1
|
Roshal DS, Fedorenko KK, Martin M, Baghdiguian S, Rochal SB. Topological balance of cell distributions in plane monolayers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:265101. [PMID: 38537291 DOI: 10.1088/1361-648x/ad387a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Most of normal proliferative epithelia of plants and metazoans are topologically invariant and characterized by similar cell distributions according to the number of cell neighbors (DCNs). Here we study peculiarities of these distributions and explain why the DCN obtained from the location of intercellular boundaries and that based on the Voronoi tessellation with nodes located on cell nuclei may differ from each other. As we demonstrate, special microdomains where four or more intercellular boundaries converge are topologically charged. Using this fact, we deduce a new equation describing the topological balance of the DCNs. The developed theory is applied for a series of microphotographs of non-tumoral epithelial cells of the human cervix (HCerEpiC) to improve the image processing near the edges of microphotographs and reveal the topological invariance of the examined monolayers. Special contact microdomains may be present in epithelia of various natures, however, considering the well-known vertex model of epithelium, we show that such contacts are absent in the usual solid-like state of the model and appear only in the liquid-like cancer state. Also, we discuss a possible biological role of special contacts in context of proliferative epithelium dynamics and tissue morphogenesis.
Collapse
Affiliation(s)
- Daria S Roshal
- Faculty of Physics, Southern Federal University, Zorge 5, Rostov-on-Don 344090, Russia
| | - Kirill K Fedorenko
- Faculty of Physics, Southern Federal University, Zorge 5, Rostov-on-Don 344090, Russia
| | - Marianne Martin
- VBIC, INSERM U1047, University of Montpellier, Montpellier 34095, France
| | - Stephen Baghdiguian
- Institut des Sciences de l'Evolution-Montpellier, Université de Montpellier, CNRS, Ecole Pratique des Hautes Etudes, Institut de Recherche pour le Développement, Montpellier 34095, France
| | - Sergei B Rochal
- Faculty of Physics, Southern Federal University, Zorge 5, Rostov-on-Don 344090, Russia
| |
Collapse
|
2
|
Abstract
We often think about regeneration in terms of replacing missing structures, such as organs or tissues, with new structures generated via cell proliferation and differentiation. But at a smaller scale, single cells, themselves, are capable of regenerating when part of the cell has been removed. A classic model organism that facilitates the study of cellular regeneration in the giant ciliate Stentor coeruleus. These cells, which can grow to more than a millimeter in size, have the ability to survive after extensive wounding of their surface, and are able to regenerate missing structures. Even a small piece of a cell can regenerate a whole cell with normal geometry, in a matter of hours. Such regeneration requires cells to be able to trigger organelle biogenesis in response to loss of structures. But subcellular regeneration also relies on intracellular mechanisms to create and maintain global patterning within the cell. These mechanisms are not understood, but at a conceptual level they involve processes that resemble those seen in animal development and regeneration. Here we discuss single-celled regeneration in Stentor from the viewpoint of standard regeneration paradigms in animals. For example, there is evidence that regeneration of the oral apparatus in Stentor follows a sender-receiver model similar to crustacean eyestalk regeneration. By drawing these analogies, we find that many of the concepts already known from the study of animal-scale regeneration and development can be applied to the study of regeneration at the cellular level, such as the concepts of determination, induction, mosaic vs. regulative development, and epimorphosis vs. morphallaxis. We propose that the similarities may go beyond analogy, and that some aspects of animal development and regeneration may have evolved by exploiting pre-existing subcellular developmental strategies from unicellular ancestors.
Collapse
Affiliation(s)
- Wallace F. Marshall
- Department Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
3
|
Mehta S, Hingole S, Chaudhary V. The Emerging Mechanisms of Wnt Secretion and Signaling in Development. Front Cell Dev Biol 2021; 9:714746. [PMID: 34485301 PMCID: PMC8415634 DOI: 10.3389/fcell.2021.714746] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/20/2021] [Indexed: 12/22/2022] Open
Abstract
Wnts are highly-conserved lipid-modified secreted proteins that activate multiple signaling pathways. These pathways regulate crucial processes during various stages of development and maintain tissue homeostasis in adults. One of the most fascinating aspects of Wnt protein is that despite being hydrophobic, they are known to travel several cell distances in the extracellular space. Research on Wnts in the past four decades has identified several factors and uncovered mechanisms regulating their expression, secretion, and mode of extracellular travel. More recently, analyses on the importance of Wnt protein gradients in the growth and patterning of developing tissues have recognized the complex interplay of signaling mechanisms that help in maintaining tissue homeostasis. This review aims to present an overview of the evidence for the various modes of Wnt protein secretion and signaling and discuss mechanisms providing precision and robustness to the developing tissues.
Collapse
Affiliation(s)
| | | | - Varun Chaudhary
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
4
|
Piergiorge RM, de Vasconcelos ATR, Gonçalves Pimentel MM, Santos-Rebouças CB. Strict network analysis of evolutionary conserved and brain-expressed genes reveals new putative candidates implicated in Intellectual Disability and in Global Development Delay. World J Biol Psychiatry 2021; 22:435-445. [PMID: 32914658 DOI: 10.1080/15622975.2020.1821916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Intellectual Disability (ID) and Global Development Delay (GDD) are frequent reasons for referral to genetic services and although they present overlapping phenotypes concerning cognitive, motor, language, or social skills, they are not exactly synonymous. Aiming to better understand independent or shared mechanisms related to these conditions and to identify new candidate genes, we performed a highly stringent protein-protein interaction network based on genes previously related to ID/GDD in the Human Phenotype Ontology portal. METHODS ID/GDD genes were searched for reliable interactions through STRING and clustering analysis was applied to detect biological complexes through the MCL algorithm. Six coding hub genes (TP53, CDC42, RAC1, GNB1, APP, and EP300) were recognised by the Cytoscape NetworkAnalyzer plugin, interacting with 1625 proteins not yet associated with ID or GDD. Genes encoding these proteins were explored by gene ontology, associated diseases, evolutionary conservation, and brain expression. RESULTS One hundred and seventy-two new putative genes playing a role in enriched processes/pathways previously related to ID and GDD were revealed, some of which were already postulated to be linked to ID/GDD in additional databases. CONCLUSIONS Our findings expanded the aetiological genetic landscape of ID/GDD and showed evidence that both conditions are closely related at the molecular and functional levels.
Collapse
Affiliation(s)
- Rafael Mina Piergiorge
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Márcia Mattos Gonçalves Pimentel
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cíntia Barros Santos-Rebouças
- Department of Genetics, Institute of Biology Roberto Alcantara Gomes, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
5
|
Nakayama S, Yano T, Namba T, Konishi S, Takagishi M, Herawati E, Nishida T, Imoto Y, Ishihara S, Takahashi M, Furuta K, Oiwa K, Tamura A, Tsukita S. Planar cell polarity induces local microtubule bundling for coordinated ciliary beating. J Cell Biol 2021; 220:212042. [PMID: 33929515 PMCID: PMC8094116 DOI: 10.1083/jcb.202010034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 03/09/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Multiciliated cells (MCCs) in tracheas generate mucociliary clearance through coordinated ciliary beating. Apical microtubules (MTs) play a crucial role in this process by organizing the planar cell polarity (PCP)-dependent orientation of ciliary basal bodies (BBs), for which the underlying molecular basis remains elusive. Herein, we found that the deficiency of Daple, a dishevelled-associating protein, in tracheal MCCs impaired the planar polarized apical MTs without affecting the core PCP proteins, causing significant defects in the BB orientation at the cell level but not the tissue level. Using live-cell imaging and ultra-high voltage electron microscope tomography, we found that the apical MTs accumulated and were stabilized by side-by-side association with one side of the apical junctional complex, to which Daple was localized. In vitro binding and single-molecule imaging revealed that Daple directly bound to, bundled, and stabilized MTs through its dimerization. These features convey a PCP-related molecular basis for the polarization of apical MTs, which coordinate ciliary beating in tracheal MCCs.
Collapse
Affiliation(s)
- Shogo Nakayama
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Integrative Physiology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tomoki Yano
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Department of Cardiovascular Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Toshinori Namba
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Konishi
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Maki Takagishi
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX
| | - Elisa Herawati
- Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Tomoki Nishida
- Japan Textile Products Quality and Technology Center, Hyogo, Japan
| | - Yasuo Imoto
- Japan Textile Products Quality and Technology Center, Hyogo, Japan
| | - Shuji Ishihara
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Masahide Takahashi
- Department of Pathology, Graduate School of Medicine, Nagoya University, Nagoya, Japan.,International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan
| | - Ken'ya Furuta
- Advanced Information and Communications Technology Research Institute, National Institute of Information and Communications Technology, Hyogo, Japan
| | - Kazuhiro Oiwa
- Advanced Information and Communications Technology Research Institute, National Institute of Information and Communications Technology, Hyogo, Japan
| | - Atsushi Tamura
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Department of Pharmacology, School of Medicine, Teikyo University, Tokyo, Japan.,Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| | - Sachiko Tsukita
- Laboratory of Barriology and Cell Biology, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.,Advanced Comprehensive Research Organization, Teikyo University, Tokyo, Japan
| |
Collapse
|
6
|
Signaling cross-talk during development: Context-specific networking of Notch, NF-κB and JNK signaling pathways in Drosophila. Cell Signal 2021; 82:109937. [PMID: 33529757 DOI: 10.1016/j.cellsig.2021.109937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/08/2023]
Abstract
Multicellular organisms depend on a handful of core signaling pathways that regulate a variety of cell fate choices. Often these relatively simple signals integrate to form a large and complex signaling network to achieve a distinct developmental fate in a context-specific manner. Various pathway-dependent and independent events control the assembly of signaling complexes. Notch pathway is one such conserved signaling mechanism that integrates with other signaling pathways to exhibit a context-dependent pleiotropic output. To understand how Notch signaling provides a spectrum of distinct outputs, it is important to understand various regulatory switches involved in mediating signaling cross-talk of Notch with other pathways. Here, we review our current understanding as to how Notch signal integrates with JNK and NF-κB signaling pathways in Drosophila to regulate various developmental events such as sensory organ precursor formation, innate immunity, dorsal closure, establishment of planar cell polarity as well as during proliferation and tumor progression. We highlight the importance of conserved signaling molecules during these cross-talks and debate further possibilities of novel switches that may be involved in mediating these cross-talk events.
Collapse
|
7
|
Mlodzik M. Planar cell polarity: moving from single cells to tissue-scale biology. Development 2020; 147:147/24/dev186346. [PMID: 33355240 DOI: 10.1242/dev.186346] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Planar cell polarity (PCP) reflects cellular orientation within the plane of an epithelium. PCP is crucial during many biological patterning processes and for organ function. It is omnipresent, from convergent-extension mechanisms during early development through to terminal organogenesis, and it regulates many aspects of cell positioning and orientation during tissue morphogenesis, organ development and homeostasis. Suzanne Eaton used the power of Drosophila as a model system to study PCP, but her vision of, and impact on, PCP studies in flies translates to all animal models. As I highlight here, Suzanne's incorporation of quantitative biophysical studies of whole tissues, integrated with the detailed cell biology of PCP phenomena, completely changed how the field studies this intriguing feature. Moreover, Suzanne's impact on ongoing and future PCP studies is fundamental, long-lasting and transformative.
Collapse
Affiliation(s)
- Marek Mlodzik
- Dept. of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
8
|
Beta-caryophyllene enhances wound healing through multiple routes. PLoS One 2019; 14:e0216104. [PMID: 31841509 PMCID: PMC6913986 DOI: 10.1371/journal.pone.0216104] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Beta-caryophyllene is an odoriferous bicyclic sesquiterpene found in various herbs and spices. Recently, it was found that beta-caryophyllene is a ligand of the cannabinoid receptor 2 (CB2). Activation of CB2 will decrease pain, a major signal for inflammatory responses. We hypothesized that beta-caryophyllene can affect wound healing by decreasing inflammation. Here we show that cutaneous wounds of mice treated with beta-caryophyllene had enhanced re-epithelialization. The treated tissue showed increased cell proliferation and cells treated with beta-caryophyllene showed enhanced cell migration, suggesting that the higher re-epithelialization is due to enhanced cell proliferation and cell migration. The treated tissues also had up-regulated gene expression for hair follicle bulge stem cells. Olfactory receptors were not involved in the enhanced wound healing. Transient Receptor Potential channel genes were up-regulated in the injured skin exposed to beta-caryophyllene. Interestingly, there were sex differences in the impact of beta- caryophyllene as only the injured skin of female mice had enhanced re-epithelialization after exposure to beta-caryophyllene. Our study suggests that chemical compounds included in essential oils have the capability to improve wound healing, an effect generated by synergetic impacts of multiple pathways.
Collapse
|
9
|
Kadekar P, Chaouni R, Clark E, Kazanets A, Roy R. Genome-wide surveys reveal polarity and cytoskeletal regulators mediate LKB1-associated germline stem cell quiescence. BMC Genomics 2018; 19:462. [PMID: 29907081 PMCID: PMC6003023 DOI: 10.1186/s12864-018-4847-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/31/2018] [Indexed: 12/22/2022] Open
Abstract
Background Caenorhabditis elegans can endure long periods of environmental stress by altering their development to execute a quiescent state called “dauer”. Previous work has implicated LKB1 - the causative gene in the autosomal dominant, cancer pre-disposing disease called Peutz-Jeghers Syndrome (PJS), and its downstream target AMPK, in the establishment of germline stem cell (GSC) quiescence during the dauer stage. Loss of function mutations in both LKB1/par-4 and AMPK/aak(0) result in untimely GSC proliferation during the onset of the dauer stage, although the molecular mechanism through which these factors regulate quiescence remains unclear. Curiously, the hyperplasia observed in par-4 mutants is more severe than AMPK-compromised dauer larvae, suggesting that par-4 has alternative downstream targets in addition to AMPK to regulate germline quiescence. Results We conducted three genome-wide RNAi screens to identify potential downstream targets of the protein kinases PAR-4 and AMPK that mediate dauer-dependent GSC quiescence. First, we screened to identify genes that phenocopy the par-4-dependent hyperplasia when compromised by RNAi. Two additional RNAi screens were performed to identify genes that suppressed the germline hyperplasia in par-4 and aak(0) dauer larvae, respectively. Interestingly, a subset of the candidates we identified are involved in the regulation of cell polarity and cytoskeletal function downstream of par-4, in an AMPK-independent manner. Moreover, we show that par-4 temporally regulates actin cytoskeletal organization within the dauer germ line at the rachis-adjacent membrane, in an AMPK-independent manner. Conclusion Our data suggest that the regulation of the cytoskeleton and cell polarity may contribute significantly to the tumour suppressor function of LKB1/par-4. Electronic supplementary material The online version of this article (10.1186/s12864-018-4847-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pratik Kadekar
- Department of Biology, McGill University, 1205 avenue Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada
| | - Rita Chaouni
- Department of Biology, McGill University, 1205 avenue Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada
| | - Emily Clark
- Department of Biology, McGill University, 1205 avenue Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada
| | - Anna Kazanets
- Department of Biology, McGill University, 1205 avenue Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada
| | - Richard Roy
- Department of Biology, McGill University, 1205 avenue Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada.
| |
Collapse
|
10
|
Ezan J, Montcouquiol M. Les liens multiples entre les cils et la polarité planaire cellulaire. Med Sci (Paris) 2014; 30:1004-10. [DOI: 10.1051/medsci/20143011015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
11
|
Carvajal-Gonzalez JM, Mlodzik M. Mechanisms of planar cell polarity establishment in Drosophila. F1000PRIME REPORTS 2014; 6:98. [PMID: 25580252 PMCID: PMC4229721 DOI: 10.12703/p6-98] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Correct patterning and polarization of epithelial and mesenchymal cells are essential for morphogenesis and function of all organs and organisms. Epithelial cells are generally polarized in two axes: (a) the ubiquitous apical-basal axis and (b) polarity within the plane of the epithelium. The latter is generally referred to as planar cell polarity (PCP) and also is found in several contexts of mesenchymal cell patterning. In Drosophila, all adult structures display PCP features, and two conserved molecular systems (the Fat [Ft]/Dachsous [Ds] system and the Frizzled [Fz]/PCP pathway) that regulate this process have been identified. Although significant progress has been made in dissecting aspects of PCP signaling within cells, much remains to be discovered about the mechanisms of long-range and local PCP cell-cell interactions. Here, we discuss the current models based on Drosophila studies and incorporate recent insights into this long-standing cell and developmental biology problem.
Collapse
|
12
|
Soleas JP, Waddell TK, McGuigan AP. Topographically grooved gel inserts for aligning epithelial cells during air-liquid-interface culture. Biomater Sci 2014. [PMID: 26214196 DOI: 10.1039/c4bm00237g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epithelial tissues are a critical component of all tubular organs. Engineering artificial epithelium requires an understanding of the polarization of epithelia: both apicobasal and in a planar fashion. Air liquid interface (ALI) culture is typically used to generate apicobasal polarized airway epithelium in vitro; however, this approach does not provide any signalling cues to induce morphological planar polarization of the generated epithelial layer. Here we describe a microgrooved gelatin hydrogel insert that can induce alignment of confluent epithelial cell sheets under ALI conditions to induce both apicobasal and morphologically planar polarized epithelium. Microgrooves are imprinted into the surface of the gelatin insert using elastomeric stamps moulded from a diffraction grating film and gels are stabilized by crosslinking with glutaraldehyde. We show that microgrooved gelatin inserts produce alignment of 3T3 fibroblasts and a number of epithelial cell lines (ARPE-19, BEAS2B and IMCD3 cells). Furthermore, we show that BEAS2B apicobasally polarize and form a similar density of cilia on both gelatin inserts and standard transwell filters used for ALI culture but that as apicobasal polarization progresses cell alignment on the grooves is lost. Our method provides a simple strategy that can easily be adopted by labs without microfabrication expertise for manipulating epithelial organization in transwell culture and studying the interplay of various polarization forces.
Collapse
Affiliation(s)
- John P Soleas
- Institute of Medical Science, University of Toronto, 200 College St., Toronto, ON M5S 3E5, Canada
| | | | | |
Collapse
|
13
|
Agi E, Langen M, Altschuler SJ, Wu LF, Zimmermann T, Hiesinger PR. The evolution and development of neural superposition. J Neurogenet 2014; 28:216-32. [PMID: 24912630 PMCID: PMC4245170 DOI: 10.3109/01677063.2014.922557] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Visual systems have a rich history as model systems for the discovery and understanding of basic principles underlying neuronal connectivity. The compound eyes of insects consist of up to thousands of small unit eyes that are connected by photoreceptor axons to set up a visual map in the brain. The photoreceptor axon terminals thereby represent neighboring points seen in the environment in neighboring synaptic units in the brain. Neural superposition is a special case of such a wiring principle, where photoreceptors from different unit eyes that receive the same input converge upon the same synaptic units in the brain. This wiring principle is remarkable, because each photoreceptor in a single unit eye receives different input and each individual axon, among thousands others in the brain, must be sorted together with those few axons that have the same input. Key aspects of neural superposition have been described as early as 1907. Since then neuroscientists, evolutionary and developmental biologists have been fascinated by how such a complicated wiring principle could evolve, how it is genetically encoded, and how it is developmentally realized. In this review article, we will discuss current ideas about the evolutionary origin and developmental program of neural superposition. Our goal is to identify in what way the special case of neural superposition can help us answer more general questions about the evolution and development of genetically “hard-wired” synaptic connectivity in the brain.
Collapse
Affiliation(s)
- Egemen Agi
- Green Center for Systems Biology, University of Texas Southwestern Medical Center , Dallas, TX , USA
| | | | | | | | | | | |
Collapse
|
14
|
Panousopoulou E, Tyson RA, Bretschneider T, Green JBA. The distribution of Dishevelled in convergently extending mesoderm. Dev Biol 2013; 382:496-503. [PMID: 23876427 PMCID: PMC3793869 DOI: 10.1016/j.ydbio.2013.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 06/28/2013] [Accepted: 07/15/2013] [Indexed: 01/08/2023]
Abstract
Convergent extension (CE) is a conserved morphogenetic movement that drives axial lengthening of the primary body axis and depends on the planar cell polarity (PCP) pathway. In Drosophila epithelia, a polarised subcellular accumulation of PCP core components, such as Dishevelled (Dvl) protein, is associated with PCP function. Dvl has long been thought to accumulate in the mediolateral protrusions in Xenopus chordamesoderm cells undergoing CE. Here we present a quantitative analysis of Dvl intracellular localisation in Xenopus chordamesoderm cells. We find that, surprisingly, accumulations previously observed at mediolateral protrusions of chordamesodermal cells are not protrusion-specific but reflect yolk-free cytoplasm and are quantitatively matched by the distribution of the cytoplasm-filling lineage marker dextran. However, separating cell cortex-associated from bulk Dvl signal reveals a statistical enrichment of Dvl in notochord-somite boundary-(NSB)-directed protrusions, which is dependent upon NSB proximity. Dvl puncta were also observed, but only upon elevated overexpression. These puncta showed no statistically significant spatial bias, in contrast to the strongly posteriorly-enriched GFP-Dvl puncta previously reported in zebrafish. We propose that Dvl distribution is more subtle and dynamic than previously appreciated and that in vertebrate mesoderm it reflects processes other than protrusion as such.
Collapse
Affiliation(s)
- Eleni Panousopoulou
- Department of Craniofacial Development and Stem Cell Biology, Dental Institute, Kings College London, Floor 27 Guy's Tower, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | | | | | | |
Collapse
|
15
|
Ezan J, Montcouquiol M. Revisiting planar cell polarity in the inner ear. Semin Cell Dev Biol 2013; 24:499-506. [PMID: 23562830 DOI: 10.1016/j.semcdb.2013.03.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 03/26/2013] [Indexed: 10/27/2022]
Abstract
Since the first implication of the core planar cell polarity (PCP) pathway in stereocilia orientation of sensory hair cells in the mammalian cochlea, much has been written about this subject, in terms of understanding how this pathway can shape the mammalian hair cells and using the inner ear as a model system to understand mammalian PCP signaling. However, many conflicting results have arisen, leading to puzzling questions regarding the actual mechanism and roles of core PCP signaling in mammals and invertebrates. In this review, we summarize our current knowledge on the establishment of PCP during inner ear development and revisit the contrast between wing epithelial cells in Drosophila melanogaster and sensory epithelia in the mammalian cochlea. Notably, we focus on similarities and differences in the asymmetric distribution of core PCP proteins in the context of cell autonomous versus non-autonomous role of PCP signaling in the two systems. Additionally, we address the relationship between the kinocilium position and PCP in cochlear hair cells and increasing results suggest an alternate cell autonomous pathway in regulating PCP in sensory hair cells.
Collapse
Affiliation(s)
- Jérôme Ezan
- Planar Polarity and Plasticity Group, Inserm U862, Neurocentre Magendie, Bordeaux, France.
| | | |
Collapse
|
16
|
Origin and Development of Hair Cell Orientation in the Inner Ear. INSIGHTS FROM COMPARATIVE HEARING RESEARCH 2013. [DOI: 10.1007/2506_2013_28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Wallingford JB. Planar cell polarity and the developmental control of cell behavior in vertebrate embryos. Annu Rev Cell Dev Biol 2012; 28:627-53. [PMID: 22905955 DOI: 10.1146/annurev-cellbio-092910-154208] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Planar cell polarity (PCP), the orientation and alignment of cells within a sheet, is a ubiquitous cellular property that is commonly governed by the conserved set of proteins encoded by so-called PCP genes. The PCP proteins coordinate developmental signaling cues with individual cell behaviors in a wildly diverse array of tissues. Consequently, disruptions of PCP protein functions are linked to defects in axis elongation, inner ear patterning, neural tube closure, directed ciliary beating, and left/right patterning, to name only a few. This review attempts to synthesize what is known about PCP and the PCP proteins in vertebrate animals, with a particular focus on the mechanisms by which individual cells respond to PCP cues in order to execute specific cellular behaviors.
Collapse
Affiliation(s)
- John B Wallingford
- Howard Hughes Medical Institute, Section of Molecular, Cell and Developmental Biology, University of Texas, Austin, Texas 78712, USA.
| |
Collapse
|
18
|
Gault WJ, Olguin P, Weber U, Mlodzik M. Drosophila CK1-γ, gilgamesh, controls PCP-mediated morphogenesis through regulation of vesicle trafficking. ACTA ACUST UNITED AC 2012; 196:605-21. [PMID: 22391037 PMCID: PMC3307696 DOI: 10.1083/jcb.201107137] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CK1-γ/gilgamesh spatially limits the planar cell polarity–regulated process of trichome formation in Drosophila through its effect on polarized vesicle recycling. Cellular morphogenesis, including polarized outgrowth, promotes tissue shape and function. Polarized vesicle trafficking has emerged as a fundamental mechanism by which protein and membrane can be targeted to discrete subcellular domains to promote localized protrusions. Frizzled (Fz)/planar cell polarity (PCP) signaling orchestrates cytoskeletal polarization and drives morphogenetic changes in such contexts as the vertebrate body axis and external Drosophila melanogaster tissues. Although regulation of Fz/PCP signaling via vesicle trafficking has been identified, the interplay between the vesicle trafficking machinery and downstream terminal PCP-directed processes is less established. In this paper, we show that Drosophila CK1-γ/gilgamesh (gish) regulates the PCP-associated process of trichome formation through effects on Rab11-mediated vesicle recycling. Although the core Fz/PCP proteins dictate prehair formation broadly, CK1-γ/gish restricts nucleation to a single site. Moreover, CK1-γ/gish works in parallel with the Fz/PCP effector multiple wing hairs, which restricts prehair formation along the perpendicular axis to Gish. Our findings suggest that polarized Rab11-mediated vesicle trafficking regulated by CK1-γ is required for PCP-directed processes.
Collapse
Affiliation(s)
- William J Gault
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | |
Collapse
|
19
|
Werner ME, Hwang P, Huisman F, Taborek P, Yu CC, Mitchell BJ. Actin and microtubules drive differential aspects of planar cell polarity in multiciliated cells. ACTA ACUST UNITED AC 2011; 195:19-26. [PMID: 21949415 PMCID: PMC3187709 DOI: 10.1083/jcb.201106110] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Actin dynamics are required for proper cilia spacing, global coordination of cilia polarity, and coordination of metachronic cilia beating, whereas cytoplasmic microtubule dynamics are required for local coordination of polarity between neighboring cilia. Planar cell polarization represents the ability of cells to orient within the plane of a tissue orthogonal to the apical basal axis. The proper polarized function of multiciliated cells requires the coordination of cilia spacing and cilia polarity as well as the timing of cilia beating during metachronal synchrony. The planar cell polarity pathway and hydrodynamic forces have been shown to instruct cilia polarity. In this paper, we show how intracellular effectors interpret polarity to organize cellular morphology in accordance with asymmetric cellular function. We observe that both cellular actin and microtubule networks undergo drastic reorganization, providing differential roles during the polarized organization of cilia. Using computational angular correlation analysis of cilia orientation, we report a graded cellular organization downstream of cell polarity cues. Actin dynamics are required for proper cilia spacing, global coordination of cilia polarity, and coordination of metachronic cilia beating, whereas cytoplasmic microtubule dynamics are required for local coordination of polarity between neighboring cilia.
Collapse
Affiliation(s)
- Michael E Werner
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
The fur on a cat's back, the scales on a fish, or the bristles on a fly are all beautifully organized, with a high degree of polarization in their surface organization. Great progress has been made in understanding how individual cell polarity is established, but our understanding of how cells coordinate their polarity in forming coherent tissues is still fragmentary. The organization of cells in the plane of the epithelium is known as planar cell polarity (PCP), and studies in the past decade have delineated a genetic pathway for the control of PCP. This review will first briefly review data from the Drosophila field, where PCP was first identified and genetically characterized, and then explore how vertebrate tissues become polarized during development.
Collapse
|
21
|
Djiane A, Mlodzik M. The Drosophila GIPC homologue can modulate myosin based processes and planar cell polarity but is not essential for development. PLoS One 2010; 5:e11228. [PMID: 20574526 PMCID: PMC2888583 DOI: 10.1371/journal.pone.0011228] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Accepted: 06/01/2010] [Indexed: 01/20/2023] Open
Abstract
Epithelia often show, in addition to the ubiquitous apico-basal (A/B) axis, a polarization within the plane of the epithelium, perpendicular to the A/B axis. Such planar cell polarity (PCP) is for example evident in the regular arrangement of the stereocilia in the cochlea of the mammalian inner ear or in (almost) all Drosophila adult external structures. GIPCs (GAIP interacting protein, C terminus) were first identified in mammals and bind to the Gαi GTPase activating protein RGS-GAIP. They have been proposed to act in a G-protein coupled complex controlling vesicular trafficking. Although GIPCs have been found to bind to numerous proteins including Frizzled receptors, which participate in PCP establishment, there is little in vivo evidence for the functional role(s) of GIPCs. We show here that overexpressed Drosophila dGIPC alters PCP generation in the wing. We were however unable to find any binding between dGIPC and the Drosophila receptors Fz1 and Fz2. The effect of overexpressed dGIPC is likely due to an effect on the actin cytoskeleton via myosins, since it is almost entirely suppressed by removing a genomic copy of the Myosin VI/jaguar gene. Surprisingly, although dGIPC can interfere with PCP generation and myosin based processes, the complete loss-of-function of dGIPC gives viable adults with no PCP or other detectable defects arguing for a non-essential role of dGIPC in viability and normal Drosophila development.
Collapse
Affiliation(s)
- Alexandre Djiane
- Department of Physiology Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Marek Mlodzik
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
22
|
Westin SN, Broaddus RR, Deng L, McCampbell A, Lu KH, Lacour RA, Milam MR, Urbauer DL, Mueller P, Pickar JH, Loose DS. Molecular clustering of endometrial carcinoma based on estrogen-induced gene expression. Cancer Biol Ther 2009; 8:2126-35. [PMID: 19755863 PMCID: PMC2872176 DOI: 10.4161/cbt.8.22.9740] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Identification of biomarkers potentially provides prognostic information that can help guide clinical decision-making. Given the relationship between estrogen exposure and endometrial cancer, especially low grade endometrioid carcinoma, we hypothesized that high expression of genes induced by estrogen would identify low risk endometrioid endometrial cancers. cDNA microarray and qRT-PCR verification were used to identify six genes that are highly induced by estrogen in the endometrium. These estrogen-induced biomarkers were quantified in 72 endometrial carcinomas by qRT-PCR. Unsupervised cluster analysis was performed, with expression data correlated to tumor characteristics. Time to recurrence by cluster was analyzed using the Kaplan-Meier method. A receiver operating characteristic (ROC) curve was generated to determine the potential clinical utility of the biomarker panel to predict prognosis. Expression of all genes was higher in endometrioid carcinomas compared to non-endometrioid carcinomas. Unsupervised cluster analysis revealed two distinct groups based on gene expression. The high expression cluster was characterized by lower age, higher BMI, and low grade endometrioid histology. The low expression cluster had a recurrence rate 4.35 times higher than the high expression cluster. ROC analysis allowed for the prediction of stage and grade with a false negative rate of 4.8% based on level of gene expression in endometrioid tumors. We have therefore identified a panel of estrogen-induced genes that have potential utility in predicting endometrial cancer stage and recurrence risk. This proof-of-concept study demonstrates that biomarker analysis may play a role in clinical decision making for the therapy of women with endometrial cancer.
Collapse
Affiliation(s)
- Shannon N. Westin
- Department of Gynecologic Oncology; University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Russell R. Broaddus
- Department of Pathology; University of Texas M.D. Anderson Cancer Center; Houston, TX USA,Correspondence to: Russell R. Broaddus;
| | - Lei Deng
- Department of Pathology; University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Adrienne McCampbell
- Department of Pathology; University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Karen H. Lu
- Department of Gynecologic Oncology; University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Robin A. Lacour
- Department of Gynecologic Oncology; University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Michael R. Milam
- Department of Gynecologic Oncology; University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Diana L. Urbauer
- Division of Quantitative Sciences; University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | - Peter Mueller
- Division of Quantitative Sciences; University of Texas M.D. Anderson Cancer Center; Houston, TX USA
| | | | - David S. Loose
- Department of Integrative Biology and Pharmacology; University of Texas Health Science Center at Houston; Houston, TX USA
| |
Collapse
|
23
|
Mateus AM, Gorfinkiel N, Arias AM. Origin and function of fluctuations in cell behaviour and the emergence of patterns. Semin Cell Dev Biol 2009; 20:877-84. [PMID: 19665568 DOI: 10.1016/j.semcdb.2009.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2009] [Revised: 07/20/2009] [Accepted: 07/31/2009] [Indexed: 11/18/2022]
Abstract
Morphogenesis is the process whereby cells assemble into tissues and organs. Recent studies of this process have revealed heterogeneity of individual cell behaviours that contrasts with the deterministic activity of tissues as a whole. Here we review these observations and suggest that fluctuations and heterogeneities are a central substrate for morphogenesis and that there might exist mechanisms dedicated to the averaging of these fluctuations to ensure robust and reproducible behaviours at the tissue level.
Collapse
Affiliation(s)
- Ana M Mateus
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | | | | |
Collapse
|
24
|
Bertet C, Lecuit T. Planar polarity and short-range polarization in Drosophila embryos. Semin Cell Dev Biol 2009; 20:1006-13. [PMID: 19486946 DOI: 10.1016/j.semcdb.2009.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 04/17/2009] [Accepted: 05/21/2009] [Indexed: 10/20/2022]
Abstract
Planar cell polarity is a common and probably universal feature of epithelial cells throughout their life. It is not only visible in the external parts of adult animals and plants, but also present in newborn cells such as in the primary Drosophila epithelium. It controls not only cell shape and differentiation, but also cell motility, cell shape changes and it directs how animals are shaped. In this review, we report how planar cell polarity arises in Drosophila embryos and thereby illustrate how general and extensive planar polarity is during development, from the very beginning to the end. We present the main features of planar cell polarization in Drosophila embryos, in particular the fact that it occurs over a short range of just a few cell diameters, and within a very short time window. We contrast these with other systems, such as the adult Drosophila wing where planar cell polarity occurs at longer range.
Collapse
Affiliation(s)
- Claire Bertet
- IBDML, UMR6216 CNRS-Université de la Méditerranée, Campus de Luminy case 907, 13288 Marseille Cedex 09, France
| | | |
Collapse
|
25
|
Abstract
Most, if not all, cell types and tissues display several aspects of polarization. In addition to the ubiquitous epithelial cell polarity along the apical-basolateral axis, many epithelial tissues and organs are also polarized within the plane of the epithelium. This is generally referred to as planar cell polarity (PCP; or historically, tissue polarity). Genetic screens in Drosophila pioneered the discovery of core PCP factors, and subsequent work in vertebrates has established that the respective pathways are evolutionarily conserved. PCP is not restricted only to epithelial tissues but is also found in mesenchymal cells, where it can regulate cell migration and cell intercalation. Moreover, particularly in vertebrates, the conserved core PCP signaling factors have recently been found to be associated with the orientation or formation of cilia. This review discusses new developments in the molecular understanding of PCP establishment in Drosophila and vertebrates; these developments are integrated with new evidence that links PCP signaling to human disease.
Collapse
Affiliation(s)
- Matias Simons
- Mount Sinai School of Medicine, Department of Developmental & Regenerative Biology, New York, NY 10029, USA
| | | |
Collapse
|
26
|
Abstract
The "core genes" were identified as a group of genes believed to function as a conserved signaling cassette for the specification of planar polarity in Drosophila Melanogaster, and includes frizzled (fz), van gogh (vang) or strabismus (stbm), prickle (Pk), dishevelled (dsh), flamingo (fmi), and diego. The mutation of each of these genes not only causes the disruption of planar polarity within the wing or the eye of the animal, but also affects the localization of all the other protein members of the core group. These properties emphasize the importance of the interrelations between the proteins of this group. All of these core genes have homologs in vertebrates. Studies in Danio Rerio (zebrafish) and Xenopus laevis (frog) have uncovered other roles for some of these molecules in gastrulation and neurulation, during which the shape of a given tissue will undergo major transformation through cell movements. A disruption in these processes can lead to severe neural tube defects in diverse organisms, including humans. In fact, a large body of evidence suggests that planar polarity proteins are not involved in one specific cascade but in many different ones and many different mechanisms such as, but not limited to, hair or cilia orientation, asymmetric division, cellular movements, or neuronal migration. In mice cochleae, mutations in planar polarity genes lead to defects in the orientation of the stereociliary bundles at the apex of each hair cell. This phenotype established the cochlea as one of the clearest examples of planar polarity in mammals. Although significant progress has been made toward understanding the molecular basis required for the development of planar polarity in invertebrates, similar advances in vertebrates are more recent and rely mainly on the identification of a group of mammalian mutants that affect hair cell stereociliary bundle orientation. These include mutation of vangl2, scrb1, celsr1, PTK-7, dvl1-2, and more recently fz3 and fz6. In this chapter, we describe how to use the mammalian cochlea, which represents one of the best systems to study planar polarity in mammals, to identify planar polarity mutants, study protein distribution, do in vitro analysis, and perform Western blots to analyze putative planar polarity proteins.
Collapse
|
27
|
Abstract
Although progress has been made in understanding the role of growth factors and their receptors in angiogenesis, little is known about how the Wnt family of growth factors function in the vasculature. Wnts are multifunctional factors that act through the frizzled receptors to regulate proliferation, apoptosis, branching morphogenesis, inductive processes, and cell polarity. All of these processes must occur as developing vascular structures are formed and maintained. Recent evidence has linked the Wnt/Frizzled signaling pathway to proper vascular growth in murine and human retina. Here we review the literature describing the angiogenic functions for Wnt signaling and focus on a newly discovered angiogenic factor, Norrin, which acts through the Wnt receptor, Frizzled4.
Collapse
Affiliation(s)
- Nancy L Parmalee
- Department of Genetics and Development, Irving Research Center, NY, NY 10032, USA
| | | |
Collapse
|
28
|
Honda H, Nagai T, Tanemura M. Two different mechanisms of planar cell intercalation leading to tissue elongation. Dev Dyn 2008; 237:1826-36. [DOI: 10.1002/dvdy.21609] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
29
|
Abstract
The roles of growth factors such as angiopoietin (Ang) and vascular endothelial growth factor (VEGF) in angiogenesis have been known for some time, yet we have just an incipient appreciation for the contribution of Wnts to this process. Cellular proliferation and polarity, apoptosis, branching morphogenesis, inductive processes, and the maintenance of stem cells in an undifferentiated, proliferative state are all regulated by Wnt signaling. The development and maintenance of vascular structures are dependent on all these processes, and their orchestration has, to some extent, been revealed in studies of VEGF and Ang receptors. Recent evidence links the Wnt/Frizzled signaling pathway to proper vascular growth in mammals but our knowledge of Wnt function in the vasculature is rudimentary. Further insight into vascular development and the process of angiogenesis depends on evaluating the function of novel endothelial regulatory pathways such as Wnt/Frizzled signaling.
Collapse
|
30
|
Grid-free models of multicellular systems, with an application to large-scale vortices accompanying primitive streak formation. Curr Top Dev Biol 2008; 81:157-82. [PMID: 18023727 DOI: 10.1016/s0070-2153(07)81005-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
Abstract
This paper is comprised of two parts. In the first we provide a brief overview of grid-free methods for modeling multicellular systems. We focus on an approach based on Langevin equations, in which inertia is ignored, and stochastic effects on cell motion are included. The discussion starts with simpler models, in which cells are modeled as adhesive spheres. We then turn to more sophisticated approaches in which nontrivial cell shape is accommodated, including the recently introduced Subcellular Element Model, in which each cell is described as a cluster of adhesively coupled over-damped subcellular elements, representing patches of cytoskeleton. In the second part of the paper we illustrate the use of a standard grid-free cell-based model to computationally probe interesting new features associated with primitive streak formation in the chick embryo. Streak formation is a key developmental step in amniotes (i.e., birds, reptiles, and mammals), and can be observed in detail in the chick embryo, where the streak extends across a tightly-packed two-dimensional sheet (the epiblast) comprised of about 50,000 cells. The Weijer group [Cui, Yang, Chuai, Glazier, and Weijer, Dev. Biol. 284 (2005) 37-47] recently observed that streak formation is accompanied by coordinated cell movement lateral to the streak, resulting in two large counter-rotating vortices. We study a mechanism based on cell polarity (in the plane of the epiblast) that provides an explanation for these vortices, and test it successfully using computer simulations. This mechanism is robust, since the emergent vortex formation depends only on the gross features of the initial spatial distribution of planar polarity in the epiblast.
Collapse
|
31
|
Weber U, Pataki C, Mihaly J, Mlodzik M. Combinatorial signaling by the Frizzled/PCP and Egfr pathways during planar cell polarity establishment in the Drosophila eye. Dev Biol 2008; 316:110-23. [PMID: 18291359 DOI: 10.1016/j.ydbio.2008.01.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 01/09/2008] [Accepted: 01/10/2008] [Indexed: 12/23/2022]
Abstract
Frizzled (Fz)/PCP signaling regulates planar, vectorial orientation of cells or groups of cells within whole tissues. Although Fz/PCP signaling has been analyzed in several contexts, little is known about nuclear events acting downstream of Fz/PCP signaling in the R3/R4 cell fate decision in the Drosophila eye or in other contexts. Here we demonstrate a specific requirement for Egfr-signaling and the transcription factors Fos (AP-1), Yan and Pnt in PCP dependent R3/R4 specification. Loss and gain-of-function assays suggest that the transcription factors integrate input from Fz/PCP and Egfr-signaling and that the ETS factors Pnt and Yan cooperate with Fos (and Jun) in the PCP-specific R3/R4 determination. Our data indicate that Fos (either downstream of Fz/PCP signaling or parallel to it) and Yan are required in R3 to specify its fate (Fos) or inhibit R4 fate (Yan) and that Egfr-signaling is required in R4 via Pnt for its fate specification. Taken together with previous work establishing a Notch-dependent Su(H) function in R4, we conclude that Fos, Yan, Pnt, and Su(H) integrate Egfr, Fz, and Notch signaling input in R3 or R4 to establish cell fate and ommatidial polarity.
Collapse
Affiliation(s)
- Ursula Weber
- Department of Developmental and Regenerative Biology, Mt. Sinai School of Medicine, Annenberg Bldg. 18-92, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | |
Collapse
|
32
|
Gorfinkiel N, Arias AM. Requirements for adherens junction components in the interaction between epithelial tissues during dorsal closure in Drosophila. J Cell Sci 2007; 120:3289-98. [PMID: 17878238 DOI: 10.1242/jcs.010850] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Dynamic interactions between epithelial sheets are a regular feature of morphogenetic processes. Dorsal closure in Drosophila relies on the coordinated movements of two epithelia, the epidermis and the amnioserosa, and provides an excellent model system for a genetic and cell biological approach. Here, we have analyzed the contribution of junctional organization of these epithelia to dorsal closure. We observe a stringent requirement for adherens junctions at the leading edge, the interface between the amnioserosa and the epidermis, for the transmission of the forces generated during the process. We also find that interactions between Armadillo and E-cadherin play an important role in maintaining the adhesion at the leading edge, revealing the particular dynamics of this interface. Our results show that regulated cell adhesion is a crucial element of the interactions that shape epithelial sheets in morphogenetic processes.
Collapse
Affiliation(s)
- Nicole Gorfinkiel
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.
| | | |
Collapse
|
33
|
Wang Y, Nathans J. Tissue/planar cell polarity in vertebrates: new insights and new questions. Development 2007; 134:647-58. [PMID: 17259302 DOI: 10.1242/dev.02772] [Citation(s) in RCA: 341] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review focuses on the tissue/planar cell polarity (PCP) pathway and its role in generating spatial patterns in vertebrates. Current evidence suggests that PCP integrates both global and local signals to orient diverse structures with respect to the body axes. Interestingly, the system acts on both subcellular structures, such as hair bundles in auditory and vestibular sensory neurons, and multicellular structures, such as hair follicles. Recent work has shown that intriguing connections exist between the PCP-based orienting system and left-right asymmetry, as well as between the oriented cell movements required for neural tube closure and tubulogenesis. Studies in mice, frogs and zebrafish have revealed that similarities, as well as differences, exist between PCP in Drosophila and vertebrates.
Collapse
Affiliation(s)
- Yanshu Wang
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
34
|
Abstract
Cilia are microtubule-based protrusions that are found on the surface of most vertebrate cells. Long studied by cell biologists, these organelles have recently caught the attention of developmental biologists and human geneticists. In this review, I will discuss recent findings suggesting a link between cilia and the planar cell polarity signaling cascade. In particular, I will focus on how this interaction may influence the process of neural tube closure and how these results may be relevant to our understanding of common human birth defects in which neural tube closure is compromised.
Collapse
Affiliation(s)
- John B Wallingford
- Department of Molecular Cell and Developmental Biology and Institute for Cellular and Molecular Biology, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
35
|
Casal J, Lawrence PA, Struhl G. Two separate molecular systems, Dachsous/Fat and Starry night/Frizzled, act independently to confer planar cell polarity. Development 2006; 133:4561-72. [PMID: 17075008 PMCID: PMC2747022 DOI: 10.1242/dev.02641] [Citation(s) in RCA: 184] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Planar polarity is a fundamental property of epithelia in animals and plants. In Drosophila it depends on at least two sets of genes: one set, the Ds system, encodes the cadherins Dachsous (Ds) and Fat (Ft), as well as the Golgi protein Four-jointed. The other set, the Stan system, encodes Starry night (Stan or Flamingo) and Frizzled. The prevailing view is that the Ds system acts via the Stan system to orient cells. However, using the Drosophila abdomen, we find instead that the two systems operate independently: each confers and propagates polarity, and can do so in the absence of the other. We ask how the Ds system acts; we find that either Ds or Ft is required in cells that send information and we show that both Ds and Ft are required in the responding cells. We consider how polarity may be propagated by Ds-Ft heterodimers acting as bridges between cells.
Collapse
Affiliation(s)
- José Casal
- MRC Laboratory of Molecular Biology, Hills Rd, Cambridge CB2 2QH, UK
| | - Peter A. Lawrence
- MRC Laboratory of Molecular Biology, Hills Rd, Cambridge CB2 2QH, UK
| | - Gary Struhl
- HHMI, University of Columbia, 701 W 168th St, NY, NY 10032, USA
| |
Collapse
|
36
|
Baumann O, Lutz K. Photoreceptor morphogenesis in the Drosophila compound eye: R1-R6 rhabdomeres become twisted just before eclosion. J Comp Neurol 2006; 498:68-79. [PMID: 16856177 DOI: 10.1002/cne.21030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The photosensitive microvilli of Drosophila photoreceptors R1-R6 are not aligned in parallel over the entire length of the visual cells. In the distal half of each cell, the microvilli are slightly tilted toward one side and, in the proximal half, extremely toward the opposite side. This phenomenon, termed rhabdomere twisting, has been known for several decades, but the developmental and cell biological basis of rhabdomere twisting has not been studied so far. We show that rhabdomere twisting is also manifested as molecular polarization of the visual cell, because phosphotyrosine-containing proteins are selectively partitioned to different sides of the rhabdomere stalk in the distal and proximal sections of each R1-R6 photoreceptor. Both the asymmetrical segregation of phosphotyrosine proteins and the tilting of the microvilli occur shortly before eclosion of the flies, when eye development in all other aspects is considered to be essentially complete. Establishment of rhabdomere twisting occurs in a light-independent manner, because phosphotyrosine staining is unchanged in dark-reared wild-type flies and in mutants with defects in the phototransduction cascade, ninaE(17) and norpA(P24). We conclude that antiphosphotyrosine immunofluorescence can be used as a light microscopic probe for the analysis of rhabdomere twisting and that microvilli tilting represents a type of planar cell polarity that is established by an active process in the last phase of photoreceptor morphogenesis, just prior to eclosion of the flies.
Collapse
Affiliation(s)
- Otto Baumann
- Department of Animal Physiology, Institute of Biochemistry and Biology, University of Potsdam, 14415 Potsdam, Germany.
| | | |
Collapse
|
37
|
Walters JW, Dilks SA, DiNardo S. Planar polarization of the denticle field in the Drosophila embryo: roles for Myosin II (zipper) and fringe. Dev Biol 2006; 297:323-39. [PMID: 16890930 PMCID: PMC8711031 DOI: 10.1016/j.ydbio.2006.04.454] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 04/18/2006] [Accepted: 04/19/2006] [Indexed: 11/22/2022]
Abstract
Epithelial planar cell polarity (PCP) allows epithelial cells to coordinate their development to that of the tissue in which they reside. The mechanisms that impart PCP as well as effectors that execute the polarizing instructions are being sought in many tissues. We report that the epidermal epithelium of Drosophila embryos exhibits PCP. Cells of the prospective denticle field, but not the adjacent smooth field, align precisely. This requires Myosin II (zipper) function, and we find that Myosin II is enriched in a bipolar manner, across the parasegment, on both smooth and denticle field cells during denticle field alignment. This implies that actomyosin contractility, in combination with denticle-field-specific effectors, helps execute the cell rearrangements involved. In addition to this parasegment-wide polarity, prospective denticle field cells express an asymmetry, uniquely recognizing one cell edge over others as these cells uniquely position their actin-based protrusions (ABPs; which comprise each denticle) at their posterior edge. Cells of the prospective smooth field appear to be lacking proper effectors to elicit this unipolar response. Lastly, we identify fringe function as a necessary effector for high fidelity placement of ABPs and show that Myosin II (zipper) activity is necessary for ABP placement and shaping as well.
Collapse
|
38
|
Abstract
Polarization is a feature common to many cell types. Epithelial cells, for example, exhibit a characteristic apical-basolateral polarity that is critical for their function. In addition to this ubiquitous form of polarity, whole fields of cells are often polarized in a plane perpendicular to the apical-basal axis. This form of polarity, referred to as planar cell polarity (PCP), exists in all adult Drosophila cuticular tissues, as well as in numerous vertebrate tissues, including the mammalian skin and inner ear epithelia. Recent advances in the study of PCP establishment are beginning to unravel the molecular mechanisms underlying this cellular process. This review discusses new developments in the molecular understanding of PCP in Drosophila and vertebrates and integrates the current data in a model to illustrate how interactions between PCP factors might function to generate planar polarity.
Collapse
Affiliation(s)
- Thomas J Klein
- Mount Sinai School of Medicine, Brookdale Department of Molecular, Cell and Developmental Biology, New York, NY 10029, USA.
| | | |
Collapse
|
39
|
Ren N, Zhu C, Lee H, Adler PN. Gene expression during Drosophila wing morphogenesis and differentiation. Genetics 2005; 171:625-38. [PMID: 15998724 PMCID: PMC1456776 DOI: 10.1534/genetics.105.043687] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The simple cellular composition and array of distally pointing hairs has made the Drosophila wing a favored system for studying planar polarity and the coordination of cellular and tissue level morphogenesis. We carried out a gene expression screen to identify candidate genes that functioned in wing and wing hair morphogenesis. Pupal wing RNA was isolated from tissue prior to, during, and after hair growth and used to probe Affymetrix Drosophila gene chips. We identified 435 genes whose expression changed at least fivefold during this period and 1335 whose expression changed at least twofold. As a functional validation we chose 10 genes where genetic reagents existed but where there was little or no evidence for a wing phenotype. New phenotypes were found for 9 of these genes, providing functional validation for the collection of identified genes. Among the phenotypes seen were a delay in hair initiation, defects in hair maturation, defects in cuticle formation and pigmentation, and abnormal wing hair polarity. The collection of identified genes should be a valuable data set for future studies on hair and bristle morphogenesis, cuticle synthesis, and planar polarity.
Collapse
Affiliation(s)
- Nan Ren
- Biology Department, Cancer Center and Morphogenesis and Regenerative Medicine Institute, University of Virginia, Charlottesville, 22903, USA
| | | | | | | |
Collapse
|
40
|
Abstract
In this issue of Cell, identify a first regulatory link between planar cell polarity (PCP) signaling and apical-basal polarity. The authors propose that a component of the apical Crumbs complex regulates the phosphorylation of the Frizzled (Fz) PCP receptor, thus modulating PCP in the Drosophila eye.
Collapse
Affiliation(s)
- François Schweisguth
- Ecole Normale Supérieure, CNRS UMR8542, 46 rue d'Ulm, 75230 Paris Cedex 05, France.
| |
Collapse
|
41
|
Washington JL, Pitts D, Wright CG, Erway LC, Davis RR, Alagramam K. Characterization of a new allele of Ames waltzer generated by ENU mutagenesis. Hear Res 2005; 202:161-9. [PMID: 15811708 DOI: 10.1016/j.heares.2004.09.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2004] [Accepted: 09/17/2004] [Indexed: 11/29/2022]
Abstract
Mutation in the protocadherin 15 (Pcdh15) gene causes hair cell dysfunction and is associated with abnormal stereocilia development. We have characterized the first allele (Pcdh15(av-nmf19)) of Ames waltzer (av) obtained by N-ethyl-N-nitrosourea (ENU) mutagenesis. Pcdh15(av-nmf19) was generated in the Neuroscience Mutagenesis Facility (NMF) at The Jackson Lab (Bar Habor, USA). Pcdh15(av-nmf19) mutants display circling and abnormal swimming behavior along with lack of auditory-evoked brainstem response at the highest intensities tested. Mutation analysis shows base substitution (A--> G) in the consensus splice donor sequence linked to exon 14 resulting in the skipping of exon 14 and the splicing of exon 13-15. This results in the introduction of a stop codon in the coding sequence of exon 15 due to shift in the reading frame. The effect of nmf19 mutation is expected to be severe since the expressed Pcdh15 protein is predicted to truncate in the 5th cadherin domain. Abnormalities of cochlear hair cell stereocilia are apparent in Pcdh15(av-nmf19) mutants near the time of birth and by about P15 (15 days after birth) there is evidence of sensory cell degeneration. Disorganization of outer hair cell stereocilia is observed as early as P2. Inner hair cell stereocilia are also affected, but less severely than those of the outer hair cells. These results are consistent with characteristics of the mutation in the Pcdh15(av-nmf19) allele and they support our previous finding that Protocadherin 15 plays an important role in hair-bundle morphogenesis.
Collapse
MESH Headings
- Acoustic Stimulation/methods
- Adenine
- Alleles
- Animals
- Auditory Threshold
- Base Sequence
- Cadherin Related Proteins
- Cadherins/drug effects
- Cadherins/genetics
- DNA Mutational Analysis
- Deafness/genetics
- Deafness/pathology
- Deafness/physiopathology
- Ethylnitrosourea/pharmacology
- Evoked Potentials, Auditory, Brain Stem
- Female
- Guanine
- Hair Cells, Auditory, Inner/pathology
- Hair Cells, Auditory, Inner/ultrastructure
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Microscopy, Electron, Scanning
- Mutagens/pharmacology
- Mutation
- Organ of Corti/pathology
- Organ of Corti/ultrastructure
- Phenotype
- Protein Precursors/drug effects
- Protein Precursors/genetics
- Vestibular Diseases/genetics
- Vestibular Diseases/pathology
- Vestibular Diseases/physiopathology
Collapse
Affiliation(s)
- Jesse L Washington
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | |
Collapse
|
42
|
Novelli E, Resta V, Galli-Resta L. Mechanisms controlling the formation of retinal mosaics. PROGRESS IN BRAIN RESEARCH 2005; 147:141-53. [PMID: 15581703 DOI: 10.1016/s0079-6123(04)47011-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Most regions of the nervous system derive their power of processing from a modular architecture. The retina is an outstanding example of modular circuit design. Retinal neurons are stacked in layers and within each layer neurons of the same type commonly form orderly arrays, or mosaics. Here we review current knowledge on the mechanisms of retinal mosaic formation, and discuss the hypothesis that retinal mosaics are the building blocks in the assembly of retinal circuitry.
Collapse
|
43
|
Davies A, Formstone C, Mason I, Lewis J. Planar polarity of hair cells in the chick inner ear is correlated with polarized distribution of c-flamingo-1 protein. Dev Dyn 2005; 233:998-1005. [PMID: 15830377 DOI: 10.1002/dvdy.20376] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Hair cells of the vertebrate inner ear are directional mechanosensors: they have a polarity, defined by a vector in the plane of the sensory epithelium. It has been suggested that this polarity might be controlled by genes homologous to those that control planar cell polarity (PCP) in Drosophila, and vertebrate homologues of the Drosophila PCP genes Van Gogh/strabismus and flamingo/starry night are indeed essential for normal hair cell PCP. The underlying molecular mechanism is unclear, however. Although the PCP protein Flamingo shows a polarized intracellular distribution in the fly, it is unknown whether this is necessary for its function. Here, we describe the expression pattern of a flamingo homologue, c-flamingo-1 (c-fmi-1), in the developing chick ear and show that its protein product, like that of flamingo in the fly, has a polarized distribution in each hair cell, defining an axis that corresponds to the structural PCP axis. This conservation between fly and vertebrate suggests that the polarized protein localization is functionally important. In the basilar papilla, the same localization is seen in supporting cells also, suggesting that supporting cells are cryptically polarized, despite having no overt structural polarity; they may thus participate in PCP signal transmission across the sensory patch.
Collapse
Affiliation(s)
- Alexander Davies
- Vertebrate Development Laboratory, Cancer Research UK London Research Institute, London, United Kingdom
| | | | | | | |
Collapse
|
44
|
Simon MA. Planar cell polarity in the Drosophila eye is directed by graded Four-jointed and Dachsous expression. Development 2004; 131:6175-84. [PMID: 15548581 DOI: 10.1242/dev.01550] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Planar cell polarity (PCP) occurs when the cells of an epithelium are polarized along a common axis lying in the epithelial plane. During the development of PCP, cells respond to long-range directional signals that specify the axis of polarization. In previous work on the Drosophilaeye, we proposed that a crucial step in this process is the establishment of graded expression of the cadherin Dachsous (Ds) and the Golgi-associated protein Four-jointed (Fj). These gradients were proposed to specify the direction of polarization by producing an activity gradient of the cadherin Fat within each ommatidium. In this report, I test and confirm the key predictions of this model by altering the patterns of Fj, Ds and Fat expression. It is shown that the gradients of Fj and Ds expression provide partially redundant positional information essential for specifying the polarization axis. I further demonstrate that reversing the Fj and Ds gradients can lead to reversal of the axis of polarization. Finally, it is shown that an ectopic gradient of Fat expression can re-orient PCP in the eye. In contrast to the eye, the endogenous gradients of Fj and Ds expression do not play a major role in directing PCP in the wing. Thus, this study reveals that the two tissues use different strategies to orient their PCP.
Collapse
Affiliation(s)
- Michael A Simon
- Department of Biological Sciences, Stanford University, Stanford, CA 94305-5020, USA.
| |
Collapse
|
45
|
Webb SD, Owen MR. Intra-membrane ligand diffusion and cell shape modulate juxtacrine patterning. J Theor Biol 2004; 230:99-117. [PMID: 15276004 DOI: 10.1016/j.jtbi.2004.04.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Revised: 04/15/2004] [Accepted: 04/19/2004] [Indexed: 11/16/2022]
Abstract
A key problem in developmental biology is how pattern and planar polarity are transmitted in epithelial structures. Examples include Drosophila neuronal differentiation, ommatidia formation in the compound eye, and wing hair polarization. A key component for the generation of such patterns is direct cell-cell signalling by transmembrane ligands, called juxtacrine signalling. Previous models for this mode of communication have considered homogeneous distributions in the cell membrane, and the role of polarity has been largely ignored. In this paper we determine the role of inhomogeneous protein and receptor distributions in juxtacrine signalling. We explicitly include individual membrane segments, diffusive transport of proteins and receptors between these segments, and production terms with a combination of local and global responses to ligand binding. Our analysis shows that intra-membrane ligand transport is vital for the generation of long wavelength patterns. Moreover, with no ligand transport, there is no pattern formation for lateral induction, a process in which receptor activation up-regulates ligand production. Biased production of ligand also modulates patterning bifurcations and predicted wavelengths. In addition, biased ligand and receptor trafficking can lead to regular polarity across a lattice, in which each cell has the same orientation-directly analogous to patterns of hairs in the Drosophila wing. We confirm the trends in pattern wavelengths previously observed for patterns with cellular homogeneity-lateral inhibition tends to give short-range patterns, while lateral induction can give patterns with much longer wavelengths. Moreover, the original model can be recovered if intra-membrane bound receptor diffusion is included and rapid equilibriation between the sides is considered. Finally, we consider the role of irregular cell shapes and waves in such networks, including wave propagation past clones of non-signalling cells.
Collapse
Affiliation(s)
- Steven D Webb
- Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.
| | | |
Collapse
|
46
|
Kida Y, Shiraishi T, Ogura T. Identification of chick and mouse Daam1 and Daam2 genes and their expression patterns in the central nervous system. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 153:143-50. [PMID: 15464228 DOI: 10.1016/j.devbrainres.2004.07.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/26/2004] [Indexed: 11/25/2022]
Abstract
Genes controlling the planar cell polarity (PCP) pathway have recently been described in Drosophila. Although a number of PCP-related genes were identified, it remains unknown whether the same genetic programs found in invertebrate embryos operate in vertebrate embryos, especially with regard to central nervous system development. To gain insights into the roles played by vertebrate PCP-related genes, we cloned and examined the expression patterns of chick and mouse homologues of the Xenopus Daam gene, an essential component of the PCP pathway and involved in the convergent extension movement of cells. The observed expression patterns in developing central nervous tissues suggested that vertebrate Daam genes were involved in pivotal steps in neuronal cell differentiation and movement.
Collapse
Affiliation(s)
- Yasuyuki Kida
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara, 630-0101, Japan
| | | | | |
Collapse
|
47
|
Morel V, Arias AM. Armadillo/beta-catenin-dependent Wnt signalling is required for the polarisation of epidermal cells during dorsal closure in Drosophila. Development 2004; 131:3273-83. [PMID: 15226252 DOI: 10.1242/dev.01217] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
At the end of germband retraction, the dorsal epidermis of the Drosophila embryo exhibits a discontinuity that is covered by the amnioserosa. The process of dorsal closure (DC) involves a coordinated set of cell-shape changes within the epidermis and the amnioserosa that result in epidermal continuity. Polarisation of the dorsal-most epidermal (DME) cells in the plane of the epithelium is an important aspect of DC. The DME cells of embryos mutant for wingless or dishevelled exhibit polarisation defects and fail to close properly. We have investigated the role of the Wingless signalling pathway in the polarisation of the DME cells and DC. We find that the beta-catenin-dependent Wingless signalling pathway is required for polarisation of the DME cells. We further show that although the DME cells are polarised in the plane of the epithelium and present polarised localisation of proteins associated with the process of planar cell polarity (PCP) in the wing, e.g. Flamingo, PCP Wingless signalling is not involved in DC.
Collapse
Affiliation(s)
- Véronique Morel
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK.
| | | |
Collapse
|
48
|
Abstract
The coordination of epithelial planar polarization is a critical step in the formation of well-ordered tissues. The process has been extensively studied in Drosophila, where genetic analysis has identified a set of "tissue polarity" genes that serve to coordinate planar polarity of cells in the developing wings, bristles and eyes. In the last several years, it has emerged that six of these genes encode junctional proteins. In the wing epithelium, these proteins undergo a polarized redistribution, forming separate proximal and distal cortical domains within each cell. The mechanisms that mediate cortical polarization and cue its direction have been the subject of intense investigation. Cuing the orientation of cortical polarization appears to depend on the atypical Cadherins Fat and Dachsous, although these proteins do not become polarized themselves, nor do they colocalize with components of polarized cortical domains. Interestingly, these Cadherins also act at earlier developmental stages to polarize tissue growth along the proximal-distal axis and it will be interesting to see whether these processes are mechanistically related. Once the axis of polarization is determined, cortical polarity seems to be propagated, at least locally, by a cascade of direct cell-cell interactions mediated by the proximal and distal domains. The cell biological mechanisms leading to polarization are still unclear, but the process depends on the control of Protein Phosphatase 2A activity by its regulatory subunit, Widerborst. Interestingly, Widerborst is found on a planar web of microtubules with connections to apical junctions, suggesting that these microtubules may have an important function in polarizing the cortex.
Collapse
Affiliation(s)
- Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany.
| |
Collapse
|
49
|
Lawrence N, Morel V. Dorsal closure and convergent extension: two polarised morphogenetic movements controlled by similar mechanisms? Mech Dev 2004; 120:1385-93. [PMID: 14623444 DOI: 10.1016/j.mod.2003.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Coordinated cell movements contribute to the shaping of developing organisms during morphogenesis. Understanding the molecular basis of these directed movements is a crucial part of understanding the mechanisms in action during development. We present here a cellular description of two morphogenetic processes: dorsal closure of the Drosophila embryo and convergent extension in two vertebrate models, Xenopus laevis and Danio rerio. Both processes are characterised by polarised cell movements and increasing evidence suggests that they involve a common group of planar cell polarity genes. We propose that the comparison of dorsal closure and convergent extension will shed light on underlying mechanisms that are shared between the two processes.
Collapse
Affiliation(s)
- Nicola Lawrence
- Department of Genetics, University of Cambridge, Downing street, CB2 3EH Cambridge, UK.
| | | |
Collapse
|
50
|
Klein TJ, Mlodzik M. A conserved signaling cassette regulates hair patterning from Drosophila to man. Proc Natl Acad Sci U S A 2004; 101:9173-4. [PMID: 15199187 PMCID: PMC438946 DOI: 10.1073/pnas.0403301101] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Thomas J Klein
- Brookdale Department of Molecular, Cell, and Developmental Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY, USA
| | | |
Collapse
|