1
|
Jalilvand S, Mirzaei M, Mousavi H. Nonlinear mechanical response of finite-length soft composites with random dislocations. Sci Rep 2024; 14:27121. [PMID: 39511290 PMCID: PMC11543800 DOI: 10.1038/s41598-024-78623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024] Open
Abstract
The effects of random dislocations on the vibrational properties of finite-length RNA and DNA macro-structures have been investigated by means of a harmonic Hamiltonian and the Green's function method. The RNA molecule has been modeled using a half ladder model, and three models (a fishbone model and two different strand models) have been employed to model the structure of DNA. The lengths of the finite and cyclic systems are gradually increased to more accurately approximate the structures of RNA and DNA. Springs whose behaviors are governed by Hooke's constitutive law have been used to represent the bonds between the masses, with the stiffness of the vertical springs randomly changing along the length of each model. This results in a more realistic representation of the inherent randomness of the studied structures. To investigate the effect of random dislocations on the mechanical response of the studied systems, it has been assumed that a random mass-spring ensemble has been knocked out of place by an external force. It has been found that increasing the number of building blocks along the length of the models suppresses the influence of dislocations on the vibration spectra of RNA and DNA. It was also observed that at low frequencies, the influence of dislocations becomes more pronounced. Besides, taking into account the collective mass of the sugar-phosphate backbone results in the appearance of gaps in the vibration spectra. By introducing dislocations into the models, additional dislocation-induced vibrational states appear in the DOS curves. What stands out from the results is that the responses of the studied systems to these changes are strictly nonlinear. The employed methodology can be applied to investigate the mechanical response of damaged RNA and DNA.
Collapse
Affiliation(s)
| | - Moein Mirzaei
- Department of Physics, Razi University, Kermanshah, Iran
| | - Hamze Mousavi
- Department of Physics, Razi University, Kermanshah, Iran.
| |
Collapse
|
2
|
Zhuang L, Gong J, Zhao Y, Yang J, Liu G, Zhao B, Song C, Zhang Y, Shen Q. Progress in methods for the detection of viable Escherichia coli. Analyst 2024; 149:1022-1049. [PMID: 38273740 DOI: 10.1039/d3an01750h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Escherichia coli (E. coli) is a prevalent enteric bacterium and a necessary organism to monitor for food safety and environmental purposes. Developing efficient and specific methods is critical for detecting and monitoring viable E. coli due to its high prevalence. Conventional culture methods are often laborious and time-consuming, and they offer limited capability in detecting potentially harmful viable but non-culturable E. coli in the tested sample, which highlights the need for improved approaches. Hence, there is a growing demand for accurate and sensitive methods to determine the presence of viable E. coli. This paper scrutinizes various methods for detecting viable E. coli, including culture-based methods, molecular methods that target DNAs and RNAs, bacteriophage-based methods, biosensors, and other emerging technologies. The review serves as a guide for researchers seeking additional methodological options and aiding in the development of rapid and precise assays. Moving forward, it is anticipated that methods for detecting E. coli will become more stable and robust, ultimately contributing significantly to the improvement of food safety and public health.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China.
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, P. R. China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China.
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Guofang Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Bin Zhao
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Chunlei Song
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| |
Collapse
|
3
|
Chakraborty P, Krishnani KK. Emerging bioanalytical sensors for rapid and close-to-real-time detection of priority abiotic and biotic stressors in aquaculture and culture-based fisheries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156128. [PMID: 35605873 DOI: 10.1016/j.scitotenv.2022.156128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Abiotic stresses of various chemical contamination of physical, inorganic, organic and biotoxin origin and biotic stresses of bacterial, viral, parasitic and fungal origins are the significant constraints in achieving higher aquaculture production. Testing and rapid detection of these chemical and microbial contaminants are crucial in identifying and mitigating abiotic and biotic stresses, which has become one of the most challenging aspects in aquaculture and culture-based fisheries. The classical analytical techniques, including titrimetric methods, spectrophotometric, mass spectrometric, spectroscopic, and chromatographic techniques, are tedious and sometimes inaccessible when required. The development of novel and improved bioanalytical methods for rapid, selective and sensitive detection is a wide and dynamic field of research. Biosensors offer precise detection of biotic and abiotic stressors in aquaculture and culture-based fisheries within no time. This review article allows filling the knowledge gap for detection and monitoring of chemical and microbial contaminants of abiotic and biotic origin in aquaculture and culture-based fisheries using nano(bio-) analytical technologies, including nano(bio-)molecular and nano(bio-)sensing techniques.
Collapse
Affiliation(s)
- Puja Chakraborty
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai 400061, India
| | - K K Krishnani
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai 400061, India.
| |
Collapse
|
4
|
Wang T, Simmel FC. Riboswitch-inspired toehold riboregulators for gene regulation in Escherichia coli. Nucleic Acids Res 2022; 50:4784-4798. [PMID: 35446427 PMCID: PMC9071393 DOI: 10.1093/nar/gkac275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
Regulatory RNA molecules have been widely investigated as components for synthetic gene circuits, complementing the use of protein-based transcription factors. Among the potential advantages of RNA-based gene regulators are their comparatively simple design, sequence-programmability, orthogonality, and their relatively low metabolic burden. In this work, we developed a set of riboswitch-inspired riboregulators in Escherichia coli that combine the concept of toehold-mediated strand displacement (TMSD) with the switching principles of naturally occurring transcriptional and translational riboswitches. Specifically, for translational activation and repression, we sequestered anti-anti-RBS or anti-RBS sequences, respectively, inside the loop of a stable hairpin domain, which is equipped with a single-stranded toehold region at its 5' end and is followed by regulated sequences on its 3' side. A trigger RNA binding to the toehold region can invade the hairpin, inducing a structural rearrangement that results in translational activation or deactivation. We also demonstrate that TMSD can be applied in the context of transcriptional regulation by switching RNA secondary structure involved in Rho-dependent termination. Our designs expand the repertoire of available synthetic riboregulators by a set of RNA switches with no sequence limitation, which should prove useful for the development of robust genetic sensors and circuits.
Collapse
Affiliation(s)
- Tianhe Wang
- Physics of Synthetic Biological Systems – E14, Physics Department and ZNN, Technische Universität München, Am Coulombwall 4a, 85748 Garching, Germany
| | | |
Collapse
|
5
|
Sohrabi H, Majidi MR, Khaki P, Jahanban-Esfahlan A, de la Guardia M, Mokhtarzadeh A. State of the art: Lateral flow assays toward the point-of-care foodborne pathogenic bacteria detection in food samples. Compr Rev Food Sci Food Saf 2022; 21:1868-1912. [PMID: 35194932 DOI: 10.1111/1541-4337.12913] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/24/2022]
Abstract
Diverse chemicals and some physical phenomena recently introduced in nanotechnology have enabled scientists to develop useful devices in the field of food sciences. Concerning such developments, detecting foodborne pathogenic bacteria is now an important issue. These kinds of bacteria species have demonstrated severe health effects after consuming foods and high mortality related to acute cases. The most leading path of intoxication and infection has been through food matrices. Hence, quick recognition of foodborne bacteria agents at low concentrations has been required in current diagnostics. Lateral flow assays (LFAs) are one of the urgent and prevalently applied quick recognition methods that have been settled for recognizing diverse types of analytes. Thus, the present review has stressed on latest developments in LFAs-based platforms to detect various foodborne pathogenic bacteria such as Salmonella, Listeria, Escherichia coli, Brucella, Shigella, Staphylococcus aureus, Clostridium botulinum, and Vibrio cholera. Proper prominence has been given on exactly how the labels, detection elements, or procedures have affected recent developments in the evaluation of diverse bacteria using LFAs. Additionally, the modifications in assays specificity and sensitivity consistent with applied food processing techniques have been discussed. Finally, a conclusion has been drawn for highlighting the main challenges confronted through this method and offered a view and insight of thoughts for its further development in the future.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Pegah Khaki
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ali Jahanban-Esfahlan
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biology, Faculty of Fundamental Sciences, University College of Nabi Akram (UCNA), Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Sohrabi H, Majidi MR, Fakhraei M, Jahanban-Esfahlan A, Hejazi M, Oroojalian F, Baradaran B, Tohidast M, Guardia MDL, Mokhtarzadeh A. Lateral flow assays (LFA) for detection of pathogenic bacteria: A small point-of-care platform for diagnosis of human infectious diseases. Talanta 2022; 243:123330. [DOI: 10.1016/j.talanta.2022.123330] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 12/31/2022]
|
7
|
Al Mamun M, Wahab YA, Hossain MM, Hashem A, Johan MR. Electrochemical biosensors with Aptamer recognition layer for the diagnosis of pathogenic bacteria: Barriers to commercialization and remediation. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Saini RV, Vaid P, Saini NK, Siwal SS, Gupta VK, Thakur VK, Saini AK. Recent Advancements in the Technologies Detecting Food Spoiling Agents. J Funct Biomater 2021; 12:67. [PMID: 34940546 PMCID: PMC8709279 DOI: 10.3390/jfb12040067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/08/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
To match the current life-style, there is a huge demand and market for the processed food whose manufacturing requires multiple steps. The mounting demand increases the pressure on the producers and the regulatory bodies to provide sensitive, facile, and cost-effective methods to safeguard consumers' health. In the multistep process of food processing, there are several chances that the food-spoiling microbes or contaminants could enter the supply chain. In this contest, there is a dire necessity to comprehend, implement, and monitor the levels of contaminants by utilizing various available methods, such as single-cell droplet microfluidic system, DNA biosensor, nanobiosensor, smartphone-based biosensor, aptasensor, and DNA microarray-based methods. The current review focuses on the advancements in these methods for the detection of food-borne contaminants and pathogens.
Collapse
Affiliation(s)
- Reena V. Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Prachi Vaid
- Department of Biotechnology, School of Sciences, AP Goyal Shimla University, Shimla 171009, India;
| | - Neeraj K. Saini
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Samarjeet Singh Siwal
- Department of Chemistry, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India;
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK;
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK;
- School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India
| | - Adesh K. Saini
- Department of Biotechnology, School of Sciences, AP Goyal Shimla University, Shimla 171009, India;
| |
Collapse
|
9
|
Astatke M, Tiburzi O, Connolly A. A novel RNA detection technique for point-of-care identification of pathogens. J Immunoassay Immunochem 2021; 43:1955380. [PMID: 34355634 DOI: 10.1080/15321819.2021.1955380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite significant progress in recent years to improve capabilities to diagnose infections at point-of-care (POC), there are still technical hurdles that need to be overcome to ensure proper medical interventions. Current microbial POC tests involve polymerase chain reaction (PCR) or sandwich immunoassay (IA) based detection formats. PCR is highly sensitive but requires complex instrumentation, whereas lateral flow (LF) based IA tests are handheld but lack sensitivity. We present here a portable and sensitive technique by integrating an isothermal RNA amplification approach with IA detection format. The technique comprises i) Nucleic Acid Sequence Based isothermal Amplification (NASBA), ii) amplicon tagging with hapten labeled probes, iii) capturing the amplicon and iv) formation of a sandwich complex with an antibody (Ab) that selectively recognizes the DNA-RNA duplex. The results can be extended to develop an automated, portable and highly sensitive diagnostic platform suitable for POC applications.
Collapse
Affiliation(s)
- Mekbib Astatke
- Applied Biological Sciences, The Johns Hopkins University Applied Physics Laboratory, Laurel, United States
| | - Olivia Tiburzi
- Applied Biological Sciences, The Johns Hopkins University Applied Physics Laboratory, Laurel, United States
| | - Amy Connolly
- Fina Biosolutions, LLC, Rockville, United States
| |
Collapse
|
10
|
Singh M, Raghuwanshi SK. Real-time interrogation of fiber optic biosensor using TiO 2 coated etched long-period grating. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:125001. [PMID: 33379993 DOI: 10.1063/5.0020571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
In this work, a TiO2 coated etched long-period grating (e-LPG) fiber optic biosensor is developed for the detection of Escherichia coli (E. coli) bacteria in food items. Label-free Escherichia coli bacteria monitoring is done over the detection range of 0 cfu/ml-50 cfu/ml using an advanced spectral interrogation mechanism. The thin film deposition of 40 nm TiO2 over the e-LPG is confirmed by the microscopy method, such as scanning electron microscopy. In our proposed biosensor design, T4-bacteriophage is covalently immobilized over the TiO2 coated fiber surface. This biosensor system has reached sensitivity at 2.55 nm/RIU. Our experiments confirm the resolution and the limit of detection (3σ/S) of 0.0039 RIU and 10.05 ppm, respectively. The proposed biosensor with enhanced sensitivity is suitable for monitoring harmful pathogens/infectious agents in various food products.
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Electronics and Communication Engineering, National Institute of Technology Karnataka, Surathkal 575025, India
| | - Sanjeev Kumar Raghuwanshi
- Department of Electronics Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826004, Jharkhand, India
| |
Collapse
|
11
|
Yoon J, Shin M, Lim J, Kim DY, Lee T, Choi J. Nanobiohybrid Material‐Based Bioelectronic Devices. Biotechnol J 2020; 15:e1900347. [DOI: 10.1002/biot.201900347] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/19/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Jinho Yoon
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| | - Minkyu Shin
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| | - Joungpyo Lim
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| | - Dong Yeon Kim
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| | - Taek Lee
- Department of Chemical EngineeringKwangwoon University Wolgye‐dong Nowon‐gu Seoul 01899 Republic of Korea
| | - Jeong‐Woo Choi
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbeom‐Ro Mapo‐Gu Seoul 04107 Republic of Korea
| |
Collapse
|
12
|
Chylewska A, Ogryzek M, Makowski M. Modern Approach to Medical Diagnostics - the Use of Separation Techniques in Microorganisms Detection. Curr Med Chem 2019; 26:121-165. [DOI: 10.2174/0929867324666171023164813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 04/20/2017] [Accepted: 05/20/2016] [Indexed: 11/22/2022]
Abstract
Background:Analytical chemistry and biotechnology as an interdisciplinary fields of science have been developed during many years and are experiencing significant growth, to cover a wide range of microorganisms separation techniques and methods, utilized for medical therapeutic and diagnostic purposes. Currently scientific reports contribute by introducing electrophoretical and immunological methods and formation of devices applied in food protection (avoiding epidemiological diseases) and healthcare (safety ensuring in hospitals).Methods:Electrophoretic as well as nucleic-acid-based or specific immunological methods have contributed tremendously to the advance of analyses in recent three decades, particularly in relation to bacteria, viruses and fungi identifications, especially in medical in vitro diagnostics, as well as in environmental or food protection.Results:The paper presents the pathogen detection competitiveness of these methods against conventional ones, which are still too time consuming and also labor intensive. The review is presented in several parts following the current trends in improved pathogens separation and detection methods and their subsequent use in medical diagnosis.Discussion:Part one, consists of elemental knowledge about microorganisms as an introduction to their characterization: descriptions of divisions, sizes, membranes (cells) components. Second section includes the development, new technological and practical solution descriptions used in electrophoretical procedures during microbes analyses, with special attention paid to bio-samples analyses like blood, urine, lymph or wastewater. Third part covers biomolecular areas that have created a basis needed to identify the progress, limitations and challenges of nucleic-acid-based and immunological techniques discussed to emphasize the advantages of new separative techniques in selective fractionating of microorganisms.
Collapse
Affiliation(s)
- Agnieszka Chylewska
- Laboratory of Intermolecular Interactions, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80- 308 Gdansk, Poland
| | - Małgorzata Ogryzek
- Laboratory of Intermolecular Interactions, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80- 308 Gdansk, Poland
| | - Mariusz Makowski
- Laboratory of Intermolecular Interactions, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80- 308 Gdansk, Poland
| |
Collapse
|
13
|
Hao X, Yeh P, Qin Y, Jiang Y, Qiu Z, Li S, Le T, Cao X. Aptamer surface functionalization of microfluidic devices using dendrimers as multi-handled templates and its application in sensitive detections of foodborne pathogenic bacteria. Anal Chim Acta 2019; 1056:96-107. [PMID: 30797466 DOI: 10.1016/j.aca.2019.01.035] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 01/23/2019] [Indexed: 12/20/2022]
Abstract
A microfluidic system that incorporates both dendrimers and aptamers to detect E. coli O157:H7 is developed. To achieve this, generation 7-polyamidoamine dendrimers were immobilized onto the detection surfaces of PDMS microfluidic channels; subsequently aptamers against E. coli O157:H7 were conjugated onto the microchannel surfaces via the immobilized dendrimers as templates. Surface modifications were characterized by FTIR, XPS, water contact angles, fluorescence microscopy and AFM to confirm the success of each surface modification steps. The efficacy of this simple microchannel in detection was investigated using E. coli O157:H7 spiked samples. Our results showed that this interesting approach significantly increased the amount of aptamers available on the microfluidic channel surfaces to capture E. coli O157:H7 cells to allow sensitive detection, which in turn resulted in detections of E. coli O157:H7 cells at a low limit of detection of 102 cells mL-1. The results also demonstrated that in comparison with the generation 4-polyamidoamine dendrimers (G4) modified microchannels, those modified with G7 showed enhanced detection signals, improved target capturing efficiencies, and at higher throughput. This simple whole cell detection design has not been reported in the literature and it is an interesting and effective approach to developing a sensitive and rapid detection platform for foodborne pathogenic bacteria.
Collapse
Affiliation(s)
- Xingkai Hao
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Poying Yeh
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Yubo Qin
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Yuqian Jiang
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Zhenyu Qiu
- Nanchang Institute of Technology, 901 Yingxiong Road, Nanchang, Jiangxi, 330044, China
| | - Shuying Li
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Tao Le
- College of Life Science, Chongqing Normal University, Shapingba, Chongqing, 400047, China
| | - Xudong Cao
- Department of Chemical and Biological Engineering, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada; Ottawa-Carlton Institute of Biomedical Engineering, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
14
|
Henderson WA, Xiang L, Fourie NH, Abey SK, Ferguson EG, Diallo AF, Kenea ND, Kim CH. Simple lateral flow assays for microbial detection in stool. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2018; 10:5358-5363. [PMID: 31241058 PMCID: PMC6253687 DOI: 10.1039/c8ay01475b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/30/2018] [Indexed: 06/09/2023]
Abstract
Diarrheal diseases claim the lives of 1300 children daily, mostly in the developing world. We have developed a simple lateral flow assay capable of detecting E. coli and EPEC DNA and RNA rapidly (<15 minutes) at the point-of-need, directly from stool without nucleic acid extraction or molecular amplification. The limit of detection of the method is 1 nM using synthetic DNA target substrates spiked into stool. However, due to the endogenous amplification of the 23S rRNA targets, we were able to detect the endogenous EPEC in pea-sized (5 mg) stool without labor-intensive and time-consuming nucleic acid purification or target amplification using enzymes. The significance of this method is that it is rapid (<15 minutes) and simple (without nucleic acid purification or molecular amplification) and does not require instrumentation, or access to a laboratory, cold chain or electric power. Thus, it is well-suited for point-of-need use in remote and/or resource-limited settings in the developing world where the mortality due to diarrheal diseases is especially high. The rapid testing of stool pathogens in real time at the point-of-need will decrease the loss of patients to follow-up, and enable patients to be treated earlier with the appropriate therapeutics in both the developed and developing world settings.
Collapse
Affiliation(s)
- Wendy A Henderson
- Division of Intramural Research , National Institute of Nursing Research , National Institutes of Health , Department of Health and Human Services , Bethesda , MD 20892 , USA .
| | - Lichen Xiang
- Division of Intramural Research , National Institute of Nursing Research , National Institutes of Health , Department of Health and Human Services , Bethesda , MD 20892 , USA .
- GoDx , 510 Charmany Drive, Suite 257 , Madison , WI 53719 , USA .
| | - Nicolaas H Fourie
- Division of Intramural Research , National Institute of Nursing Research , National Institutes of Health , Department of Health and Human Services , Bethesda , MD 20892 , USA .
| | - Sarah K Abey
- Division of Intramural Research , National Institute of Nursing Research , National Institutes of Health , Department of Health and Human Services , Bethesda , MD 20892 , USA .
| | - Eric G Ferguson
- Division of Intramural Research , National Institute of Nursing Research , National Institutes of Health , Department of Health and Human Services , Bethesda , MD 20892 , USA .
| | - Ana F Diallo
- Division of Intramural Research , National Institute of Nursing Research , National Institutes of Health , Department of Health and Human Services , Bethesda , MD 20892 , USA .
| | - Natnael D Kenea
- Division of Intramural Research , National Institute of Nursing Research , National Institutes of Health , Department of Health and Human Services , Bethesda , MD 20892 , USA .
| | - Chang Hee Kim
- GoDx , 510 Charmany Drive, Suite 257 , Madison , WI 53719 , USA .
| |
Collapse
|
15
|
Hameed S, Xie L, Ying Y. Conventional and emerging detection techniques for pathogenic bacteria in food science: A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.020] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Aptamer-based assays and aptasensors for detection of pathogenic bacteria in food samples. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.07.016] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
|
18
|
Xu H, Tang F, Dai J, Wang C, Zhou X. Ultrasensitive and rapid count of Escherichia coli using magnetic nanoparticle probe under dark-field microscope. BMC Microbiol 2018; 18:100. [PMID: 30176804 PMCID: PMC6122661 DOI: 10.1186/s12866-018-1241-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 08/20/2018] [Indexed: 12/05/2022] Open
Abstract
Background Escherichia coli (E. coli) is one of the best-known zoonotic bacterial species, which pathogenic strain can cause infections in humans and animals. However, existing technologies or methods are deficient for quickly on-site identifying infection of E. coli before they breakout. Herein, we present an ultrasensitive and on-site method for counting E. coli using magnetic nanoparticle (MNP) probe under a dark-field in 30 min. Results The antibodies functionalized MNP, binding to E. coli to form a golden ring-like structure under a dark-field microscope, allowing for counting E. coli. This method via counting MNP-conjugated E. coli under dark-field microscope demonstrated the sensitivity of 6 CFU/μL for E. coli detection. Importantly, due to the advantages such as time-saving (only 30 min) and almost free of instrument (only require a portable microscope), our MNP-labeled dark-field counting strategy has the potential of being a universal tool for on-site quantifying a variety of pathogens with size ranges from a few hundreds of nanometers to a few micrometers. Conclusion In summary, the MNP-labeled dark-field counting strategy is a rapid, simple, sensitive as well as low-cost assay strategy, which has the potential of being a universal tool for on-site quantification of micrometer-size pathogens like E. coli. Electronic supplementary material The online version of this article (10.1186/s12866-018-1241-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haixu Xu
- Institute of Comparative Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Fang Tang
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of veterinary medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianjun Dai
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, College of veterinary medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengming Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, 268 Greene Hall, 1130 Wire Rd, Auburn, AL, 36849-5519, USA
| | - Xin Zhou
- Institute of Comparative Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
19
|
Fathi F, Rahbarghazi R, Rashidi MR. Label-free biosensors in the field of stem cell biology. Biosens Bioelectron 2018; 101:188-198. [DOI: 10.1016/j.bios.2017.10.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 10/13/2017] [Indexed: 01/05/2023]
|
20
|
ISHII M, PREECHAKASEDKIT P, YAMADA K, CHAILAPAKUL O, SUZUKI K, CITTERIO D. Wax-Assisted One-Step Enzyme-Linked Immunosorbent Assay on Lateral Flow Test Devices. ANAL SCI 2018; 34:51-56. [DOI: 10.2116/analsci.34.51] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
| | | | | | - Orawon CHAILAPAKUL
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University
| | - Koji SUZUKI
- Department of Applied Chemistry, Keio University
| | | |
Collapse
|
21
|
Shukla S, Haldorai Y, Hwang SK, Bajpai VK, Huh YS, Han YK. Current Demands for Food-Approved Liposome Nanoparticles in Food and Safety Sector. Front Microbiol 2017; 8:2398. [PMID: 29259595 PMCID: PMC5723299 DOI: 10.3389/fmicb.2017.02398] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 11/20/2017] [Indexed: 02/01/2023] Open
Abstract
Safety of food is a noteworthy issue for consumers and the food industry. A number of complex challenges associated with food engineering and food industries, including quality food production and safety of the food through effective and feasible means can be explained by nanotechnology. However, nanoparticles have unique physicochemical properties compared to normal macroparticles of the same composition and thus could interact with living system in surprising ways to induce toxicity. Further, few toxicological/safety assessments have been performed on nanoparticles, thereby necessitating further research on oral exposure risk prior to their application to food. Liposome nanoparticles are viewed as attractive novel materials by the food and medical industries. For example, nanoencapsulation of bioactive food compounds is an emerging application of nanotechnology. In several food industrial practices, liposome nanoparticles have been utilized to improve flavoring and nutritional properties of food, and they have been examined for their capacity to encapsulate natural metabolites that may help to protect the food from spoilage and degradation. This review focuses on ongoing advancements in the application of liposomes for food and pharma sector.
Collapse
Affiliation(s)
- Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk University, Seoul, South Korea
| | - Yuvaraj Haldorai
- Department of Nanoscience and Technology, Bharathiar University, Coimbatore, India
| | - Seung Kyu Hwang
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), World Class Smart Lab (WCSL), Inha University, Incheon, South Korea
| | - Vivek K. Bajpai
- Department of Energy and Materials Engineering, Dongguk University, Seoul, South Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), World Class Smart Lab (WCSL), Inha University, Incheon, South Korea
| | - Young-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University, Seoul, South Korea
| |
Collapse
|
22
|
Choi JR, Yong KW, Tang R, Gong Y, Wen T, Li F, Pingguan-Murphy B, Bai D, Xu F. Advances and challenges of fully integrated paper-based point-of-care nucleic acid testing. Trends Analyt Chem 2017; 93:37-50. [DOI: 10.1016/j.trac.2017.05.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
23
|
Kamle M, Kumar P, Patra JK, Bajpai VK. Current perspectives on genetically modified crops and detection methods. 3 Biotech 2017; 7:219. [PMID: 28674844 PMCID: PMC5495694 DOI: 10.1007/s13205-017-0809-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/02/2017] [Indexed: 01/31/2023] Open
Abstract
Genetically modified (GM) crops are the fastest adopted commodities in the agribiotech industry. This market penetration should provide a sustainable basis for ensuring food supply for growing global populations. The successful completion of two decades of commercial GM crop production (1996-2015) is underscored by the increasing rate of adoption of genetic engineering technology by farmers worldwide. With the advent of introduction of multiple traits stacked together in GM crops for combined herbicide tolerance, insect resistance, drought tolerance or disease resistance, the requirement of reliable and sensitive detection methods for tracing and labeling genetically modified organisms in the food/feed chain has become increasingly important. In addition, several countries have established threshold levels for GM content which trigger legally binding labeling schemes. The labeling of GM crops is mandatory in many countries (such as China, EU, Russia, Australia, New Zealand, Brazil, Israel, Saudi Arabia, Korea, Chile, Philippines, Indonesia, Thailand), whereas in Canada, Hong Kong, USA, South Africa, and Argentina voluntary labeling schemes operate. The rapid adoption of GM crops has increased controversies, and mitigating these issues pertaining to the implementation of effective regulatory measures for the detection of GM crops is essential. DNA-based detection methods have been successfully employed, while the whole genome sequencing using next-generation sequencing (NGS) technologies provides an advanced means for detecting genetically modified organisms and foods/feeds in GM crops. This review article describes the current status of GM crop commercialization and discusses the benefits and shortcomings of common and advanced detection systems for GMs in foods and animal feeds.
Collapse
Affiliation(s)
- Madhu Kamle
- Department of Forestry, North Eastern Regional Institute of Science and Technology (Deemed University), Nirjuli, Arunachal Pradesh, 791109, India
| | - Pradeep Kumar
- Department of Forestry, North Eastern Regional Institute of Science and Technology (Deemed University), Nirjuli, Arunachal Pradesh, 791109, India.
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Gyeonggido, 10326, Korea
| | - Vivek K Bajpai
- Department of Applied Microbiology and Biotechnology, Microbiome Laboratory, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Korea.
| |
Collapse
|
24
|
Koo B, Jin CE, Lee TY, Lee JH, Park MK, Sung H, Park SY, Lee HJ, Kim SM, Kim JY, Kim SH, Shin Y. An isothermal, label-free, and rapid one-step RNA amplification/detection assay for diagnosis of respiratory viral infections. Biosens Bioelectron 2017; 90:187-194. [PMID: 27894035 PMCID: PMC7127409 DOI: 10.1016/j.bios.2016.11.051] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/31/2016] [Accepted: 11/22/2016] [Indexed: 11/19/2022]
Abstract
Recently, RNA viral infections caused by respiratory viruses, such as influenza, parainfluenza, respiratory syncytial virus, coronavirus, and Middle East respiratory syndrome-coronavirus (MERS-CoV), and Zika virus, are a major public health threats in the world. Although myriads of diagnostic methods based on RNA amplification have been developed in the last decades, they continue to lack speed, sensitivity, and specificity for clinical use. A rapid and accurate diagnostic method is needed for appropriate control, including isolation and treatment of the patients. Here, we report an isothermal, label-free, one-step RNA amplification and detection system, termed as iROAD, for the diagnosis of respiratory diseases. It couples a one-step isothermal RNA amplification method and a bio-optical sensor for simultaneous viral RNA amplification/detection in a label-free and real-time manner. The iROAD assay offers a one-step viral RNA amplification/detection example to rapid analysis (<20min). The detection limit of iROAD assay was found to be 10-times more sensitive than that of real-time reverse transcription-PCR method. We confirmed the clinical utility of the iROAD assay by detecting viral RNAs obtained from 63 human respiratory samples. We envision that the iROAD assay will be useful and potentially adaptable for better diagnosis of emerging infectious diseases including respiratory diseases.
Collapse
Affiliation(s)
- Bonhan Koo
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Choong Eun Jin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Tae Yoon Lee
- Department of Technology Education, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeong Hoon Lee
- Department of Electrical Engineering, Kwangwoon University, 447-1 Wolgye, Nowon, Seoul 136-791, Republic of Korea
| | - Mi Kyoung Park
- One BioMed Pte Ltd, 60 Biopolis street, Genome #02-01, Singapore 138672, Singapore
| | - Heungsup Sung
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Se Yoon Park
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea; Division of Infectious Diseases, Department of Internal Medicine, Soonchunhyang University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Sun Mi Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Ji Yeun Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea.
| | - Yong Shin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 88 Olympicro-43gil, Songpa-gu, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Development of biohybrid immuno-selective membranes for target antigen recognition. Biosens Bioelectron 2017; 92:54-60. [PMID: 28187299 DOI: 10.1016/j.bios.2017.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 02/01/2023]
Abstract
Membranes are gaining increasing interest in solid-phase analytical assay and biosensors applications, in particular as functional surface for bioreceptors immobilization and stabilization as well as for the concentration of target molecules in microsystems. In this work, regenerated cellulose immuno-affinity membranes were developed and they were used for the selective capture of interleukin-6 (IL-6) as targeted antigen. Protein G was covalently linked on the membrane surface and it was successfully used for the oriented site-specific antibody immobilization. The antibody binding capacity of the protein G-coupled membrane was evaluated. The specific anti IL-6 antibody was immobilized and a quantitative analysis of the amount of IL-6 captured by the immuno-affinity membrane was performed. The immobilization procedure was optimized to eliminate the non-specific binding of antigen on the membrane surface. Additionally, the interaction between anti IL-6 antibody and protein G was stabilized by chemical cross-linking with glutaraldehyde and the capture ability of immuno-affinity membranes, with and without the cross-linker, was compared. The maximum binding capacity of the protein G-coupled membrane was 43.8µg/cm2 and the binding efficiency was 88%. The immuno-affinity membranes showed a high IL-6 capture efficiency at very low antigen concentration, up to a maximum of 91%, the amount of captured IL-6 increased linearly as increasing the initial concentration. The cross-linked surface retained the antigen binding capacity demonstrating its robustness in being reused, without antibody leakage or reduction in antibody binding capacity. The overall results demonstrated the possibility of a reliable application of the immuno-affinity membrane developed for biosensors and bioassays also in multiple use.
Collapse
|
26
|
Gong X, Cai J, Zhang B, Zhao Q, Piao J, Peng W, Gao W, Zhou D, Zhao M, Chang J. A review of fluorescent signal-based lateral flow immunochromatographic strips. J Mater Chem B 2017; 5:5079-5091. [DOI: 10.1039/c7tb01049d] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescent signal-based lateral flow immunochromatographic strips (FLFICS) have received great expectations since they combine the quantitative sensitivity of fluorescence analysis and the simplicity, rapidness, and portability of a common lateral flow immunochromatographic strip (LFICS).
Collapse
|
27
|
Tram DTN, Wang H, Sugiarto S, Li T, Ang WH, Lee C, Pastorin G. Advances in nanomaterials and their applications in point of care (POC) devices for the diagnosis of infectious diseases. Biotechnol Adv 2016; 34:1275-1288. [PMID: 27686397 PMCID: PMC7127209 DOI: 10.1016/j.biotechadv.2016.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 07/13/2016] [Accepted: 09/23/2016] [Indexed: 01/17/2023]
Abstract
Nanotechnology has gained much attention over the last decades, as it offers unique opportunities for the advancement of the next generation of sensing tools. Point-of-care (POC) devices for the selective detection of biomolecules using engineered nanoparticles have become a main research thrust in the diagnostic field. This review presents an overview on how the POC-associated nanotechnology, currently applied for the identification of nucleic acids, proteins and antibodies, might be further exploited for the detection of infectious pathogens: although still premature, future integrations of nanoparticles with biological markers that target specific microorganisms will enable timely therapeutic intervention against life-threatening infectious diseases.
Collapse
Affiliation(s)
- Dai Thien Nhan Tram
- Pharmacy Department National University of Singapore, Singapore 117543, Singapore.
| | - Hao Wang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering, Drive 3, Singapore 117576, Singapore.
| | - Sigit Sugiarto
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| | - Tao Li
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, Singapore 117543, Singapore.
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering, Drive 3, Singapore 117576, Singapore.
| | - Giorgia Pastorin
- Pharmacy Department National University of Singapore, Singapore 117543, Singapore; NanoCore, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore; NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), Singapore 117456, Singapore.
| |
Collapse
|
28
|
Functionalized electrospun poly(vinyl alcohol) nanofibers for on-chip concentration of E. coli cells. Anal Bioanal Chem 2016; 408:1327-34. [PMID: 26493980 DOI: 10.1007/s00216-015-9112-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 09/24/2015] [Accepted: 10/09/2015] [Indexed: 10/22/2022]
Abstract
Positively and negatively charged electrospun poly(vinyl alcohol) (PVA) nanofibers were incorporated into poly(methyl methacrylate) (PMMA) microchannels in order to facilitate on-chip concentration of Escherichia coli K12 cells. The effects of fiber distribution and fiber mat height on analyte retention were investigated. The 3D morphology of the mats was optimized to prevent size-related retention of the E. coli cells while also providing a large enough surface area for analyte concentration. Positively charged nanofibers produced an 87% retention and over 80-fold concentration of the bacterial cells by mere electrostatic interaction, while negatively charged nanofibers reduced nonspecific analyte retention when compared to an empty microfluidic channel. In order to take advantage of this reduction in nonspecific retention, these negatively charged nanofibers were then modified with anti-E. coli antibodies. These proof-of-principle experiments showed that antibody-functionalized negatively charged nanofiber mats were capable of the specific capture of 72% of the E. coli cells while also significantly reducing nonspecific analyte retention within the channel as expected. The ease of fabrication and immense surface area of the functionalized electrospun nanofibers make them a promising alternative for on-chip concentration of analytes. The pore size and fiber mat morphology, as well as surface functionality of the fibers, can be tailored to allow for specific capture and concentration of a wide range of analytes.
Collapse
|
29
|
Teng J, Yuan F, Ye Y, Zheng L, Yao L, Xue F, Chen W, Li B. Aptamer-Based Technologies in Foodborne Pathogen Detection. Front Microbiol 2016; 7:1426. [PMID: 27672383 PMCID: PMC5018482 DOI: 10.3389/fmicb.2016.01426] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/29/2016] [Indexed: 11/13/2022] Open
Abstract
Aptamers are single stranded DNA or RNA ligands, which can be selected by a method called systematic evolution of ligands by exponential enrichment (SELEX); and they can specifically recognize and bind to their targets. These unique characteristics of aptamers offer great potentials in applications such as pathogen detection and biomolecular screening. Pathogen detection is the critical means in detecting and identifying the problems related to public health and food safety; and only the rapid, sensitive and efficient detection technologies can enable the users to make the accurate assessments on the risks of infections (humans and animals) or contaminations (foods and other commodities) caused by various pathogens. This article reviews the development in the field of the aptamer-based approaches for pathogen detection, including whole-cell SELEX and Genomic SELEX. Nowadays, a variety of aptamer-based biosensors have been developed for pathogen detection. Thus, in this review, we also cover the development in aptamer-based biosensors including optical biosensors for multiple pathogen detection by multiple-labeling or label-free models such as fluorescence detection and surface plasmon resonance, electrochemical biosensors and lateral chromatography test strips, and their applications in pathogen detection and biomolecular screening. While notable progress has been made in the field in the last decade, challenges or drawbacks in their applications such as pathogen detection and biomolecular screening remain to be overcome.
Collapse
Affiliation(s)
- Jun Teng
- College of Food Science and Engineering, Hefei University of Technology, HefeiChina
| | - Fang Yuan
- Animal Quarantine Laboratory, Jiangsu Entry-Exit Inspection and Quarantine Bureau, NanjingChina
| | - Yingwang Ye
- College of Food Science and Engineering, Hefei University of Technology, HefeiChina
| | - Lei Zheng
- College of Food Science and Engineering, Hefei University of Technology, HefeiChina
| | - Li Yao
- College of Food Science and Engineering, Hefei University of Technology, HefeiChina
| | - Feng Xue
- Animal Quarantine Laboratory, Jiangsu Entry-Exit Inspection and Quarantine Bureau, NanjingChina
| | - Wei Chen
- College of Food Science and Engineering, Hefei University of Technology, HefeiChina
| | - Baoguang Li
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MDUSA
| |
Collapse
|
30
|
Choi JR, Liu Z, Hu J, Tang R, Gong Y, Feng S, Ren H, Wen T, Yang H, Qu Z, Pingguan-Murphy B, Xu F. Polydimethylsiloxane-Paper Hybrid Lateral Flow Assay for Highly Sensitive Point-of-Care Nucleic Acid Testing. Anal Chem 2016; 88:6254-6264. [PMID: 27012657 DOI: 10.1021/acs.analchem.6b00195] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In nucleic acid testing (NAT), gold nanoparticle (AuNP)-based lateral flow assays (LFAs) have received significant attention due to their cost-effectiveness, rapidity, and the ability to produce a simple colorimetric readout. However, the poor sensitivity of AuNP-based LFAs limits its widespread applications. Even though various efforts have been made to improve the assay sensitivity, most methods are inappropriate for integration into LFA for sample-to-answer NAT at the point-of-care (POC), usually due to the complicated fabrication processes or incompatible chemicals used. To address this, we propose a novel strategy of integrating a simple fluidic control strategy into LFA. The strategy involves incorporating a piece of paper-based shunt and a polydimethylsiloxane (PDMS) barrier to the strip to achieve optimum fluidic delays for LFA signal enhancement, resulting in 10-fold signal enhancement over unmodified LFA. The phenomena of fluidic delay were also evaluated by mathematical simulation, through which we found the movement of fluid throughout the shunt and the tortuosity effects in the presence of PDMS barrier, which significantly affect the detection sensitivity. To demonstrate the potential of integrating this strategy into a LFA with sample-in-answer-out capability, we further applied this strategy into our prototype sample-to-answer LFA to sensitively detect the Hepatitis B virus (HBV) in clinical blood samples. The proposed strategy offers great potential for highly sensitive detection of various targets for wide application in the near future.
Collapse
Affiliation(s)
- Jane Ru Choi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an, Shaanxi 710049, PR China
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya , Lembah Pantai, 50603 Kuala Lumpur, Malaysia
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an, Shaanxi 710049, PR China
| | - Zhi Liu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an, Shaanxi 710049, PR China
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University , Xi'an, Shaanxi 710049, PR China
| | - Jie Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an, Shaanxi 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an, Shaanxi 710049, PR China
| | - Ruihua Tang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an, Shaanxi 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an, Shaanxi 710049, PR China
- School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi 710072, PR China
- Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University , Xi'an, Shaanxi 710072, PR China
| | - Yan Gong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an, Shaanxi 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an, Shaanxi 710049, PR China
| | - Shangsheng Feng
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an, Shaanxi 710049, PR China
- MOE Key Laboratory of Multifunctional Materials and Structures (LMMS), School of Aerospace, Xi'an Jiaotong University , Xi'an, Shaanxi 710049, PR China
- State Key Laboratory of Mechanical Structure Strength and Vibration, School of Aerospace, Xi'an Jiaotong University , Xi'an, Shaanxi 710049, PR China
| | - Hui Ren
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an, Shaanxi 710049, PR China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University , Xi'an, Shaanxi 710061, PR China
| | - Ting Wen
- Xi'an Diandi Biotech Company , Xi'an, Shaanxi 710049, PR China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi 710072, PR China
- Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University , Xi'an, Shaanxi 710072, PR China
| | - Zhiguo Qu
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University , Xi'an, Shaanxi 710049, PR China
| | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya , Lembah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University , Xi'an, Shaanxi 710049, PR China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University , Xi'an, Shaanxi 710049, PR China
| |
Collapse
|
31
|
Choi JR, Hu J, Tang R, Gong Y, Feng S, Ren H, Wen T, Li X, Wan Abas WAB, Pingguan-Murphy B, Xu F. An integrated paper-based sample-to-answer biosensor for nucleic acid testing at the point of care. LAB ON A CHIP 2016; 16:611-621. [PMID: 26759062 DOI: 10.1039/c5lc01388g] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
With advances in point-of-care testing (POCT), lateral flow assays (LFAs) have been explored for nucleic acid detection. However, biological samples generally contain complex compositions and low amounts of target nucleic acids, and currently require laborious off-chip nucleic acid extraction and amplification processes (e.g., tube-based extraction and polymerase chain reaction (PCR)) prior to detection. To the best of our knowledge, even though the integration of DNA extraction and amplification into a paper-based biosensor has been reported, a combination of LFA with the aforementioned steps for simple colorimetric readout has not yet been demonstrated. Here, we demonstrate for the first time an integrated paper-based biosensor incorporating nucleic acid extraction, amplification and visual detection or quantification using a smartphone. A handheld battery-powered heating device was specially developed for nucleic acid amplification in POC settings, which is coupled with this simple assay for rapid target detection. The biosensor can successfully detect Escherichia coli (as a model analyte) in spiked drinking water, milk, blood, and spinach with a detection limit of as low as 10-1000 CFU mL(-1), and Streptococcus pneumonia in clinical blood samples, highlighting its potential use in medical diagnostics, food safety analysis and environmental monitoring. As compared to the lengthy conventional assay, which requires more than 5 hours for the entire sample-to-answer process, it takes about 1 hour for our integrated biosensor. The integrated biosensor holds great potential for detection of various target analytes for wide applications in the near future.
Collapse
Affiliation(s)
- Jane Ru Choi
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China. and Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia.
| | - Jie Hu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China. and Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Ruihua Tang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China. and Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yan Gong
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China. and Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Shangsheng Feng
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China and MOE Key Laboratory of Multifunctional Materials and Structures (LMMS), School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hui Ren
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China and Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Ting Wen
- Xi'an Diandi Biotech Company, Xi'an 710049, PR China
| | - XiuJun Li
- Department of Chemistry, College of Health Sciences; Biomedical Engineering; & Border Biomedical Research Center, University of Texas at El Paso, El Paso, Texas 79968, USA
| | - Wan Abu Bakar Wan Abas
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia.
| | - Belinda Pingguan-Murphy
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, 50603 Kuala Lumpur, Malaysia.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China. and Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| |
Collapse
|
32
|
Sajid M, Kawde AN, Daud M. Designs, formats and applications of lateral flow assay: A literature review. JOURNAL OF SAUDI CHEMICAL SOCIETY 2015. [DOI: 10.1016/j.jscs.2014.09.001] [Citation(s) in RCA: 444] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
33
|
Li H, Lee T, Dziubla T, Pi F, Guo S, Xu J, Li C, Haque F, Liang XJ, Guo P. RNA as a stable polymer to build controllable and defined nanostructures for material and biomedical applications. NANO TODAY 2015; 10:631-655. [PMID: 26770259 PMCID: PMC4707685 DOI: 10.1016/j.nantod.2015.09.003] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The value of polymers is manifested in their vital use as building blocks in material and life sciences. Ribonucleic acid (RNA) is a polynucleic acid, but its polymeric nature in materials and technological applications is often overlooked due to an impression that RNA is seemingly unstable. Recent findings that certain modifications can make RNA resistant to RNase degradation while retaining its authentic folding property and biological function, and the discovery of ultra-thermostable RNA motifs have adequately addressed the concerns of RNA unstability. RNA can serve as a unique polymeric material to build varieties of nanostructures including nanoparticles, polygons, arrays, bundles, membrane, and microsponges that have potential applications in biomedical and material sciences. Since 2005, more than a thousand publications on RNA nanostructures have been published in diverse fields, indicating a remarkable increase of interest in the emerging field of RNA nanotechnology. In this review, we aim to: delineate the physical and chemical properties of polymers that can be applied to RNA; introduce the unique properties of RNA as a polymer; review the current methods for the construction of RNA nanostructures; describe its applications in material, biomedical and computer sciences; and, discuss the challenges and future prospects in this field.
Collapse
Affiliation(s)
- Hui Li
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Taek Lee
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Thomas Dziubla
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Fengmei Pi
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Sijin Guo
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Jing Xu
- Laboratory of Nanomedicine and Nanosafety, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Chan Li
- Laboratory of Nanomedicine and Nanosafety, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Farzin Haque
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| | - Xing-Jie Liang
- Laboratory of Nanomedicine and Nanosafety, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing 100190, China
| | - Peixuan Guo
- Nanobiotechnology Center, Markey Cancer Center, and Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
34
|
|
35
|
Aliofkhazraei M, Pedrosa P, Carlos FF, Veigas B, Baptista PV. Gold Nanoparticles for DNA/RNA-Based Diagnostics. HANDBOOK OF NANOPARTICLES 2015. [PMCID: PMC7123017 DOI: 10.1007/978-3-319-15338-4_31] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The remarkable physicochemical properties of gold nanoparticles (AuNPs) have prompted development in exploring biomolecular interactions with AuNPs-containing systems, pursuing biomedical applications in diagnostics. Among these applications, AuNPs have been remarkably useful for the development of DNA/RNA detection and characterization systems for diagnostics, including systems suitable for point of need. Here, emphasis will be on available molecular detection schemes of relevant pathogens and their molecular characterization, genomic sequences associated with medical conditions (including cancer), mutation and polymorphism identification, and the quantification of gene expression.
Collapse
|
36
|
Hoehl MM, Bocholt ES, Kloke A, Paust N, von Stetten F, Zengerle R, Steigert J, Slocum AH. A versatile-deployable bacterial detection system for food and environmental safety based on LabTube-automated DNA purification, LabReader-integrated amplification, readout and analysis. Analyst 2015; 139:2788-98. [PMID: 24710334 DOI: 10.1039/c4an00123k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Contamination of foods is a public health hazard that episodically causes thousands of deaths and sickens millions worldwide. To ensure food safety and quality, rapid, low-cost and easy-to-use detection methods are desirable. Here, the LabSystem is introduced for integrated, automated DNA purification, amplification and detection. It consists of a disposable, centrifugally driven DNA purification platform (LabTube) and a low-cost UV/vis-reader (LabReader). For demonstration of the LabSystem in the context of food safety, purification of Escherichia coli (non-pathogenic E. coli and pathogenic verotoxin-producing E. coli (VTEC)) in water and milk and the product-spoiler Alicyclobacillus acidoterrestris (A. acidoterrestris) in apple juice was integrated and optimized in the LabTube. Inside the LabReader, the purified DNA was amplified, readout and analyzed using both qualitative isothermal loop-mediated DNA amplification (LAMP) and quantitative real-time PCR. For the LAMP-LabSystem, the combined detection limits for purification and amplification of externally lysed VTEC and A. acidoterrestris are 10(2)-10(3) cell-equivalents. In the PCR-LabSystem for E. coli cells, the quantification limit is 10(2) cell-equivalents including LabTube-integrated lysis. The demonstrated LabSystem only requires a laboratory centrifuge (to operate the disposable, fully closed LabTube) and a low-cost LabReader for DNA amplification, readout and analysis. Compared with commercial DNA amplification devices, the LabReader improves sensitivity and specificity by the simultaneous readout of four wavelengths and the continuous readout during temperature cycling. The use of a detachable eluate tube as an interface affords semi-automation of the LabSystem, which does not require specialized training. It reduces the hands-on time from about 50 to 3 min with only two handling steps: sample input and transfer of the detachable detection tube.
Collapse
Affiliation(s)
- Melanie M Hoehl
- Massachusetts Institute of Technology, MIT, Department of Mechanical Engineering, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
van den Hurk R, Evoy S. A Review of Membrane-Based Biosensors for Pathogen Detection. SENSORS 2015; 15:14045-78. [PMID: 26083229 PMCID: PMC4507637 DOI: 10.3390/s150614045] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 01/14/2023]
Abstract
Biosensors are of increasing interest for the detection of bacterial pathogens in many applications such as human, animal and plant health, as well as food and water safety. Membranes and membrane-like structures have been integral part of several pathogen detection platforms. Such structures may serve as simple mechanical support, function as a part of the transduction mechanism, may be used to filter out or concentrate pathogens, and may be engineered to specifically house active proteins. This review focuses on membrane materials, their associated biosensing applications, chemical linking procedures, and transduction mechanisms. The sensitivity of membrane biosensors is discussed, and the state of the field is evaluated and summarized.
Collapse
Affiliation(s)
- Remko van den Hurk
- Department of Electrical and Computer Engineering, University of Alberta Edmonton, Alberta, AB T6G 2V4, Canada.
| | - Stephane Evoy
- Department of Electrical and Computer Engineering, University of Alberta Edmonton, Alberta, AB T6G 2V4, Canada.
| |
Collapse
|
38
|
A novel and highly specific phage endolysin cell wall binding domain for detection of Bacillus cereus. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 44:437-46. [DOI: 10.1007/s00249-015-1044-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/07/2015] [Accepted: 05/13/2015] [Indexed: 10/23/2022]
|
39
|
Centrifugal LabTube platform for fully automated DNA purification and LAMP amplification based on an integrated, low-cost heating system. Biomed Microdevices 2014; 16:375-85. [PMID: 24562605 DOI: 10.1007/s10544-014-9841-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This paper introduces a disposable battery-driven heating system for loop-mediated isothermal DNA amplification (LAMP) inside a centrifugally-driven DNA purification platform (LabTube). We demonstrate LabTube-based fully automated DNA purification of as low as 100 cell-equivalents of verotoxin-producing Escherichia coli (VTEC) in water, milk and apple juice in a laboratory centrifuge, followed by integrated and automated LAMP amplification with a reduction of hands-on time from 45 to 1 min. The heating system consists of two parallel SMD thick film resistors and a NTC as heating and temperature sensing elements. They are driven by a 3 V battery and controlled by a microcontroller. The LAMP reagents are stored in the elution chamber and the amplification starts immediately after the eluate is purged into the chamber. The LabTube, including a microcontroller-based heating system, demonstrates contamination-free and automated sample-to-answer nucleic acid testing within a laboratory centrifuge. The heating system can be easily parallelized within one LabTube and it is deployable for a variety of heating and electrical applications.
Collapse
|
40
|
Liu H, Zhan F, Liu F, Zhu M, Zhou X, Xing D. Visual and sensitive detection of viable pathogenic bacteria by sensing of RNA markers in gold nanoparticles based paper platform. Biosens Bioelectron 2014; 62:38-46. [PMID: 24973541 DOI: 10.1016/j.bios.2014.06.020] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/05/2014] [Accepted: 06/10/2014] [Indexed: 01/04/2023]
Abstract
Food-borne pathogens have been recognized as a major cause of human infections worldwide. Their identification needs to be simpler, cheaper and more reliable than the traditional methods. Here, we constructed a low-cost paper platform for viable pathogenic bacteria detection with the naked eye. In this study, an effective isothermal amplification method was used to amplify the hlyA mRNA gene, a specific RNA marker in Listeria monocytogenes. The amplification products were applied to the paper-based platform to perform a visual test using sandwich hybridization assays. When the RNA products migrated along the platform by capillary action, the gold nanoparticles accumulated at the designated area. Under optimized experimental conditions, as little as 0.5 pg/μL genomic RNA from L. monocytogenes could be detected. It could also be used to specifically detect 20 CFU/mL L. monocytogenes from actual samples. The whole assay process, including RNA extraction, amplification, and visualization, can be completed within several hours. This method is suitable for point-of-care applications to detect food-borne pathogens, as it can overcome the false-positive results caused by amplifying nonviable L. monocytogenes. Furthermore, the results can be imaged and transformed into a two-dimensional bar code through an Android-based smart phone for further analysis or in-field food safety tracking.
Collapse
Affiliation(s)
- Hongxing Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Fangfang Zhan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Fang Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Minjun Zhu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiaoming Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
41
|
Mao X, Wang W, Du TE. Dry-reagent nucleic acid biosensor based on blue dye doped latex beads and lateral flow strip. Talanta 2013; 114:248-53. [DOI: 10.1016/j.talanta.2013.04.044] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/17/2013] [Accepted: 04/21/2013] [Indexed: 02/07/2023]
|
42
|
Tong Y, Deng Z. Modeling methods for identifying critical source areas of bacteria: recent developments and future perspectives. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2013; 85:259-269. [PMID: 23581241 DOI: 10.2175/106143012x13560205145217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Identification of critical source areas of bacteria in a watershed is essential to environmental management and restoration. As a result of the nonpoint and distributed nature of bacterial pollution in watersheds, it is often difficult to identify specific source areas of bacteria for remediation because bacteria collected from different sampling sites might display similar fingerprints. Over the past decade, extensive efforts have been made to identify microbial pollution sources, especially in watersheds. The primary objective of this study was to identify effective methods that can be applied to tracking critical source areas of bacteria in a watershed by a review of recent developments in several modeling methods. Comparisons of the models and their applications revealed that comprehensive watershed-scale source area tracking primarily involves two steps-geographical tracking and mathematical tracking. In terms of geographical tracking, bacterial source locations must be identified to prepare structural best management practices or low impact development for site treatments. For mathematical tracking, the quantity (strength) or release history of bacterial sources must be computed to develop total maximum daily loads (TMDLs) for bacterial load reduction and water quality restoration. Mathematically, source tracking is essentially an inverse modeling issue under uncertainty, requiring inverse modeling combined with a geostatistical method or an optimization algorithm. Consequently, combining biological methods, mathematical models, and sensor technologies (including remote sensing and in-situ sensing) provides an effective approach to identifying critical source locations of bacteria at the watershed-scale.
Collapse
Affiliation(s)
- Yangbin Tong
- Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, LA 70803-6405, USA
| | | |
Collapse
|
43
|
Hosta-Rigau L, Zhang Y, Teo BM, Postma A, Städler B. Cholesterol--a biological compound as a building block in bionanotechnology. NANOSCALE 2013; 5:89-109. [PMID: 23172231 DOI: 10.1039/c2nr32923a] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Cholesterol is a molecule with many tasks in nature but also a long history in science. This feature article highlights the contribution of this small compound to bionanotechnology. We discuss relevant chemical aspects in this context followed by an overview of its self-assembly capabilities both as a free molecule and when conjugated to a polymer. Further, cholesterol in the context of liposomes is reviewed and its impact ranging from biosensing to drug delivery is outlined. Cholesterol is and will be an indispensable player in bionanotechnology, contributing to the progress of this potent field of research.
Collapse
|
44
|
Ruktanonchai U, Nuchuchua O, Charlermroj R, Pattarakankul T, Karoonuthaisiri N. Signal amplification of microarray-based immunoassay by optimization of nanoliposome formulations. Anal Biochem 2012; 429:142-7. [DOI: 10.1016/j.ab.2012.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 07/03/2012] [Accepted: 07/07/2012] [Indexed: 10/28/2022]
|
45
|
Guo X, Lin CS, Chen SH, Ye R, Wu VC. A piezoelectric immunosensor for specific capture and enrichment of viable pathogens by quartz crystal microbalance sensor, followed by detection with antibody-functionalized gold nanoparticles. Biosens Bioelectron 2012; 38:177-83. [DOI: 10.1016/j.bios.2012.05.024] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 10/28/2022]
|
46
|
Barnett MJ, Pearce DA, Cullen DC. Advances in the in-field detection of microorganisms in ice. ADVANCES IN APPLIED MICROBIOLOGY 2012; 81:133-67. [PMID: 22958529 DOI: 10.1016/b978-0-12-394382-8.00004-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The historic view of ice-bound ecosystems has been one of a predominantly lifeless environment, where microorganisms certainly exist but are assumed to be either completely inactive or in a state of long-term dormancy. However, this standpoint has been progressively overturned in the past 20years as studies have started to reveal the importance of microbial life in the functioning of these environments. Our present knowledge of the distribution, taxonomy, and metabolic activity of such microbial life has been derived primarily from laboratory-based analyses of collected field samples. To date, only a restricted range of life detection and characterization techniques have been applied in the field. Specific examples include direct observation and DNA-based techniques (microscopy, specific stains, and community profiling based on PCR amplification), the detection of biomarkers (such as adenosine triphosphate), and measurements of metabolism [through the uptake and incorporation of radiolabeled isotopes or chemical alteration of fluorescent substrates (umbelliferones are also useful here)]. On-going improvements in technology mean that smaller and more robust life detection and characterization systems are continually being designed, manufactured, and adapted for in-field use. Adapting technology designed for other applications is the main source of new methodology, and the range of techniques is currently increasing rapidly. Here we review the current use of technology and techniques to detect and characterize microbial life within icy environments and specifically its deployment to in-field situations. We discuss the necessary considerations, limitations, and adaptations, review emerging technologies, and highlight the future potential. Successful application of these new techniques to in-field studies will certainly generate new insights into the way ice bound ecosystems function.
Collapse
Affiliation(s)
- Megan J Barnett
- Cranfield Health, Vincent Building, Cranfield University, Cranfield, Bedfordshire MK43 0AL, UK
| | | | | |
Collapse
|
47
|
Yeong Won J, Choi JW, Min J. Micro-fluidic chip platform for the characterization of breast cancer cells using aptamer-assisted immunohistochemistry. Biosens Bioelectron 2012; 40:161-6. [PMID: 22841444 DOI: 10.1016/j.bios.2012.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/25/2012] [Accepted: 07/07/2012] [Indexed: 01/01/2023]
Abstract
We demonstrated a new QIHC (Quantitative Immunohistochemistry) microfluidic PDMS (Polydimethylsiloxane) platform by the introduction of the aptamer specific to the Fc region of the IgG antibody as a reporting probe. The aptamer was designed and synthesized. Various breast cancer cell lines were prepared as paraffin block slides, which were covered by a microfluidic PDMS platform to form a micro-reaction chamber. Primary antibodies specific to marker proteins (HER2, ER, PR, and ki-67) for breast cancer characterization were loaded in the micro-fluidic chip prior to the introduction of the aptamer. A master mixture of QNASBA (Quantitative Nucleic Acid Sequence Based Amplification) was used to quantify marker proteins by real time amplification of the aptamers. The quantitative results of aptamer amplification were linearly proportional to the concentrations of 4 different primary antibodies. The characterization results of the aptamer-assisted IHC using the microfluidic platform were well-correlated with those of conventional IHC for breast cancer cell lines (SK-BR-3, MCF-7, MDA-MB-231). Objective quantitative evaluations were carried out and compared with conventional results for real clinical samples.
Collapse
Affiliation(s)
- Ji Yeong Won
- Department of Chemical and Biomolecular Engineering, Sogang University, #1 Shinsu-dong, Mapo-gu, Seoul 121-742, Republic of Korea
| | | | | |
Collapse
|
48
|
Tripathi SM, Bock WJ, Mikulic P, Chinnappan R, Ng A, Tolba M, Zourob M. Long period grating based biosensor for the detection of Escherichia coli bacteria. Biosens Bioelectron 2012; 35:308-312. [PMID: 22456096 DOI: 10.1016/j.bios.2012.03.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/13/2012] [Accepted: 03/03/2012] [Indexed: 11/28/2022]
Abstract
In this paper we report a stable, label-free, bacteriophage-based detection of Escherichia coli (E. coli) using ultra sensitive long-period fiber gratings (LPFGs). Bacteriophage T4 was covalently immobilized on optical fiber surface and the E. coli binding was investigated using the highly accurate spectral interrogation mechanism. In contrast to the widely used surface plasmon resonance (SPR) based sensors, no moving part or metal deposition is required in our sensor, making the present sensor extremely accurate, very compact and cost effective. We demonstrated that our detection mechanism is capable of reliable detection of E. coli concentrations as low as 10(3)cfu/ml with an experimental accuracy greater than 99%.
Collapse
Affiliation(s)
- Saurabh Mani Tripathi
- Centre de Recherche en Photonique, Département d'informatique et d'ingénierie, Université du Québec en Outaouais, Gatineau, QC, J8Y 3G5, Canada.
| | - Wojtek J Bock
- Centre de Recherche en Photonique, Département d'informatique et d'ingénierie, Université du Québec en Outaouais, Gatineau, QC, J8Y 3G5, Canada
| | - Predrag Mikulic
- Centre de Recherche en Photonique, Département d'informatique et d'ingénierie, Université du Québec en Outaouais, Gatineau, QC, J8Y 3G5, Canada
| | - Raja Chinnappan
- Institut National de la Recherche Scientifique - Énergie, Matériaux et Télécommunications, Varennes, QC, J3X 1S2, Canada
| | - Andy Ng
- Institut National de la Recherche Scientifique - Énergie, Matériaux et Télécommunications, Varennes, QC, J3X 1S2, Canada
| | - Mona Tolba
- Institut National de la Recherche Scientifique - Énergie, Matériaux et Télécommunications, Varennes, QC, J3X 1S2, Canada
| | - Mohammed Zourob
- Institut National de la Recherche Scientifique - Énergie, Matériaux et Télécommunications, Varennes, QC, J3X 1S2, Canada.
| |
Collapse
|
49
|
Arora P, Sindhu A, Dilbaghi N, Chaudhury A. Biosensors as innovative tools for the detection of food borne pathogens. Biosens Bioelectron 2011; 28:1-12. [DOI: 10.1016/j.bios.2011.06.002] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/04/2011] [Accepted: 06/07/2011] [Indexed: 11/25/2022]
|
50
|
Biosensors for the detection of waterborne pathogens. Anal Bioanal Chem 2011; 402:117-27. [DOI: 10.1007/s00216-011-5407-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/30/2011] [Accepted: 09/08/2011] [Indexed: 11/26/2022]
|