1
|
Hattori T, Nakanishi K, Mori T, Tomita M, Tsumoto K. The method used to culture host cells (Sf9 cells) can affect the qualities of baculovirus budding particles expressing recombinant proteins. Biosci Biotechnol Biochem 2016; 80:445-51. [DOI: 10.1080/09168451.2015.1101331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Budded virus (BV) particles of baculovirus (Autographa californica nucleopolyhedrovirus, AcNPV) are harvested from the supernatant of liquid culture of Sf9 host cells by ultracentrifugation. Using polyacrylamide gel electrophoresis, Western blot and transmission electron microscopy (TEM) of BV samples fractionated closely by sucrose density gradient centrifugation, we observed that BVs exhibited different qualities depending on whether they had been harvested from the supernatant from a standing (static), shaking (suspension), or standing/shaking (pre-/post-infection) culture of Sf9 cells. The amount of BV protein apparently increased in the order of standing, standing/shaking, and shaking procedure, and the yield of intact particles showed an opposite trend. TEM observation clearly showed that appropriate fractions of the standing and standing/shaking cultures contained more intact BV particles than those from the shaking culture. These results suggest that the qualities of recombinant BV particles may be related to the culture conditions of the host cells.
Collapse
Affiliation(s)
- Tomomi Hattori
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Japan
| | - Kohei Nakanishi
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Japan
| | - Takaaki Mori
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Japan
| | - Masahiro Tomita
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Japan
| | - Kanta Tsumoto
- Division of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Japan
| |
Collapse
|
2
|
Hamakubo T, Kusano-Arai O, Iwanari H. Generation of antibodies against membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1920-1924. [PMID: 25135856 DOI: 10.1016/j.bbapap.2014.08.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 07/30/2014] [Accepted: 08/12/2014] [Indexed: 12/12/2022]
Abstract
The monoclonal antibody has become an important therapeutic in the treatment of both hematological malignancies and solid tumors. The recent success of antibody-drug conjugates (ADCs) has broadened the extent of the potential target molecules in cancer immunotherapy. As a result, even molecules of low abundance have become targets for cytotoxic reagents. The multi-pass membrane proteins are an emerging target for the next generation antibody therapeutics. One outstanding challenge is the difficulty in preparing a sufficient amount of these membrane proteins so as to be able to generate the functional antibody. We have pursued the expression of various membrane proteins on the baculovirus particle and the utilization of displayed protein for immunization. The strong antigenicity of the virus acts either as a friend or foe in the making of an efficient antibody against an immunologically tolerant antigen. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.
Collapse
Affiliation(s)
- Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan.
| | - Osamu Kusano-Arai
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan; Institute of Immunology Co. Ltd, .1-1-10 Koraku, Bunkyo, Tokyo 112-0004, Japan
| | - Hiroko Iwanari
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| |
Collapse
|
3
|
Schmid K, Keasey SL, Pittman P, Emerson GL, Meegan J, Tikhonov AP, Chen G, Schweitzer B, Ulrich RG. Analysis of the human immune response to vaccinia by use of a novel protein microarray suggests that antibodies recognize less than 10% of the total viral proteome. Proteomics Clin Appl 2012; 2:1528-38. [PMID: 21136800 DOI: 10.1002/prca.200780113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Control of smallpox by mass vaccination was one of the most effective public health measures ever employed for eradicating a devastating infectious disease. However, new methods are needed for monitoring smallpox immunity within current vulnerable populations, and for the development of replacement vaccines for use by immunocompromized or low-responding individuals. As a measure for achieving this goal, we developed a protein microarray of the vaccinia virus proteome by using high-throughput baculovirus expression and purification of individual elements. The array was validated with therapeutic-grade, human hyperimmune sera, and these data were compared to results obtained from individuals vaccinated against smallpox using Dryvax. A high level of reproducibility with a very low background were apparent in repetitive assays that confirmed previously reported antigens and identified new proteins that may be important for neutralizing viral infection. Our results suggest that proteins recognized by antibodies from all vaccinees constituted <10% of the total vaccinia proteome.
Collapse
Affiliation(s)
- Kara Schmid
- Laboratory of Molecular Immunology, Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ames RS, Fornwald JA, Nuthulaganti P, Trill JJ, Foley JJ, Buckley PT, Kost TA, Wu Z, Romanos MA. BacMam Recombinant Baculoviruses in G Protein–Coupled Receptor Drug Discovery. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820490514969] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
5
|
Ames RS, Nuthulaganti P, Fornwald JA, Shabon U, van-der-Keyl HK, Elshourbagy NA. Heterologous Expression of G Protein–Coupled Receptors in U-2 OS Osteosarcoma Cells. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820490515012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Nijmeijer S, Leurs R, Smit MJ, Vischer HF. The Epstein-Barr virus-encoded G protein-coupled receptor BILF1 hetero-oligomerizes with human CXCR4, scavenges Gαi proteins, and constitutively impairs CXCR4 functioning. J Biol Chem 2010; 285:29632-41. [PMID: 20622011 DOI: 10.1074/jbc.m110.115618] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cells express distinct G protein-coupled receptor (GPCR) subtypes on their surface, allowing them to react to a corresponding variety of extracellular stimuli. Cross-regulation between different ligand-GPCR pairs is essential to generate appropriate physiological responses. GPCRs can physically affect each other's functioning by forming heteromeric complexes, whereas cross-regulation between activated GPCRs also occurs through integration of shared intracellular signaling networks. Human herpesviruses utilize virally encoded GPCRs to hijack cellular signaling networks for their own benefit. Previously, we demonstrated that the Epstein-Barr virus-encoded GPCR BILF1 forms heterodimeric complexes with human chemokine receptors. Using a combination of bimolecular complementation and bioluminescence resonance energy transfer approaches, we now show the formation of hetero-oligomeric complexes between this viral GPCR and human CXCR4. BILF1 impaired CXCL12 binding to CXCR4 and, consequently, also CXCL12-induced signaling. In contrast, the G protein uncoupled mutant BILF1-K(3.50)A affected CXCL12-induced CXCR4 signaling to a much lesser extent, indicating that BILF1-mediated CXCR4 inhibition is a consequence of its constitutive activity. Co-expression of Gα(i1) with BILF1 and CXCR4 restored CXCL12-induced signaling. Likewise, BILF1 formed heteromers with the human histamine H(4) receptor (H(4)R). BILF1 inhibited histamine-induced Gα(i)-mediated signaling by H(4)R, however, without affecting histamine binding to this receptor. These data indicate that functional cross-regulation of Gα(i)-coupled GPCRs by BILF1 is at the level of G proteins, even though these GPCRs are assembled in hetero-oligomeric complexes.
Collapse
Affiliation(s)
- Saskia Nijmeijer
- Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
7
|
O'Connor S, Li E, Majors BS, He L, Placone J, Baycin D, Betenbaugh MJ, Hristova K. Increased expression of the integral membrane protein ErbB2 in Chinese hamster ovary cells expressing the anti-apoptotic gene Bcl-xL. Protein Expr Purif 2009; 67:41-7. [PMID: 19376231 DOI: 10.1016/j.pep.2009.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/06/2009] [Accepted: 04/09/2009] [Indexed: 11/18/2022]
Abstract
Receptor tyrosine kinases (RTKs) are the second largest family of membrane receptors and play a key role in the regulation of vital cellular processes, such as control of cell growth, differentiation, metabolism, and migration. The production of whole-length RTKs in large quantities for biophysical or structural characterization, however, is a challenge. In this study, a cell engineering strategy using the anti-apoptotic Bcl-2 family protein, Bcl-x(L), was tested as a potential method for increasing stable expression levels of a recombinant RTK membrane protein in Chinese hamster ovary (CHO) cells. Wild-type and CHO cells stably overexpressing heterologous Bcl-x(L) were transformed with the gene for a model RTK membrane protein, ErbB2, on a plasmid also containing the Zeocin resistance gene. While CHO cells exhibited a gradual decrease in expression with passaging, CHO-bcl-x(L) cells offered an increased and sustained level of ErbB2 expression following continuous passaging over more than 33 days in culture. The increased ErbB2 expression in CHO-bcl-x(L) cells was evident both in stable transfected pools and in clonal isolates, and demonstrated both in Western blot analysis and flow cytometry. Furthermore, the sustained high-level protein expression in CHO-bcl-x(L) cells does not alter the correct membrane localization of the ErbB2 protein. Our results demonstrate that cellular engineering, specifically anti-apoptosis engineering, can provide increased and stable ErbB2 membrane protein expression in mammalian cells. This approach may also be useful for other membrane proteins in which large quantities are needed for biophysical and structural studies.
Collapse
Affiliation(s)
- Shannon O'Connor
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Allen SJ, Ribeiro S, Horuk R, Handel TM. Expression, purification and in vitro functional reconstitution of the chemokine receptor CCR1. Protein Expr Purif 2009; 66:73-81. [PMID: 19275940 DOI: 10.1016/j.pep.2009.03.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 02/28/2009] [Accepted: 03/02/2009] [Indexed: 01/22/2023]
Abstract
Chemokine receptors are a specific class of G-protein-coupled receptors (GPCRs) that control cell migration associated with routine immune surveillance, inflammation and development. In addition to their roles in normal physiology, these receptors and their ligands are involved in a large number of inflammatory diseases, cancer and AIDS, making them prime therapeutic targets in the pharmaceutical industry. Like other GPCRs, a significant obstacle in determining structures and characterizing mechanisms of activation has been the difficulty in obtaining high levels of pure, functional receptor. Here we describe a systematic effort to express the chemokine receptor CCR1 in mammalian cells, and to purify and reconstitute it in functional form. The highest expression levels were obtained using an inducible HEK293 system. The receptor was purified using a combination of N- (StrepII or Hemagglutinin) and C-terminal (His8) affinity tags. Function was assessed by ligand binding using a novel fluorescence polarization assay with fluorescein-labeled chemokine. A strict dependence of function on the detergent composition was observed, as solubilization of CCR1 in n-dodecyl-beta-D-maltopyranoside/cholesteryl hemisuccinate yielded functional receptor with a K(d) of 21 nM for the chemokine CCL14, whereas it was non-functional in phosphocholine detergents. Differences in function were observed despite the fact that both these detergent types maintained the receptor in a state characterized by monomers and small oligomers, but not large aggregates. While optimization is still warranted, yields of approximately 0.1-0.2mg of pure functional receptor per 10(9) cells will permit biophysical studies of this medically important receptor.
Collapse
Affiliation(s)
- Samantha J Allen
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California-San Diego, La Jolla, CA 92093-0684, USA.
| | | | | | | |
Collapse
|
9
|
Sakihama T, Masuda K, Sato T, Doi T, Kodama T, Hamakubo T. Functional reconstitution of G-protein-coupled receptor-mediated adenylyl cyclase activation by a baculoviral co-display system. J Biotechnol 2008; 135:28-33. [DOI: 10.1016/j.jbiotec.2008.02.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 02/12/2008] [Accepted: 02/22/2008] [Indexed: 11/26/2022]
|
10
|
Ravyn V, Bostwick JR. Functional coupling of the Galpha(olf) variant XLGalpha(olf) with the human adenosine A2A receptor. J Recept Signal Transduct Res 2006; 26:241-58. [PMID: 16818375 DOI: 10.1080/10799890600710592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
A recently identified novel Galphaolf variant, XLGalphaolf, is shown to functionally couple to the human adenosine A2A receptor (A2AR). In Sf9 cells expressing A2AR, beta1, and gamma2, co-expression of XLGalphaolf increased NECA-induced [35S]GTPgammaS binding from approximately 130% to 300% of basal levels. Pharmacological characteristics of A2AR ligands on these cells were evaluated by using [3H]ZM241385- and [35S]GTPgammaS- binding assays. The rank order of the equilibrium binding constants (Kd or Ki) of adenosine receptor ligands were [3H]ZM241385 approximately CGS15943 < MRS1220 < < CV1808 approximately NECA < CGS21680 approximately adenosine < IBMECA < HEMADO approximately CPA approximately CCPA. The rank order of EC50 values for agonists were CV1808 approximately NECA < adenosine approximately CGS26180 < IBMECA < HEMADO approximately CPA approximately CCPA. This pharmacology is consistent with the literature for A2AR and suggests that Sf9 cells co-expressing A2AR, beta1, gamma2, and XLGalphaolf could serve as a heterologous expression system for A2AR drug screening.
Collapse
Affiliation(s)
- Vipa Ravyn
- Lead Discovery, AstraZeneca Pharmaceuticals, Wilmington, Delaware 19850, USA
| | | |
Collapse
|
11
|
Douris V, Swevers L, Labropoulou V, Andronopoulou E, Georgoussi Z, Iatrou K. Stably Transformed Insect Cell Lines: Tools for Expression of Secreted and Membrane‐anchored Proteins and High‐throughput Screening Platforms for Drug and Insecticide Discovery. Adv Virus Res 2006; 68:113-56. [PMID: 16997011 DOI: 10.1016/s0065-3527(06)68004-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Insect cell-based expression systems are prominent amongst current expression platforms for their ability to express virtually all types of heterologous recombinant proteins. Stably transformed insect cell lines represent an attractive alternative to the baculovirus expression system, particularly for the production of secreted and membrane-anchored proteins. For this reason, transformed insect cell systems are receiving increased attention from the research community and the biotechnology industry. In this article, we review recent developments in the field of insect cell-based expression from two main perspectives, the production of secreted and membrane-anchored proteins and the establishment of novel methodological tools for the identification of bioactive compounds that can be used as research reagents and leads for new pharmaceuticals and insecticides.
Collapse
Affiliation(s)
- Vassilis Douris
- Insect Molecular Genetics and Biotechnology Group, Institute of Biology National Centre for Scientific Research Demokritos, GR 153 10 Aghia Paraskevi Attikis (Athens), Greece
| | | | | | | | | | | |
Collapse
|
12
|
Leifert WR, Aloia AL, Bucco O, Glatz RV, McMurchie EJ. G-protein-coupled receptors in drug discovery: nanosizing using cell-free technologies and molecular biology approaches. ACTA ACUST UNITED AC 2005; 10:765-79. [PMID: 16234342 DOI: 10.1177/1087057105280517] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Signal transduction by G-protein-coupled receptors (GPCRs) underpins a multitude of physiological processes. Ligand recognition by the receptor leads to activation of a generic molecular switch involving heterotrimeric G-proteins and guanine nucleotides. Signal transduction has been studied extensively with both cell-based systems and assays comprising isolated signaling components. Interest and commercial investment in GPCRs in areas such as drug targets, orphan receptors, high throughput screening, biosensors, and so on will focus greater attention on assay development to allow for miniaturization, ultra-high throughput and, eventually, microarray/biochip assay formats. Although cell-based assays are adequate for many GPCRs, it is likely that these formats will limit the development of higher density GPCR assay platforms mandatory for other applications. Stable, robust, cell-free signaling assemblies comprising receptor and appropriate molecular switching components will form the basis of future GPCR assay platforms adaptable for such applications as microarrays. The authors review current cell-free GPCR assay technologies and molecular biological approaches for construction of novel, functional GPCR assays.
Collapse
Affiliation(s)
- Wayne R Leifert
- CSIRO Molecular and Health Technologies, Adelaide, SA, Australia.
| | | | | | | | | |
Collapse
|
13
|
Luca S, Heise H, Lange A, Baldus M. Investigation of Ligand-Receptor Systems by High-Resolution Solid-State NMR: Recent Progress and Perspectives. Arch Pharm (Weinheim) 2005; 338:217-28. [PMID: 15938000 DOI: 10.1002/ardp.200400991] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Solid-state Nuclear Magnetic Resonance (NMR) provides a general method to study molecular structure and dynamics in a non-crystalline and insoluble environment. We discuss the latest methodological progress to construct 3D molecular structures from solid-state NMR data obtained under magic-angle-spinning conditions. As shown for the neurotensin/NTS-1 system, these methods can be readily applied to the investigation of ligand-binding to G-protein coupled receptors.
Collapse
Affiliation(s)
- Sorin Luca
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
14
|
Dolby V, Collén A, Lundqvist A, Cronet P. Overexpression and functional characterisation of the human melanocortin 4 receptor in Sf9 cells. Protein Expr Purif 2005; 37:455-61. [PMID: 15358370 DOI: 10.1016/j.pep.2004.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Revised: 06/15/2004] [Indexed: 11/26/2022]
Abstract
The human melanocortin 4 receptor (MC4r) was successfully expressed in Sf9 cells using the baculovirus infection system. N- and C-terminally His-tagged receptors generated B(max) values of 14 and 23 pmol receptor/mg membrane protein, respectively. The highest expression level obtained with the C-terminally His-tagged MC4r corresponded to 0.25mg active receptor/litre culture volume. Addition of a viral signal peptide at the N-terminus of the His-tagged MC4r did not improve the expression level. Confocal laser microscopy studies revealed that both the N- and C-terminally tagged MC4r did not accumulate intracellularly and were mainly located in the plasma membrane. The recombinant receptors showed similar affinity for the agonist NDP-MSH (Kd = 11 nM) as to MC4r expressed in mammalian cells. Functional coupling of the highest expressed C-terminal tagged receptor to endogenous Galpha protein was demonstrated through GTPgammaS binding upon agonist stimulation of the receptor. Ki values for the ligands MTII, HS014, alpha-, beta-, and gamma-MSH are comparable to the values obtained for MC4r expressed in mammalian cells.
Collapse
Affiliation(s)
- Viveka Dolby
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| | | | | | | |
Collapse
|
15
|
Knight PJK, Grigliatti TA. Diversity of G proteins in Lepidopteran cell lines: partial sequences of six G protein alpha subunits. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2004; 57:142-150. [PMID: 15484257 DOI: 10.1002/arch.20018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The aim of this work was to sample the diversity of G protein alpha subunits in lepidopteran insect cell lines. Here we report the amplification by degenerate PCR of partial sequences representing six G protein alpha subunits from three different lepidopteran insect cell lines. Sequence comparisons with known G protein alpha subunits indicate that the Sf9, Ld and High Five cell lines each contain (at least) one Galpha(q)-like and one Galpha(i)-like Galpha subunit. All six PCR products are unique at the nucleotide level, but the translation products of the three Galpha q-like partial clones (Sf9-Galpha 1, Ld-Galpha 1, and Hi5-Galpha 1) are identical, as are the translation products of the three Galpha i-like partial clones (Sf9-Galpha 2, Ld-Galpha 2, and Hi5-Galpha 2). Both the Galpha(q)-like and Galpha(i)-like translation products are identical to known Galpha subunits from other Lepidoptera, are highly similar (88-98%) to Galpha subunits from other invertebrates including mosquitoes, fruit flies, lobsters, crabs, and snails, and are also highly similar (88-90%) to known mammalian Galpha subunits. Identification of G protein alpha subunits in lepidopteran cell lines will assist in host cell line selection when insect cell lines are used for the pharmacological analysis of human GPCRs.
Collapse
Affiliation(s)
- Peter J K Knight
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
16
|
Maeda Y, Kuroki R, Haase W, Michel H, Reiländer H. Comparative analysis of high-affinity ligand binding and G protein coupling of the human CXCR1 chemokine receptor and of a CXCR1-Galpha fusion protein after heterologous production in baculovirus-infected insect cells. ACTA ACUST UNITED AC 2004; 271:1677-89. [PMID: 15096207 DOI: 10.1111/j.1432-1033.2004.04064.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to perform biochemical and pharmacological characterization of CXCR1, we designed several CXCR1 constructs. All constructs, including a CXCR1-G(i2)alpha fusion protein, were produced in insect cells after infection with recombinant baculovirus. The recombinant receptors exhibited specific high-affinity binding of (125)I-labelled interleukin-8, and Scatchard transformation of the binding data indicated the presence of a population of single homogenous binding sites. Furthermore, the pharmacological profiles for the different CXCR1 constructs produced in the baculovirus-infected insect cells were almost identical to those reported for CXCR1 on human neutrophils. Interestingly, when the CXCR1 constructs were coproduced with G(i2) protein as a result of coinfection with baculoviruses encoding the G(i2)alpha-, the beta- and the gamma- subunits, the B(max) values were significantly increased. Hence, the level of FlagCXCR1Bio, after coproduction with G(i2) protein, was found to be almost 10 times higher than that of the FlagCXCR1Bio alone. However, no differences in the K(i) values were observed of the receptor constructs produced either after single infection or coinfection of insect cells. The addition of guanyl-5'-yl imidodiphosphate resulted in a dramatic reduction of the number of binding sites; however, the K(i) values remained unchanged, indicating coupling of the receptor to the guanine nucleotide-binding protein.
Collapse
Affiliation(s)
- Yoshitake Maeda
- Max-Planck-Institut für Biophysik, Abt. Molekulare. Membranbiologie, Frankfurt/Main, Germany.
| | | | | | | | | |
Collapse
|
17
|
Knight PJK, Pfeifer TA, Grigliatti TA. A functional assay for G-protein-coupled receptors using stably transformed insect tissue culture cell lines. Anal Biochem 2003; 320:88-103. [PMID: 12895473 DOI: 10.1016/s0003-2697(03)00354-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Insect cells are an underexplored resource for functional G-protein-coupled receptor (GPCR) assays, despite a strong record in biochemical (binding) assays. Here we describe the use of vectors capable of creating stably transformed insect cell lines to generate a cell-based functional GPCR assay. This assay employs the luminescent photoprotein aequorin and the promiscuous G-protein subunit Galpha16 and is broadly applicable to human GPCRs. We demonstrate that the assay can quantitate ligand concentration-activity relationships for seven different human GPCRs, can differentiate between partial and full agonists, and can determine rank order potencies for both agonists and antagonists that match those seen with other assay systems. Human Galpha16 improves signal strength but is not required for activity with some receptors. The coexpression of human and bovine betagamma subunits and/or phospholipase Cbeta makes no difference to agonist efficacy or potency. Two different receptors expressed in the same cell line respond to their specific agonists, and two different cell lines (Sf9 and High 5) are able to functionally detect the same expressed GPCR. Sf9 cells have the capability to produce fully functional human receptors, allied to a low background of endogenous receptors, and so are a valuable system for investigating orphan GPCRs and receptor dimerization.
Collapse
Affiliation(s)
- Peter J K Knight
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Rm 3444, Vancouver, British Columbia, Canada, V6T 1Z4
| | | | | |
Collapse
|
18
|
Urano Y, Yamaguchi M, Fukuda R, Masuda K, Takahashi K, Uchiyama Y, Iwanari H, Jiang SY, Naito M, Kodama T, Hamakubo T. A novel method for viral display of ER membrane proteins on budded baculovirus. Biochem Biophys Res Commun 2003; 308:191-6. [PMID: 12890500 DOI: 10.1016/s0006-291x(03)01355-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The baculovirus expression system has been used to express large quantities of various proteins, including membrane receptors. Here, we reveal a novel property of this expression system to be that certain membrane proteins can be displayed on the budded virus itself. We introduced the genes encoding sterol regulatory element-binding protein-2 (SREBP-2) or SREBP cleavage-activating protein (SCAP), important integral membrane proteins of the endoplasmic reticulum (ER) and/or the Golgi apparatus related to cellular cholesterol regulation, into a baculovirus vector. When insect cells were infected with SREBP-2 or SCAP recombinant viruses, it was found that these ER membrane proteins appeared on the budded baculovirus in addition to the host cell membrane fraction. Compared to proteins expressed on the cell membrane, membrane proteins displayed on virus exhibited both less aggregation and less degradation upon immunoblotting. Using this viral displayed SCAP as the screening antigen, we then generated a new monoclonal antibody specific against SCAP, which was useful for immunological localization studies. This system, which takes advantage of the viral display of membrane proteins, should prove to be a powerful additional tool for postgenomic protein analysis.
Collapse
Affiliation(s)
- Yasuomi Urano
- Department of Molecular Biology, Research Center for Advanced Science and Technology, The University of Tokyo, #35 4-6-1 Komaba, Meguro, Tokyo 153-8904, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Masuda K, Itoh H, Sakihama T, Akiyama C, Takahashi K, Fukuda R, Yokomizo T, Shimizu T, Kodama T, Hamakubo T. A combinatorial G protein-coupled receptor reconstitution system on budded baculovirus. Evidence for Galpha and Galphao coupling to a human leukotriene B4 receptor. J Biol Chem 2003; 278:24552-62. [PMID: 12721292 DOI: 10.1074/jbc.m302801200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To investigate the coupling selectivity of G proteins and G protein-coupled receptors (GPCRs), we developed a reconstitution system made up of GPCR and heterotrimeric G proteins on extracellular baculovirus particles (budded virus (BV)). BV released from Sf9 cells infected with a recombinant baculovirus coding for human leukotriene B4 receptor (BLT1) cDNA exhibited a high level of BLT1 expression (27.3 pmol/mg of protein) and specific [3H]leukotriene B4 binding activity (Kd = 3.67 nm). The apparent low affinity of the expressed BLT1 is thought to be due to relative non-availability of the Galphai isoform, which couples to BLT1, in BV. Co-infection of heterotrimeric G protein recombinant viruses led to co-expression of BLT1 and G protein subunits on BV. A guanosine-5'-(beta,gamma-imido)triphosphate-sensitive, high affinity ligand binding was observed in the BLT1 BV co-expressing Galphai1beta1gamma2 (Kd = 0.17 nm). A relatively large amount of high affinity receptor protein was recovered in the co-expressing BV fraction (6.81 pmol/mg of protein). A combination of BLT1 and Galphai1 without Gbeta1gamma2 did not exhibit high affinity ligand binding on BV, indicating the low background environment for the GPCR-G protein coupling in this BV reconstitution system. To test other G proteins for coupling, various Galpha subunits were combinatorially expressed in BV with BLT1 and Gbeta1gamma2. The BLT1 BV co-expressing GalphaoAbeta1gamma2 exhibited a comparably high affinity ligand binding as well as ligand-stimulated guanosine 5'-3-O-(thio)triphosphate binding to Galphai1beta1gamma2. Co-expression of other Galpha isoforms such as Galphas, Galpha11, Galpha14, Galpha16, Galpha12, or Galpha13 did not exhibit any significant effects on ligand binding affinity in this system. These results reveal that BLT1 and coupled trimeric G proteins were functionally reconstituted on BV and that Galphao as well as Galphai couples to BLT1. This expression system should prove highly useful for pharmacological characterization, biosensor chip applications, and also drug discovery directed at highly important targets of the membrane receptor proteins.
Collapse
Affiliation(s)
- Kazuyuki Masuda
- Laboratory for Systems Biology and Medicine, The University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Warne T, Chirnside J, Schertler GFX. Expression and purification of truncated, non-glycosylated turkey beta-adrenergic receptors for crystallization. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1610:133-40. [PMID: 12586387 DOI: 10.1016/s0005-2736(02)00716-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In order to purify milligram quantities of turkey beta-adrenergic receptor (betaAR) for structural analysis, we have expressed mutant betaARs using the baculovirus system. The initial betaAR construct was truncated at both N- and C-termini thus removing an N-glycosylation site. Cys 116 was mutated to leucine and a histidine tag was added at the C-terminus resulting in the betaAR construct 20-424/His6. Expression of this construct in Sf9 cells produced 0.5 mg of unpurified receptor per liter of culture which necessitated the use of a fermenter for large-scale production. The yield was improved more than 2-fold to 1.2 mg/l culture by using Tni cells which facilitated the production of receptor on a 4 litre scale in shake cultures. The receptor was purified to homogeneity with 35% recovery giving a yield of 2 mg receptor. A further deletion at the N-terminus (betaAR 34-424/His6) eliminated proteolysis which had been observed with the original construct and also increased expression more than 5-fold to 360 pmol/mg solubilized membrane protein. This expression level is one of the highest reported for a G protein-coupled receptor (GPCR) and has enabled us to purify 10 mg betaAR for large-scale crystallization experiments.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Baculoviridae/genetics
- Cell Line
- Crystallization
- Culture Media
- Fermentation
- Gene Deletion
- Insecta
- Molecular Sequence Data
- Receptors, Adrenergic, beta/biosynthesis
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/isolation & purification
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/isolation & purification
- Receptors, G-Protein-Coupled
- Saccharomyces cerevisiae Proteins/biosynthesis
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/isolation & purification
- Turkeys
- Up-Regulation
Collapse
Affiliation(s)
- Tony Warne
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | | | |
Collapse
|
21
|
Massotte D. G protein-coupled receptor overexpression with the baculovirus-insect cell system: a tool for structural and functional studies. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1610:77-89. [PMID: 12586382 DOI: 10.1016/s0005-2736(02)00720-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
G protein-coupled receptors, whose topology shows seven transmembrane domains, form the largest known family of receptors involved in higher organism signal transduction. These receptors are generally of low natural abundance and overexpression is usually a prerequisite to their structural or functional characterisation. The baculovirus-insect cell system constitutes a versatile tool for the maximal production of receptors. This heterologous expression system also provides interesting alternatives for receptor functional studies in a well-controlled cellular context.
Collapse
Affiliation(s)
- Dominique Massotte
- Laboratoire de Biologie et Génomique Structurales, UMR 7104, IGBMC, 1 rue Laurent Fries, BP 10142, F-67404 Illkirch Cedex, France.
| |
Collapse
|
22
|
Warabi K, Richardson MD, Barry WT, Yamaguchi K, Roush ED, Nishimura K, Kwatra MM. Human substance P receptor undergoes agonist-dependent phosphorylation by G protein-coupled receptor kinase 5 in vitro. FEBS Lett 2002; 521:140-4. [PMID: 12067742 DOI: 10.1016/s0014-5793(02)02858-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
G protein-coupled receptor kinases (GRKs) phosphorylate agonist-occupied G protein-coupled receptors, leading to receptor desensitization. Seven GRKs, designated GRK1 through 7, have been characterized. GRK5 is negatively regulated by protein kinase C. We investigated whether human substance P receptor (hSPR) is a substrate of GRK5. We report that membrane-bound hSPR is phosphorylated by purified GRK5, and that both the rate and extent of phosphorylation increase dramatically in the presence of substance P. The phosphorylation has a high stoichiometry (20+/-4 mol phosphate/mol hSPR) and a low K(m) (1.7+/-0.1 nM). These data provide the first evidence that hSPR is a substrate of GRK5.
Collapse
Affiliation(s)
- Kengo Warabi
- Department of Anesthesiology, Juntendo University, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
23
|
Carpentier E, Lebesgue D, Kamen AA, Hogue M, Bouvier M, Durocher Y. Increased production of active human beta(2)-adrenergic/G(alphas) fusion receptor in Sf-9 cells using nutrient limiting conditions. Protein Expr Purif 2001; 23:66-74. [PMID: 11570847 DOI: 10.1006/prep.2001.1476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using the baculovirus/insect-cell expression vector system, we succeeded in obtaining a high yield of active human beta(2)-adrenergic receptor/G(alphas) fusion protein. This was achieved following high cell density production under nutrient-limiting conditions using a very low multiplicity of infection (MOI). This approach was found to significantly reduce inactive protein accumulation that occurred when production was done using conventional high MOI procedures. The maximum specific and volumetric yields of active receptor using this strategy increased by factors of two- and sixfold, respectively. Our results suggest that the increase in the ratio of active/total protein produced results from production under nutrient limitation. Since low multiplicity of infection offers many advantages for large-scale applications, we suggest that this simple production method should be considered when optimizing expression of G-protein-coupled receptors and other complex proteins.
Collapse
Affiliation(s)
- E Carpentier
- Bioprocess sector, Biotechnology Research Institute, 6100 Royalmount avenue, Montreal, Quebec, H4P 2R2, Canada
| | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Massotte D, Pereira CA, Pouliquen Y, Pattus F. Parameters influencing human mu opioid receptor over-expression in baculovirus-infected insect cells. J Biotechnol 1999; 69:39-45. [PMID: 10201114 DOI: 10.1016/s0168-1656(98)00209-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The cDNA encoding the human mu opioid receptor (hMOR) was cloned in the baculovirus Autographa californica (AcMNPV) under the control of the polyhedrin promoter. We investigated the influence of different molecular constructions on receptor expression levels: the receptor was fused either to an amino- or a carboxy-terminal histidine tag (hMOR-N-His and hMOR-C-His respectively), or to the cleavable sequence signal of the baculovirus gp64 glycoprotein (gp-hMOR and gp-hMOR-C-His). Two cell lines, Spodoptera frugiperda (Sf9) and Trichoplusia ni (BTI-TN-5B1-4), in combination with three different culture media were also tested for their ability to produce maximal protein expression. Molecular constructions and culture conditions were both shown to influence substantially protein production. The best results were obtained using cells adapted to serum-free medium combined with constructions in fusion with the endogenous signal sequence of the baculovirus gp64 protein. Those conditions led to maximal expression and shortened the time required for receptor production. We also showed that an amino-terminal location of a hexahistidine tag was more detrimental to the expression level than a carboxy-terminal position.
Collapse
Affiliation(s)
- D Massotte
- Département des Récepteurs et Protéines membranaires, CNRS UPR 9050, Ecole Supérieure de Biotechnologie de Strasbourg, Illkirch-Graffenstaden, France.
| | | | | | | |
Collapse
|