No. 7 Chung-Shan South Road, Taipei 100, Taiwan.
| |
Collapse
|
27
|
Gan M, Liu Y, Bai Y, Guan Y, Li L, Gao R, He W, You X, Li Y, Yu L, Xiao C. Polyketides with New Delhi metallo-β-lactamase 1 inhibitory activity from Penicillium sp. JOURNAL OF NATURAL PRODUCTS 2013; 76:1535-1540. [PMID: 23972215 DOI: 10.1021/np4000944] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Three new polyketide compounds (1-3), a new quinolone alkaloid (4), and seven known polyketide derivatives were identified from the cultures of Penicillium sp. I09F 484, a strain isolated from the rhizosphere soil of the plant Picea asperata from Kanas Lake, Xinjiang, China. Their structures were elucidated by extensive spectroscopic data analysis. The absolute configurations of 1 and 4 were established by quantum chemical time-dependent density functional theory electronic circular dichroism calculation and Marfey's method, respectively. Compounds 1 and 2 displayed inhibitory activity against New Delhi metallo-β-lactamase 1 with IC₅₀ values of 94.9 and 87.9 μM, respectively.
Collapse
Affiliation(s)
- Maoluo Gan
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100050, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hannan TJ, Totsika M, Mansfield KJ, Moore KH, Schembri MA, Hultgren SJ. Host-pathogen checkpoints and population bottlenecks in persistent and intracellular uropathogenic Escherichia coli bladder infection. FEMS Microbiol Rev 2012; 36:616-48. [PMID: 22404313 DOI: 10.1111/j.1574-6976.2012.00339.x] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bladder infections affect millions of people yearly, and recurrent symptomatic infections (cystitis) are very common. The rapid increase in infections caused by multidrug-resistant uropathogens threatens to make recurrent cystitis an increasingly troubling public health concern. Uropathogenic Escherichia coli (UPEC) cause the vast majority of bladder infections. Upon entry into the lower urinary tract, UPEC face obstacles to colonization that constitute population bottlenecks, reducing diversity, and selecting for fit clones. A critical mucosal barrier to bladder infection is the epithelium (urothelium). UPEC bypass this barrier when they invade urothelial cells and form intracellular bacterial communities (IBCs), a process which requires type 1 pili. IBCs are transient in nature, occurring primarily during acute infection. Chronic bladder infection is common and can be either latent, in the form of the quiescent intracellular reservoir (QIR), or active, in the form of asymptomatic bacteriuria (ASB/ABU) or chronic cystitis. In mice, the fate of bladder infection, QIR, ASB, or chronic cystitis, is determined within the first 24 h of infection and constitutes a putative host-pathogen mucosal checkpoint that contributes to susceptibility to recurrent cystitis. Knowledge of these checkpoints and bottlenecks is critical for our understanding of bladder infection and efforts to devise novel therapeutic strategies.
Collapse
Affiliation(s)
- Thomas J Hannan
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
29
|
|
30
|
Arya SC, Agarwal N. Response to “New Delhi Metallo-β-lactamase (NDM-1): an emerging Threat Among Enterobacteriaceae”. J Formos Med Assoc 2010; 109:921-2. [DOI: 10.1016/s0929-6646(10)60140-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|