1
|
Heuzé J, Lin YL, Lengronne A, Poli J, Pasero P. Impact of R-loops on oncogene-induced replication stress in cancer cells. C R Biol 2023; 346:95-105. [PMID: 37779381 DOI: 10.5802/crbiol.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 10/03/2023]
Abstract
Replication stress is an alteration in the progression of replication forks caused by a variety of events of endogenous or exogenous origin. In precancerous lesions, this stress is exacerbated by the deregulation of oncogenic pathways, which notably disrupts the coordination between replication and transcription, and leads to genetic instability and cancer development. It is now well established that transcription can interfere with genome replication in different ways, such as head-on collisions between polymerases, accumulation of positive DNA supercoils or formation of R-loops. These structures form during transcription when nascent RNA reanneals with DNA behind the RNA polymerase, forming a stable DNA:RNA hybrid. In this review, we discuss how these different cotranscriptional processes disrupt the progression of replication forks and how they contribute to genetic instability in cancer cells.
Collapse
|
2
|
Ramer MD, Suman ES, Richter H, Stanger K, Spranger M, Bieberstein N, Duncker BP. Dbf4 and Cdc7 proteins promote DNA replication through interactions with distinct Mcm2-7 protein subunits. J Biol Chem 2013; 288:14926-35. [PMID: 23549044 DOI: 10.1074/jbc.m112.392910] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The essential cell cycle target of the Dbf4/Cdc7 kinase (DDK) is the Mcm2-7 helicase complex. Although Mcm4 has been identified as the critical DDK phosphorylation target for DNA replication, it is not well understood which of the six Mcm2-7 subunits actually mediate(s) docking of this kinase complex. We systematically examined the interaction between each Mcm2-7 subunit with Dbf4 and Cdc7 through two-hybrid and co-immunoprecipitation analyses. Strikingly different binding patterns were observed, as Dbf4 interacted most strongly with Mcm2, whereas Cdc7 displayed association with both Mcm4 and Mcm5. We identified an N-terminal Mcm2 region required for interaction with Dbf4. Cells expressing either an Mcm2 mutant lacking this docking domain (Mcm2ΔDDD) or an Mcm4 mutant lacking a previously identified DDK docking domain (Mcm4ΔDDD) displayed modest DNA replication and growth defects. In contrast, combining these two mutations resulted in synthetic lethality, suggesting that Mcm2 and Mcm4 play overlapping roles in the association of DDK with MCM rings at replication origins. Consistent with this model, growth inhibition could be induced in Mcm4ΔDDD cells through Mcm2 overexpression as a means of titrating the Dbf4-MCM ring interaction. This growth inhibition was exacerbated by exposing the cells to either hydroxyurea or methyl methanesulfonate, lending support for a DDK role in stabilizing or restarting replication forks under S phase checkpoint conditions. Finally, constitutive overexpression of each individual MCM subunit was examined, and genotoxic sensitivity was found to be specific to Mcm2 or Mcm4 overexpression, further pointing to the importance of the DDK-MCM ring interaction.
Collapse
Affiliation(s)
- Matthew D Ramer
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L3G1, Canada
| | | | | | | | | | | | | |
Collapse
|
3
|
Bianco JN, Poli J, Saksouk J, Bacal J, Silva MJ, Yoshida K, Lin YL, Tourrière H, Lengronne A, Pasero P. Analysis of DNA replication profiles in budding yeast and mammalian cells using DNA combing. Methods 2012; 57:149-57. [PMID: 22579803 DOI: 10.1016/j.ymeth.2012.04.007] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2012] [Revised: 04/11/2012] [Accepted: 04/14/2012] [Indexed: 11/17/2022] Open
Abstract
DNA combing is a powerful method developed by Bensimon and colleagues to stretch DNA molecules on silanized glass coverslips. This technique provides a unique way to monitor the activation of replication origins and the progression of replication forks at the level of single DNA molecules, after incorporation of thymidine analogs, such as 5-bromo-2'-deoxyuridine (BrdU), 5-iodo-2'-deoxyuridine (IdU) and 5-chloro-2'-deoxyuridine (CldU) in newly-synthesized DNA. Unlike microarray-based approaches, this assay gives access to the variability of replication profiles in individual cells. It can also be used to monitor the effect of DNA lesions on fork progression, arrest and restart. In this review, we propose standard DNA combing methods to analyze DNA replication in budding yeast and in human cells. We also show that 5-ethynyl-2'-deoxyuridine (EdU) can be used as a good alternative to BrdU for DNA combing analysis, as unlike halogenated nucleotides, it can be detected without prior denaturation of DNA.
Collapse
Affiliation(s)
- Julien N Bianco
- Institute of Human Genetics, CNRS UPR 1142, Montpellier F-34396, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Regulation of DNA replication by chromatin structures: accessibility and recruitment. Chromosoma 2010; 120:39-46. [DOI: 10.1007/s00412-010-0287-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 06/22/2010] [Accepted: 07/17/2010] [Indexed: 01/22/2023]
|
5
|
Pollok S, Bauerschmidt C, Sänger J, Nasheuer HP, Grosse F. Human Cdc45 is a proliferation-associated antigen. FEBS J 2007; 274:3669-3684. [PMID: 17608804 DOI: 10.1111/j.1742-4658.2007.05900.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cell division cycle protein 45 (Cdc45) plays a critical role in DNA replication to ensure that chromosomal DNA is replicated only once per cell cycle. We analysed the expression of human Cdc45 in proliferating and nonproliferating cells. Our findings show that Cdc45 protein is absent from long-term quiescent, terminally differentiated and senescent human cells, although it is present throughout the cell cycle of proliferating cells. Moreover, Cdc45 is much less abundant than the minichromosome maintenance (Mcm) proteins in human cells, supporting the concept that origin binding of Cdc45 is rate limiting for replication initiation. We also show that the Cdc45 protein level is consistently higher in human cancer-derived cells compared with primary human cells. Consequently, tumour tissue is preferentially stained using Cdc45-specific antibodies. Thus, Cdc45 expression is tightly associated with proliferating cell populations and Cdc45 seems to be a promising candidate for a novel proliferation marker in cancer cell biology.
Collapse
Affiliation(s)
- S Pollok
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany Radiation Oncology and Biology, University of Oxford, UK Institute of Pathology, Bad Berka, Germany National University of Ireland, Department of Biochemistry, Galway, Ireland Center for Molecular Biomedicine, Friedrich Schiller University, Jena, Germany
| | - C Bauerschmidt
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany Radiation Oncology and Biology, University of Oxford, UK Institute of Pathology, Bad Berka, Germany National University of Ireland, Department of Biochemistry, Galway, Ireland Center for Molecular Biomedicine, Friedrich Schiller University, Jena, Germany
| | - J Sänger
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany Radiation Oncology and Biology, University of Oxford, UK Institute of Pathology, Bad Berka, Germany National University of Ireland, Department of Biochemistry, Galway, Ireland Center for Molecular Biomedicine, Friedrich Schiller University, Jena, Germany
| | - H-P Nasheuer
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany Radiation Oncology and Biology, University of Oxford, UK Institute of Pathology, Bad Berka, Germany National University of Ireland, Department of Biochemistry, Galway, Ireland Center for Molecular Biomedicine, Friedrich Schiller University, Jena, Germany
| | - F Grosse
- Leibniz Institute for Age Research, Fritz Lipmann Institute, Jena, Germany Radiation Oncology and Biology, University of Oxford, UK Institute of Pathology, Bad Berka, Germany National University of Ireland, Department of Biochemistry, Galway, Ireland Center for Molecular Biomedicine, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
6
|
Boronat S, Campbell JL. Mitotic Cdc6 stabilizes anaphase-promoting complex substrates by a partially Cdc28-independent mechanism, and this stabilization is suppressed by deletion of Cdc55. Mol Cell Biol 2007; 27:1158-71. [PMID: 17130241 PMCID: PMC1800676 DOI: 10.1128/mcb.01745-05] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 10/07/2006] [Accepted: 11/15/2006] [Indexed: 11/20/2022] Open
Abstract
Ectopic expression of Cdc6p results in mitotic delay, and this has been attributed to Cdc6p-mediated inhibition of Cdc28 protein kinase and failure to activate the anaphase-promoting complex (APC). Here we show that endogenous Cdc6p delays a specific subset of mitotic events and that Cdc28 inhibition is not sufficient to account for it. The depletion of Cdc6p in G(2)/M cells reveals that Cdc6p is rate limiting for the degradation of the APC/Cdc20 substrates Pds1p and Clb2p. Conversely, the premature expression of Cdc6p delays the degradation of APC/Cdc20 substrates. Abolishing Cdc6p/Cdc28p interaction does not eliminate the Cdc6-dependent delay of these anaphase events. To identify additional Cdc6-mediated, APC-inhibitory mechanisms, we looked for mutants that reversed the mitotic delay. The deletion of SWE1, RAD24, MAD2, or BUB2 had no effect. However, disrupting CDC55, a PP2A regulatory subunit, suppressed the Cdc6p-dependent delay of Pds1 and Clb2 destruction. A specific role for CDC55 was supported by demonstrating that the lethality of Cdc6 ectopic expression in a cdc16-264 mutant is suppressed by the deletion of CDC55, that endogenous Cdc6p coimmunoprecipitates with the Cdc55 and Tpd3 subunits of PP2A, that Cdc6p/Cdc55p/Tpd3 interaction occurs only during mitosis, and that Cdc6 affects PP2A-Cdc55 activity during anaphase. This demonstrates that the levels and timing of accumulation of Cdc6p in mitosis are appropriate for mediating the modulation of APC/Cdc20.
Collapse
Affiliation(s)
- Susanna Boronat
- Braun Laboratories 147-75, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
7
|
Kolesnikova TD, Makunin IV, Volkova EI, Pirrotta V, Belyaeva ES, Zhimulev IF. Functional dissection of the Suppressor of UnderReplication protein of Drosophila melanogaster: identification of domains influencing chromosome binding and DNA replication. Genetica 2005; 124:187-200. [PMID: 16134332 DOI: 10.1007/s10709-005-1167-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The Suppressor of UnderReplication (SuUR) gene controls the DNA underreplication in intercalary and pericentric heterochromatin of Drosophila melanogaster salivary gland polytene chromosomes. In the present work, we investigate the functional importance of different regions of the SUUR protein by expressing truncations of the protein in an UAS-GAL4 system. We find that SUUR has at least two separate chromosome-binding regions that are able to recognize intercalary and pericentric heterochromatin specifically. The C-terminal part controls DNA underreplication in intercalary heterochromatin and partially in pericentric heterochromatin regions. The C-terminal half of SUUR suppresses endoreplication when ectopically expressed in the salivary gland. Ectopic expression of the N-terminal fragments of SUUR depletes endogenous SUUR from polytene chromosomes, causes the SuUR- phenotype and induces specific swellings in heterochromatin.
Collapse
Affiliation(s)
- T D Kolesnikova
- Laboratory of Molecular Cytogenetics, Institute of Cytology and Genetics SB RAS, Lavrentyev Ave. 10, 630090 Novosibirsk, Russia
| | | | | | | | | | | |
Collapse
|
8
|
Belyakin SN, Christophides GK, Alekseyenko AA, Kriventseva EV, Belyaeva ES, Nanayev RA, Makunin IV, Kafatos FC, Zhimulev IF. Genomic analysis of Drosophila chromosome underreplication reveals a link between replication control and transcriptional territories. Proc Natl Acad Sci U S A 2005; 102:8269-74. [PMID: 15928082 PMCID: PMC1149430 DOI: 10.1073/pnas.0502702102] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In Drosophila polytene chromosomes, most late-replicating regions remain underreplicated. A loss-of-function mutant of the suppressor of underreplication [Su(UR)] gene suppresses underreplication (UR), whereas extra copies of this gene enhance the level and number of regions showing UR. By combining DNA microarray analysis with manipulation of the number of Su(UR) gene copies, we achieved genomic-scale molecular identification of 1,036 genes that are arranged in clusters located in 52 UR chromosomal regions. These regions overlap extensively (96%) but are not completely identical with late-replicating regions of mitotically dividing Kc cells in culture. Reanalysis of published gene expression profiles revealed that genomic regions defined by replication properties include clusters of coordinately expressed genes. Genomic regions that are UR in polytene chromosomes and late replicated in Kc cell chromosomes show a particularly common association with transcriptional territories that are expressed in testis/males but not ovary/females or embryos. An attractive hypothesis for future testing is that factors involved in replication control, such as SU(UR), may interact physically with those involved in epigenetic silencing of transcription territories.
Collapse
Affiliation(s)
- Stepan N Belyakin
- Institute of Cytology and Genetics of Siberian Division, Russian Academy of Sciences, Novosibirsk 630090, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Herrick J, Conti C, Teissier S, Thierry F, Couturier J, Sastre-Garau X, Favre M, Orth G, Bensimon A. Genomic Organization of AmplifiedMYCGenes Suggests Distinct Mechanisms of Amplification in Tumorigenesis. Cancer Res 2005; 65:1174-9. [PMID: 15735000 DOI: 10.1158/0008-5472.can-04-2802] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Integration of the human papillomavirus (HPV) genome into the host genome is associated with the disruption of the HPV E2 gene and with amplification and rearrangement of the viral and flanking cellular sequences. Molecular characterization of the genomic structures of coamplified HPV sequences and oncogenes provides essential information concerning the mechanisms of amplification and their roles in carcinogenesis. Using fluorescent hybridization on stretched DNA molecules in two cervical cancer-derived cell lines, we have elucidated the genomic structures of amplified regions containing HPV/myc genes over several hundreds of kilobases. Direct visualization of hybridization signals on individual DNA molecules suggests that overreplication and breakage-fusion-bridge-type mechanisms are involved in the genomic instability associated with HPV cervical cancers. Further analysis from two other genital cancer-derived cell lines reveals a recurrent motif of amplification, probably generated by a common mechanism involving overreplication upon viral integration. Interestingly, different amplification patterns seem to be correlated with the disease outcome, thus providing new insights into HPV-related cancer development and tumor progression.
Collapse
Affiliation(s)
- John Herrick
- Unité Stabilité des Génomes, Département de Structure et Dynamique des Génomes, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
Eukaryotic DNA replication begins at numerous but often poorly characterized sequences called origins, which are distributed fairly regularly along chromosomes. The elusive and idiosyncratic nature of origins in higher eukaryotes is now understood as resulting from a strong epigenetic influence on their specification, which provides flexibility in origin selection and allows for tailoring the dynamics of chromosome replication to the specific needs of cells. By contrast, the factors that assemble in trans to make these origins competent for replication and the kinases that trigger initiation are well conserved. Genome-wide and single-molecule approaches are being developed to elucidate the dynamics of chromosome replication. The notion that a well-coordinated progression of replication forks is crucial for many aspects of the chromosome cycle besides simply duplication begins to be appreciated.
Collapse
Affiliation(s)
- Etienne Schwob
- Institute of Molecular Genetics, CNRS UMR5535 and University Montpellier 2, 1919, route de Mende, 34293 Montpellier, France
| |
Collapse
|
11
|
Jenke ACW, Stehle IM, Herrmann F, Eisenberger T, Baiker A, Bode J, Fackelmayer FO, Lipps HJ. Nuclear scaffold/matrix attached region modules linked to a transcription unit are sufficient for replication and maintenance of a mammalian episome. Proc Natl Acad Sci U S A 2004; 101:11322-7. [PMID: 15272077 PMCID: PMC509201 DOI: 10.1073/pnas.0401355101] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Indexed: 11/18/2022] Open
Abstract
The activation of mammalian origins of replication depends so far on ill understood epigenetic events, such as binding of transcription factors, chromatin structure, and nuclear localization. Understanding these mechanisms is not only a scientific challenge but also represents a prerequisite for the rational design of nonviral episomal vectors for mammalian cells. In this paper, we demonstrate that a tetramer of a 155-bp minimal nuclear scaffold/matrix attached region DNA module linked to an upstream transcription unit is sufficient for replication and mitotic stability of a mammalian episome in the absence of selection. Fluorescence in situ hybridization analyses, crosslinking with cis-diammineplatinum(II)-dichloride and chromatin immunoprecipitation demonstrate that this vector associates with the nuclear matrix or scaffold in vivo by means of specific interaction of the nuclear scaffold/matrix attached region with the nuclear matrix protein SAF-A. Results presented in this paper define the minimal requirements of an episomal vector for mammalian cells on the molecular level.
Collapse
Affiliation(s)
- Andreas C W Jenke
- Institute of Cell Biology, Witten/Herdecke University, 58448 Witten, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Diffley JF, Bousset K, Labib K, Noton EA, Santocanale C, Tercero JA. Coping with and recovering from hydroxyurea-induced replication fork arrest in budding yeast. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 65:333-42. [PMID: 12760047 DOI: 10.1101/sqb.2000.65.333] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- J F Diffley
- ICRF Clare Hall Laboratories, South Mimms, Herts. EN6 3LD, United Kingdom
| | | | | | | | | | | |
Collapse
|
13
|
Ivessa AS, Zakian VA. To fire or not to fire: origin activation in Saccharomyces cerevisiae ribosomal DNA. Genes Dev 2002; 16:2459-64. [PMID: 12368256 DOI: 10.1101/gad.1033702] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Andreas S Ivessa
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
| | | |
Collapse
|
14
|
Pasero P, Bensimon A, Schwob E. Single-molecule analysis reveals clustering and epigenetic regulation of replication origins at the yeast rDNA locus. Genes Dev 2002; 16:2479-84. [PMID: 12368258 PMCID: PMC187456 DOI: 10.1101/gad.232902] [Citation(s) in RCA: 184] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
How eukaryotes specify their replication origins is an important unanswered question. Here, we analyze the replicative organization of yeast rDNA, which consists of approximately 150 identical repeats, each containing a potential origin. Using DNA combing and single-molecule imaging, we show that functional rDNA origins are clustered and interspersed with large domains where initiation is silenced. This repression is largely mediated by the Sir2p histone-deacetylase. Increased origin firing in sir2 Delta mutants leads to the accumulation of circular rDNA species, a major determinant of yeast aging. We conclude that rDNA replication is regulated epigenetically and that Sir2p may promote genome stability and longevity by suppressing replication-dependent rDNA recombination.
Collapse
Affiliation(s)
- Philippe Pasero
- Institute of Molecular Genetics, CNRS UMR 5535 and Université Montpellier II, 34293 Montpellier cedex 5, France
| | | | | |
Collapse
|
15
|
Affiliation(s)
- Philippe Pasero
- Institute of Molecular Genetics, National Center for Scientific Research, Mixed Research Unit 5535, F-34293 Montpellier, France
| | | |
Collapse
|
16
|
Abstract
We formulate a kinetic model of DNA replication that quantitatively describes recent results on DNA replication in the in vitro system of Xenopus laevis prior to the mid-blastula transition. The model describes well a large amount of different data within a simple theoretical framework. This allows one, for the first time, to determine the parameters governing the DNA replication program in a eukaryote on a genome-wide basis. In particular, we have determined the frequency of origin activation in time and space during the cell cycle. Although we focus on a specific stage of development, this model can easily be adapted to describe replication in many other organisms, including budding yeast.
Collapse
Affiliation(s)
- John Herrick
- Unité de Stabilité des Génomes, Département Structure et Dynamique des Génomes, Institut Pasteur, 25-28 rue du Dr Roux, 75724 Paris Cedex 15, France
| | | | | | | |
Collapse
|
17
|
Lengronne A, Schwob E. The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G(1). Mol Cell 2002; 9:1067-78. [PMID: 12049742 DOI: 10.1016/s1097-2765(02)00513-0] [Citation(s) in RCA: 197] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
G(1) cell cycle regulators are often mutated in cancer, but how this causes genomic instability is unclear. Here we show that yeast lacking the CDK inhibitor Sic1 initiate DNA replication from fewer origins, have an extended S phase, and inefficiently separate sister chromatids during anaphase. This leads to double-strand breaks (DSBs) in a fraction of sic1 cells as evidenced by the accumulation of Ddc1 foci and a 575-fold increase in gross chromosomal rearrangements. Both S and M phase defects are rescued by delaying S-CDK activation, indicating that Sic1 promotes origin licensing in late G(1) by preventing the untimely activation of CDKs. We propose that precocious CDK activation causes genomic instability by altering the dynamics of S phase, which then hinders normal chromosome segregation.
Collapse
Affiliation(s)
- Armelle Lengronne
- Institute of Molecular Genetics, CNRS UMR 5535 and Université Montpellier II, France
| | | |
Collapse
|
18
|
Raghuraman MK, Winzeler EA, Collingwood D, Hunt S, Wodicka L, Conway A, Lockhart DJ, Davis RW, Brewer BJ, Fangman WL. Replication dynamics of the yeast genome. Science 2001; 294:115-21. [PMID: 11588253 DOI: 10.1126/science.294.5540.115] [Citation(s) in RCA: 589] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Oligonucleotide microarrays were used to map the detailed topography of chromosome replication in the budding yeast Saccharomyces cerevisiae. The times of replication of thousands of sites across the genome were determined by hybridizing replicated and unreplicated DNAs, isolated at different times in S phase, to the microarrays. Origin activations take place continuously throughout S phase but with most firings near mid-S phase. Rates of replication fork movement vary greatly from region to region in the genome. The two ends of each of the 16 chromosomes are highly correlated in their times of replication. This microarray approach is readily applicable to other organisms, including humans.
Collapse
Affiliation(s)
- M K Raghuraman
- Department of Genetics, Department of Mathematics, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Perkins G, Drury LS, Diffley JF. Separate SCF(CDC4) recognition elements target Cdc6 for proteolysis in S phase and mitosis. EMBO J 2001; 20:4836-45. [PMID: 11532947 PMCID: PMC125267 DOI: 10.1093/emboj/20.17.4836] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Cdc6 DNA replication initiation factor is targeted for ubiquitin-mediated proteolysis by the E3 ubiquitin ligase SCF(CDC4) from the end of G1phase until mitosis in the budding yeast Saccharomyces cerevisiae. Here we describe a dominant-negative CDC6 mutant that, when overexpressed, arrests the cell cycle by inhibiting cyclin-dependent kinases (CDKs) and, thus, prevents passage through mitosis. This mutant protein inhibits CDKs more efficiently than wild-type Cdc6, in part because it is completely refractory to SCF(CDC4)-mediated proteolysis late in the cell cycle and consequently accumulates to high levels. The mutation responsible for this phenotype destroys a putative CDK phosphorylation site near the middle of the Cdc6 primary amino acid sequence. We show that this site lies within a novel Cdc4-interacting domain distinct from a Cdc4-interacting site identified previously near the N-terminus of the protein. We show that both sites can target Cdc6 for proteolysis in late G1/early S phase whilst only the newly identified site can target Cdc6 for proteolysis during mitosis.
Collapse
Affiliation(s)
- Gordon Perkins
- ICRF Clare Hall Laboratories, South Mimms EN6 3LD, UK
Present address: Department of Immunology, UCL Medical School, Windeyer Building, 46 Cleveland Street, London W1P 6DB, UK Corresponding author e-mail: G.Perkins and L.S.Drury contributed equally to this paper
| | | | - John F.X. Diffley
- ICRF Clare Hall Laboratories, South Mimms EN6 3LD, UK
Present address: Department of Immunology, UCL Medical School, Windeyer Building, 46 Cleveland Street, London W1P 6DB, UK Corresponding author e-mail: G.Perkins and L.S.Drury contributed equally to this paper
| |
Collapse
|
20
|
Stoeber K, Tlsty TD, Happerfield L, Thomas GA, Romanov S, Bobrow L, Williams ED, Williams GH. DNA replication licensing and human cell proliferation. J Cell Sci 2001; 114:2027-41. [PMID: 11493639 DOI: 10.1242/jcs.114.11.2027] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The convergence point of growth regulatory pathways that control cell proliferation is the initiation of genome replication, the core of which is the assembly of pre-replicative complexes resulting in chromatin being ‘licensed’ for DNA replication in the subsequent S phase. We have analysed regulation of the pre-replicative complex proteins ORC, Cdc6, and MCM in cycling and non-proliferating quiescent, differentiated and replicative senescent human cells. Moreover, a human cell-free DNA replication system has been exploited to study the replicative capacity of nuclei and cytosolic extracts prepared from these cells. These studies demonstrate that downregulation of the Cdc6 and MCM constituents of the replication initiation pathway is a common downstream mechanism for loss of proliferative capacity in human cells. Furthermore, analysis of MCM protein expression in self-renewing, stable and permanent human tissues shows that the three classes of tissue have developed very different growth control strategies with respect to replication licensing. Notably, in breast tissue we found striking differences between the proportion of mammary acinar cells that express MCM proteins and those labelled with conventional proliferation markers, raising the intriguing possibility that progenitor cells of some tissues are held in a prolonged G1 phase or ‘in-cycle arrest’. We conclude that biomarkers for replication-licensed cells detect, in addition to actively proliferating cells, cells with growth potential, a concept that has major implications for developmental and cancer biology.
Collapse
Affiliation(s)
- K Stoeber
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Marheineke K, Hyrien O. Aphidicolin triggers a block to replication origin firing in Xenopus egg extracts. J Biol Chem 2001; 276:17092-100. [PMID: 11279043 DOI: 10.1074/jbc.m100271200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
DNA replication origins are located at random with respect to DNA sequence in Xenopus early embryos and on DNA replicated in Xenopus egg extracts. We have recently shown that origins fire throughout the S phase in Xenopus egg extracts. To study the temporal regulation of origin firing, we have analyzed origin activation in sperm nuclei treated with the DNA polymerase inhibitor aphidicolin. Sperm chromatin was incubated in Xenopus egg extracts in the presence of aphidicolin and transferred to a fresh extract, and digoxigenin-dUTP and biotin-dUTP were added at various times after aphidicolin release to selectively label early and late replicating DNA. Molecular combing analysis of single DNA fibers showed that only a fraction of potential origins were able to initiate in the presence of aphidicolin. After release from aphidicolin, the remaining origins fired asynchronously throughout the S phase. Therefore, initiation during the S phase depends on the normal progression of replication forks assembled at earlier activated origins. Caffeine, an inhibitor of the checkpoint kinases ATR and ATM, did not relieve the aphidicolin-induced block to origin firing. We conclude that a caffeine-insensitive intra-S phase checkpoint regulates origin activation when DNA synthesis is inhibited in Xenopus egg extracts.
Collapse
Affiliation(s)
- K Marheineke
- Laboratoire de Génétique Moléculaire, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | | |
Collapse
|
22
|
Schepers A, Diffley JF. Mutational analysis of conserved sequence motifs in the budding yeast cdc6 protein 1 1Edited by M. Yaniv. J Mol Biol 2001; 308:597-608. [PMID: 11350163 DOI: 10.1006/jmbi.2001.4637] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Cdc6 protein is required to load a complex of Mcm2-7 family members (the MCM complex) into prereplicative complexes at budding yeast origins of DNA replication. Cdc6p is a member of the AAA(+) superfamily of proteins, which includes the prokaryotic and eukaryotic clamp loading proteins. These proteins share a number of conserved regions of homology and a common three-dimensional architecture. Two of the conserved sequence motifs are the Walker A and B motifs that are involved in nucleotide metabolism and are essential for Cdc6p function in vivo. Here, we analyse mutants in the other conserved sequence motifs. Several of these mutants are temperature-sensitive for growth and are unable to recruit the MCM complex to chromatin at the restrictive temperature. In one such temperature-sensitive mutant, a highly conserved asparagine residue in the sensor I motif was changed to alanine. Overexpression of this mutant protein is lethal. This phenotype is very similar to the phenotype previously described for a mutation in the Walker B motif, suggesting a common role for sensor I and the Walker B motif in Cdc6 function.
Collapse
Affiliation(s)
- A Schepers
- Clare Hall Laboratories, Imperial Cancer Research Fund, South Mimms, EN6 3LD, UK
| | | |
Collapse
|
23
|
Takisawa H, Mimura S, Kubota Y. Eukaryotic DNA replication: from pre-replication complex to initiation complex. Curr Opin Cell Biol 2000; 12:690-6. [PMID: 11063933 DOI: 10.1016/s0955-0674(00)00153-8] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A common mechanism has emerged for the control of the initiation of eukaryotic DNA replication. The minichromosome maintenance protein complex (MCM) and Cdc45 have now been recognized as central components of the initiation machinery. In addition, two types of S phase promoting kinases conserved between yeast and humans play critical roles in the initiation reaction. At the onset of S phase, S phase kinases promote the association of Cdc45 with MCM at origins. Upon the formation of the MCM-Cdc45 complex at origins, the duplex DNA is unwound and various replication proteins, including DNA polymerases, are recruited onto unwound DNA. The increasing number of newly identified factors involved in the initiation reaction indicates that the control of initiation requires highly evolved machinery in eukaryotic cells.
Collapse
Affiliation(s)
- H Takisawa
- Department of Biology, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, 560-0043, Osaka, Japan.
| | | | | |
Collapse
|