1
|
Li Z, Zhang Z. A tale of two strands: Decoding chromatin replication through strand-specific sequencing. Mol Cell 2025; 85:238-261. [PMID: 39824166 PMCID: PMC11750172 DOI: 10.1016/j.molcel.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/03/2024] [Accepted: 10/25/2024] [Indexed: 01/20/2025]
Abstract
DNA replication, a fundamental process in all living organisms, proceeds with continuous synthesis of the leading strand by DNA polymerase ε (Pol ε) and discontinuous synthesis of the lagging strand by polymerase δ (Pol δ). This inherent asymmetry at each replication fork necessitates the development of methods to distinguish between these two nascent strands in vivo. Over the past decade, strand-specific sequencing strategies, such as enrichment and sequencing of protein-associated nascent DNA (eSPAN) and Okazaki fragment sequencing (OK-seq), have become essential tools for studying chromatin replication in eukaryotic cells. In this review, we outline the foundational principles underlying these methodologies and summarize key mechanistic insights into DNA replication, parental histone transfer, epigenetic inheritance, and beyond, gained through their applications. Finally, we discuss the limitations and challenges of current techniques, highlighting the need for further technological innovations to better understand the dynamics and regulation of chromatin replication in eukaryotic cells.
Collapse
Affiliation(s)
- Zhiming Li
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; West China School of Public Health and West China Fourth Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Zhiguo Zhang
- Institute for Cancer Genetics and Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pediatrics and Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
2
|
Rafa AY, Filliaux S, Lyubchenko YL. Nanoscale Characterization of Interaction of Nucleosomes with H1 Linker Histone. Int J Mol Sci 2024; 26:303. [PMID: 39796159 PMCID: PMC11719560 DOI: 10.3390/ijms26010303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 12/29/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
In eukaryotic nuclei, DNA is wrapped around an octamer of core histones to form nucleosomes. H1 binds to the linker DNA of nucleosome to form the chromatosome, the next structural unit of chromatin. Structural features on individual chromatosomes contribute to chromatin structure, but not fully characterized. In addition to canonical nucleosomes composed of two copies each of histones H2A, H2B, H3, and H4 (H3 nucleosomes), centromeres chromatin contain nucleosomes in which H3 is replaced with its analog CENP-A, changing structural properties of CENP-A nucleosomes. Nothing is known about the interaction of H1 with CENP-A nucleosomes. Here we filled this gap and characterized the interaction of H1 histone with both types of nucleosomes. H1 does bind both types of the nucleosomes forming more compact chromosome particles with elevated affinity to H3 nucleosomes. H1 binding significantly increases the stability of chromatosomes preventing their spontaneous dissociation. In addition to binding to the entry-exit position of the DNA arms identified earlier, H1 is capable of bridging of distant DNA segments. H1 binding leads to the assembly of mononucleosomes in aggregates, stabilized by internucleosome interactions as well as bridging of the DNA arms of chromatosomes. Contribution of these finding to the chromatin structure and functions are discussed.
Collapse
Affiliation(s)
| | | | - Yuri L. Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-6025, USA; (A.Y.R.); (S.F.)
| |
Collapse
|
3
|
Chakraborty P, Mukherjee C. The interplay of metabolic and epigenetic players in disease development. Biochem Biophys Res Commun 2024; 734:150621. [PMID: 39217811 DOI: 10.1016/j.bbrc.2024.150621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Epigenetic modifications and their alterations can cause variation in gene expression patterns which can ultimately affect a healthy individual. Until a few years ago, it was thought that the epigenome affects the transcriptome which can regulate the proteome and the metabolome. Recent studies have shown that the metabolome independently also plays a major role in regulating the epigenome bypassing the need for transcriptomic control. Alternatively, an imbalanced metabolome, stemming from transcriptome abnormalities, can further impact the transcriptome, creating a self-perpetuating cycle of interconnected occurrences. As a result, external factors such as nutrient intake and diet can have a direct impact on the metabolic pools and its reprogramming can change the levels and activity of epigenetic modifiers. Thus, the epigenetic landscape steers toward a diseased condition. In this review, we have discussed how different metabolites and dietary patterns can bring about changes in different arms of the epigenetic machinery such as methylation, acetylation as well as RNA mediated epigenetic mechanisms. We checked for limiting metabolites such as αKG, acetyl-CoA, ATP, NAD+, and FAD, whose abundance levels can lead to common diseases such as cancer, neurodegeneration etc. This gives a clearer picture of how an integrated approach including both epigenetics and metabolomics can be used for therapeutic purposes.
Collapse
Affiliation(s)
- Pallavi Chakraborty
- RNABio Lab, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India; Shiv Nadar Institute of Eminence, Greater Noida, Uttar Pradesh, India
| | - Chandrama Mukherjee
- RNABio Lab, Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India.
| |
Collapse
|
4
|
Kim MS, Kim DH, Lee JS. A review of environmental epigenetics in aquatic invertebrates. MARINE POLLUTION BULLETIN 2024; 208:117011. [PMID: 39326327 DOI: 10.1016/j.marpolbul.2024.117011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/30/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024]
Abstract
Aquatic ecosystems face significant challenges due to increasing human-induced environmental stressors. Recent studies emphasize the role of epigenetic mechanisms in the stress responses and adaptations of organisms to those stressors. Epigenetics influences gene expression, enabling phenotypic plasticity and transgenerational effects. Therefore, understanding the epigenetic responses of aquatic invertebrates to environmental stressors is imperative for aquatic ecosystem research. In this study, we organize the mechanisms of epigenetics in aquatic invertebrates and explore their roles in the responses of aquatic invertebrates to environmental stressors. Furthermore, we discuss the inheritance of epigenetic changes and their influence across generations in aquatic invertebrates. A comprehensive understanding of epigenetic responses is crucial for long-term ecosystem management and conservation strategies in the face of irreversible climate change in aquatic environments. In this review, we synthesize existing knowledge about environmental epigenetics in aquatic invertebrates to provide insights and suggest directions for future research.
Collapse
Affiliation(s)
- Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Duck-Hyun Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
5
|
Koestler SA, Ball ML, Muresan L, Dinakaran V, White R. Transcriptionally active chromatin loops contain both 'active' and 'inactive' histone modifications that exhibit exclusivity at the level of nucleosome clusters. Epigenetics Chromatin 2024; 17:8. [PMID: 38528624 DOI: 10.1186/s13072-024-00535-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/14/2024] [Indexed: 03/27/2024] Open
Abstract
Chromatin state is thought to impart regulatory function to the underlying DNA sequence. This can be established through histone modifications and chromatin organisation, but exactly how these factors relate to one another to regulate gene expression is unclear. In this study, we have used super-resolution microscopy to image the Y loops of Drosophila melanogaster primary spermatocytes, which are enormous transcriptionally active chromatin fibres, each representing single transcription units that are individually resolvable in the nuclear interior. We previously found that the Y loops consist of regular clusters of nucleosomes, with an estimated median of 54 nucleosomes per cluster with wide variation.In this study, we report that the histone modifications H3K4me3, H3K27me3, and H3K36me3 are also clustered along the Y loops, with H3K4me3 more associated with diffuse chromatin compared to H3K27me3. These histone modifications form domains that can be stretches of Y loop chromatin micrometres long, or can be in short alternating domains. The different histone modifications are associated with different sizes of chromatin clusters and unique morphologies. Strikingly, a single chromatin cluster almost always only contains only one type of the histone modifications that were labelled, suggesting exclusivity, and therefore regulation at the level of individual chromatin clusters. The active mark H3K36me3 is more associated with actively elongating RNA polymerase II than H3K27me3, with polymerase often appearing on what are assumed to be looping regions on the periphery of chromatin clusters.These results provide a foundation for understanding the relationship between chromatin state, chromatin organisation, and transcription regulation - with potential implications for pause-release dynamics, splicing complex organisation and chromatin dynamics during polymerase progression along a gene.
Collapse
Affiliation(s)
- Stefan A Koestler
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3DY, UK
| | - Madeleine L Ball
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3DY, UK
| | - Leila Muresan
- Cambridge Advanced Imaging Centre, University of Cambridge, Downing Site, Cambridge, CB2 3DY, UK
| | - Vineet Dinakaran
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3DY, UK
| | - Robert White
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge, CB2 3DY, UK.
| |
Collapse
|
6
|
Biernat E, Verma M, Govind CK. Genome-wide regulation of Pol II, FACT, and Spt6 occupancies by RSC in Saccharomyces cerevisiae. Gene 2024; 893:147959. [PMID: 37923091 PMCID: PMC10872467 DOI: 10.1016/j.gene.2023.147959] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
RSC (remodels the structure of chromatin) is an essential ATP-dependent chromatin remodeling complex in Saccharomyces cerevisiae. RSC utilizes its ATPase subunit, Sth1, to slide or remove nucleosomes. RSC has been shown to regulate the width of the nucleosome-depleted regions (NDRs) by sliding the flanking nucleosomes away from NDRs. As such, when RSC is depleted, nucleosomes encroach NDRs, leading to transcription initiation defects. In this study, we examined the effects of the catalytic-dead Sth1 on transcription and compared them to those observed during acute and rapid Sth1 depletion by auxin-induced degron strategy. We found that rapid depletion of Sth1 reduces recruitment of TBP and Pol II in highly transcribed genes, as would be expected considering its role in regulating chromatin structure at promoters. In contrast, cells harboring the catalytic-dead Sth1 (sth1-K501R) exhibited a severe reduction in TBP binding, but, surprisingly, also displayed a substantial accumulation in Pol II occupancies within coding regions. The Pol II occupancies further increased upon depleting endogenous Sth1 in the catalytic-dead mutant, suggesting that the inactive Sth1 contributes to Pol II accumulation in coding regions. Notwithstanding the Pol II increase, the ORF occupancies of histone chaperones, FACT and Spt6 were significantly reduced in the mutant. These results suggest a potential role for RSC in recruiting/retaining these chaperones in coding regions. Pol II accumulation despite substantial reductions in TBP, FACT, and Spt6 occupancies in the catalytic-dead mutant could indicate severe transcription elongation and termination defects. Such defects would be consistent with studies showing that RSC is recruited to coding regions in a transcription-dependent manner. Thus, these findings imply a role for RSC in transcription elongation and termination processes, in addition to its established role in transcription initiation.
Collapse
Affiliation(s)
- Emily Biernat
- Department of Biological Sciences, Mathematics and Science Center, Oakland University, Rochester, MI 48309, USA
| | - Mansi Verma
- Department of Biological Sciences, Mathematics and Science Center, Oakland University, Rochester, MI 48309, USA
| | - Chhabi K Govind
- Department of Biological Sciences, Mathematics and Science Center, Oakland University, Rochester, MI 48309, USA.
| |
Collapse
|
7
|
Qadir Nanakali NM, Maleki Dana P, Sadoughi F, Asemi Z, Sharifi M, Asemi R, Yousefi B. The role of dietary polyphenols in alternating DNA methylation in cancer. Crit Rev Food Sci Nutr 2023; 63:12256-12269. [PMID: 35848113 DOI: 10.1080/10408398.2022.2100313] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Natural products such as curcumin, quercetin, and resveratrol have been shown to have antitumor effectsand several studies have examined their role in treating cancer, either alone or in combination with other chemotherapeutic drugs. These compounds are capable of affecting different cancer-related mechanisms, such as proliferation, inflammation, invasion, and metastasis. Along with all of the benefits of these agents, affecting epigenetic processes is one of the most important aspects of their impact. Epigenetic modifications can be categorized into three main processes that include DNA methylation, histone modification, and regulation of small non-coding RNAs. Therefore, targeting DNA methylation can be used as a cancer treatment strategy by identifying or developing methylation modulators. Herein, we take a look into the studies investigating the role of natural products (e.g. curcumin, resveratrol, epigallocatechin gallate (EGCG), and quercetin) in alternating the DNA methylation status of various cancer cells. We discuss how these compounds reduce the expression of enzymes mediating the methylation of tumor suppressor genes and thereby, increasing the expression of tumor suppressors while reactivating antitumor signaling pathways.
Collapse
Affiliation(s)
- Nadir Mustafa Qadir Nanakali
- Department of Biomedical Science, College of Science, Cihan University-Erbil, Kurdistan Region, Erbil, Iraq
- Department of Biology, College of Education, Salahaddin University-Erbil, Kurdistan Region, Erbil, Iraq
| | - Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Mehran Sharifi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Reza Asemi
- Department of Internal Medicine, School of Medicine, Cancer Prevention Research Center, Seyyed Al-Shohada Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Maldonado R, Längst G. The chromatin - triple helix connection. Biol Chem 2023; 404:1037-1049. [PMID: 37506218 DOI: 10.1515/hsz-2023-0189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023]
Abstract
Mammalian genomes are extensively transcribed, producing a large number of coding and non-coding transcripts. A large fraction of the nuclear RNAs is physically associated with chromatin, functioning in gene activation and silencing, shaping higher-order genome organisation, such as involvement in long-range enhancer-promoter interactions, transcription hubs, heterochromatin, nuclear bodies and phase transitions. Different mechanisms allow the tethering of these chromatin-associated RNAs (caRNA) to chromosomes, including RNA binding proteins, the RNA polymerases and R-loops. In this review, we focus on the sequence-specific targeting of RNA to DNA by forming triple helical structures and describe its interplay with chromatin. It turns out that nucleosome positioning at triple helix target sites and the nucleosome itself are essential factors in determining the formation and stability of triple helices. The histone H3-tail plays a critical role in triple helix stabilisation, and the role of its epigenetic modifications in this process is discussed.
Collapse
Affiliation(s)
- Rodrigo Maldonado
- Institute of Anatomy, Histology, and Pathology, Faculty of Medicine, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Gernot Längst
- Regensburg Center for Biochemistry (RCB), University of Regensburg, D-93053 Regensburg, Germany
| |
Collapse
|
9
|
Senapati S, Irshad IU, Sharma AK, Kumar H. Fundamental insights into the correlation between chromosome configuration and transcription. Phys Biol 2023; 20:051002. [PMID: 37467757 DOI: 10.1088/1478-3975/ace8e5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
Eukaryotic chromosomes exhibit a hierarchical organization that spans a spectrum of length scales, ranging from sub-regions known as loops, which typically comprise hundreds of base pairs, to much larger chromosome territories that can encompass a few mega base pairs. Chromosome conformation capture experiments that involve high-throughput sequencing methods combined with microscopy techniques have enabled a new understanding of inter- and intra-chromosomal interactions with unprecedented details. This information also provides mechanistic insights on the relationship between genome architecture and gene expression. In this article, we review the recent findings on three-dimensional interactions among chromosomes at the compartment, topologically associating domain, and loop levels and the impact of these interactions on the transcription process. We also discuss current understanding of various biophysical processes involved in multi-layer structural organization of chromosomes. Then, we discuss the relationships between gene expression and genome structure from perturbative genome-wide association studies. Furthermore, for a better understanding of how chromosome architecture and function are linked, we emphasize the role of epigenetic modifications in the regulation of gene expression. Such an understanding of the relationship between genome architecture and gene expression can provide a new perspective on the range of potential future discoveries and therapeutic research.
Collapse
Affiliation(s)
- Swayamshree Senapati
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, Argul, Odisha 752050, India
| | - Inayat Ullah Irshad
- Department of Physics, Indian Institute of Technology, Jammu, Jammu 181221, India
| | - Ajeet K Sharma
- Department of Physics, Indian Institute of Technology, Jammu, Jammu 181221, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jammu 181221, India
| | - Hemant Kumar
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, Argul, Odisha 752050, India
| |
Collapse
|
10
|
Wu T, Cai W, Chen X. Epigenetic regulation of neurotransmitter signaling in neurological disorders. Neurobiol Dis 2023; 184:106232. [PMID: 37479091 DOI: 10.1016/j.nbd.2023.106232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/09/2023] [Accepted: 07/16/2023] [Indexed: 07/23/2023] Open
Abstract
Neurotransmission signaling is a highly conserved system attributed to various regulatory events. The excitatory and inhibitory neurotransmitter systems have been extensively studied, and their role in neuronal cell proliferation, synaptogenesis and dendrite formation in the adult brain is well established. Recent research has shown that epigenetic regulation plays a crucial role in mediating the expression of key genes associated with neurotransmitter pathways, including neurotransmitter receptor and transporter genes. The dysregulation of these genes has been linked to a range of neurological disorders such as attention-deficit/hyperactivity disorder, Parkinson's disease and schizophrenia. This article focuses on epigenetic regulatory mechanisms that control the expression of genes associated with four major chemical carriers in the brain: dopamine (DA), Gamma-aminobutyric acid (GABA), glutamate and serotonin. Additionally, we explore how aberrant epigenetic regulation of these genes can contribute to the pathogenesis of relevant neurological disorders. By targeting the epigenetic mechanisms that control neurotransmitter gene expression, there is a promising opportunity to advance the development of more effective treatments for neurological disorders with the potential to significantly improve the quality of life of individuals impacted by these conditions.
Collapse
Affiliation(s)
- Tingyan Wu
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China
| | - Weili Cai
- School of Medical Technology, Jiangsu College of Nursing, Huai'an 22305, China.
| | - Xi Chen
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| |
Collapse
|
11
|
Ohtomo H, Yamane T, Oda T, Kodera N, Kurita JI, Tsunaka Y, Amyot R, Ikeguchi M, Nishimura Y. Dynamic solution structures of whole human NAP1 dimer bound to one and two histone H2A-H2B heterodimers obtained by integrative methods. J Mol Biol 2023:168189. [PMID: 37380014 DOI: 10.1016/j.jmb.2023.168189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 06/30/2023]
Abstract
Nucleosome assembly protein 1 (NAP1) binds to histone H2A-H2B heterodimers, mediating their deposition on and eviction from the nucleosome. Human NAP1 (hNAP1) consists of a dimerization core domain and intrinsically disordered C-terminal acidic domain (CTAD), both of which are essential for H2A-H2B binding. Several structures of NAP1 proteins bound to H2A-H2B exhibit binding polymorphisms of the core domain, but the distinct structural roles of the core and CTAD domains remain elusive. Here, we have examined dynamic structures of the full-length hNAP1 dimer bound to one and two H2A-H2B heterodimers by integrative methods. Nuclear magnetic resonance (NMR) spectroscopy of full-length hNAP1 showed CTAD binding to H2A-H2B. Atomic force microscopy revealed that hNAP1 forms oligomers of tandem repeated dimers; therefore, we generated a stable dimeric hNAP1 mutant exhibiting the same H2A-H2B binding affinity as wild-type hNAP1. Size exclusion chromatography (SEC), multi-angle light scattering (MALS) and small angle X-ray scattering (SAXS), followed by modelling and molecular dynamics simulations, have been used to reveal the stepwise dynamic complex structures of hNAP1 binding to one and two H2A-H2B heterodimers. The first H2A-H2B dimer binds mainly to the core domain of hNAP1, while the second H2A-H2B binds dynamically to both CTADs. Based on our findings, we present a model of the eviction of H2A-H2B from nucleosomes by NAP1.
Collapse
Affiliation(s)
- Hideaki Ohtomo
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tsutomu Yamane
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Takashi Oda
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Jun-Ichi Kurita
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yasuo Tsunaka
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Romain Amyot
- WPI Nano Life Science Institute, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8258, Japan.
| |
Collapse
|
12
|
Nifker G, Grunwald A, Margalit S, Tulpova Z, Michaeli Y, Har-Gil H, Maimon N, Roichman E, Schütz L, Weinhold E, Ebenstein Y. Dam Assisted Fluorescent Tagging of Chromatin Accessibility (DAFCA) for Optical Genome Mapping in Nanochannel Arrays. ACS NANO 2023; 17:9178-9187. [PMID: 37154345 PMCID: PMC10210529 DOI: 10.1021/acsnano.2c12755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
Proteins and enzymes in the cell nucleus require physical access to their DNA target sites in order to perform genomic tasks such as gene activation and transcription. Hence, chromatin accessibility is a central regulator of gene expression, and its genomic profile holds essential information on the cell type and state. We utilized the E. coli Dam methyltransferase in combination with a fluorescent cofactor analogue to generate fluorescent tags in accessible DNA regions within the cell nucleus. The accessible portions of the genome are then detected by single-molecule optical genome mapping in nanochannel arrays. This method allowed us to characterize long-range structural variations and their associated chromatin structure. We show the ability to create whole-genome, allele-specific chromatin accessibility maps composed of long DNA molecules extended in silicon nanochannels.
Collapse
Affiliation(s)
- Gil Nifker
- Department
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Assaf Grunwald
- Department
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Sapir Margalit
- Department
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Zuzana Tulpova
- Department
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Yael Michaeli
- Department
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Hagai Har-Gil
- Department
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Noy Maimon
- Department
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Elad Roichman
- Department
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
| | - Leonie Schütz
- Institute
of Organic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany
| | - Elmar Weinhold
- Institute
of Organic Chemistry, RWTH Aachen University, D-52056 Aachen, Germany
| | - Yuval Ebenstein
- Department
of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 6997801 Tel Aviv, Israel
- Department
of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, 6997801 Tel Aviv, Israel
| |
Collapse
|
13
|
Pham K, Ho L, D'Incal CP, De Cock A, Berghe WV, Goethals P. Epigenetic analytical approaches in ecotoxicological aquatic research. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 330:121737. [PMID: 37121302 DOI: 10.1016/j.envpol.2023.121737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/15/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Environmental epigenetics has become a key research focus in global climate change studies and environmental pollutant investigations impacting aquatic ecosystems. Specifically, triggered by environmental stress conditions, intergenerational DNA methylation changes contribute to biological adaptive responses and survival of organisms to increase their tolerance towards these conditions. To critically review epigenetic analytical approaches in ecotoxicological aquatic research, we evaluated 78 publications reported over the past five years (2016-2021) that applied these methods to investigate the responses of aquatic organisms to environmental changes and pollution. The results show that DNA methylation appears to be the most robust epigenetic regulatory mark studied in aquatic animals. As such, multiple DNA methylation analysis methods have been developed in aquatic organisms, including enzyme restriction digestion-based and methyl-specific immunoprecipitation methods, and bisulfite (in)dependent sequencing strategies. In contrast, only a handful of aquatic studies, i.e. about 15%, have been focusing on histone variants and post-translational modifications due to the lack of species-specific affinity based immunological reagents, such as specific antibodies for chromatin immunoprecipitation applications. Similarly, ncRNA regulation remains as the least popular method used in the field of environmental epigenetics. Insights into the opportunities and challenges of the DNA methylation and histone variant analysis methods as well as decreasing costs of next generation sequencing approaches suggest that large-scale epigenetic environmental studies in model and non-model organisms will soon become available in the near future. Moreover, antibody-dependent and independent methods, such as mass spectrometry-based methods, can be used as an alternative epigenetic approach to characterize global changes of chromatin histone modifications in future aquatic research. Finally, a systematic guide for DNA methylation and histone variant methods is offered for ecotoxicological aquatic researchers to select the most relevant epigenetic analytical approach in their research.
Collapse
Affiliation(s)
- Kim Pham
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium.
| | - Long Ho
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Claudio Peter D'Incal
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Andrée De Cock
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, Antwerp, 2610, Belgium
| | - Peter Goethals
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, Ghent 9000, Belgium
| |
Collapse
|
14
|
Walton J, Lawson K, Prinos P, Finelli A, Arrowsmith C, Ailles L. PBRM1, SETD2 and BAP1 - the trinity of 3p in clear cell renal cell carcinoma. Nat Rev Urol 2023; 20:96-115. [PMID: 36253570 DOI: 10.1038/s41585-022-00659-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2022] [Indexed: 02/08/2023]
Abstract
Biallelic inactivation of the tumour suppressor gene Von Hippel-Lindau (VHL) occurs in the vast majority of clear cell renal cell carcinoma (ccRCC) instances, disrupting cellular oxygen-sensing mechanisms to yield a state of persistent pseudo-hypoxia, defined as a continued hypoxic response despite the presence of adequate oxygen levels. However, loss of VHL alone is often insufficient to drive oncogenesis. Results from genomic studies have shown that co-deletions of VHL with one (or more) of three genes encoding proteins involved in chromatin modification and remodelling, polybromo-1 gene (PBRM1), BRCA1-associated protein 1 (BAP1) and SET domain-containing 2 (SETD2), are common and important co-drivers of tumorigenesis. These genes are all located near VHL on chromosome 3p and are often altered following cytogenetic rearrangements that lead to 3p loss and precede the establishment of ccRCC. These three proteins have multiple roles in the regulation of crucial cancer-related pathways, including protection of genomic stability, antagonism of polycomb group (PcG) complexes to maintain a permissive transcriptional landscape in physiological conditions, and regulation of genes that mediate responses to immune checkpoint inhibitor therapy. An improved understanding of these mechanisms will bring new insights regarding cellular drivers of ccRCC growth and therapy response and, ultimately, will support the development of novel translational therapeutics.
Collapse
Affiliation(s)
- Joseph Walton
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Keith Lawson
- Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Panagiotis Prinos
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Antonio Finelli
- Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Cheryl Arrowsmith
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Laurie Ailles
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Strenkert D, Yildirim A, Yan J, Yoshinaga Y, Pellegrini M, O'Malley RC, Merchant SS, Umen JG. The landscape of Chlamydomonas histone H3 lysine 4 methylation reveals both constant features and dynamic changes during the diurnal cycle. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:352-368. [PMID: 35986497 PMCID: PMC9588799 DOI: 10.1111/tpj.15948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 05/29/2023]
Abstract
Chromatin modifications are epigenetic regulatory features with major roles in various cellular events, yet they remain understudied in algae. We interrogated the genome-wide distribution pattern of mono- and trimethylated histone H3 lysine 4 (H3K4) using chromatin-immunoprecipitation followed by deep-sequencing (ChIP-seq) during key phases of the Chlamydomonas cell cycle: early G1 phase, Zeitgeber Time 1 (ZT1), when cells initiate biomass accumulation, S/M phase (ZT13) when cells are replicating DNA and undergoing mitosis, and late G0 phase (ZT23) when they are quiescent. Tri-methylated H3K4 was predominantly enriched at transcription start sites of the majority of protein coding genes (85%). The likelihood of a gene being marked by H3K4me3 correlated with it being transcribed at some point during the life cycle but not necessarily by continuous active transcription, as exemplified by early zygotic genes, which may remain transcriptionally dormant for thousands of generations between sexual cycles. The exceptions to this rule were around 120 loci, some of which encode non-poly-adenylated transcripts, such as small nuclear RNAs and replication-dependent histones that had H3K4me3 peaks only when they were being transcribed. Mono-methylated H3K4 was the default state for the vast majority of histones that were bound outside of transcription start sites and terminator regions of genes. A small fraction of the genome that was depleted of any H3 lysine 4 methylation was enriched for DNA cytosine methylation and the genes within these DNA methylation islands were poorly expressed. Besides marking protein coding genes, H3K4me3 ChIP-seq data served also as a annotation tool for validation of hundreds of long non-coding RNA genes.
Collapse
Affiliation(s)
- Daniela Strenkert
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Asli Yildirim
- Institute of Quantitative and Computational Biosciences, University of California, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, 520 Boyer Hall, Los Angeles, CA, 90095, USA
| | - Juying Yan
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yuko Yoshinaga
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Matteo Pellegrini
- Institute of Quantitative and Computational Biosciences, University of California, Los Angeles, CA, 90095, USA
- Department of Molecular, Cell and Developmental Biology Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Ronan C O'Malley
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sabeeha S Merchant
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Department of Molecular & Cell Biology, University of California, Berkeley, CA, 94720, USA
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - James G Umen
- Donald Danforth Plant Science Center, St. Louis, MO, 63132, USA
| |
Collapse
|
16
|
Zhang X, Noberini R, Bonaldi T, Collemare J, Seidl MF. The histone code of the fungal genus Aspergillus uncovered by evolutionary and proteomic analyses. Microb Genom 2022; 8. [PMID: 36129736 PMCID: PMC9676040 DOI: 10.1099/mgen.0.000856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chemical modifications of DNA and histone proteins impact the organization of chromatin within the nucleus. Changes in these modifications, catalysed by different chromatin-modifying enzymes, influence chromatin organization, which in turn is thought to impact the spatial and temporal regulation of gene expression. While combinations of different histone modifications, the histone code, have been studied in several model species, we know very little about histone modifications in the fungal genus Aspergillus, whose members are generally well studied due to their importance as models in cell and molecular biology as well as their medical and biotechnological relevance. Here, we used phylogenetic analyses in 94 Aspergilli as well as other fungi to uncover the occurrence and evolutionary trajectories of enzymes and protein complexes with roles in chromatin modifications or regulation. We found that these enzymes and complexes are highly conserved in Aspergilli, pointing towards a complex repertoire of chromatin modifications. Nevertheless, we also observed few recent gene duplications or losses, highlighting Aspergillus species to further study the roles of specific chromatin modifications. SET7 (KMT6) and other components of PRC2 (Polycomb Repressive Complex 2), which is responsible for methylation on histone H3 at lysine 27 in many eukaryotes including fungi, are absent in Aspergilli as well as in closely related Penicillium species, suggesting that these lost the capacity for this histone modification. We corroborated our computational predictions by performing untargeted MS analysis of histone post-translational modifications in Aspergillus nidulans. This systematic analysis will pave the way for future research into the complexity of the histone code and its functional implications on genome architecture and gene regulation in fungi.
Collapse
Affiliation(s)
- Xin Zhang
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands.,Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Roberta Noberini
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy.,Department of Oncology and Haematology-Oncology, University of Milano, Via Santa Sofia 9/1, 20122 Milano, Italy
| | - Jerome Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
| | - Michael F Seidl
- Theoretical Biology & Bioinformatics Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
17
|
Strenkert D, Mingay M, Schmollinger S, Chen C, O'Malley RC, Merchant SS. An optimized ChIP-Seq framework for profiling histone modifications in Chromochloris zofingiensis. PLANT DIRECT 2022; 6:e392. [PMID: 35382117 PMCID: PMC8961045 DOI: 10.1002/pld3.392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/06/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
The eukaryotic green alga Chromochloris zofingiensis is a reference organism for studying carbon partitioning and a promising candidate for the production of biofuel precursors. Recent transcriptome profiling transformed our understanding of its biology and generally algal biology, but epigenetic regulation remains understudied and represents a fundamental gap in our understanding of algal gene expression. Chromatin immunoprecipitation followed by deep sequencing (ChIP-Seq) is a powerful tool for the discovery of such mechanisms, by identifying genome-wide histone modification patterns and transcription factor-binding sites alike. Here, we established a ChIP-Seq framework for Chr. zofingiensis yielding over 20 million high-quality reads per sample. The most critical steps in a ChIP experiment were optimized, including DNA shearing to obtain an average DNA fragment size of 250 bp and assessment of the recommended formaldehyde concentration for optimal DNA-protein cross-linking. We used this ChIP-Seq framework to generate a genome-wide map of the H3K4me3 distribution pattern and to integrate these data with matching RNA-Seq data. In line with observations from other organisms, H3K4me3 marks predominantly transcription start sites of genes. Our H3K4me3 ChIP-Seq data will pave the way for improved genome structural annotation in the emerging reference alga Chr. zofingiensis.
Collapse
Affiliation(s)
- Daniela Strenkert
- California Institute for Quantitative BiosciencesUniversity of California, BerkeleyBerkeleyCAUSA
| | - Matthew Mingay
- DOE Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCAUSA
| | - Stefan Schmollinger
- California Institute for Quantitative BiosciencesUniversity of California, BerkeleyBerkeleyCAUSA
| | - Cindy Chen
- DOE Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCAUSA
| | - Ronan C. O'Malley
- DOE Joint Genome InstituteLawrence Berkeley National LaboratoryBerkeleyCAUSA
| | - Sabeeha S. Merchant
- Department of Plant and Microbial BiologyUniversity of California, BerkeleyBerkeleyCAUSA
- Department of Molecular & Cell BiologyUniversity of California, BerkeleyBerkeleyCAUSA
- Division of Environmental Genomics and Systems BiologyLawrence Berkeley National LaboratoryBerkeleyCAUSA
| |
Collapse
|
18
|
Simon B, Lou HJ, Huet-Calderwood C, Shi G, Boggon TJ, Turk BE, Calderwood DA. Tousled-like kinase 2 targets ASF1 histone chaperones through client mimicry. Nat Commun 2022; 13:749. [PMID: 35136069 PMCID: PMC8826447 DOI: 10.1038/s41467-022-28427-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 01/25/2022] [Indexed: 12/26/2022] Open
Abstract
Tousled-like kinases (TLKs) are nuclear serine-threonine kinases essential for genome maintenance and proper cell division in animals and plants. A major function of TLKs is to phosphorylate the histone chaperone proteins ASF1a and ASF1b to facilitate DNA replication-coupled nucleosome assembly, but how TLKs selectively target these critical substrates is unknown. Here, we show that TLK2 selectivity towards ASF1 substrates is achieved in two ways. First, the TLK2 catalytic domain recognizes consensus phosphorylation site motifs in the ASF1 C-terminal tail. Second, a short sequence at the TLK2 N-terminus docks onto the ASF1a globular N-terminal domain in a manner that mimics its histone H3 client. Disrupting either catalytic or non-catalytic interactions through mutagenesis hampers ASF1 phosphorylation by TLK2 and cell growth. Our results suggest that the stringent selectivity of TLKs for ASF1 is enforced by an unusual interaction mode involving mutual recognition of a short sequence motifs by both kinase and substrate. Tousled-like kinase 2 (TLK2) phosphorylates ASF1 histone chaperones to promote nucleosome assembly in S phase. Here, the authors show that TLK2 targets ASF1 by simulating its client protein histone H3, exploiting a primordial protein interaction surface for regulatory control.
Collapse
Affiliation(s)
- Bertrand Simon
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | | | - Guangda Shi
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Titus J Boggon
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA.
| | - David A Calderwood
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA. .,Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
19
|
Ferrara MG, Stefani A, Pilotto S, Carbone C, Vita E, Di Salvatore M, D'Argento E, Sparagna I, Monaca F, Valente G, Vitale A, Piro G, Belluomini L, Milella M, Tortora G, Bria E. The Renaissance of KRAS Targeting in Advanced Non-Small-Cell Lung Cancer: New Opportunities Following Old Failures. Front Oncol 2022; 11:792385. [PMID: 35004317 PMCID: PMC8733471 DOI: 10.3389/fonc.2021.792385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/06/2021] [Indexed: 12/14/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) represents the perfect paradigm of ‘precision medicine’ due to its complex intratumoral heterogeneity. It is truly characterized by a range of molecular alterations that can deeply influence the natural history of this disease. Several molecular alterations have been found over time, paving the road to biomarker-driven therapy and radically changing the prognosis of ‘oncogene addicted’ NSCLC patients. Kirsten rat sarcoma (KRAS) mutations are present in up to 30% of NSCLC (especially in adenocarcinoma histotype) and have been identified decades ago. Since its discovery, its molecular characteristics and its marked affinity to a specific substrate have led to define KRAS as an undruggable alteration. Despite that, many attempts have been made to develop drugs capable of targeting KRAS signaling but, until a few years ago, these efforts have been unsuccessful. Comprehensive genomic profiling and wide-spectrum analysis of genetic alterations have only recently allowed to identify different types of KRAS mutations. This tricky step has finally opened new frontiers in the treatment approach of KRAS-mutant patients and might hopefully increase their prognosis and quality of life. In this review, we aim to highlight the most interesting aspects of (epi)genetic KRAS features, hoping to light the way to the state of art of targeting KRAS in NSCLC.
Collapse
Affiliation(s)
- Miriam Grazia Ferrara
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Alessio Stefani
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Sara Pilotto
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Carmine Carbone
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Emanuele Vita
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | | | - Ettore D'Argento
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Ileana Sparagna
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Federico Monaca
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Giustina Valente
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Antonio Vitale
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Geny Piro
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Lorenzo Belluomini
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Michele Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Giampaolo Tortora
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| | - Emilio Bria
- Comprehensive Cancer Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy.,Section of Oncology, Department of Translational Medicine, Università Cattolica Del Sacro Cuore, Roma, Italy
| |
Collapse
|
20
|
Dey P, Mattick JS. High frequency of intron retention and clustered H3K4me3-marked nucleosomes in short first introns of human long non-coding RNAs. Epigenetics Chromatin 2021; 14:45. [PMID: 34579770 PMCID: PMC8477579 DOI: 10.1186/s13072-021-00419-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND It is established that protein-coding exons are preferentially localized in nucleosomes. To examine whether the same is true for non-coding exons, we analysed nucleosome occupancy in and adjacent to internal exons in genes encoding long non-coding RNAs (lncRNAs) in human CD4+ T cells and K562 cells. RESULTS We confirmed that internal exons in lncRNAs are preferentially associated with nucleosomes, but also observed an elevated signal from H3K4me3-marked nucleosomes in the sequences upstream of these exons. Examination of 200 genomic lncRNA loci chosen at random across all chromosomes showed that high-density regions of H3K4me3-marked nucleosomes, which we term 'slabs', are associated with genomic regions exhibiting intron retention. These retained introns occur in over 50% of lncRNAs examined and are mostly first introns with an average length of just 354 bp, compared to the average length of all human introns of 6355 and 7987 bp in mRNAs and lncRNAs, respectively. Removal of short introns from the dataset abrogated the high upstream H3K4me3 signal, confirming that the association of slabs and short lncRNA introns with intron retention holds genome-wide. The high upstream H3K4me3 signal is also associated with alternatively spliced exons, known to be prominent in lncRNAs. This phenomenon was not observed with mRNAs. CONCLUSIONS There is widespread intron retention and clustered H3K4me3-marked nucleosomes in short first introns of human long non-coding RNAs, which raises intriguing questions about the relationship of IR to lncRNA function and chromatin organization.
Collapse
Affiliation(s)
- Pinki Dey
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, 2052, Sydney, Australia
| | - John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, 2052, Sydney, Australia.
| |
Collapse
|
21
|
Wilson-Robles H, Miller T, Jarvis J, Terrell J, Kelly TK, Bygott T, Bougoussa M. Characterizing circulating nucleosomes in the plasma of dogs with hemangiosarcoma. BMC Vet Res 2021; 17:231. [PMID: 34187493 PMCID: PMC8243913 DOI: 10.1186/s12917-021-02934-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/10/2021] [Indexed: 11/24/2022] Open
Abstract
Background Nucleosomes consist of DNA wrapped around a histone octamer core like thread on a spool to condense DNA as chromatin into chromosomes. Diseases such as cancer or inflammation lead to cell death, chromatin fragmentation and release of nucleosomes into the blood. The Nu.Q™ platform measures circulating nucleosomes in the blood of humans that result from disease and has been used to detect and identify cancer even at early stages. The objectives of this study are to quantify and better characterize nucleosomes in dogs with various stages of hemangiosarcoma (HSA) using this ELISA-based assay. Samples from 77 dogs with a confirmed diagnosis of hemangiosarcoma and 134 healthy controls were utilized for this study. The HSA samples were recruited from the Texas A&M University Small Animal Clinic (TAMU-SAC) or purchased from biobanks. All control samples were recruited from the TAMU-SAC. Results Dogs with hemangiosarcoma had a 6.6-fold increase in their median plasma nucleosome concentrations compared to controls (AUC 92.9 %). Elevated nucleosome concentrations were seen at all stages of disease and nucleosome concentrations increased with the stage of the disease. Conclusions Plasma nucleosome concentrations are a reliable way to differentiate dogs with hemangiosarcoma from healthy dogs. Further testing is underway to better characterize cancer associated HSA circulating nucleosomes and optimize future diagnostics for canine HSA detection. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-021-02934-6.
Collapse
Affiliation(s)
- Heather Wilson-Robles
- College of Veterinary Medicine, Small Animal Clinical Sciences Department, Texas A&M University, College Station, TX, 77843, USA.
| | - Tasha Miller
- College of Veterinary Medicine, Small Animal Clinical Sciences Department, Texas A&M University, College Station, TX, 77843, USA
| | - Jill Jarvis
- College of Veterinary Medicine, Small Animal Clinical Sciences Department, Texas A&M University, College Station, TX, 77843, USA
| | - Jason Terrell
- Volition America & Volition Veterinary Diagnostic Development, 13215 Bee Cave Parkway, Galleria Oaks B, Suite 125, Austin, Texas, 78738, USA
| | - Theresa Kathleen Kelly
- College of Veterinary Medicine, Small Animal Clinical Sciences Department, Texas A&M University, College Station, TX, 77843, USA.,Volition America & Volition Veterinary Diagnostic Development, 13215 Bee Cave Parkway, Galleria Oaks B, Suite 125, Austin, Texas, 78738, USA
| | - Thomas Bygott
- Volition Diagnostics UK Ltd, 93-95 Gloucester Place, London, W1U 6JQ, UK
| | - Mhammed Bougoussa
- Belgian Volition SRL, 22 Rue Phocas Lejeune, Parc Scientifique Crealys, 5032, Isnes, Belgium
| |
Collapse
|
22
|
|
23
|
Martuszewski A, Paluszkiewicz P, Król M, Banasik M, Kepinska M. Donor-Derived Cell-Free DNA in Kidney Transplantation as a Potential Rejection Biomarker: A Systematic Literature Review. J Clin Med 2021; 10:jcm10020193. [PMID: 33430458 PMCID: PMC7827757 DOI: 10.3390/jcm10020193] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/02/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Kidney transplantation (KTx) is the best treatment method for end-stage kidney disease. KTx improves the patient's quality of life and prolongs their survival time; however, not all patients benefit fully from the transplantation procedure. For some patients, a problem is the premature loss of graft function due to immunological or non-immunological factors. Circulating cell-free DNA (cfDNA) is degraded deoxyribonucleic acid fragments that are released into the blood and other body fluids. Donor-derived cell-free DNA (dd-cfDNA) is cfDNA that is exogenous to the patient and comes from a transplanted organ. As opposed to an invasive biopsy, dd-cfDNA can be detected by a non-invasive analysis of a sample. The increase in dd-cfDNA concentration occurs even before the creatinine level starts rising, which may enable early diagnosis of transplant injury and adequate treatment to avoid premature graft loss. In this paper, we summarise the latest promising results related to cfDNA in transplant patients.
Collapse
Affiliation(s)
- Adrian Martuszewski
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (A.M.); (P.P.); (M.B.)
| | - Patrycja Paluszkiewicz
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (A.M.); (P.P.); (M.B.)
| | - Magdalena Król
- Students Scientific Association, Department of Biomedical and Environmental Analysis, Faculty of Pharmacy, Wroclaw Medical University, 50-556 Wroclaw, Poland;
| | - Mirosław Banasik
- Department of Nephrology and Transplantation Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (A.M.); (P.P.); (M.B.)
| | - Marta Kepinska
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
- Correspondence: ; Tel.: +48-71-784-0171
| |
Collapse
|
24
|
Kenzaki H, Takada S. Linker DNA Length is a Key to Tri-nucleosome Folding. J Mol Biol 2020; 433:166792. [PMID: 33383034 DOI: 10.1016/j.jmb.2020.166792] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/07/2020] [Accepted: 12/22/2020] [Indexed: 01/18/2023]
Abstract
The folding of a nucleosome array has long been one of the fundamental and unsolved problems in chromatin biology. In this study, we address how nucleosome array folding depends on the length of linker DNA. We performed molecular dynamics simulations of a tri-nucleosome, a minimal model of chromatin folding, with various linker lengths (LLs) ranging from 20 to 40 base pairs (bps). We found that the tri-nucleosome folding strongly depends on LLs, and classified the structure ensemble into five classes, named from trinuc-1 to trinuc-5. As a function of LL, the different classes appear, on average, every 2 bps with a period of 10 bps, and are characterized by distinct inter-nucleosome interactions. The trinuc-1 conformation corresponds to LL ~ 10n, where n is an integer, and is stabilized by the tight packing between the first and the third nucleosomes, consistent with a zigzag fiber form. Structures of the other four classes are more diverse and distributed continuously in the space of possible configurations. Histone-DNA electrostatic interactions in the tri-nucleosome are further analyzed.
Collapse
Affiliation(s)
- Hiroo Kenzaki
- Information Systems Division, Head Office for Information Systems and Cybersecurity, RIKEN, Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa, Sakyo, Kyoto 606-8502, Japan.
| |
Collapse
|
25
|
Huynh MT, Yadav SP, Reese JC, Lee TH. Nucleosome Dynamics during Transcription Elongation. ACS Chem Biol 2020; 15:3133-3142. [PMID: 33263994 DOI: 10.1021/acschembio.0c00617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The nucleosome is the basic packing unit of the eukaryotic genome. Dynamic interactions between DNA and histones in the nucleosome are the molecular basis of gene accessibility regulation that governs the kinetics of various DNA-templated processes such as transcription elongation by RNA Polymerase II (Pol II). On the basis of single-molecule FRET measurements with chemically modified histones, we investigated the nucleosome dynamics during transcription elongation and how it is affected by histone acetylation at H3 K56 and the histone chaperone Nap1, both of which can affect DNA-histone interactions. We observed that H3K56 acetylation dramatically shortens the pause duration of Pol II near the entry region of the nucleosome, while Nap1 induces no noticeable difference. We also found that the elongation rate of Pol II through the nucleosome is unaffected by the acetylation or Nap1. These results indicate that H3K56 acetylation facilitates Pol II translocation through the nucleosome by assisting paused Pol II to resume and that Nap1 does not affect Pol II progression. Following transcription, only a small fraction of nucleosomes remain intact, which is unaffected by H3K56 acetylation or Nap1. These results suggest that (i) spontaneous nucleosome opening enables Pol II progression, (ii) Pol II mediates nucleosome reassembly very inefficiently, and (iii) Nap1 in the absence of other factors does not promote nucleosome disassembly or reassembly during transcription.
Collapse
|
26
|
Zhang S, Gong Y, Li C, Yang W, Li L. Beyond regulations at DNA levels: A review of epigenetic therapeutics targeting cancer stem cells. Cell Prolif 2020; 54:e12963. [PMID: 33314500 PMCID: PMC7848960 DOI: 10.1111/cpr.12963] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 02/05/2023] Open
Abstract
In the past few years, the paramount role of cancer stem cells (CSCs), in terms of cancer initiation, proliferation, metastasis, invasion and chemoresistance, has been revealed by accumulating studies. However, this level of cellular plasticity cannot be entirely explained by genetic mutations. Research on epigenetic modifications as a complementary explanation for the properties of CSCs has been increasing over the past several years. Notably, therapeutic strategies are currently being developed in an effort to reverse aberrant epigenetic alterations using specific chemical inhibitors. In this review, we summarize the current understanding of CSCs and their role in cancer progression, and provide an overview of epigenetic alterations seen in CSCs. Importantly, we focus on primary cancer therapies that target the epigenetic modification of CSCs by the use of specific chemical inhibitors, such as histone deacetylase (HDAC) inhibitors, DNA methyltransferase (DNMT) inhibitors and microRNA‐based (miRNA‐based) therapeutics.
Collapse
Affiliation(s)
- Shunhao Zhang
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Sichuan Province, Chengdu, China
| | - Yanji Gong
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Temporomandibular Joint, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China.,State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Chunjie Li
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| | - Wenbin Yang
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Sichuan Province, Chengdu, China
| | - Longjiang Li
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Disease, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
27
|
Kuppu S, Ron M, Marimuthu MP, Li G, Huddleson A, Siddeek MH, Terry J, Buchner R, Shabek N, Comai L, Britt AB. A variety of changes, including CRISPR/Cas9-mediated deletions, in CENH3 lead to haploid induction on outcrossing. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2068-2080. [PMID: 32096293 PMCID: PMC7540420 DOI: 10.1111/pbi.13365] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/03/2020] [Accepted: 02/13/2020] [Indexed: 05/03/2023]
Abstract
Creating true-breeding lines is a critical step in plant breeding. Novel, completely homozygous true-breeding lines can be generated by doubled haploid technology in single generation. Haploid induction through modification of the centromere-specific histone 3 variant (CENH3), including chimeric proteins, expression of non-native CENH3 and single amino acid substitutions, has been shown to induce, on outcrossing to wild type, haploid progeny possessing only the genome of the wild-type parent, in Arabidopsis thaliana. Here, we report the characterization of 31 additional EMS-inducible amino acid substitutions in CENH3 for their ability to complement a knockout in the endogenous CENH3 gene and induce haploid progeny when pollinated by the wild type. We also tested the effect of double amino acid changes, which might be generated through a second round of EMS mutagenesis. Finally, we report on the effects of CRISPR/Cas9-mediated in-frame deletions in the αN helix of the CENH3 histone fold domain. Remarkably, we found that complete deletion of the αN helix, which is conserved throughout angiosperms, results in plants which exhibit normal growth and fertility while acting as excellent haploid inducers when pollinated by wild-type pollen. Both of these technologies, CRISPR mutagenesis and EMS mutagenesis, represent non-transgenic approaches to the generation of haploid inducers.
Collapse
Affiliation(s)
- Sundaram Kuppu
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Mily Ron
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Mohan P.A. Marimuthu
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
- UC Davis Genome CenterUniversity of CaliforniaDavisCAUSA
| | - Glenda Li
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Amy Huddleson
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | | | - Joshua Terry
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Ryan Buchner
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Nitzan Shabek
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| | - Luca Comai
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
- UC Davis Genome CenterUniversity of CaliforniaDavisCAUSA
| | - Anne B. Britt
- Department of Plant BiologyUniversity of CaliforniaDavisCAUSA
| |
Collapse
|
28
|
Courtney AJ, Kamei M, Ferraro AR, Gai K, He Q, Honda S, Lewis ZA. Normal Patterns of Histone H3K27 Methylation Require the Histone Variant H2A.Z in Neurospora crassa. Genetics 2020; 216:51-66. [PMID: 32651262 PMCID: PMC7463285 DOI: 10.1534/genetics.120.303442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/05/2020] [Indexed: 12/14/2022] Open
Abstract
Neurospora crassa contains a minimal Polycomb repression system, which provides rich opportunities to explore Polycomb-mediated repression across eukaryotes and enables genetic studies that can be difficult in plant and animal systems. Polycomb Repressive Complex 2 is a multi-subunit complex that deposits mono-, di-, and trimethyl groups on lysine 27 of histone H3, and trimethyl H3K27 is a molecular marker of transcriptionally repressed facultative heterochromatin. In mouse embryonic stem cells and multiple plant species, H2A.Z has been found to be colocalized with H3K27 methylation. H2A.Z is required for normal H3K27 methylation in these experimental systems, though the regulatory mechanisms are not well understood. We report here that Neurospora crassa mutants lacking H2A.Z or SWR-1, the ATP-dependent histone variant exchanger, exhibit a striking reduction in levels of H3K27 methylation. RNA-sequencing revealed downregulation of eed, encoding a subunit of PRC2, in an hH2Az mutant compared to wild type, and overexpression of EED in a ΔhH2Az;Δeed background restored most H3K27 methylation. Reduced eed expression leads to region-specific losses of H3K27 methylation, suggesting that differential dependence on EED concentration is critical for normal H3K27 methylation at certain regions in the genome.
Collapse
Affiliation(s)
- Abigail J Courtney
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Masayuki Kamei
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Aileen R Ferraro
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| | - Kexin Gai
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qun He
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shinji Honda
- Division of Chromosome Biology, Faculty of Medical Sciences, University of Fukui, 910-1193, Japan
| | - Zachary A Lewis
- Department of Microbiology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
29
|
Chen R, Zhang M, Zhou Y, Guo W, Yi M, Zhang Z, Ding Y, Wang Y. The application of histone deacetylases inhibitors in glioblastoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:138. [PMID: 32682428 PMCID: PMC7368699 DOI: 10.1186/s13046-020-01643-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
The epigenetic abnormality is generally accepted as the key to cancer initiation. Epigenetics that ensure the somatic inheritance of differentiated state is defined as a crucial factor influencing malignant phenotype without altering genotype. Histone modification is one such alteration playing an essential role in tumor formation, progression, and resistance to treatment. Notably, changes in histone acetylation have been strongly linked to gene expression, cell cycle, and carcinogenesis. The balance of two types of enzyme, histone acetyltransferases (HATs) and histone deacetylases (HDACs), determines the stage of histone acetylation and then the architecture of chromatin. Changes in chromatin structure result in transcriptional dysregulation of genes that are involved in cell-cycle progression, differentiation, apoptosis, and so on. Recently, HDAC inhibitors (HDACis) are identified as novel agents to keep this balance, leading to numerous researches on it for more effective strategies against cancers, including glioblastoma (GBM). This review elaborated influences on gene expression and tumorigenesis by acetylation and the antitumor mechanism of HDACis. Besdes, we outlined the preclinical and clinical advancement of HDACis in GBM as monotherapies and combination therapies.
Collapse
Affiliation(s)
- Rui Chen
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mengxian Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yangmei Zhou
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenjing Guo
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ziyan Zhang
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, Guangdong, China
| | - Yanpeng Ding
- Department of Oncology, Zhongnan Hospital, Wuhan University, Wuhan, 430030, China
| | - Yali Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
30
|
Kang J, Wang Z. Mut9p-LIKE KINASE Family Members: New Roles of the Plant-Specific Casein Kinase I in Plant Growth and Development. Int J Mol Sci 2020; 21:ijms21051562. [PMID: 32106561 PMCID: PMC7084540 DOI: 10.3390/ijms21051562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/21/2020] [Accepted: 02/22/2020] [Indexed: 11/16/2022] Open
Abstract
: Casein kinase I (CK1), a ubiquitous serine/threonine (Ser/Thr) protein kinase in eukaryotes, plays pivotal roles in a wide spectrum of cellular functions including metabolism, cell cycle progression, developmental control and stress responses. Plant CK1 evolves a lineage expansion, resulting in a unique branch of members exclusive to the kingdom. Among them, Arabidopsis Mut9p-LIKE KINASEs (MLKs) target diverse substrates including histones and the key regulatory proteins involving in physiological processes of light signaling, circadian rhythms, phytohormone and plant defense. Deregulation of the kinase activity by mutating the enzyme or the phosphorylation sites of substrates causes developmental disorders and susceptibility to adverse environmental conditions. MLKs have evolved as a general kinase that modifies transcription factors or primary regulatory proteins in a dynamic way. Here, we summarize the current knowledge of the roles of MLKs and MLK orthologs in several commercially important crops.
Collapse
Affiliation(s)
| | - Zhen Wang
- Correspondence: ; Tel.: +10-86-62816357
| |
Collapse
|
31
|
Abstract
Epigenetic modifications play an important role in disease pathogenesis and therefore are a focus of intense investigation. Epigenetic changes include DNA, RNA, and histone modifications along with expression of non-coding RNAs. Various factors such as environment, diet, and lifestyle can influence the epigenome. Dietary nutrients like vitamins can regulate both physiological and pathological processes through their direct impact on epigenome. Vitamin A acts as a major regulator of above-mentioned epigenetic mechanisms. B group vitamins including biotin, niacin, and pantothenic acid also participate in modulation of various epigenome. Further, vitamin C has shown to modulate both DNA methylation and histone modifications while few reports have also supported its role in miRNA-mediated pathways. Similarly, vitamin D also influences various epigenetic modifications of both DNA and histone by controlling the regulatory mechanisms. Despite the information that vitamins can modulate the epigenome, the detailed mechanisms of vitamin-mediated epigenetic regulations have not been explored fully and hence further detailed studies are required to decipher their role at epigenome level in both normal and disease pathogenesis. The current review summarizes the available literature on the role of vitamins as epigenetic modifier and highlights the key evidences for developing vitamins as potential epidrugs.
Collapse
Affiliation(s)
- Suza Mohammad Nur
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Suvasmita Rath
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Madison, WI, USA
| | - Varish Ahmad
- Health Information Technology Department, Faculty of Applied Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bushra Ateeq
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology-Kanpur (IIT K), Kanpur, India
| | - Mohammad Imran Khan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
32
|
Gao W, Lai B, Ni B, Zhao K. Genome-wide profiling of nucleosome position and chromatin accessibility in single cells using scMNase-seq. Nat Protoc 2020; 15:68-85. [PMID: 31836865 PMCID: PMC10895462 DOI: 10.1038/s41596-019-0243-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 09/06/2019] [Indexed: 02/07/2023]
Abstract
Nucleosome organization is important for chromatin compaction and accessibility. Profiling nucleosome positioning genome-wide in single cells provides critical information to understand the cell-to-cell heterogeneity of chromatin states within a cell population. This protocol describes single-cell micrococcal nuclease sequencing (scMNase-seq), a method for detecting genome-wide nucleosome positioning and chromatin accessibility simultaneously from a small number of cells or single cells. To generate scMNase-seq libraries, single cells are isolated by FACS sorting, lysed and digested by MNase. DNA is purified, end-repaired and ligated to Y-shaped adaptors. Following PCR amplification with indexing primers, the subnucleosome-sized (fragments with a length of ≤80 bp) and mononucleosome-sized (fragments with a length between 140 and 180 bp) DNA fragments are recovered and sequenced on Illumina HiSeq platforms. On average, 0.5-1 million unique mapped reads are obtained for each single cell. The mononucleosome-sized DNA fragments precisely define genome-wide nucleosome positions in single cells, while the subnucleosome-sized DNA fragments provide information on chromatin accessibility. Library preparation of scMNase-seq takes only 2 d, requires only standard molecular biology techniques and does not require sophisticated laboratory equipment. Processing of high-throughput sequencing data requires basic bioinformatics skills and uses publicly available bioinformatics software.
Collapse
Affiliation(s)
- Weiwu Gao
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, People's Republic of China
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
- Institute of Immunology of PLA, Third Military Medical University, Chongqing, People's Republic of China
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, People's Republic of China
| | - Binbin Lai
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA
| | - Bing Ni
- Department of Pathophysiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, People's Republic of China.
- Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, People's Republic of China.
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung and Blood Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
33
|
Good News for Nuclear Transgene Expression in Chlamydomonas. Cells 2019; 8:cells8121534. [PMID: 31795196 PMCID: PMC6952782 DOI: 10.3390/cells8121534] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 12/20/2022] Open
Abstract
Chlamydomonas reinhardtii is a well-established model system for basic research questions ranging from photosynthesis and organelle biogenesis, to the biology of cilia and basal bodies, to channelrhodopsins and photoreceptors. More recently, Chlamydomonas has also been recognized as a suitable host for the production of high-value chemicals and high-value recombinant proteins. However, basic and applied research have suffered from the inefficient expression of nuclear transgenes. The combined efforts of the Chlamydomonas community over the past decades have provided insights into the mechanisms underlying this phenomenon and have resulted in mutant strains defective in some silencing mechanisms. Moreover, many insights have been gained into the parameters that affect nuclear transgene expression, like promoters, introns, codon usage, or terminators. Here I critically review these insights and try to integrate them into design suggestions for the construction of nuclear transgenes that are to be expressed at high levels.
Collapse
|
34
|
Identification and Expression Analysis of Snf2 Family Proteins in Tomato ( Solanum lycopersicum). Int J Genomics 2019; 2019:5080935. [PMID: 31049349 PMCID: PMC6458923 DOI: 10.1155/2019/5080935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 12/18/2018] [Indexed: 02/03/2023] Open
Abstract
As part of chromatin-remodeling complexes (CRCs), sucrose nonfermenting 2 (Snf2) family proteins alter chromatin structure and nucleosome position by utilizing the energy of ATP, which allows other regulatory proteins to access DNA. Plant genomes encode a large number of Snf2 proteins, and some of them have been shown to be the key regulators at different developmental stages in Arabidopsis. Yet, little is known about the functions of Snf2 proteins in tomato (Solanum lycopersicum). In this study, 45 Snf2s were identified by the homologous search using representative sequences from yeast (S. cerevisiae), fruit fly (D. melanogaster), and Arabidopsis (A. thaliana) against the tomato genome annotation dataset. Tomato Snf2 proteins (also named SlCHRs) could be clustered into 6 groups and distributed on 11 chromosomes. All SlCHRs contained a helicase-C domain with about 80 amino acid residues and a SNF2-N domain with more variable amino acid residues. In addition, other conserved motifs were also identified in SlCHRs by using the MEME program. Expression profile analysis indicated that tomato Snf2 family genes displayed a wide range of expressions in different tissues and some of them were regulated by the environmental stimuli such as salicylic acid, abscisic acid, salt, and cold. Taken together, these results provide insights into the functions of SlCHRs in tomato.
Collapse
|
35
|
Guzman‐Chavez F, Salo O, Samol M, Ries M, Kuipers J, Bovenberg RAL, Vreeken RJ, Driessen AJM. Deregulation of secondary metabolism in a histone deacetylase mutant of Penicillium chrysogenum. Microbiologyopen 2018; 7:e00598. [PMID: 29575742 PMCID: PMC6182556 DOI: 10.1002/mbo3.598] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/08/2018] [Accepted: 01/12/2018] [Indexed: 11/08/2022] Open
Abstract
The Pc21 g14570 gene of Penicillium chrysogenum encodes an ortholog of a class 2 histone deacetylase termed HdaA which may play a role in epigenetic regulation of secondary metabolism. Deletion of the hdaA gene induces a significant pleiotropic effect on the expression of a set of polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS)-encoding genes. The deletion mutant exhibits a decreased conidial pigmentation that is related to a reduced expression of the PKS gene Pc21 g16000 (pks17) responsible for the production of the pigment precursor naphtha-γ-pyrone. Moreover, the hdaA deletion caused decreased levels of the yellow pigment chrysogine that is associated with the downregulation of the NRPS-encoding gene Pc21 g12630 and associated biosynthetic gene cluster. In contrast, transcriptional activation of the sorbicillinoids biosynthetic gene cluster occurred concomitantly with the overproduction of associated compounds . A new compound was detected in the deletion strain that was observed only under conditions of sorbicillinoids production, suggesting crosstalk between biosynthetic gene clusters. Our present results show that an epigenomic approach can be successfully applied for the activation of secondary metabolism in industrial strains of P. chrysogenum.
Collapse
Affiliation(s)
- Fernando Guzman‐Chavez
- Molecular MicrobiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
- Kluyver Centre for Genomics of Industrial FermentationsDelftThe Netherlands
| | - Oleksandr Salo
- Molecular MicrobiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
- Kluyver Centre for Genomics of Industrial FermentationsDelftThe Netherlands
| | - Marta Samol
- Molecular MicrobiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
- Kluyver Centre for Genomics of Industrial FermentationsDelftThe Netherlands
| | - Marco Ries
- Division of Analytical BiosciencesLeiden/Amsterdam Center for Drug ResearchLeidenThe Netherlands
- Netherlands Metabolomics CentreLeiden UniversityLeidenThe Netherlands
| | - Jeroen Kuipers
- Department of Cell biologyUniversity Medical Center GroningenGroningenThe Netherlands
| | - Roel A. L. Bovenberg
- Synthetic Biology and Cell EngineeringGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
- DSM Biotechnology CenterDelftThe Netherlands
| | - Rob J. Vreeken
- Division of Analytical BiosciencesLeiden/Amsterdam Center for Drug ResearchLeidenThe Netherlands
- Netherlands Metabolomics CentreLeiden UniversityLeidenThe Netherlands
- Present address:
Rob J. Vreeken, Discovery SciencesJanssen R &DBeerseBelgium
| | - Arnold J. M. Driessen
- Molecular MicrobiologyGroningen Biomolecular Sciences and Biotechnology InstituteUniversity of GroningenGroningenThe Netherlands
- Kluyver Centre for Genomics of Industrial FermentationsDelftThe Netherlands
| |
Collapse
|
36
|
Khan MI, Rath S, Adhami VM, Mukhtar H. Targeting epigenome with dietary nutrients in cancer: Current advances and future challenges. Pharmacol Res 2018; 129:375-387. [DOI: 10.1016/j.phrs.2017.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/22/2017] [Accepted: 12/05/2017] [Indexed: 02/06/2023]
|
37
|
Korolev N, Lyubartsev AP, Nordenskiöld L. A systematic analysis of nucleosome core particle and nucleosome-nucleosome stacking structure. Sci Rep 2018; 8:1543. [PMID: 29367745 PMCID: PMC5784010 DOI: 10.1038/s41598-018-19875-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022] Open
Abstract
Chromatin condensation is driven by the energetically favourable interaction between nucleosome core particles (NCPs). The close NCP-NCP contact, stacking, is a primary structural element of all condensed states of chromatin in vitro and in vivo. However, the molecular structure of stacked nucleosomes as well as the nature of the interactions involved in its formation have not yet been systematically studied. Here we undertake an investigation of both the structural and physico-chemical features of NCP structure and the NCP-NCP stacking. We introduce an “NCP-centred” set of parameters (NCP-NCP distance, shift, rise, tilt, and others) that allows numerical characterisation of the mutual positions of the NCPs in the stacking and in any other structures formed by the NCP. NCP stacking in more than 140 published NCP crystal structures were analysed. In addition, coarse grained (CG) MD simulations modelling NCP condensation was carried out. The CG model takes into account details of the nucleosome structure and adequately describes the long range electrostatic forces as well as excluded volume effects acting in chromatin. The CG simulations showed good agreement with experimental data and revealed the importance of the H2A and H4 N-terminal tail bridging and screening as well as tail-tail correlations in the stacked nucleosomes.
Collapse
Affiliation(s)
- Nikolay Korolev
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| | - Alexander P Lyubartsev
- Department of Materials and Environmental Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore.
| |
Collapse
|
38
|
Rodriguez Y, Howard MJ, Cuneo MJ, Prasad R, Wilson SH. Unencumbered Pol β lyase activity in nucleosome core particles. Nucleic Acids Res 2017; 45:8901-8915. [PMID: 28911106 PMCID: PMC5587807 DOI: 10.1093/nar/gkx593] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/23/2017] [Accepted: 06/30/2017] [Indexed: 12/11/2022] Open
Abstract
Packaging of DNA into the nucleosome core particle (NCP) is considered to exert constraints to all DNA-templated processes, including base excision repair where Pol β catalyzes two key enzymatic steps: 5'-dRP lyase gap trimming and template-directed DNA synthesis. Despite its biological significance, knowledge of Pol β activities on NCPs is still limited. Here, we show that removal of the 5'-dRP block by Pol β is unaffected by NCP constraints at all sites tested and is even enhanced near the DNA ends. In contrast, strong inhibition of DNA synthesis is observed. These results indicate 5'-dRP gap trimming proceeds unperturbed within the NCP; whereas, gap filling is strongly limited. In the absence of additional factors, base excision repair in NCPs will stall at the gap-filling step.
Collapse
Affiliation(s)
- Yesenia Rodriguez
- From the Laboratory of Genome Integrity and Structural Biology, NIEHS-NIH, Research Triangle Park, NC 27709, USA
| | - Michael J. Howard
- From the Laboratory of Genome Integrity and Structural Biology, NIEHS-NIH, Research Triangle Park, NC 27709, USA
| | | | - Rajendra Prasad
- From the Laboratory of Genome Integrity and Structural Biology, NIEHS-NIH, Research Triangle Park, NC 27709, USA
| | - Samuel H. Wilson
- From the Laboratory of Genome Integrity and Structural Biology, NIEHS-NIH, Research Triangle Park, NC 27709, USA
| |
Collapse
|
39
|
Zhang H, Li T. Effects of spermidine and ATP on stabilities of chromatosomes and histone H1-depleted chromatosomes. Bioorg Med Chem Lett 2017; 27:1149-1153. [PMID: 28169161 DOI: 10.1016/j.bmcl.2017.01.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 11/15/2022]
Abstract
It is shown in our FRET studies that both chromatosomes and histone H1-depleted chromatosomes exist in their arm-closed forms in the absence of spermidine. In the presence of spermidine, however, these two types of structural assemblies are converted into their arm-open forms. In addition, ATP as polyanion is capable of suppressing the polycationic effect of spermidine, thus facilitating re-formation of arm-closed forms of these two types of structural assemblies. Our studies therefore illustrate that conversion between arm-closed and arm-open forms of chromatosomes and histone H1-depleted chromatosomes can be manipulated by varying concentrations of polycationic spermidine and polyanionic ATP.
Collapse
Affiliation(s)
- Hao Zhang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Tianhu Li
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore.
| |
Collapse
|
40
|
Plasmodium falciparum Nucleosomes Exhibit Reduced Stability and Lost Sequence Dependent Nucleosome Positioning. PLoS Pathog 2016; 12:e1006080. [PMID: 28033404 PMCID: PMC5198986 DOI: 10.1371/journal.ppat.1006080] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 11/19/2016] [Indexed: 11/19/2022] Open
Abstract
The packaging and organization of genomic DNA into chromatin represents an additional regulatory layer of gene expression, with specific nucleosome positions that restrict the accessibility of regulatory DNA elements. The mechanisms that position nucleosomes in vivo are thought to depend on the biophysical properties of the histones, sequence patterns, like phased di-nucleotide repeats and the architecture of the histone octamer that folds DNA in 1.65 tight turns. Comparative studies of human and P. falciparum histones reveal that the latter have a strongly reduced ability to recognize internal sequence dependent nucleosome positioning signals. In contrast, the nucleosomes are positioned by AT-repeat sequences flanking nucleosomes in vivo and in vitro. Further, the strong sequence variations in the plasmodium histones, compared to other mammalian histones, do not present adaptations to its AT-rich genome. Human and parasite histones bind with higher affinity to GC-rich DNA and with lower affinity to AT-rich DNA. However, the plasmodium nucleosomes are overall less stable, with increased temperature induced mobility, decreased salt stability of the histones H2A and H2B and considerable reduced binding affinity to GC-rich DNA, as compared with the human nucleosomes. In addition, we show that plasmodium histone octamers form the shortest known nucleosome repeat length (155bp) in vitro and in vivo. Our data suggest that the biochemical properties of the parasite histones are distinct from the typical characteristics of other eukaryotic histones and these properties reflect the increased accessibility of the P. falciparum genome. Nucleosomes are not positioned randomly on DNA but on preferential sites with respect to the underlying DNA sequence. Histones belong to the most conserved eukaryotic proteins, as sequence dependent nucleosome positioning is an essential regulatory feature of nucleosomes, determining the accessibility of regulatory factors to DNA. We determined the biochemical properties of plasmodium histones and show that they are distinct from human forms, explaining the accessible chromatin structure of P. falciparum. Amino acid exchanges in the histones do not present an adaption to the AT-rich genome, but rather reduce the binding affinity to GC-rich DNA sequences, resulting in rather unstable nucleosomes with labile H2A and H2B, requiring extra-nucleosomal positioning signals to keep them on place. Plasmodium chromatin exhibits the shortest nucleosome spacing known to date potentially inhibiting the formation of higher order structures and maintaining chromatin accessible.
Collapse
|
41
|
An Assay for Measuring Histone Variant Exchange within Nucleosomes In Vitro. Methods Mol Biol 2016. [PMID: 27854013 DOI: 10.1007/978-1-4939-6630-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The incorporation of histone variants into specific chromatin regions is a mechanism by which cells can regulate many important biological processes. One such example is H2A.Z, a highly conserved variant of H2A that is incorporated in genomic regulatory regions and contributes to control gene expression. H2A.Z variant exchange involves the removal of H2A-H2B dimers from a preassembled nucleosome and their replacement with H2A.Z-H2B dimers. A specific family of chromatin remodeling complexes, homologous to the yeast Swr1 complex, have been shown to be capable of this histone exchange activity both in vivo and in vitro. Here, we describe an assay to measure the histone H2A.Z exchange activity of recombinant human p400 on immobilized mononucleosomes in vitro. The assay can be adapted to other histone exchange complexes/catalytic subunits purified from any species.
Collapse
|
42
|
Canonical and Variant Forms of Histone H3 Are Deposited onto the Human Cytomegalovirus Genome during Lytic and Latent Infections. J Virol 2016; 90:10309-10320. [PMID: 27605676 DOI: 10.1128/jvi.01220-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/30/2016] [Indexed: 01/16/2023] Open
Abstract
Chromatin is the nucleoprotein complex that protects and compacts eukaryotic genomes. It is responsible for a large part of the epigenetic control of transcription. The genomes of DNA viruses such as human cytomegalovirus (HCMV) are devoid of histones within virions but are chromatinized and epigenetically regulated following delivery to the host cell nucleus. How chromatin is initially assembled on viral genomes and which variant forms of the core histone proteins are deposited are incompletely understood. We monitored the deposition of both ectopically expressed and endogenous histones H3.1 and H3.2 (collectively, H3.1/2) and H3.3 during lytic and latent HCMV infections. Here, we show that they are deposited on HCMV genomes during lytic and latent infections, suggesting similar mechanisms of viral chromatin assembly during the different infection types and indicating that both canonical and variant core histones may be important modulators of infecting viral genomes. We further show that association of both H3.1/2 and H3.3 occurs independent of viral DNA synthesis or de novo viral gene expression, implicating cellular factors and/or virion components in the formation of chromatin on virion-delivered genomes during both lytic and latent infections. IMPORTANCE It is well established that infecting herpesvirus genomes are chromatinized upon entry into the host cell nucleus. Why or how this occurs is a mystery. It is important to know why they are chromatinized in order to better understand cellular pathogen recognition (DNA sensing) pathways and viral fate determinations (lytic or latent) and to anticipate how artificially modulating chromatinization may impact viral infections. It is important to know how the genomes are chromatinized in order to potentially modulate the process for therapeutic effect. Our work showing that HCMV genomes are loaded with canonical and variant H3 histones during both lytic and latent infections strengthens the hypothesis that chromatinization pathways are similar between the two infection types, implicates virion or cellular factors in this process, and exposes the possibility that histone variants, in addition to posttranslational modification, may impact viral gene expression. These revelations are important to understanding and intelligently intervening in herpesvirus infections.
Collapse
|
43
|
Single-Molecule Imaging Reveals that Rad4 Employs a Dynamic DNA Damage Recognition Process. Mol Cell 2016; 64:376-387. [PMID: 27720644 DOI: 10.1016/j.molcel.2016.09.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 07/18/2016] [Accepted: 09/01/2016] [Indexed: 12/25/2022]
Abstract
Nucleotide excision repair (NER) is an evolutionarily conserved mechanism that processes helix-destabilizing and/or -distorting DNA lesions, such as UV-induced photoproducts. Here, we investigate the dynamic protein-DNA interactions during the damage recognition step using single-molecule fluorescence microscopy. Quantum dot-labeled Rad4-Rad23 (yeast XPC-RAD23B ortholog) forms non-motile complexes or conducts a one-dimensional search via either random diffusion or constrained motion. Atomic force microcopy analysis of Rad4 with the β-hairpin domain 3 (BHD3) deleted reveals that this motif is non-essential for damage-specific binding and DNA bending. Furthermore, we find that deletion of seven residues in the tip of β-hairpin in BHD3 increases Rad4-Rad23 constrained motion at the expense of stable binding at sites of DNA lesions, without diminishing cellular UV resistance or photoproduct repair in vivo. These results suggest a distinct intermediate in the damage recognition process during NER, allowing dynamic DNA damage detection at a distance.
Collapse
|
44
|
Solution structure of the isolated histone H2A-H2B heterodimer. Sci Rep 2016; 6:24999. [PMID: 27181506 PMCID: PMC4867618 DOI: 10.1038/srep24999] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/08/2016] [Indexed: 01/04/2023] Open
Abstract
During chromatin-regulated processes, the histone H2A-H2B heterodimer functions dynamically in and out of the nucleosome. Although detailed crystal structures of nucleosomes have been established, that of the isolated full-length H2A-H2B heterodimer has remained elusive. Here, we have determined the solution structure of human H2A-H2B by NMR coupled with CS-Rosetta. H2A and H2B each contain a histone fold, comprising four α-helices and two β-strands (α1-β1-α2-β2-α3-αC), together with the long disordered N- and C-terminal H2A tails and the long N-terminal H2B tail. The N-terminal αN helix, C-terminal β3 strand, and 310 helix of H2A observed in the H2A-H2B nucleosome structure are disordered in isolated H2A-H2B. In addition, the H2A α1 and H2B αC helices are not well fixed in the heterodimer, and the H2A and H2B tails are not completely random coils. Comparison of hydrogen-deuterium exchange, fast hydrogen exchange, and {(1)H}-(15)N hetero-nuclear NOE data with the CS-Rosetta structure indicates that there is some conformation in the H2A 310 helical and H2B Lys11 regions, while the repression domain of H2B (residues 27-34) exhibits an extended string-like structure. This first structure of the isolated H2A-H2B heterodimer provides insight into its dynamic functions in chromatin.
Collapse
|
45
|
Norabuena EM, Barnes Williams S, Klureza MA, Goehring LJ, Gruessner B, Radhakrishnan ML, Jamieson ER, Núñez ME. Effect of the Spiroiminodihydantoin Lesion on Nucleosome Stability and Positioning. Biochemistry 2016; 55:2411-21. [PMID: 27074396 DOI: 10.1021/acs.biochem.6b00093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
DNA is constantly under attack by oxidants, generating a variety of potentially mutagenic covalently modified species, including oxidized guanine base products. One such product is spiroiminodihydantoin (Sp), a chiral, propeller-shaped lesion that strongly destabilizes the DNA helix in its vicinity. Despite its unusual shape and thermodynamic effect on double-stranded DNA structure, DNA duplexes containing the Sp lesion form stable nucleosomes upon being incubated with histone octamers. Indeed, among six different combinations of lesion location and stereochemistry, only two duplexes display a diminished ability to form nucleosomes, and these only by ∼25%; the other four are statistically indistinguishable from the control. Nonetheless, kinetic factors also play a role: when the histone proteins have less time during assembly of the core particle to sample both lesion-containing and normal DNA strands, they are more likely to bind the Sp lesion DNA than during slower assembly processes that better approximate thermodynamic equilibrium. Using DNase I footprinting and molecular modeling, we discovered that the Sp lesion causes only a small perturbation (±1-2 bp) on the translational position of the DNA within the nucleosome. Each diastereomeric pair of lesions has the same effect on nucleosome positioning, but lesions placed at different locations behave differently, illustrating that the location of the lesion and not its shape serves as the primary determinant of the most stable DNA orientation.
Collapse
Affiliation(s)
- Erika M Norabuena
- Department of Chemistry and Program in Biochemistry, Mount Holyoke College , South Hadley, Massachusetts 01075, United States
| | - Sara Barnes Williams
- Department of Chemistry and Program in Biochemistry, Mount Holyoke College , South Hadley, Massachusetts 01075, United States
| | - Margaret A Klureza
- Department of Chemistry and Program in Biochemistry, Wellesley College , Wellesley, Massachusetts 02481, United States
| | - Liana J Goehring
- Department of Chemistry and Program in Biochemistry, Wellesley College , Wellesley, Massachusetts 02481, United States
| | - Brian Gruessner
- Department of Chemistry and Program in Biochemistry, Smith College , Northampton, Massachusetts 01063, United States
| | - Mala L Radhakrishnan
- Department of Chemistry and Program in Biochemistry, Wellesley College , Wellesley, Massachusetts 02481, United States
| | - Elizabeth R Jamieson
- Department of Chemistry and Program in Biochemistry, Smith College , Northampton, Massachusetts 01063, United States
| | - Megan E Núñez
- Department of Chemistry and Program in Biochemistry, Wellesley College , Wellesley, Massachusetts 02481, United States
| |
Collapse
|
46
|
Saurabh S, Glaser MA, Lansac Y, Maiti PK. Atomistic Simulation of Stacked Nucleosome Core Particles: Tail Bridging, the H4 Tail, and Effect of Hydrophobic Forces. J Phys Chem B 2016; 120:3048-60. [DOI: 10.1021/acs.jpcb.5b11863] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Suman Saurabh
- Center
for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Matthew A. Glaser
- Department
of Physics and Liquid Crystal Materials Research Center, University of Colorado, Boulder, Colorado 80309, United States
| | - Yves Lansac
- GREMAN, Université François Rabelais, CNRS UMR 7347, 37200 Tours, France
- School
of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Prabal K. Maiti
- Center
for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
47
|
Zhu P, Li G. Structural insights of nucleosome and the 30-nm chromatin fiber. Curr Opin Struct Biol 2016; 36:106-15. [PMID: 26872330 DOI: 10.1016/j.sbi.2016.01.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/14/2016] [Accepted: 01/22/2016] [Indexed: 01/15/2023]
Abstract
The eukaryotic genome is hierarchically packaged into chromatin in the nucleus. The organization and dynamics of 30-nm chromatin fibers, which is typically regarded as the secondary structure of chromatin, play a crucial role in regulating DNA accessibility for gene expression. Here we reviewed some recent progresses on the structural studies on nucleosomes, nucleosome-protein complexes, and chromatin fibers, focusing on the structural insights how the chromatin structure is regulated by different epigenetic regulation factors.
Collapse
Affiliation(s)
- Ping Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guohong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
48
|
Ohtomo H, Akashi S, Moriwaki Y, Okuwaki M, Osakabe A, Nagata K, Kurumizaka H, Nishimura Y. C‐terminal acidic domain of histone chaperone human
NAP
1 is an efficient binding assistant for histone H2A‐H2B, but not H3‐H4. Genes Cells 2016; 21:252-63. [DOI: 10.1111/gtc.12339] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/13/2015] [Indexed: 01/20/2023]
Affiliation(s)
- Hideaki Ohtomo
- Graduate School of Medical Life Science Yokohama City University 1‐7‐29 Suehiro‐cho, Tsurumi‐ku Yokohama 230‐0045 Japan
| | - Satoko Akashi
- Graduate School of Medical Life Science Yokohama City University 1‐7‐29 Suehiro‐cho, Tsurumi‐ku Yokohama 230‐0045 Japan
| | - Yoshihito Moriwaki
- Graduate School of Medical Life Science Yokohama City University 1‐7‐29 Suehiro‐cho, Tsurumi‐ku Yokohama 230‐0045 Japan
| | - Mitsuru Okuwaki
- Faculty of Medicine and Graduate School of Comprehensive Human Sciences University of Tsukuba 1‐1‐1 Tennodai Tsukuba 305‐8575 Japan
| | - Akihisa Osakabe
- Graduate School of Advanced Science and Engineering/RISE Waseda University 2‐2 Wakamatsu‐cho, Shinjuku‐ku Tokyo 162‐8480 Japan
| | - Kyosuke Nagata
- Faculty of Medicine and Graduate School of Comprehensive Human Sciences University of Tsukuba 1‐1‐1 Tennodai Tsukuba 305‐8575 Japan
| | - Hitoshi Kurumizaka
- Graduate School of Advanced Science and Engineering/RISE Waseda University 2‐2 Wakamatsu‐cho, Shinjuku‐ku Tokyo 162‐8480 Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science Yokohama City University 1‐7‐29 Suehiro‐cho, Tsurumi‐ku Yokohama 230‐0045 Japan
| |
Collapse
|
49
|
Singh R, Lillard JW, Singh S. Epigenetic Changes and Potential Targets in Pancreatic Cancer. EPIGENETIC ADVANCEMENTS IN CANCER 2016:27-63. [DOI: 10.1007/978-3-319-24951-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
50
|
Han YW, Sugiyama H, Harada Y. The application of fluorescence-conjugated pyrrole/imidazole polyamides in the characterization of protein–DNA complex formation. Biomater Sci 2016; 4:391-9. [DOI: 10.1039/c5bm00214a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fluorescent conjugates of Py–Im polyamides are used as sequence-specific fluorescent probes and applied to the characterisation of protein–DNA complex dynamics.
Collapse
Affiliation(s)
- Yong-Woon Han
- Institute for Integrated Cell-Materials Science (WPI-iCeMS)
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Hiroshi Sugiyama
- Institute for Integrated Cell-Materials Science (WPI-iCeMS)
- Kyoto University
- Kyoto 606-8501
- Japan
- Department of Chemistry
| | - Yoshie Harada
- Institute for Integrated Cell-Materials Science (WPI-iCeMS)
- Kyoto University
- Kyoto 606-8501
- Japan
- Graduate School of Biostudies
| |
Collapse
|