1
|
Herbert Mainero A, Spence PJ, Reece SE, Kamiya T. The impact of innate immunity on malaria parasite infection dynamics in rodent models. Front Immunol 2023; 14:1171176. [PMID: 37646037 PMCID: PMC10461630 DOI: 10.3389/fimmu.2023.1171176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/07/2023] [Indexed: 09/01/2023] Open
Abstract
Decades of research have probed the molecular and cellular mechanisms that control the immune response to malaria. Yet many studies offer conflicting results on the functional impact of innate immunity for controlling parasite replication early in infection. We conduct a meta-analysis to seek consensus on the effect of innate immunity on parasite replication, examining three different species of rodent malaria parasite. Screening published studies that span four decades of research we collate, curate, and statistically analyze infection dynamics in immune-deficient or -augmented mice to identify and quantify general trends and reveal sources of disagreement among studies. Additionally, we estimate whether host factors or experimental methodology shape the impact of immune perturbations on parasite burden. First, we detected meta-analytic mean effect sizes (absolute Cohen's h) for the difference in parasite burden between treatment and control groups ranging from 0.1475 to 0.2321 across parasite species. This range is considered a small effect size and translates to a modest change in parasitaemia of roughly 7-12% on average at the peak of infection. Second, we reveal that variation across studies using P. chabaudi or P. yoelii is best explained by stochasticity (due to small sample sizes) rather than by host factors or experimental design. Third, we find that for P. berghei the impact of immune perturbation is increased when young or female mice are used and is greatest when effector molecules (as opposed to upstream signalling molecules) are disrupted (up to an 18% difference in peak parasitaemia). Finally, we find little evidence of publication bias suggesting that our results are robust. The small effect sizes we observe, across three parasite species, following experimental perturbations of the innate immune system may be explained by redundancy in a complex biological system or by incomplete (or inappropriate) data reporting for meta-analysis. Alternatively, our findings might indicate a need to re-evaluate the efficiency with which innate immunity controls parasite replication early in infection. Testing these hypotheses is necessary to translate understanding from model systems to human malaria.
Collapse
Affiliation(s)
- Alejandra Herbert Mainero
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Philip J. Spence
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah E. Reece
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Tsukushi Kamiya
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Interdisciplinary Research in Biology, Collège de France, Paris, France
- HRB, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
2
|
von Borstel A, Chevour P, Arsovski D, Krol JMM, Howson LJ, Berry AA, Day CL, Ogongo P, Ernst JD, Nomicos EYH, Boddey JA, Giles EM, Rossjohn J, Traore B, Lyke KE, Williamson KC, Crompton PD, Davey MS. Repeated Plasmodium falciparum infection in humans drives the clonal expansion of an adaptive γδ T cell repertoire. Sci Transl Med 2021; 13:eabe7430. [PMID: 34851691 DOI: 10.1126/scitranslmed.abe7430] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Anouk von Borstel
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Priyanka Chevour
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Daniel Arsovski
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jelte M M Krol
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Lauren J Howson
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Andrea A Berry
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Cheryl L Day
- Department of Microbiology and Immunology, Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Paul Ogongo
- Division of Experimental Medicine, Department of Medicine, UCSF School of Medicine, San Francisco, CA, USA.,Department of Tropical and Infectious Diseases, Institute of Primate Research, National Museums of Kenya, P.O Box 24481-00502, Nairobi, Kenya
| | - Joel D Ernst
- Division of Experimental Medicine, Department of Medicine, UCSF School of Medicine, San Francisco, CA, USA
| | - Effie Y H Nomicos
- Parasitology and International Programs Branch, Division of Microbiology and Infectious Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Justin A Boddey
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia.,University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Edward M Giles
- Department of Paediatrics, Monash University, and Centre for Innate Immunity and Infectious Disease, Hudson Institute of Medicine, Clayton, Victoria 3168, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia.,Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, CF14 4XN Cardiff, UK
| | - Boubacar Traore
- Malaria Research and Training Center, Department of Epidemiology of Parasitic Diseases, International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Kirsten E Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kim C Williamson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, MD, USA
| | - Martin S Davey
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
3
|
Mandala WL, Harawa V, Dzinjalamala F, Tembo D. The role of different components of the immune system against Plasmodium falciparum malaria: Possible contribution towards malaria vaccine development. Mol Biochem Parasitol 2021; 246:111425. [PMID: 34666102 PMCID: PMC8655617 DOI: 10.1016/j.molbiopara.2021.111425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/10/2021] [Accepted: 10/08/2021] [Indexed: 12/24/2022]
Abstract
Plasmodium falciparum malaria still remains a major global public health challenge with over 220 million new cases and well over 400,000 deaths annually. Most of the deaths occur in sub-Saharan Africa which bears 90 % of the malaria cases. Such high P. falciparum malaria-related morbidity and mortality rates pose a huge burden on the health and economic wellbeing of the countries affected. Lately, substantial gains have been made in reducing malaria morbidity and mortality through intense malaria control initiatives such as use of effective antimalarials, intensive distribution and use of insecticide-treated nets (ITNs), and implementation of massive indoor residual spraying (IRS) campaigns. However, these gains are being threatened by widespread resistance of the parasite to antimalarials, and the vector to insecticides. Over the years the use of vaccines has proven to be the most reliable, cost-effective and efficient method for controlling the burden and spread of many infectious diseases, especially in resource poor settings with limited public health infrastructure. Nonetheless, this had not been the case with malaria until the most promising malaria vaccine candidate, RTS,S/AS01, was approved for pilot implementation programme in three African countries in 2015. This was regarded as the most important breakthrough in the fight against malaria. However, RTS,S/AS01 has been found to have some limitations, the main ones being low efficacy in certain age groups, poor immunogenicity and need for almost three boosters to attain a reasonable efficacy. Thus, the search for a more robust and effective malaria vaccine still continues and a better understanding of naturally acquired immune responses to the various stages, including the transmissible stages of the parasite, could be crucial in rational vaccine design. This review therefore compiles what is currently known about the basic biology of P. falciparum and the natural malaria immune response against malaria and progress made towards vaccine development.
Collapse
Affiliation(s)
- Wilson L Mandala
- Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo, Malawi; Malawi Liverpool Wellcome Trust, Blantyre, Malawi.
| | | | - Fraction Dzinjalamala
- Academy of Medical Sciences, Malawi University of Science and Technology, Thyolo, Malawi
| | | |
Collapse
|
4
|
De SL, Ntumngia FB, Nicholas J, Adams JH. Progress towards the development of a P. vivax vaccine. Expert Rev Vaccines 2021; 20:97-112. [PMID: 33481638 PMCID: PMC7994195 DOI: 10.1080/14760584.2021.1880898] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Plasmodium vivax causes significant public health problems in endemic regions. A vaccine to prevent disease is critical, considering the rapid spread of drug-resistant parasite strains, and the development of hypnozoites in the liver with potential for relapse. A minimally effective vaccine should prevent disease and transmission while an ideal vaccine provides sterile immunity. AREAS COVERED Despite decades of research, the complex life cycle, technical challenges and a lack of funding have hampered progress of P. vivax vaccine development. Here, we review the progress of potential P. vivax vaccine candidates from different stages of the parasite life cycle. We also highlight the challenges and important strategies for rational vaccine design. These factors can significantly increase immune effector mechanisms and improve the protective efficacy of these candidates in clinical trials to generate sustained protection over longer periods of time. EXPERT OPINION A vaccine that presents functionally-conserved epitopes from multiple antigens from various stages of the parasite life cycle is key to induce broadly neutralizing strain-transcending protective immunity to effectively disrupt parasite development and transmission.
Collapse
Affiliation(s)
- Sai Lata De
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - Francis B. Ntumngia
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - Justin Nicholas
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa – 33612, FL
| |
Collapse
|
5
|
Goswami D, Betz W, Locham NK, Parthiban C, Brager C, Schäfer C, Camargo N, Nguyen T, Kennedy SY, Murphy SC, Vaughan AM, Kappe SH. A replication-competent late liver stage-attenuated human malaria parasite. JCI Insight 2020; 5:135589. [PMID: 32484795 DOI: 10.1172/jci.insight.135589] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/21/2020] [Indexed: 01/06/2023] Open
Abstract
Whole-sporozoite vaccines engender sterilizing immunity against malaria in animal models and importantly, in humans. Gene editing allows for the removal of specific parasite genes, enabling generation of genetically attenuated parasite (GAP) strains for vaccination. Using rodent malaria parasites, we have previously shown that late liver stage-arresting replication-competent (LARC) GAPs confer superior protection when compared with early liver stage-arresting replication-deficient GAPs and radiation-attenuated sporozoites. However, generating a LARC GAP in the human malaria parasite Plasmodium falciparum (P. falciparum) has been challenging. Here, we report the generation and characterization of a likely unprecedented P. falciparum LARC GAP generated by targeted gene deletion of the Mei2 gene: P. falciparum mei2-. Robust exoerythrocytic schizogony with extensive cell growth and DNA replication was observed for P. falciparum mei2- liver stages in human liver-chimeric mice. However, P. falciparum mei2- liver stages failed to complete development and did not form infectious exoerythrocytic merozoites, thereby preventing their transition to asexual blood stage infection. Therefore, P. falciparum mei2- is a replication-competent, attenuated human malaria parasite strain with potentially increased potency, useful for vaccination to protect against P. falciparum malaria infection.
Collapse
Affiliation(s)
- Debashree Goswami
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - William Betz
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Navin K Locham
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | | | - Carolyn Brager
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Carola Schäfer
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Thao Nguyen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | - Spencer Y Kennedy
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA
| | | | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Stefan Hi Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, Washington, USA.,Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
6
|
Efstratiou A, Galon EMS, Wang G, Umeda K, Kondoh D, Terkawi MA, Kume A, Liu M, Ringo AE, Guo H, Gao Y, Lee SH, Li J, Moumouni PFA, Nishikawa Y, Suzuki H, Igarashi I, Xuan X. Babesia microti Confers Macrophage-Based Cross-Protective Immunity Against Murine Malaria. Front Cell Infect Microbiol 2020; 10:193. [PMID: 32411624 PMCID: PMC7200999 DOI: 10.3389/fcimb.2020.00193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 04/09/2020] [Indexed: 01/26/2023] Open
Abstract
Malaria and babesiosis, the two primary intraerythrocytic protozoan diseases of humans, have been reported in multiple cases of co-infection in endemic regions. As the geographic range and incidence of arthropod-borne infectious diseases is being affected by climate change, co-infection cases with Plasmodium and Babesia are likely to increase. The two parasites have been used in experimental settings, where prior infection with Babesia microti has been shown to protect against fatal malarial infections in mice and primates. However, the immunological mechanisms behind such phenomena of cross-protection remain unknown. Here, we investigated the effect of a primary B. microti infection on the outcome of a lethal P. chabaudi challenge infection using a murine model. Simultaneous infection with both pathogens led to high mortality rates in immunocompetent BALB/c mice, similar to control mice infected with P. chabaudi alone. On the other hand, mice with various stages of B. microti primary infection were thoroughly immune to a subsequent P. chabaudi challenge. Protected mice exhibited decreased levels of serum antibodies and pro-inflammatory cytokines during early stages of challenge infection. Mice repeatedly immunized with dead B. microti quickly succumbed to P. chabaudi infection, despite induction of high antibody responses. Notably, cross-protection was observed in mice lacking functional B and T lymphocytes. When the role of other innate immune effector cells was examined, NK cell-depleted mice with chronic B. microti infection were also found to be protected against P. chabaudi. Conversely, in vivo macrophage depletion rendered the mice vulnerable to P. chabaudi. The above results show that the mechanism of cross-protection conferred by B. microti against P. chabaudi is innate immunity-based, and suggest that it relies predominantly upon the function of macrophages. Further research is needed for elucidating the malaria-suppressing effects of babesiosis, with a vision toward development of novel tools to control malaria.
Collapse
Affiliation(s)
- Artemis Efstratiou
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Eloiza May S Galon
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Guanbo Wang
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Kousuke Umeda
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Daisuke Kondoh
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mohamad Alaa Terkawi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan.,Department of Orthopedic Surgery, Hokkaido University, Sapporo, Japan
| | - Aiko Kume
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Mingming Liu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Aaron Edmond Ringo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Huanping Guo
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Yang Gao
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Seung-Hun Lee
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Jixu Li
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Paul Franck Adjou Moumouni
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hiroshi Suzuki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Ikuo Igarashi
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
7
|
Adachi R, Tamura T. Plasmodium infection cure cycles induce modulation of conventional dendritic cells. Microbiol Immunol 2020; 64:377-386. [PMID: 32096562 DOI: 10.1111/1348-0421.12783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 01/01/2023]
Abstract
Malaria is one of the most widespread human infectious diseases worldwide and a cause of mortality. It is difficult to induce immunological memory against the malarial parasite Plasmodium. The immunity to clinical malaria disease is acquired with multiple infection and treatment cycles, along with substantial reduction in parasite burden. However, the mechanism of the acquired immunity remains largely unclear. Conventional DCs (cDCs) play a pivotal role in orchestration of immune responses. The purpose of this study is to analyze the characterization of cDCs after the infection and cure treatment cycles. Mice were infected with the lethal rodent malarial parasite Plasmodium berghei ANKA, which was followed by cure treatment with the antimalarial drug pyrimethamine. This was then followed by a challenge with live parasites. The mice that went through infection cure cycles showed significant immune response, demonstrating robust immunological memory against malaria parasites. We investigated the cytokine production capacity of splenic cDCs in both naive and infection cure mice by stimulating purified splenic cDCs with LPS (TLR4 agonist) or CpG (TLR9 agonist). The capacity of cytokine production was found to be significantly decreased in infection cure mice. The suppression of cytokine production was sustained for a long term (6 months). Moreover, the surface expression of MHC Class II molecules was significantly lower in infection cure mice than in naive mice. These results suggest that Plasmodium infection and cure treatment resulted in strong immunological memory and modulation of full functionality of cDCs.
Collapse
Affiliation(s)
- Ryosuke Adachi
- School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | | |
Collapse
|
8
|
Imai T, Suzue K, Ngo-Thanh H, Ono S, Orita W, Suzuki H, Shimokawa C, Olia A, Obi S, Taniguchi T, Ishida H, Van Kaer L, Murata S, Tanaka K, Hisaeda H. Fluctuations of Spleen Cytokine and Blood Lactate, Importance of Cellular Immunity in Host Defense Against Blood Stage Malaria Plasmodium yoelii. Front Immunol 2019; 10:2207. [PMID: 31608052 PMCID: PMC6773889 DOI: 10.3389/fimmu.2019.02207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/02/2019] [Indexed: 12/27/2022] Open
Abstract
Our previous studies of protective immunity and pathology against blood stage malaria parasites have shown that not only CD4+ T cells, but also CD8+ T cells and macrophages, are important for host defense against blood stage malaria infection. Furthermore, we found that Plasmodium yoelii 17XNL (PyNL) parasitizes erythroblasts, the red blood cell (RBC) precursor cells, which then express MHC class I molecules. In the present study, we analyzed spleen cytokine production. In CD8+ T cell-depleted mice, IL-10 production in early stage infection was increased over two-fold relative to infected control animals and IL-10+ CD3- cells were increased, whereas IFN-γ production in the late stage of infection was decreased. At day 16 after PyNL infection, CD8+ T cells produced more IFN-γ than CD4+ T cells. We evaluated the involvement of the immunoproteasome in induction of immune CD8+ T cells, and the role of Fas in protection against PyNL both of which are downstream of IFN-γ. In cell transfer experiments, at least the single molecules LMP7, LMP2, and PA28 are not essential for CD8+ T cell induction. The Fas mutant LPR mouse was weaker in resistance to PyNL infection than WT mice, and 20% of the animals died. LPR-derived parasitized erythroid cells exhibited less externalization of phosphatidylserine (PS), and phagocytosis by macrophages was impaired. Furthermore, we tried to identify the cause of death in malaria infection. Blood lactate concentration was increased in the CD8+ T cell-depleted PyNL-infected group at day 19 (around peak parasitemia) to similar levels as day 7 after infection with a lethal strain of Py. When we injected mice with lactate at day 4 and 6 of PyNL infection, all mice died at day 8 despite demonstrating low parasitemia, suggesting that hyperlactatemia is one of the causes of death in CD8+ T cell-depleted PyNL-infected mice. We conclude that CD8+ T cells might control cytokine production to some extent and regulate hyperparasitemia and hyperlactatemia in protection against blood stage malaria parasites.
Collapse
Affiliation(s)
- Takashi Imai
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan.,Department of Parasitology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazutomo Suzue
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ha Ngo-Thanh
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Suguri Ono
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Wakako Orita
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Haruka Suzuki
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Chikako Shimokawa
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan.,Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Alex Olia
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan.,Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Seiji Obi
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tomoyo Taniguchi
- Center for Medical Education, Graduate School of Medicine, Gunma University, Maebashi, Japan
| | - Hidekazu Ishida
- Department of Parasitology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Keiji Tanaka
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hajime Hisaeda
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
9
|
Mehrizi AA, Ameri Torzani M, Zakeri S, Jafary Zadeh A, Babaeekhou L. Th1 immune response to Plasmodium falciparum recombinant thrombospondin-related adhesive protein (TRAP) antigen is enhanced by TLR3-specific adjuvant, poly(I:C) in BALB/c mice. Parasite Immunol 2019; 40:e12538. [PMID: 29799636 DOI: 10.1111/pim.12538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
Sporozoite-based malaria vaccines have provided a gold standard for malaria vaccine development, and thrombospondin-related adhesive protein (TRAP) serves as the main vaccine candidate antigen on sporozoites. As recombinant malaria vaccine candidate antigens are poorly immunogenic, additional appropriate immunostimulants, such as an efficient adjuvant, are highly essential to modulate Th1-cell predominance and also to induce a protective and long-lived immune response. In this study, polyinosinic:polycytidylic acid [poly(I:C)], the ligand of TLR3, was considered as the potential adjuvant for vaccines targeting stronger Th1-based immune responses. For this purpose, BALB/c mice were immunized with rPfTRAP delivered in putative poly(I:C) adjuvant, and humoural and cellular immune responses were determined in different immunized mouse groups. Delivery of rPfTRAP with poly(I:C) induced high levels and titres of persisted and also high-avidity anti-rPfTRAP IgG antibodies comparable to complete Freund's adjuvant (CFA)/incomplete Freund's adjuvant (IFA) adjuvant after the second boost. In addition, rPfTRAP formulated with poly(I:C) elicited a higher ratio of IFN-γ/IL-5, IgG2a/IgG1, and IgG2b/IgG1 than with CFA/IFA, indicating that poly(I:C) supports the induction of a stronger Th1-based immune response. This is a first time study which reveals the potential of rPfTRAP delivery in poly(I:C) to increase the level, avidity and durability of both anti-PfTRAP cytophilic antibodies and Th1 cytokines.
Collapse
Affiliation(s)
- A A Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - M Ameri Torzani
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.,Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - S Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - A Jafary Zadeh
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - L Babaeekhou
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| |
Collapse
|
10
|
Cheng Q, Liu J, Pei Y, Zhang Y, Zhou D, Pan W, Zhang J. Neddylation contributes to CD4+ T cell-mediated protective immunity against blood-stage Plasmodium infection. PLoS Pathog 2018; 14:e1007440. [PMID: 30462731 PMCID: PMC6249024 DOI: 10.1371/journal.ppat.1007440] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 10/29/2018] [Indexed: 01/30/2023] Open
Abstract
CD4+ T cells play predominant roles in protective immunity against blood-stage Plasmodium infection, both for IFN-γ-dependent effector mechanisms and providing B cell helper signals. Neddylation, an ubiquitination-like process triggered by covalent conjugation of NEDD8 to specific targets, has emerged as a potential regulator of T cell activities to TCR engagement. However, its contribution to T cell-mediated immunity to blood-stage malaria remains unclear. Here using an experimental model induced by Plasmodium yoelii 17XNL, and conditional knockout mice with T cell-specific deficiency of crucial components of neddylation pathway, we demonstrate activation of neddylation in T cells during blood-stage Plasmodium infection is essential for parasite control and host survival. Mechanistically, we show that apart from promoting CD4+ T cell activation, proliferation, and development of protective T helper 1 (Th1) cell response as suggested previously, neddylation is also required for supporting CD4+ T cell survival, mainly through B-cell lymphoma-2 (Bcl-2) mediated suppression of the mitochondria-dependent apoptosis. Furthermore, we provide evidence that neddylation contributes to follicular helper T (Tfh) cell differentiation, probably via augmenting the ubiquitin ligase Itch activity and proteasomal degradation of FoxO1, thereby facilitating germinal center (GC) formation and parasite-specific antibody production. This study identifies neddylation as a positive regulator of anti-Plasmodium immunity and provides insight into an involvement of such pathway in host resistance to infectious diseases. Malaria, which is caused by the intracellular parasite Plasmodium, remains a major infectious disease with significant morbidity and mortality annually. Better understanding of the molecular mechanisms involved in protective immunity against the pathogenic blood-stage Plasmodium will facilitate development of anti-malarial drugs and vaccines. Neddylation has recently been identified as a potential regulator of T cell function. Here, we directly addressed the effects of neddylation on T cell responses and the outcome of blood-stage P. yoelii 17XNL malaria. We show that activation of neddylation in T cells is essential for IFN-γ-mediated proinflammatory response and generation of parasite-specific antibodies, thus contributing to full resolution of the infection. This is primarily associated with the reported beneficial effects of neddylation on CD4+ T cell activities, including activation, proliferation, and differentiation into T helper 1 (Th1) cells. Additionally, we establish a novel role of neddylation in parasite-responsive CD4+ T cell survival and follicular helper T (Tfh) cell differentiation. Therefore, we provide evidence that neddylation may represent a novel mechanism in orchestrating optimum CD4+ T cell effector response and subsequent humoral immunity to blood-stage Plasmodium infection.
Collapse
Affiliation(s)
- Qianqian Cheng
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
- * E-mail: (QC); (JZ)
| | - Jian Liu
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Yujun Pei
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Yaolin Zhang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Weiqing Pan
- Department of Tropical Infectious Diseases, Second Military Medical University, Shanghai, China
| | - Jiyan Zhang
- Department of Molecular Immunology, Institute of Basic Medical Sciences, Beijing, China
- * E-mail: (QC); (JZ)
| |
Collapse
|
11
|
Yepes-Pérez Y, López C, Suárez CF, Patarroyo MA. Plasmodium vivax Pv12 B-cell epitopes and HLA-DRβ1*-dependent T-cell epitopes in vitro antigenicity. PLoS One 2018; 13:e0203715. [PMID: 30199554 PMCID: PMC6130872 DOI: 10.1371/journal.pone.0203715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/24/2018] [Indexed: 11/18/2022] Open
Abstract
Malaria is an infectious disease caused by parasites from the genus Plasmodium (P. falciparum and P. vivax are responsible for 90% of all clinical cases); it is widely distributed throughout the world’s tropical and subtropical regions. The P. vivax Pv12 protein is involved in invasion, is expressed on merozoite surface and has been recognised by antibodies from individuals exposed to the disease. In this study, B- and T-cell epitopes from Pv12 were predicted and characterised to advance in the design of a peptide-based vaccine against malaria. For evaluating the humoral response of individuals exposed to natural P. vivax infection from two endemic areas in Colombia, BepiPred-1.0 software was used for selecting B-cell epitopes. B-cell epitope 39038 displayed the greatest recognition by naturally-acquired antibodies and induced an IgG2/IgG4 response. NetMHCIIpan-3.1 prediction software was used for selecting peptides having high affinity binding for HLA-DRβ1* allele lineages and this was confirmed by in-vitro binding assays. T-epitopes 39113 and 39117 triggered a memory T-cell response (Stimulation Index≥2) and significant cytokine production. Combining in-silico, in-vitro and functional assays, two Pv12 protein regions (containing peptides 39038, 39040, 39113 and 39117) have thus been characterised as promising vaccine candidates against P. vivax malaria.
Collapse
Affiliation(s)
- Yoelis Yepes-Pérez
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá D.C., Colombia
- MSc Programme in Microbiology, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Carolina López
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá D.C., Colombia
- PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá D.C., Colombia
| | - Carlos Fernando Suárez
- Bio-mathematics Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá D.C., Colombia
- Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá D.C., Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá D.C., Colombia
- Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia
- * E-mail:
| |
Collapse
|
12
|
Lo AC, Faye B, Gyan BA, Amoah LE. Plasmodium and intestinal parasite perturbations of the infected host's inflammatory responses: a systematic review. Parasit Vectors 2018; 11:387. [PMID: 29970128 PMCID: PMC6031113 DOI: 10.1186/s13071-018-2948-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/12/2018] [Indexed: 01/03/2023] Open
Abstract
Co-infection of malaria and intestinal parasites is widespread in sub-Saharan Africa and causes severe disease especially among the poorest populations. It has been shown that an intestinal parasite (helminth), mixed intestinal helminth or Plasmodium parasite infection in a human induces a wide range of cytokine responses, including anti-inflammatory, pro-inflammatory as well as regulatory cytokines. Although immunological interactions have been suggested to occur during a concurrent infection of helminths and Plasmodium parasites, different conclusions have been drawn on the influence this co-infection has on cytokine production. This review briefly discusses patterns of selected cytokine (IL-6, IL-8, IL-10, TNF-α and INF-γ) responses associated with infections caused by Plasmodium, intestinal parasites as well as a Plasmodium-helminth co-infection.
Collapse
Affiliation(s)
- Aminata Colle Lo
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- University Cheikh Anta DIOP, Dakar, Senegal
| | | | - Ben Adu Gyan
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Linda Eva Amoah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
13
|
Plasmodium parasite as an effective hepatocellular carcinoma antigen glypican-3 delivery vector. Oncotarget 2018; 8:24785-24796. [PMID: 28445973 PMCID: PMC5421888 DOI: 10.18632/oncotarget.15806] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/15/2017] [Indexed: 02/07/2023] Open
Abstract
We have previously demonstrated that malaria parasite infection has an anti-tumor effect in a mouse model. This research aimed to investigate the possibility of using Plasmodium parasite as a novel vaccine vector for hepatocellular carcinoma (HCC) immunotherapy. We constructed a Plasmodium yoelii 17XNL strain (P.y) expressing murine glypican-3 (GPC3) protein (P.y-GPC3), and examined its therapeutic potency in a murine Hepa1-6-induced hepatoma model that highly expressed GPC3 protein. The prerequisites for invoking a CD8+ T cell response were assessed after P.y-based immunization, which included obviously increased concentrations of T helper cell type 1 (Th1)-associated cytokines, such as IL-2, IFN-γ and TNF-α, in serum and preferential expansion of the CD8α+ dendritic cell (DC) subset with higher expression of CD80 and CD86 molecules. Compared with uninfected and wild-type P.y-infected mice, a significant GPC3-specific cytotoxic T lymphocyte (CTL) response was detected in P.y-GPC3 vaccinated mice. Furthermore, P.y-GPC3-based vaccination dramatically inhibited Hepa1-6-induced tumor growth in the implanted HCC and prolonged the survival of tumor-bearing mice. We concluded that a Plasmodium-based vector is highly efficient in inducing tumor antigen-specific T cell-mediated immunity and protection against tumor cells. More broadly, this strategy supported our hypothesis that Plasmodium parasites, as novel therapeutic antigen vectors, may be applicable to tumor immunotherapy for patients with HCC.
Collapse
|
14
|
Mehrizi AA, Torabi F, Zakeri S, Djadid ND. Limited genetic diversity in the global Plasmodium vivax Cell traversal protein of Ookinetes and Sporozoites (CelTOS) sequences; implications for PvCelTOS-based vaccine development. INFECTION GENETICS AND EVOLUTION 2017; 53:239-247. [PMID: 28600217 DOI: 10.1016/j.meegid.2017.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/04/2017] [Accepted: 06/05/2017] [Indexed: 01/04/2023]
Abstract
Cell traversal protein of Ookinetes and Sporozoites (CelTOS) is a new malaria vaccine candidate antigen. Since one of the main challenges in malaria vaccine development is the extensive antigenic diversity of this parasite, local and global gene diversity analysis is of particular importance. Therefore, in this study, the genetic diversity of pvceltos gene was investigated among Iranian P. vivax isolates (n=46) and compared with available worldwide pvceltos sequences. One synonymous (C109A) and three amino acid replacements (V118L, K178T, and G179R) were observed in Iranian pvceltos sequences in compare with Sal-1 sequence leading to five haplotypes including PvCelt-A (GSVKGL, 13%), PvCelt-B (GSLKGL, 50%), PvCelt-C (GSLTGL, 17.4%), PvCelt-D (GSVTGL, 13%) and PvCelt-E (GSLTRL, 6.5%). However, amino acid replacements were observed in six positions (G10S, S40N, V118L/M, K178T, G179R/D and L181R) in PvCelTOS antigen of global isolates leading to 11 distinct haplotypes. PvCelt-A and PvCelt-B haplotypes were the most common haplotypes in the world. The overall nucleotide diversity for Iranian isolates was 0.00169, while, the level of nucleotide diversity was ranged from 0.00252 for Thailand to 0.00022 for Peru populations in the world. The analysis of SNPs in relation with the predicted immunodominant regions revealed that only K178T and G179R SNPs are located in putative B-cell epitopes. All replacements were located in CD4+ and/or CD8+ T-cell epitopes. However, the majority of epitopes are located in conserved regions. Knowing whether these changes may alter the affinity of the epitopes for antibodies and/or MHC molecules remains to be investigated in experimental studies. In conclusion, the present study showed a very limited genetic diversity in pvceltos gene among the global clinical isolates that can be regarded as a potential candidate antigen to apply for vivax-based malaria vaccine development.
Collapse
Affiliation(s)
- Akram Abouie Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran.
| | - Fatemeh Torabi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran; Department of Genetics, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| |
Collapse
|
15
|
Jimah JR, Salinas ND, Sala-Rabanal M, Jones NG, Sibley LD, Nichols CG, Schlesinger PH, Tolia NH. Malaria parasite CelTOS targets the inner leaflet of cell membranes for pore-dependent disruption. eLife 2016; 5. [PMID: 27906127 PMCID: PMC5132341 DOI: 10.7554/elife.20621] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 11/14/2016] [Indexed: 01/02/2023] Open
Abstract
Apicomplexan parasites contain a conserved protein CelTOS that, in malaria parasites, is essential for traversal of cells within the mammalian host and arthropod vector. However, the molecular role of CelTOS is unknown because it lacks sequence similarity to proteins of known function. Here, we determined the crystal structure of CelTOS and discovered CelTOS resembles proteins that bind to and disrupt membranes. In contrast to known membrane disruptors, CelTOS has a distinct architecture, specifically binds phosphatidic acid commonly present within the inner leaflet of plasma membranes, and potently disrupts liposomes composed of phosphatidic acid by forming pores. Microinjection of CelTOS into cells resulted in observable membrane damage. Therefore, CelTOS is unique as it achieves nearly universal inner leaflet cellular activity to enable the exit of parasites from cells during traversal. By providing novel molecular insight into cell traversal by apicomplexan parasites, our work facilitates the design of therapeutics against global pathogens.
Collapse
Affiliation(s)
- John R Jimah
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
| | - Nichole D Salinas
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
| | - Monica Sala-Rabanal
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, United States.,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, United States
| | - Nathaniel G Jones
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, United States.,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, Saint Louis, United States
| | - Paul H Schlesinger
- Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, United States
| | - Niraj H Tolia
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, United States.,Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, Saint Louis, United States
| |
Collapse
|
16
|
Cabrera-Mora M, Fonseca JA, Singh B, Zhao C, Makarova N, Dmitriev I, Curiel DT, Blackwell J, Moreno A. A Recombinant Chimeric Ad5/3 Vector Expressing a Multistage Plasmodium Antigen Induces Protective Immunity in Mice Using Heterologous Prime-Boost Immunization Regimens. THE JOURNAL OF IMMUNOLOGY 2016; 197:2748-61. [PMID: 27574299 DOI: 10.4049/jimmunol.1501926] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 08/02/2016] [Indexed: 12/31/2022]
Abstract
An ideal malaria vaccine should target several stages of the parasite life cycle and induce antiparasite and antidisease immunity. We have reported a Plasmodium yoelii chimeric multistage recombinant protein (P. yoelii linear peptide chimera/recombinant modular chimera), engineered to express several autologous T cell epitopes and sequences derived from the circumsporozoite protein and the merozoite surface protein 1. This chimeric protein elicits protective immunity, mediated by CD4(+) T cells and neutralizing Abs. However, experimental evidence, from pre-erythrocytic vaccine candidates and irradiated sporozoites, has shown that CD8(+) T cells play a significant role in protection. Recombinant viral vectors have been used as a vaccine platform to elicit effective CD8(+) T cell responses. The human adenovirus (Ad) serotype 5 has been tested in malaria vaccine clinical trials with excellent safety profile. Nevertheless, a major concern for the use of Ad5 is the high prevalence of anti-vector neutralizing Abs in humans, hampering its immunogenicity. To minimize the impact of anti-vector pre-existing immunity, we developed a chimeric Ad5/3 vector in which the knob region of Ad5 was replaced with that of Ad3, conferring partial resistance to anti-Ad5 neutralizing Abs. Furthermore, we implemented heterologous Ad/protein immunization regimens that include a single immunization with recombinant Ad vectors. Our data show that immunization with the recombinant Ad5/3 vector induces protective efficacy indistinguishable from that elicited by Ad5. Our study also demonstrates that the dose of the Ad vectors has an impact on the memory profile and protective efficacy. The results support further studies with Ad5/3 for malaria vaccine development.
Collapse
Affiliation(s)
- Monica Cabrera-Mora
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Jairo Andres Fonseca
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329; Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA 30303; and
| | - Balwan Singh
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Chunxia Zhao
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Natalia Makarova
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | - Igor Dmitriev
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108
| | - David T Curiel
- Cancer Biology Division, Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO 63108
| | - Jerry Blackwell
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329; Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA 30303; and
| | - Alberto Moreno
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329; Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA 30303; and
| |
Collapse
|
17
|
Nyirenda TS, Molyneux ME, Kenefeck R, Walker LSK, MacLennan CA, Heyderman RS, Mandala WL. T-Regulatory Cells and Inflammatory and Inhibitory Cytokines in Malawian Children Residing in an Area of High and an Area of Low Malaria Transmission During Acute Uncomplicated Malaria and in Convalescence. J Pediatric Infect Dis Soc 2015; 4:232-41. [PMID: 26335932 PMCID: PMC4554200 DOI: 10.1093/jpids/piu140] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 12/10/2014] [Indexed: 11/13/2022]
Abstract
BACKGROUND Malaria still infects many Malawian children, and it is a cause of death in some of them. Regulatory T cells (Tregs) help in negating immune-related pathology, it but can also favor multiplication of malaria parasites. The question remains whether children recovering from uncomplicated malaria (UCM) have higher Tregs and interleukin (IL)-10 levels in convalescence. METHODS We recruited children between the ages of 6 and 60 months presenting with acute UCM in Blantyre (low transmission area) and Chikwawa (high transmission area). We observed the children after 1 month and 3 months and analyzed their blood samples for parasitemia, lymphocyte subsets, and levels of the cytokines interferon (IFN)-γ, IL-10, and transforming growth factor (TGF)-β. Blood samples from age-matched controls were also analyzed for the same parameters. RESULTS Compared with controls, acute UCM was associated with mild lymphopenia, splenomegaly, and high levels of IFN-γ, tumor necrosis factor-α, and IL-10, which normalized in convalescence. In Chikwawa, Treg counts were significantly (P < .0001) higher in convalescence compared with acute disease, whereas in Blantyre, these were as low as in healthy controls both during acute disease and in convalescence. Blantyre had a higher percentage of parasiteamic children (15% versus 12%) in convalescence compared with Chikwawa, but none of these developed symptomatic malaria during the study duration. Concentrations of TGF-β were higher at time points for the study participants and in controls from Blantyre compared with those recruited in Chikwawa. CONCLUSIONS The high transmission area was associated with high Tregs counts and IL-10 concentrations in convalescence, which could have an effect on parasite clearance. We recommend that children recovering from UCM, especially those from high transmission area, should sleep under insecticide-treated nets, be screened for parasitemia, and a provision of antimalarial prophylaxis should be considered.
Collapse
Affiliation(s)
- Tonney S. Nyirenda
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre
| | - Malcolm E. Molyneux
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre,Liverpool School of Tropical Medicine, United Kingdom
| | - Rupert Kenefeck
- Institute of Immunity and Transplantation, University College London, Division of Infection and Immunity, United Kingdom
| | - Lucy S. K. Walker
- Institute of Immunity and Transplantation, University College London, Division of Infection and Immunity, United Kingdom
| | - Calman A. MacLennan
- The Medical Research Council Centre for Immune Regulation and Clinical Immunology, Service, School of Immunity and Infection, College of Medicine and Dental Sciences, University of Birmingham, United Kingdom
| | - Robert S. Heyderman
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre,Liverpool School of Tropical Medicine, United Kingdom
| | - Wilson L. Mandala
- Malawi-Liverpool Wellcome Trust Clinical Research Programme, College of Medicine, Blantyre,Basic Medical Sciences Department, College of Medicine, Blantyre, Malawi
| |
Collapse
|
18
|
Host immune response is severely compromised during lethal Plasmodium vinckei infection. Parasitol Res 2015; 114:3445-57. [PMID: 26077756 DOI: 10.1007/s00436-015-4570-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/05/2015] [Indexed: 12/13/2022]
Abstract
Cytokines and immune effector cells play an important role in determining the outcome of infection with various intracellular pathogens, including protozoan parasites. However, their role during lethal and nonlethal malaria needs further validation. In the present study, we examined the role of cytokines and various immune effector cells during lethal and nonlethal malaria caused by Plasmodium vinckei in AKR mice. We show that lethal P. vinckei infection (PvAS) in AKR mice is characterized by increased parasite growth, decreased production of pro-inflammatory cytokines, and attenuated cell proliferation and nitric oxide (NO) synthesis resulting in increased parasitemia which ultimately leads to death of all animals by day 5 post infection. In contrast, AKR mice infected with lethal parasite (PvAR) showed elevated levels of pro-inflammatory cytokines, heightened cell proliferation, and NO synthesis leading to complete parasite clearance by day 22 post infection. Flow cytometric analysis performed on splenocytes from PvAS- and PvAR-infected mice shows that host immunity is severely compromised in PvAS-infected mice as was evident by decreased percentages of CD4(+) and CD8(+) T cells, B cells, plasma cells, dendritic cells (DCs), and macrophages (MΦs) which was in complete contrast to PvAR-infected animals which exhibited elevated numbers of all the cell types analyzed. Taken together, findings of the present study show that coordinated actions of pro-inflammatory cytokines and other immune effector cells are essential to control lethal malarial infection and their attenuation leads to increased parasite growth and, ultimately, death of animals.
Collapse
|
19
|
Imai T, Ishida H, Suzue K, Taniguchi T, Okada H, Shimokawa C, Hisaeda H. Cytotoxic activities of CD8⁺ T cells collaborate with macrophages to protect against blood-stage murine malaria. eLife 2015; 4. [PMID: 25760084 PMCID: PMC4366679 DOI: 10.7554/elife.04232] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 02/24/2015] [Indexed: 12/14/2022] Open
Abstract
The protective immunity afforded by CD8+ T cells against blood-stage malaria remains controversial because no MHC class I molecules are displayed on parasite-infected human erythrocytes. We recently reported that rodent malaria parasites infect erythroblasts that express major histocompatibility complex (MHC) class I antigens, which are recognized by CD8+ T cells. In this study, we demonstrate that the cytotoxic activity of CD8+ T cells contributes to the protection of mice against blood-stage malaria in a Fas ligand (FasL)-dependent manner. Erythroblasts infected with malarial parasites express the death receptor Fas. CD8+ T cells induce the externalization of phosphatidylserine (PS) on the infected erythroblasts in a cell-to-cell contact-dependent manner. PS enhances the engulfment of the infected erythroid cells by phagocytes. As a PS receptor, T-cell immunoglobulin-domain and mucin-domain-containing molecule 4 (Tim-4) contributes to the phagocytosis of malaria-parasite-infected cells. Our findings provide insight into the molecular mechanisms underlying the protective immunity exerted by CD8+ T cells in collaboration with phagocytes. DOI:http://dx.doi.org/10.7554/eLife.04232.001 The immune system consists of several different types of cell that work together to prevent infection and disease. For example, immune cells called cytotoxic CD8+ T cells kill tumor cells or other cells that are infected. To do so, the CD8+ T cells must recognize certain molecules on the surface of the tumor or infected cells and bind to them. Malaria is an infectious disease caused by the Plasmodium parasite, which is transferred between individuals by mosquitoes. The parasite is able to evade the immune system—so much so that it is not well understood how the immune system tries to respond to stop the infection. This has made it difficult to develop a vaccine that protects against malaria. During the latter stages of a malaria infection, the parasite infects the host's red blood cells. It was long believed that CD8+ T cells did not help to eliminate the red blood cells that had been infected by Plasmodium. However, recent work in mice suggested that CD8+ T cells do respond to infected erythroblasts—precursor cells that develop into red blood cells—and that CD8+ T cells help protect mice against blood-stage malaria. Now, Imai et al. describe how the CD8+ T cells in mice help to kill erythroblasts infected with Plasmodium yoelli, a species of the parasite used to study malaria in mice. The infected cells display a protein called Fas on their surface. Imai et al. found that, during a malaria infection, the CD8+ T cells produce a protein that can interact with Fas. This interaction causes the infected cell to move a signaling molecule to its outside surface, which encourages another type of immune cell to engulf and destroy the infected cell. This knowledge of how CD8+ T cells fight Plasmodium parasites in the bloodstream could now help to develop new types of blood-stage vaccine for malaria. DOI:http://dx.doi.org/10.7554/eLife.04232.002
Collapse
Affiliation(s)
- Takashi Imai
- Department of Parasitology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hidekazu Ishida
- Microbiological Research Institute, Otsuka Pharmaceutical Co., Ltd, Tokushima, Japan
| | - Kazutomo Suzue
- Department of Parasitology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tomoyo Taniguchi
- Department of Parasitology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroko Okada
- Department of Parasitology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Chikako Shimokawa
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Science, Yokohama, Japan
| | - Hajime Hisaeda
- Department of Parasitology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
20
|
Azcárate IG, Marín-García P, Pérez-Benavente S, Diez A, Puyet A, Bautista JM. Early and late B cell immune responses in lethal and self-cured rodent malaria. Immunobiology 2014; 220:684-91. [PMID: 25466589 DOI: 10.1016/j.imbio.2014.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 11/11/2014] [Indexed: 11/25/2022]
Abstract
ICR mice have heterogeneous susceptibility to lethal Plasmodium yoelii yoelii 17XL from the first days of experimental infection as evidenced by the different parasitemia levels and clinical outcomes. This mouse model has revealed specific immune responses on peripheral blood correlating with the infection fate of the animals. To search for immune-markers linked to parasitemia we examined B lymphocytes in organs of the immune system as key effectors of rodent immunity against malaria. To determine changes in immune cellularity fostered by the different prognostic parasitemia we examined B cell subsets in low (<15%) and high (>50%) parasitized mice during the first days of the infection. In the case of surviving mice, we studied the preservation of memory immune response 500 days after the primary P. yoelii challenge. Correlating with the parasitemia level, it was observed an increase in total cellularity of spleen during the first week of infection which remained after 16 months of the infection in surviving animals. B cell subsets were also modified across the different infection fates. Subpopulation as follicular B cells and B-1 cells proportions behaved differently depending on the parasitemia kinetics. In addition, peritoneal cavity cells proliferated in response to high parasitemia. More significantly, P. yoelii -specific memory B cells remained in the spleen 500 days after the primo-infection. This study demonstrates that B cell kinetics is influenced by the different parasitemia courses which are naturally developed within a same strain of untreated mice. We show that high levels of parasitemia at the beginning of infection promote an extremely fast and exacerbate response of several cell populations in spleen and peritoneal cavity that, in addition, do not follow the kinetics observed in peripheral blood. Furthermore, our results describe the longest persistence of memory B cells long time upon a single malaria infection in mice.
Collapse
Affiliation(s)
- Isabel G Azcárate
- Department of Biochemistry and Molecular Biology IV and Research Institute Hospital 12 de Octubre, Universidad Complutense de Madrid, Facultad de Veterinaria, Ciudad Universitaria, 28040 Madrid, Spain
| | - Patricia Marín-García
- Department of Biochemistry and Molecular Biology IV and Research Institute Hospital 12 de Octubre, Universidad Complutense de Madrid, Facultad de Veterinaria, Ciudad Universitaria, 28040 Madrid, Spain; Department of Medicine and Surgery, Psychology, Preventive Medicine and Public Health and Medical Immunology and Microbiology, Faculty of Health Sciences, Rey Juan Carlos University, Alcorcón, Madrid, Spain
| | - Susana Pérez-Benavente
- Department of Biochemistry and Molecular Biology IV and Research Institute Hospital 12 de Octubre, Universidad Complutense de Madrid, Facultad de Veterinaria, Ciudad Universitaria, 28040 Madrid, Spain
| | - Amalia Diez
- Department of Biochemistry and Molecular Biology IV and Research Institute Hospital 12 de Octubre, Universidad Complutense de Madrid, Facultad de Veterinaria, Ciudad Universitaria, 28040 Madrid, Spain
| | - Antonio Puyet
- Department of Biochemistry and Molecular Biology IV and Research Institute Hospital 12 de Octubre, Universidad Complutense de Madrid, Facultad de Veterinaria, Ciudad Universitaria, 28040 Madrid, Spain
| | - José M Bautista
- Department of Biochemistry and Molecular Biology IV and Research Institute Hospital 12 de Octubre, Universidad Complutense de Madrid, Facultad de Veterinaria, Ciudad Universitaria, 28040 Madrid, Spain.
| |
Collapse
|
21
|
Espinoza Mora MDR, Steeg C, Tartz S, Heussler V, Sparwasser T, Link A, Fleischer B, Jacobs T. Depletion of regulatory T cells augments a vaccine-induced T effector cell response against the liver-stage of malaria but fails to increase memory. PLoS One 2014; 9:e104627. [PMID: 25115805 PMCID: PMC4130546 DOI: 10.1371/journal.pone.0104627] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 07/15/2014] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Treg) have been shown to restrict vaccine-induced T cell responses in different experimental models. In these studies CD4+CD25+ Treg were depleted using monoclonal antibodies against CD25, which might also interfere with CD25 on non-regulatory T cell populations and would have no effect on Foxp3+CD25− Treg. To obtain more insights in the specific function of Treg during vaccination we used mice that are transgenic for a bacterial artificial chromosome expressing a diphtheria toxin (DT) receptor-eGFP fusion protein under the control of the foxp3 gene locus (depletion of regulatory T cell mice; DEREG). As an experimental vaccine-carrier recombinant Bordetella adenylate cyclase toxoid fused with a MHC-class I-restricted epitope of the circumsporozoite protein (ACT-CSP) of Plasmodium berghei (Pb) was used. ACT-CSP was shown by us previously to introduce the CD8+ epitope of Pb-CSP into the MHC class I presentation pathway of professional antigen-presenting cells (APC). Using this system we demonstrate here that the number of CSP-specific T cells increases when Treg are depleted during prime but also during boost immunization. Importantly, despite this increase of T effector cells no difference in the number of antigen-specific memory cells was observed.
Collapse
Affiliation(s)
- Maria del Rosario Espinoza Mora
- Bernhard Nocht Institut für Tropenmedizin, Abteilung Immunologie, Hamburg, Germany
- Universitätsklinikum des Saarlandes, Klinik für Innere Medizin III, Homburg, Germany
- * E-mail:
| | - Christiane Steeg
- Bernhard Nocht Institut für Tropenmedizin, Abteilung Immunologie, Hamburg, Germany
| | - Susanne Tartz
- Bernhard Nocht Institut für Tropenmedizin, Abteilung Immunologie, Hamburg, Germany
| | - Volker Heussler
- Bernhard Nocht Institut für Tropenmedizin, Abteilung Immunologie, Hamburg, Germany
| | - Tim Sparwasser
- TWINCORE, Zentrum für Experimentelle und Klinische Infektionsforschung, Institut für Infektionsimmunologie, Hannover, Germany
| | - Andreas Link
- Universitätsklinikum des Saarlandes, Klinik für Innere Medizin III, Homburg, Germany
| | - Bernhard Fleischer
- Bernhard Nocht Institut für Tropenmedizin, Abteilung Immunologie, Hamburg, Germany
| | - Thomas Jacobs
- Bernhard Nocht Institut für Tropenmedizin, Abteilung Immunologie, Hamburg, Germany
| |
Collapse
|
22
|
Finney OC, Danziger SA, Molina DM, Vignali M, Takagi A, Ji M, Stanisic DI, Siba PM, Liang X, Aitchison JD, Mueller I, Gardner MJ, Wang R. Predicting antidisease immunity using proteome arrays and sera from children naturally exposed to malaria. Mol Cell Proteomics 2014; 13:2646-60. [PMID: 25023128 DOI: 10.1074/mcp.m113.036632] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Malaria remains one of the most prevalent and lethal human infectious diseases worldwide. A comprehensive characterization of antibody responses to blood stage malaria is essential to support the development of future vaccines, sero-diagnostic tests, and sero-surveillance methods. We constructed a proteome array containing 4441 recombinant proteins expressed by the blood stages of the two most common human malaria parasites, P. falciparum (Pf) and P. vivax (Pv), and used this array to screen sera of Papua New Guinea children infected with Pf, Pv, or both (Pf/Pv) that were either symptomatic (febrile), or asymptomatic but had parasitemia detectable via microscopy or PCR. We hypothesized that asymptomatic children would develop antigen-specific antibody profiles associated with antidisease immunity, as compared with symptomatic children. The sera from these children recognized hundreds of the arrayed recombinant Pf and Pv proteins. In general, responses in asymptomatic children were highest in those with high parasitemia, suggesting that antibody levels are associated with parasite burden. In contrast, symptomatic children carried fewer antibodies than asymptomatic children with infections detectable by microscopy, particularly in Pv and Pf/Pv groups, suggesting that antibody production may be impaired during symptomatic infections. We used machine-learning algorithms to investigate the relationship between antibody responses and symptoms, and we identified antibody responses to sets of Plasmodium proteins that could predict clinical status of the donors. Several of these antibody responses were identified by multiple comparisons, including those against members of the serine enriched repeat antigen family and merozoite protein 4. Interestingly, both P. falciparum serine enriched repeat antigen-5 and merozoite protein 4 have been previously investigated for use in vaccines. This machine learning approach, never previously applied to proteome arrays, can be used to generate a list of potential seroprotective and/or diagnostic antigens candidates that can be further evaluated in longitudinal studies.
Collapse
Affiliation(s)
- Olivia C Finney
- From the ‡Seattle Biomedical Research Institute, 307 Westlake Ave N., Suite 500, Seattle, WA 98109 USA
| | - Samuel A Danziger
- From the ‡Seattle Biomedical Research Institute, 307 Westlake Ave N., Suite 500, Seattle, WA 98109 USA; §Institute for Systems Biology, 401 Terry Ave N, Seattle, WA 98109 USA
| | - Douglas M Molina
- ¶Antigen Discovery Inc. (ADi), 1 Technology Dr E, Irvine, CA 92618 USA
| | - Marissa Vignali
- From the ‡Seattle Biomedical Research Institute, 307 Westlake Ave N., Suite 500, Seattle, WA 98109 USA
| | - Aki Takagi
- From the ‡Seattle Biomedical Research Institute, 307 Westlake Ave N., Suite 500, Seattle, WA 98109 USA
| | - Ming Ji
- ‖Division of Epidemiology/Biostatistics, Graduate School of Public Health, San Diego State University, Hardy Tower 119, 5500 Campanile Drive, San Diego, CA 92182
| | - Danielle I Stanisic
- **Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea; ‡‡Walter & Eliza Hall Institute, 1G Royal Parade, Parkville Victoria 3052, Australia
| | - Peter M Siba
- **Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Xiawu Liang
- ¶Antigen Discovery Inc. (ADi), 1 Technology Dr E, Irvine, CA 92618 USA
| | - John D Aitchison
- From the ‡Seattle Biomedical Research Institute, 307 Westlake Ave N., Suite 500, Seattle, WA 98109 USA; §Institute for Systems Biology, 401 Terry Ave N, Seattle, WA 98109 USA
| | - Ivo Mueller
- **Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea; ‡‡Walter & Eliza Hall Institute, 1G Royal Parade, Parkville Victoria 3052, Australia; §§Barcelona Centre for International Health Research, Carrer Roselló 132, 08036 Barcelona, Spain
| | - Malcolm J Gardner
- From the ‡Seattle Biomedical Research Institute, 307 Westlake Ave N., Suite 500, Seattle, WA 98109 USA
| | - Ruobing Wang
- From the ‡Seattle Biomedical Research Institute, 307 Westlake Ave N., Suite 500, Seattle, WA 98109 USA;
| |
Collapse
|
23
|
Dinga JN, Kimbung Mbandi S, Cho-Ngwa F, Fon NP, Moliki J, Efeti RM, Nyasa BR, Anong DN, Jojic N, Heckerman D, Wang R, Titanji VPK. Differential T-cell responses of semi-immune and susceptible malaria subjects to in silico predicted and synthetic peptides of Plasmodium falciparum. Acta Trop 2014; 135:104-21. [PMID: 24681218 DOI: 10.1016/j.actatropica.2014.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 02/03/2014] [Accepted: 03/17/2014] [Indexed: 11/19/2022]
Abstract
Malaria remains a public health hazard in tropical countries as a consequence of the rise and spread of drug and insecticide resistances; hence the need for a vaccine with widespread application. Protective immunity to malaria is known to be mediated by both antibody and cellular immune responses, though characterization of the latter has been less extensive. The aim of the present investigation was to identify novel T-cell epitopes that may contribute to naturally acquired immune responses against malaria. Using the Microsoft software, Epitome™ T-cell peptide epitopes on 19 Plasmodium falciparum proteins in the Plasmodium Database (www.plasmodb.org.PlasmoDB 9.0) were predicted in-silico. The peptides were synthesized and used to stimulate peripheral blood mononuclear cells (PBMCs) in 14 semi-immune and 21 malaria susceptible subjects for interferon-gamma (IFN-γ) production ex-vivo. The level of IFN-γ production, a marker of T-cell responses, was measured by ELISPOT assay in semi-immune subjects (SIS) and frequently sick subjects (FSS) from an endemic zone with perennial malaria transmission. Of the 19 proteins studied, 17 yielded 27 pools (189 peptides), which were reactive with the subjects' PBMCs when tested for IFN-γ production, taking a stimulation index (SI) of ≥2 as a cutoff point for a positive response. There were 10 reactive peptide pools (constituting eight protein loci) with an SI of 10 or greater. Of the 19 proteins studied, two were known vaccine candidates (MSP-8 and SSP2/TRAP), which reacted both with SIS and FSS. Similarly the hypothetical proteins (PFF1030w, PFE0795c, PFD0880w, PFC0065c and PF10_0052) also reacted strongly with both SIS and FSS making them attractive for further characterization as mediators of protective immunity and/or pathogenesis.
Collapse
Affiliation(s)
- Jerome Nyhalah Dinga
- Biotechnology Unit, Faculty of Science, University of Buea, PO Box 63, Buea, Cameroon.
| | | | - Fidelis Cho-Ngwa
- Biotechnology Unit, Faculty of Science, University of Buea, PO Box 63, Buea, Cameroon.
| | - Nde Peter Fon
- Faculty of Health Science, University of Buea, PO Box 63, Buea, Cameroon.
| | - Johnson Moliki
- Biotechnology Unit, Faculty of Science, University of Buea, PO Box 63, Buea, Cameroon.
| | - Rose Mary Efeti
- Biotechnology Unit, Faculty of Science, University of Buea, PO Box 63, Buea, Cameroon.
| | - Babila Raymond Nyasa
- Biotechnology Unit, Faculty of Science, University of Buea, PO Box 63, Buea, Cameroon.
| | - Damian Nota Anong
- Biotechnology Unit, Faculty of Science, University of Buea, PO Box 63, Buea, Cameroon.
| | | | | | - Ruobing Wang
- Seattle Biomedical Research Institute, 307 Westlake Avenue N, Suite 500, Seattle, WA 98109-5219, USA.
| | - Vincent P K Titanji
- Biotechnology Unit, Faculty of Science, University of Buea, PO Box 63, Buea, Cameroon.
| |
Collapse
|
24
|
Hemozoin inhibition and control of clinical malaria. Adv Pharmacol Sci 2014; 2014:984150. [PMID: 24669217 PMCID: PMC3941158 DOI: 10.1155/2014/984150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/24/2013] [Indexed: 11/17/2022] Open
Abstract
Malaria has a negative impact on health and social and economic life of residents of endemic countries. The ultimate goals of designing new treatment for malaria are to prevent clinical infection, reduce morbidity, and decrease mortality. There are great advances in the understanding of the parasite-host interaction through studies by various scientists. In some of these studies, attempts were made to evaluate the roles of malaria pigment or toxins in the pathogenesis of malaria. Hemozoin is a key metabolite associated with severe malaria anemia (SMA), immunosuppression, and cytokine dysfunction. Targeting of this pigment may be necessary in the design of new therapeutic products against malaria. In this review, the roles of hemozoin in the morbidity and mortality of malaria are highlighted as an essential target in the quest for effective control of clinical malaria.
Collapse
|
25
|
Santhanam J, Råberg L, Read AF, Savill NJ. Immune-mediated competition in rodent malaria is most likely caused by induced changes in innate immune clearance of merozoites. PLoS Comput Biol 2014; 10:e1003416. [PMID: 24465193 PMCID: PMC3900382 DOI: 10.1371/journal.pcbi.1003416] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 11/13/2013] [Indexed: 11/18/2022] Open
Abstract
Malarial infections are often genetically diverse, leading to competitive interactions between parasites. A quantitative understanding of the competition between strains is essential to understand a wide range of issues, including the evolution of virulence and drug resistance. In this study, we use dynamical-model based Bayesian inference to investigate the cause of competitive suppression of an avirulent clone of Plasmodium chabaudi (AS) by a virulent clone (AJ) in immuno-deficient and competent mice. We test whether competitive suppression is caused by clone-specific differences in one or more of the following processes: adaptive immune clearance of merozoites and parasitised red blood cells (RBCs), background loss of merozoites and parasitised RBCs, RBC age preference, RBC infection rate, burst size, and within-RBC interference. These processes were parameterised in dynamical mathematical models and fitted to experimental data. We found that just one parameter , the ratio of background loss rate of merozoites to invasion rate of mature RBCs, needed to be clone-specific to predict the data. Interestingly, was found to be the same for both clones in single-clone infections, but different between the clones in mixed infections. The size of this difference was largest in immuno-competent mice and smallest in immuno-deficient mice. This explains why competitive suppression was alleviated in immuno-deficient mice. We found that competitive suppression acts early in infection, even before the day of peak parasitaemia. These results lead us to argue that the innate immune response clearing merozoites is the most likely, but not necessarily the only, mediator of competitive interactions between virulent and avirulent clones. Moreover, in mixed infections we predict there to be an interaction between the clones and the innate immune response which induces changes in the strength of its clearance of merozoites. What this interaction is unknown, but future refinement of the model, challenged with other datasets, may lead to its discovery. Malaria infections often consist of more than one strain of the same parasitic species. Understanding the within-host competition between these various strains is essential to understanding the evolution and epidemiology of drug resistance in malarial infections. The infection process and the competition between strains involve complicated biological processes that are explained by various hypotheses. Mathematical models tested against experimental data provide quantitative measures to compare these hypotheses and enable us to discern the actual biological processes that contribute to the observed dynamics. We use a group of models against experimental data on rodent malaria to test various hypotheses. Such quantitative measures, in understanding rodent malaria, can be considered as a step towards understanding within-host parasite dynamics. Our work presented here demonstrates how confronting mathematical models with data allows the discovery of subtle and novel interactions between hosts and parasites that would be impractical to do in an experiment and allows the rejection of hypotheses that are incorrect. It is our contention that understanding the forces controlling within-host parasite dynamics in well-defined experimental model is a necessary step towards understanding these features in natural infections.
Collapse
Affiliation(s)
- Jayanthi Santhanam
- Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Labs, Edinburgh, Scotland
- * E-mail:
| | - Lars Råberg
- Department of Biology, Lund University, Lund, Sweden
| | - Andrew F. Read
- Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Nicholas Jon Savill
- Institute of Immunology and Infection Research, University of Edinburgh, Ashworth Labs, Edinburgh, Scotland
| |
Collapse
|
26
|
Moore AC, Hutchings CL. Combination vaccines: synergistic simultaneous induction of antibody and T-cell immunity. Expert Rev Vaccines 2014; 6:111-21. [PMID: 17280483 DOI: 10.1586/14760584.6.1.111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Vaccines have traditionally been designed to induce antibody responses and have been licensed on their capacity to induce high titers of circulating antibody to the pathogen. With our increased knowledge of host-pathogen interactions, it became apparent that induction of the cellular arm of the immune response is crucial to the efficacy of vaccines against intracellular pathogens and for providing appropriate help for antibody induction. Diverging strategies emerged that concentrate on developing candidate vaccines that solely induce either cellular or humoral responses. As most microbes reside at some point in the infectious cycle in the extracellular as well as intracellular space, and there is interplay between antibody and T cells, it is now apparent that both arms of immunity are essential to effectively control and eliminate the infection. It is, therefore, necessary to develop vaccines that can effectively induce a broad adaptive immune response. For vaccines targeted at diseases of the developing world, such as HIV, tuberculosis and malaria, it is imperative that these vaccines are simple to deliver and cost effective, that is,that optimum T-cell and antibody immunity is achieved with the minimum number of vaccinations. Combination vaccines, where an antibody-inducing subunit protein vaccine is coadministered with a T-cell-inducing poxvirus-based vaccine fulfill these requirements and induce sterile immunity to pathogen challenge.
Collapse
Affiliation(s)
- Anne C Moore
- Wellcome Trust Centre for Human Genetics, Oxford University, Roosevelt Drive, Oxford OX2 7BN, UK.
| | | |
Collapse
|
27
|
Inducing humoral and cellular responses to multiple sporozoite and liver-stage malaria antigens using exogenous plasmid DNA. Infect Immun 2013; 81:3709-20. [PMID: 23897618 DOI: 10.1128/iai.00180-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A vaccine candidate that elicits humoral and cellular responses to multiple sporozoite and liver-stage antigens may be able to confer protection against Plasmodium falciparum malaria; however, a technology for formulating and delivering such a vaccine has remained elusive. Here, we report the preclinical assessment of an optimized DNA vaccine approach that targets four P. falciparum antigens: circumsporozoite protein (CSP), liver stage antigen 1 (LSA1), thrombospondin-related anonymous protein (TRAP), and cell-traversal protein for ookinetes and sporozoites (CelTOS). Synthetic DNA sequences were designed for each antigen with modifications to improve expression and were delivered using in vivo electroporation (EP). Immunogenicity was evaluated in mice and nonhuman primates (NHPs) and assessed by enzyme-linked immunosorbent assay (ELISA), gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) assay, and flow cytometry. In mice, DNA with EP delivery induced antigen-specific IFN-γ production, as measured by ELISpot assay and IgG seroconversion against all antigens. Sustained production of IFN-γ, interleukin-2, and tumor necrosis factor alpha was elicited in both the CD4(+) and CD8(+) T cell compartments. Furthermore, hepatic CD8(+) lymphocytes produced LSA1-specific IFN-γ. The immune responses conferred to mice by this approach translated to the NHP model, which showed cellular responses by ELISpot assay and intracellular cytokine staining. Notably, antigen-specific CD8(+) granzyme B(+) T cells were observed in NHPs. Collectively, the data demonstrate that delivery of gene sequences by DNA/EP encoding malaria parasite antigens is immunogenic in animal models and can harness both the humoral and cellular arms of the immune system.
Collapse
|
28
|
Bichet C, Cornet S, Larcombe S, Sorci G. Experimental inhibition of nitric oxide increases Plasmodium relictum (lineage SGS1) parasitaemia. Exp Parasitol 2012; 132:417-23. [PMID: 23022523 DOI: 10.1016/j.exppara.2012.09.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 03/23/2012] [Accepted: 09/13/2012] [Indexed: 01/29/2023]
Abstract
Malaria is a widespread vector-borne disease infecting a wide range of terrestrial vertebrates including reptiles, birds and mammals. In addition to being one of the most deadly infectious diseases for humans, malaria is a threat to wildlife. The host immune system represents the main defence against malaria parasites. Identifying the immune effectors involved in malaria resistance has therefore become a major focus of research. However, this has mostly involved humans and animal models (rodents) and how the immune system regulates malaria progression in non-model organisms has been largely ignored. The aim of the present study was to investigate the role of nitric oxide (NO) as an immune effector contributing to the control of the acute phase of infection with the avian malaria agent Plasmodium relictum. We used experimental infections of domestic canaries in conjunction with the inhibition of the enzyme inducible nitric oxide synthase (iNOS) to assess the protective function of NO during the infection, and the physiological costs paid by the host in the absence of an effective NO response. Our results show that birds treated with the iNOS inhibitor suffered from a higher parasitaemia, but did not pay a higher cost of infection (anaemia). While these findings confirm that NO contributes to the resistance to avian malaria during the acute phase of the infection, they also suggest that parasitaemia and costs of infection can be decoupled.
Collapse
Affiliation(s)
- Coraline Bichet
- BioGéosciences, UMR CNRS 5561, Université de Bourgogne, 6 Boulevard Gabriel, 21000 Dijon, France.
| | | | | | | |
Collapse
|
29
|
Tyagi RK, Garg NK, Sahu T. Vaccination Strategies against Malaria: novel carrier(s) more than a tour de force. J Control Release 2012; 162:242-254. [PMID: 22564369 DOI: 10.1016/j.jconrel.2012.04.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 02/07/2023]
Abstract
The introduction of vaccine technology has facilitated an unprecedented multi-antigen approach to develop an effective vaccine against complex systemic inflammatory pathogens such as Plasmodium spp. that cause severe malaria. The capacity of multi subunit DNA vaccine encoding different stage Plasmodium antigens to induce CD8(+) cytotoxic T lymphocytes and interferon-γ responses in mice, monkeys and humans has been observed. Moreover, genetic vaccination may be capable of eliciting both cell mediated and humoral immune responses. The cytotoxic T cell responses are categorically needed against intracellular hepatic stage and humoral response with antibodies targeted against antigens from all stages of malaria parasite life cycle. Therefore, the key to success for any DNA based vaccine is to design a vector able to serve as a safe and efficient delivery system. This has encouraged the development of non-viral DNA-mediated gene transfer techniques such as liposome, virosomes, microsphere and nanoparticles. Efficient and relatively safe DNA transfection using lipoplexes makes them an appealing alternative to be explored for gene delivery. Also, liposome-entrapped DNA has been shown to enhance the potency of DNA vaccines, possibly by facilitating uptake of the plasmid by antigen-presenting cells (APC). Another recent technology using cationic lipids has been deployed and has generated substantial interest in this approach to gene transfer. In this review we discussed various aspects that could be decisive in the formulation of efficient and stable carrier system(s) for the development of malaria vaccine.
Collapse
Affiliation(s)
- Rajeev K Tyagi
- Global Health Infectious Disease Research Program, Department of Global Health, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL 33612-9415, USA.
| | | | | |
Collapse
|
30
|
Kajeguka D, Mwanziva C, Daou M, Ndaro A, Matondo S, Mbugi E, Dolmans W, Chilongola J. CD36 c.1264 T>G null mutation impairs acquisition of IgG antibodies to Plasmodium falciparum MSP1₁₉ antigen and is associated with higher malaria incidences in Tanzanian children. Scand J Immunol 2012; 75:355-60. [PMID: 22050542 DOI: 10.1111/j.1365-3083.2011.02661.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polymorphisms in genes that encode crucial signalling molecules have been proposed as factors that influence susceptibility to, and outcome of malaria. We studied the role of a mutation, c.1264 T>G, that causes CD36 deficiency on IgG responses to MSP-1₁₉ antigen and malaria incidence. Children were genotyped for the c.1264 T>G mutation at the beginning of the study using PCR-RFLP. IgG levels [optical density (OD) readings] and per cent seropositivity to MSP-1₁₉ were determined at baseline by ELISA. Children were followed for 12 months for acquisition of anti-MSP-1₁₉ IgG antibody and malaria incidence. We observed a significant increase in the production of anti-MSP-1₁₉ IgG antibody in normal and heterozygous children during the 12 months of follow-up, but not in homozygous mutants. Normal children had a significantly lower malaria incidence rate compared to other genotypes (χ² = 115.59; P < 0.01). We conclude that the presence of the c.1264 T>G mutation that leads to CD36 deficiency is closely associated with reduced IgG production and higher malaria incidence. It is most likely that deficiency of CD36 which is known to modulate dendritic cell function suppresses the production of protective IgG antibodies directed to Plasmodium falciparum MSP-1₁₉ antigen, which predisposes to the acquisition of clinical malaria in children.
Collapse
Affiliation(s)
- D Kajeguka
- Department of Biochemistry and Molecular Biology, Kilimanjaro Christian Medical University College, Tumaini University, Moshi, Tanzania
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ezeamama AE, Spiegelman D, Hertzmark E, Bosch RJ, Manji KP, Duggan C, Kupka R, Lo MW, Okuma JO, Kisenge R, Aboud S, Fawzi WW. HIV infection and the incidence of malaria among HIV-exposed children from Tanzania. J Infect Dis 2012; 205:1486-94. [PMID: 22457274 DOI: 10.1093/infdis/jis234] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVE To determine whether human immunodeficiency virus (HIV) infection is associated with increased risk of malaria incidence and recurrence in children. METHODS Newborn infants of HIV-infected mothers were enrolled at 6 weeks and followed for 2 years. HIV status was assessed by enzyme-linked immunosorbant assay and confirmed by HIV DNA polymerase chain reaction. Malaria was defined as (1) physician-diagnosed clinical malaria; (2) probable malaria, in which laboratory testing is requested for parasitemia; and (3) blood smear-confirmed malaria. Cox proportional hazards models estimated hazard ratios (HRs) for development of first and second malaria episodes, and generalized estimating equation models estimated malaria rate differences per 100-child-years in relation to time-updated HIV status. RESULTS Child HIV infection was associated with clinical (HR, 1.34; 95% confidence interval [CI], 1.12-1.61), probable (HR, 1.47; 95% CI, 1.19-1.81), and confirmed (HR, 1.67; 95% CI, 1.18-2.36) malaria episodes. Per 100 child-years, HIV-infected children experienced 88 (95% CI, 65-113), 36 (95% CI, 19-53), and 20 (95% CI, 9-31) more episodes of clinical, probable, and confirmed malaria episodes, respectively, than HIV-uninfected children. Among children with ≥1 malaria episodes, those with HIV infection developed second clinical (HR, 1.28; 95% CI, 1.04-1.57), probable (HR, 1.60; 95% CI, 1.26-2.14), and confirmed (HR, 2.27; 95% CI, 1.06-3.89) malaria sooner than HIV-uninfected children. CONCLUSIONS HIV infection is a risk factor for the development of malaria. Proactive malaria disease prevention and treatment is warranted for all children, particularly those with HIV infection in settings of coendemicity.
Collapse
Affiliation(s)
- Amara E Ezeamama
- Department of Nutrition, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Hochman S, Kim K. The Impact of HIV Coinfection on Cerebral Malaria Pathogenesis. JOURNAL OF NEUROPARASITOLOGY 2012; 3:235547. [PMID: 22545215 PMCID: PMC3336366 DOI: 10.4303/jnp/235547] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
HIV infection is widespread throughout the world and is especially prevalent in sub-Saharan Africa and Asia. Similarly, Plasmodium falciparum, the most common cause of severe malaria, affects large areas of sub-Saharan Africa, the Indian subcontinent, and Southeast Asia. Although initial studies suggested that HIV and malaria had independent impact upon patient outcomes, recent studies have indicated a more significant interaction. Clinical studies have shown that people infected with HIV have more frequent and severe episodes of malaria, and parameters of HIV disease progression worsen in individuals during acute malaria episodes. However, the effect of HIV on development of cerebral malaria, a manifestation of P. falciparum infection that is frequently fatal, has not been characterized. We review clinical and basic science studies pertaining to HIV and malaria coinfection and cerebral malaria in particular in order to highlight the likely role HIV plays in exacerbating cerebral malaria pathogenesis.
Collapse
Affiliation(s)
- Sarah Hochman
- Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | | |
Collapse
|
33
|
Mideo N, Savill NJ, Chadwick W, Schneider P, Read AF, Day T, Reece SE. Causes of variation in malaria infection dynamics: insights from theory and data. Am Nat 2011; 178:E174-E188. [PMID: 22089879 PMCID: PMC3937740 DOI: 10.1086/662670] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Parasite strategies for exploiting host resources are key determinants of disease severity (i.e., virulence) and infectiousness (i.e., transmission between hosts). By iterating the development of theory and empirical tests, we investigated whether variation in parasite traits across two genetically distinct clones of the rodent malaria parasite, Plasmodium chabaudi, explains differences in within-host infection dynamics and virulence. First, we experimentally tested key predictions of our earlier modeling work. As predicted, the more virulent genotype produced more progeny parasites per infected cell (burst size), but in contrast to predictions, invasion rates of red blood cells (RBCs) did not differ between the genotypes studied. Second, we further developed theory by confronting our earlier model with these new data, testing a new set of models that incorporate more biological realism, and developing novel theoretical tools for identifying differences between parasite genotypes. Overall, we found robust evidence that differences in burst sizes contribute to variation in dynamics and that differential interactions between parasites and host immune responses also play a role. In contrast to previous work, our model predicts that RBC age structure is not important for explaining dynamics. Integrating theory and empirical tests is a potentially powerful way of progressing understanding of disease biology.
Collapse
Affiliation(s)
- Nicole Mideo
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Nicholas J. Savill
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
- Institute of Immunity and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - William Chadwick
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Petra Schneider
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| | - Andrew F. Read
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, University Park, Pennsylvania 16802; and Fogarty International Center, National Institutes of Health, Bethesda, Maryland 20892
| | - Troy Day
- Departments of Biology and Mathematics and Statistics, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Sarah E. Reece
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
- Institute of Immunity and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, United Kingdom
| |
Collapse
|
34
|
Legorreta-Herrera M, Rivas-Contreras S, Ventura-Gallegos J, Zentella-Dehesa A. Nitric oxide is involved in the upregulation of IFN-γ and IL-10 mRNA expression by CD8⁺ T cells during the blood stages of P. chabaudi AS infection in CBA/Ca mice. Int J Biol Sci 2011; 7:1401-11. [PMID: 22110391 PMCID: PMC3221947 DOI: 10.7150/ijbs.7.1401] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/01/2011] [Indexed: 01/17/2023] Open
Abstract
Nitric oxide (NO) is involved in the clearance of several types of bacteria, viruses and parasites. Although the roles of NO and CD8+ T cells in the immune response to malaria have been extensively studied, their actual contributions during the blood stages of malaria infection remain unclear. In this work, we corroborate that serum NO levels are not associated with the in vivo elimination of the blood stages of Plasmodium chabaudi AS. In addition, we show that CD8+ T cells exhibit increased apoptosis and up regulate the expression of TNF-α mRNA on day 4 post-infection and IFN-γ and IL-10 mRNA on day 11 post-infection. Interestingly, only the levels of IFN-γ and IL-10 expression are affected when iNOS is inhibited with aminoguanidine (AG), suggesting that NO could be involved in the activation of CD8+ T cells during the blood stages of plasmodium infection.
Collapse
Affiliation(s)
- M Legorreta-Herrera
- Laboratorio de Inmunología Molecular, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla 5 de Mayo Esq. Fuerte de Loreto, Iztapalapa 09230, México, D.F. México.
| | | | | | | |
Collapse
|
35
|
de Silva HD, Saleh S, Kovacevic S, Wang L, Black CG, Plebanski M, Coppel RL. The antibody response to Plasmodium falciparum Merozoite Surface Protein 4: comparative assessment of specificity and growth inhibitory antibody activity to infection-acquired and immunization-induced epitopes. Malar J 2011; 10:266. [PMID: 21920045 PMCID: PMC3182980 DOI: 10.1186/1475-2875-10-266] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 09/16/2011] [Indexed: 11/16/2022] Open
Abstract
Background Malaria remains a global public health challenge. It is widely believed that an effective vaccine against malaria will need to incorporate multiple antigens from the various stages of the parasite's complex life cycle. Plasmodium falciparum Merozoite Surface Protein 4 (MSP4) is a vaccine candidate that has been selected for development for inclusion in an asexual stage subunit vaccine against malaria. Methods Nine monoclonal antibodies (Mabs) were produced against Escherichia coli-expressed recombinant MSP4 protein and characterized. These Mabs were used to develop an MSP4-specific competition ELISA to test the binding specificity of antibodies present in sera from naturally P. falciparum-infected individuals from a malaria endemic region of Vietnam. The Mabs were also tested for their capacity to induce P. falciparum growth inhibition in vitro and compared against polyclonal rabbit serum raised against recombinant MSP4 Results All Mabs reacted with native parasite protein and collectively recognized at least six epitopes. Four of these Mabs recognize reduction-sensitive epitopes within the epidermal growth factor-like domain found near the C-terminus of MSP4. These sera were shown to contain antibodies capable of inhibiting the binding of the six Mabs indicating infection-acquired responses to the six different epitopes of MSP4. All of the six epitopes were readily recognized by human immune sera. Competition ELISA titres varied from 20 to 640, reflecting heterogeneity in the intensity of the humoral response against the protein among different individuals. The IgG responses during acute and convalescent phases of infection were higher to epitopes in the central region than to other parts of MSP4. Immunization with full length MSP4 in Freund's adjuvant induced rabbit polyclonal antisera able to inhibit parasite growth in vitro in a manner proportionate to the antibody titre. By contrast, polyclonal antisera raised to individual recombinant fragments rMSP4A, rMSP4B, rMSP4C and rMSP4D gave negligible inhibition. Similarly, murine Mabs alone or in combination did not inhibit parasite growth. Conclusions The panel of MSP4-specific Mabs produced were found to recognize six distinct epitopes that are also targeted by human antibodies during natural malaria infection. Antibodies directed to more than three epitope regions spread across MSP4 are likely to be required for P. falciparum growth inhibition in vitro.
Collapse
Affiliation(s)
- Harini D de Silva
- Department of Microbiology, Monash University, Clayton, Victoria, Australia.
| | | | | | | | | | | | | |
Collapse
|
36
|
Carey JB, Pearson FE, Vrdoljak A, McGrath MG, Crean AM, Walsh PT, Doody T, O'Mahony C, Hill AVS, Moore AC. Microneedle array design determines the induction of protective memory CD8+ T cell responses induced by a recombinant live malaria vaccine in mice. PLoS One 2011; 6:e22442. [PMID: 21799855 PMCID: PMC3143140 DOI: 10.1371/journal.pone.0022442] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 06/27/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Vaccine delivery into the skin has received renewed interest due to ease of access to the immune system and microvasculature, however the stratum corneum (SC), must be breached for successful vaccination. This has been achieved by removing the SC by abrasion or scarification or by delivering the vaccine intradermally (ID) with traditional needle-and-syringes or with long microneedle devices. Microneedle patch-based transdermal vaccine studies have predominantly focused on antibody induction by inactivated or subunit vaccines. Here, our principal aim is to determine if the design of a microneedle patch affects the CD8(+) T cell responses to a malaria antigen induced by a live vaccine. METHODOLOGY AND FINDINGS Recombinant modified vaccinia virus Ankara (MVA) expressing a malaria antigen was percutaneously administered to mice using a range of silicon microneedle patches, termed ImmuPatch, that differed in microneedle height, density, patch area and total pore volume. We demonstrate that microneedle arrays that have small total pore volumes induce a significantly greater proportion of central memory T cells that vigorously expand to secondary immunization. Microneedle-mediated vaccine priming induced significantly greater T cell immunity post-boost and equivalent protection against malaria challenge compared to ID vaccination. Notably, unlike ID administration, ImmuPatch-mediated vaccination did not induce inflammatory responses at the site of immunization or in draining lymph nodes. CONCLUSIONS/SIGNIFICANCE This study demonstrates that the design of microneedle patches significantly influences the magnitude and memory of vaccine-induced CD8(+) T cell responses and can be optimised for the induction of desired immune responses. Furthermore, ImmuPatch-mediated delivery may be of benefit to reducing unwanted vaccine reactogenicity. In addition to the advantages of low cost and lack of pain, the development of optimised microneedle array designs for the induction of T cell responses by live vaccines aids the development of solutions to current obstacles of immunization programmes.
Collapse
Affiliation(s)
- John B. Carey
- School of Pharmacy, University College Cork, Cork, Ireland
| | | | - Anto Vrdoljak
- School of Pharmacy, University College Cork, Cork, Ireland
| | | | - Abina M. Crean
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Patrick T. Walsh
- National Childrens' Research Centre, Our Lady's Childrens' Hospital Crumlin, Dublin, Ireland
| | - Timothy Doody
- School of Pharmacy, University College Cork, Cork, Ireland
| | - Conor O'Mahony
- Tyndall National Institute, Lee Maltings, University College Cork, Cork, Ireland
| | | | - Anne C. Moore
- School of Pharmacy, University College Cork, Cork, Ireland
- Department of Pharmacology, University College Cork, Cork, Ireland
- * E-mail:
| |
Collapse
|
37
|
Rehman H, Mohan A, Tabassum H, Ahmad F, Rahman S, Parvez S, Raisuddin S. Deltamethrin Increases Candida albicans infection susceptibility in mice. Scand J Immunol 2011; 73:459-64. [PMID: 21272049 DOI: 10.1111/j.1365-3083.2011.02521.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Deltamethrin, an alpha-cyano type II synthetic pyrethroid insecticide, is used to control a wide range of insects on a variety of crops and vectors of diseases. Deltamethrin has been previously reported for its immunotoxic effects and therefore its exposure may affect the host resistance to infection and tumour challenge. Effect of exposure of deltamethrin on host resistance to Candida albicans infection was examined in Swiss albino mice. The objective of this study was to investigate the modulatory action of deltamethrin in C. albicans infected mice. The dose of deltamethrin was initially tested and selected from our previous study (18 mg/kg). Percentage of infection in deltamethrin treated animals increased faster when compared to that of the controls. Deltamethrin exposure along with C. albicans infection caused alteration of humoral immune response. The number of colony forming unit in liver and spleen were also found to be significantly increased in the treated group. The results from our present study suggest that deltamethrin exhibits an immunosuppressive effect and has a negative impact on host resistance to C. albicans infection.
Collapse
Affiliation(s)
- H Rehman
- Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
38
|
Metenou S, Dembele B, Konate S, Dolo H, Coulibaly YI, Diallo AA, Soumaoro L, Coulibaly ME, Coulibaly SY, Sanogo D, Doumbia SS, Traoré SF, Mahanty S, Klion A, Nutman TB. Filarial infection suppresses malaria-specific multifunctional Th1 and Th17 responses in malaria and filarial coinfections. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:4725-33. [PMID: 21411732 PMCID: PMC3407819 DOI: 10.4049/jimmunol.1003778] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mechanisms underlying the modulation of both the malaria-specific immune response and the course of clinical malaria in the context of concomitant helminth infection are poorly understood. We used multiparameter flow cytometry to characterize the quality and the magnitude of malaria-specific T cell responses in filaria-infected and -uninfected individuals with concomitant asymptomatic Plasmodium falciparum malaria in Mali. In comparison with filarial-uninfected subjects, filarial infection was associated with higher ex vivo frequencies of CD4(+) cells producing IL-4, IL-10, and IL-17A (p = 0.01, p = 0.001, and p = 0.03, respectively). In response to malaria Ag stimulation, however, filarial infection was associated with lower frequencies of CD4(+) T cells producing IFN-γ, TNF-α, and IL-17A (p < 0.001, p = 0.04, and p = 0.04, respectively) and with higher frequencies of CD4(+)IL10(+)T cells (p = 0.0005). Importantly, filarial infection was associated with markedly lower frequencies of malaria Ag-specific Th1 (p < 0.0001), Th17 (p = 0.012), and "TNF-α" (p = 0.0008) cells, and a complete absence of malaria-specific multifunctional Th1 cells. Filarial infection was also associated with a marked increase in the frequency of malaria-specific adaptive regulatory T/Tr1 cells (p = 0.024), and the addition of neutralizing anti-IL-10 Ab augmented the amount of Th1-associated cytokine produced per cell. Thus, among malaria-infected individuals, concomitant filarial infection diminishes dramatically the frequencies of malaria-specific Th1 and Th17 T cells, and alters the quality and magnitude of malaria-specific T cell responses.
Collapse
Affiliation(s)
- Simon Metenou
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Pyrimethamine induces oxidative stress in Plasmodium yoelii 17XL-infected mice: A novel immunomodulatory mechanism of action for an old antimalarial drug? Exp Parasitol 2010; 126:381-8. [DOI: 10.1016/j.exppara.2010.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 02/17/2010] [Accepted: 02/23/2010] [Indexed: 01/24/2023]
|
40
|
Chandele A, Mukerjee P, Das G, Ahmed R, Chauhan VS. Phenotypic and functional profiling of malaria-induced CD8 and CD4 T cells during blood-stage infection with Plasmodium yoelii. Immunology 2010; 132:273-86. [PMID: 21039472 DOI: 10.1111/j.1365-2567.2010.03363.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It is widely accepted that antibodies and CD4 T cells play critical roles in the immune response during the blood stage of malaria, whereas the role of CD8 T cells remains controversial. Here, we show that both CD8 and CD4 T cells robustly responded to an acute self-limiting blood-stage infection with Plasmodium yoelii. Similar to antigen-specific T cells, both CD8 and CD4 T cells showed dynamic expression of the surface proteins interleukin (IL)-7R and programmed death-1 (PD-1). Additionally, activated CD8 T cells showed differences in the expression of Killer cell lectin-like receptor G1, L-selectin and B cell lymphoma-2 and produced granzyme B, indicating cytotoxic activity, and the initially high expression of T-box transcription factor TBX21 in malaria-activated CD4 T cells indicated an early T helper type 1 (Th1)-skewed immune response. Our data demonstrate that blood-stage malaria infection results in a striking T-cell response and that activated CD8 and CD4 T cells have phenotypic and functional characteristics that are consistent with conventional antigen-specific effector and memory T cells. Therefore, a better understanding of the CD8 and CD4 T-cell response induced by blood-stage infection may prove to be essential in the development of a vaccine that targets the erythrocytic stage of the malarial parasite.
Collapse
Affiliation(s)
- Anmol Chandele
- Joint ICGEB-Emory Vaccine Center, Aruna Asaf Ali Marg, New Delhi, India
| | | | | | | | | |
Collapse
|
41
|
Imai T, Shen J, Chou B, Duan X, Tu L, Tetsutani K, Moriya C, Ishida H, Hamano S, Shimokawa C, Hisaeda H, Himeno K. Involvement of CD8+ T cells in protective immunity against murine blood-stage infection with Plasmodium yoelii 17XL strain. Eur J Immunol 2010; 40:1053-61. [PMID: 20101613 DOI: 10.1002/eji.200939525] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
When developing malaria vaccines, the most crucial step is to elucidate the mechanisms involved in protective immunity against the parasites. We found that CD8(+) T cells contribute to protective immunity against infection with blood-stage parasites of Plasmodium yoelii. Infection of C57BL/6 mice with P. yoelii 17XL was lethal, while all mice infected with a low-virulence strain of the parasite 17XNL acquired complete resistance against re-infection with P. yoelii 17XL. However, the host mice transferred with CD8(+) T cells from mice primed only with P. yoelii 17XNL failed to acquire protective immunity. On the other hand, the irradiated host mice were completely resistant to P. yoelii 17XL infection, showing no grade of parasitemia when adoptively transferred with CD8(+) T cells from immune mice that survived infection with both P. yoelii XNL and, subsequently, P. yoelii 17XL. These protective CD8(+) T cells from immune WT mice had the potential to generate IFN-gamma, perforin (PFN) and granzyme B. When mice deficient in IFN-gamma were used as donor mice for CD8(+) T cells, protective immunity in the host mice was fully abrogated, and the immunity was profoundly attenuated in PFN-deficient mice. Thus, CD8(+) T cells producing IFN-gamma and PFN appear to be involved in protective immunity against infection with blood-stage malaria.
Collapse
Affiliation(s)
- Takashi Imai
- Department of Microbiology and Immunology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Sedegah M, Rogers WO, Belmonte M, Belmonte A, Banania G, Patterson NB, Rusalov D, Ferrari M, Richie TL, Doolan DL. Vaxfectin® enhances both antibody and in vitro T cell responses to each component of a 5-gene Plasmodium falciparum plasmid DNA vaccine mixture administered at low doses. Vaccine 2010; 28:3055-65. [DOI: 10.1016/j.vaccine.2009.10.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 10/08/2009] [Accepted: 10/12/2009] [Indexed: 10/20/2022]
|
43
|
Lima-Junior JC, Banic DM, Tran TM, Meyer VSE, De-Simone SG, Santos F, Porto LCS, Marques MTQ, Moreno A, Barnwell JW, Galinski MR, Oliveira-Ferreira J. Promiscuous T-cell epitopes of Plasmodium merozoite surface protein 9 (PvMSP9) induces IFN-gamma and IL-4 responses in individuals naturally exposed to malaria in the Brazilian Amazon. Vaccine 2010; 28:3185-91. [PMID: 20189487 DOI: 10.1016/j.vaccine.2010.02.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 01/28/2010] [Accepted: 02/11/2010] [Indexed: 11/16/2022]
Abstract
Plasmodium vivax merozoite surface protein (PvMSP9) stimulates both cellular and humoral immune responses in individuals who are naturally infected by this parasite species. To identify immunodominant human T-cell epitopes in PvMSP9, we used the MHC class II binding peptide prediction algorithm ProPred. Eleven synthetic peptides representing predicted putative promiscuous T-cell epitopes were tested in IFN-gamma and IL-4 ELISPOT assays using peripheral blood mononuclear cells (PBMC) derived from 142 individuals from Rondonia State, Brazil who had been naturally exposed to P. vivax infections. To determine whether the predicted epitopes are preferentially recognized in the context of multiple alleles, MHC Class II typing of the cohort was also performed. Five synthetic peptides elicited robust cellular responses, and the overall frequencies of IFN-gamma and IL-4 responders to at least one of the promiscuous peptides were 62% and 46%, respectively. The frequencies of IFN-gamma and IL-4 responders to each peptide were not associated with a particular HLA-DRB1 allelic group since most of the peptides induced a response in individuals of 12 out of 13 studied allelic groups. The prediction of promiscuous epitopes using ProPred led to the identification of immunodominant epitopes recognized by PBMC from a significant proportion of a genetically heterogeneous population exposed to malaria infections. The combination of several such T-cell epitopes in a vaccine construct may increase the frequency of responders and the overall efficacy of subunit vaccines in genetically distinct populations.
Collapse
Affiliation(s)
- J C Lima-Junior
- Laboratory of Immunoparasitology, Institute Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tatfeng MY, Agbonlanor DE, Abouo MA. T-Helper 4 and Cytotoxic T-Lymphocites, Interleukin- 4 and 10 in HIV-Seropositive Patients with Uncomplicated Plasmodium Falciparum Malaria. Trop Med Health 2010. [DOI: 10.2149/tmh.2010-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
45
|
Abstract
Naturally acquired immunity to malaria requires repeat infections yet does not engender sterile immunity or long-lasting protective immunologic memory. This renders infants and young children the most susceptible to malaria-induced morbidity and mortality, and the ultimate target for a malaria vaccine. The prevailing paradigm is that infants initially garner protection due to transplacentally transferred anti-malarial antibodies and other intrinsic factors such as foetal haemoglobin. As these wane infants have an insufficient immune repertoire to prevent genetically diverse Plasmodium infections and an inability to control malaria-induced immunopathology. This Review discusses humoral, cell-mediated and innate immune responses to malaria and how each contributes to protection – focusing on how deficiencies in infant and paediatric immune responses might influence malaria vaccine efficacy in this population. In addition, burgeoning evidence suggests a role for inhibitory receptors that limit immunopathology and guide the development of long-lived immunity. Precisely how age or malaria infections influence the function of these regulators is unknown. Therefore the possibility that infants may not have the immune-dexterity to balance effective parasite clearance with timely immune-regulation leading to protective immunologic memory is considered. And thus, malaria vaccines tested in adults and older children may not be predictive for trials conducted in infants.
Collapse
Affiliation(s)
- A M Moormann
- Case Western Reserve University, Center for Global Health and Diseases, 2103 Cornell Road, WRB 4-130, Cleveland, OH 44106-7286, USA.
| |
Collapse
|
46
|
Bongfen SE, Laroque A, Berghout J, Gros P. Genetic and genomic analyses of host-pathogen interactions in malaria. Trends Parasitol 2009; 25:417-22. [PMID: 19717339 DOI: 10.1016/j.pt.2009.05.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 05/08/2009] [Accepted: 05/19/2009] [Indexed: 11/16/2022]
Abstract
The Plasmodium parasite successfully infects and replicates in both human and insect vectors. Population studies in humans have long detected the enormous selective pressure placed by the parasite on its human host, revealing the footprints of co-evolution. Available complete genomic sequences for the human and insect hosts, and additional sequences from multiple field isolates of Plasmodiumfalciparum have identified a wide array of protein and gene families that play a crucial role at the interface of host-parasite interaction. Selected examples of such interactions will be reviewed herein.
Collapse
Affiliation(s)
- Silayuv E Bongfen
- Department of Biochemistry, and Complex Traits Program, McGill University, Montreal, Canada
| | | | | | | |
Collapse
|
47
|
Bhat AA, Seth RK, Babu J, Biswas S, Rao DN. Induction of mucosal and systemic humoral immune responses in murine system by intranasal immunization with peptide antigens of P. vivax and CpG oligodeoxynucleotide (ODN) in microparticle delivery. Int Immunopharmacol 2009; 9:1197-208. [PMID: 19595793 DOI: 10.1016/j.intimp.2009.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 06/19/2009] [Accepted: 06/25/2009] [Indexed: 01/19/2023]
Abstract
In the present study we have investigated the immunomodulatory effects of two adjuvants, CpG 1826 (two copies of CpG motifs) and CpG 2006 (three copies of CpG motifs) to the five peptide antigens of Plasmodium vivax derived from circumsporozoite protein (CSP), merozoite surface protein-1 (MSP1#1, MSP1#23), apical membrane antigen-1 (AMA-1) and gametocyte surface antigen (Pvs24) in alum and microparticle formulations, using intramuscular and intranasal routes of immunization. Alum formulation without CpG ODN generated low serum IgG and IgA antibody titers and the predominant IgG isotypes were IgG1 but with the addition of CpG ODN (1826 or 2006), the antibody titers were increased by four fold with the predominance of IgG2a/2b isotypes. The SIgA peak titers in lung and intestinal washes were significantly increased with the intranasal mode of administration. Specific activity measurement was done to calculate for the accurate amounts of total serum IgG, IgA and SIgA in washes and showed direct correlation between antibody titer and its concentration. High titer anti-Pvs24 antibodies have significant inhibitory effects on parasite development in the mosquito midgut when tested in membrane feeding assays. The immunofluorescence results show that the peptide specific antisera reacted with the air-dried parasite antigens isolated from P. vivax patients. The present study demonstrates that intranasal route of immunization appears to be an alternate mode of inducing protective immunity in P. vivax malaria.
Collapse
Affiliation(s)
- Ajaz A Bhat
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | | | |
Collapse
|
48
|
Finney OC, Nwakanma D, Conway DJ, Walther M, Riley EM. Homeostatic regulation of T effector to Treg ratios in an area of seasonal malaria transmission. Eur J Immunol 2009; 39:1288-300. [PMID: 19338000 DOI: 10.1002/eji.200839112] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
An important aspect of clinical immunity to malaria is the ability to down-regulate inflammatory responses, once parasitaemia is under control, in order to avoid immune-mediated pathology. The role of classical (CD4(+)CD25(+)CD127(lo/-)FOXP3(+)) Treg in this process, however, remains controversial. Thus, we have characterized the frequency, phenotype and function of Treg populations, over time, in healthy individuals in The Gambia. We observed that both the percentage and the absolute number of CD4(+)FOXP3(+)CD127(lo/-) T cells were higher among individuals living in a rural village with highly seasonal malaria transmission than among individuals living in an urban area where malaria rarely occurs. These CD4(+)FOXP3(+)CD127(lo/-) T cells exhibited an effector memory and apoptosis-prone phenotype and suppressed cytokine production in response to malaria antigen. Cells from individuals exposed to malaria expressed significantly higher levels of mRNA for forkhead box P3 and T-box 21 (T-BET) at the end of the malaria transmission season than at the end of the non-transmission season. Importantly, the ratio of T-BET to forkhead box P3 was remarkably consistent between populations and over time, indicating that in healthy individuals, a transient increase in Th1 responses during the malaria transmission season is balanced by a commensurate Treg response, ensuring that immune homeostasis is maintained.
Collapse
Affiliation(s)
- Olivia C Finney
- Malaria Programme, MRC Laboratories, Fajara, Banjul, The Gambia
| | | | | | | | | |
Collapse
|
49
|
Walther M, Jeffries D, Finney OC, Njie M, Ebonyi A, Deininger S, Lawrence E, Ngwa-Amambua A, Jayasooriya S, Cheeseman IH, Gomez-Escobar N, Okebe J, Conway DJ, Riley EM. Distinct roles for FOXP3 and FOXP3 CD4 T cells in regulating cellular immunity to uncomplicated and severe Plasmodium falciparum malaria. PLoS Pathog 2009; 5:e1000364. [PMID: 19343213 PMCID: PMC2658808 DOI: 10.1371/journal.ppat.1000364] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 03/03/2009] [Indexed: 02/04/2023] Open
Abstract
Failure to establish an appropriate balance between pro- and anti-inflammatory immune responses is believed to contribute to pathogenesis of severe malaria. To determine whether this balance is maintained by classical regulatory T cells (CD4(+) FOXP3(+) CD127(-/low); Tregs) we compared cellular responses between Gambian children (n = 124) with severe Plasmodium falciparum malaria or uncomplicated malaria infections. Although no significant differences in Treg numbers or function were observed between the groups, Treg activity during acute disease was inversely correlated with malaria-specific memory responses detectable 28 days later. Thus, while Tregs may not regulate acute malarial inflammation, they may limit memory responses to levels that subsequently facilitate parasite clearance without causing immunopathology. Importantly, we identified a population of FOXP3(-), CD45RO(+) CD4(+) T cells which coproduce IL-10 and IFN-gamma. These cells are more prevalent in children with uncomplicated malaria than in those with severe disease, suggesting that they may be the regulators of acute malarial inflammation.
Collapse
Affiliation(s)
- Michael Walther
- Medical Research Council Laboratories, Fajara, Banjul, The Gambia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Mideo N, Barclay VC, Chan BHK, Savill NJ, Read AF, Day T. Understanding and predicting strain-specific patterns of pathogenesis in the rodent malaria Plasmodium chabaudi. Am Nat 2008; 172:214-38. [PMID: 18834302 DOI: 10.1086/591684] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Despite considerable success elucidating important immunological and resource-based mechanisms that control the dynamics of infection in some diseases, little is known about how differences in these mechanisms result in strain differences in patterns of pathogenesis. Using a combination of data and theory, we disentangle the role of ecological factors (e.g., resource abundance) in the dynamics of pathogenesis for the malaria species Plasmodium chabaudi in CD4+ T cell-depleted mice. We build a series of nested models to systematically test a number of potential regulatory mechanisms and determine the "best" model using statistical techniques. The best-fit model is further tested using an independent data set from mixed-clone competition experiments. We find that parasites preferentially invade older red blood cells even when they are more fecund in younger reticulocytes and that inoculum size has a strong effect on burst size in reticulocytes. Importantly, the results suggest that strain-specific differences in virulence arise from differences in red blood cell age-specific invasion rates and burst sizes, since these are lower for the less virulent strain, as well as from differences in levels of erythropoesis induced by each strain. Our analyses highlight the importance of model selection and validation for revealing new biological insights.
Collapse
Affiliation(s)
- Nicole Mideo
- Department of Biology, Queen's University, Kingston, Ontario K7L3N6,
| | | | | | | | | | | |
Collapse
|