1
|
Zhang X, Gao M, Rao Z, Lei Z, Zeng J, Huang Z, Shen C, Zeng N. The antitumour activity of C 21 steroidal glycosides and their derivatives of Baishouwu: A review. JOURNAL OF ETHNOPHARMACOLOGY 2022; 293:115300. [PMID: 35430288 DOI: 10.1016/j.jep.2022.115300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baishouwu has been used in China for thousands of years since it was first discovered in the late Tang Dynasty and flourished in the Song and Ming Dynasties. The Chinese herbal medicines named Baishouwu include Cynanchum auriculatum Royle ex Wight., Cynanchum bungei Decne. and Cynanchum wilfordii Hemsl. It is described in the Sign of Materia Medica as "sweet, bitter, reinforce liver and kidney, and non-toxic". It is widely used for nourishing the blood to expel wind, reinforcing liver and kidney, strengthening bones and muscles. AIM OF THE REVIEW In this review, the current research status of the C21 steroidal glycosides and their derivatives of Baishouwu for malignant tumours and their anti-tumour mechanisms are discussed. This may lay the ground for potential application of Baishouwu and its active ingredients in the treatment of tumours. MATERIALS AND METHODS Scientific databases, including PubMed, Elsevier, Science Direct, Google Scholar, CNKI, WANFANG DATA and VIP were searched to gather data about Baishouwu and its C21 steroidal glycosides and their derivatives. RESULTS Prior literature indicates that Baishouwu has important biological activities such as anti-tumour, anti-epileptic, reducing cholesterol, protection of liver and kidney and immunomodulatory, which are of increasing interest, especially its anti-tumour activity. Recent studies demonstrate that the C21 steroidal glycosides of Baishouwu, which have prominent antitumour efficacy, are one of its main active ingredients. Presently, a variety of C21 steroidal glycosides have been isolated from Baishouwu medicinal part, the tuberous root. This review summarizes the various antitumour activities of the C21 steroidal glycosides and their derivatives of Baishouwu. CONCLUSIONS In this review, the antitumour effects and mechanisms of total C21 steroidal glycosides and monomers and derivatives of Baishouwu in vitro and in vivo were summarized. Baishouwu can inhibit tumourigenesis by blocking tumour cell cycle progression, regulating numerous signaling pathways, promoting apoptosis, inhibiting tumour cells proliferation and metastasis, improving immunity and so on. This review provides a theoretical basis for inheriting and developing the medical heritage of the motherland, exploring the resources of traditional Chinese medicine for ethnic minorities and clinical rational drug use.
Collapse
Affiliation(s)
- Xia Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Ming Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Zhili Rao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Ziqin Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China
| | - Zhangjun Huang
- Luzhou Pinchuang Technology Co. Ltd., Luzhou, Sichuan, 646000, PR China
| | - Caihong Shen
- Luzhou Pinchuang Technology Co. Ltd., Luzhou, Sichuan, 646000, PR China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China.
| |
Collapse
|
2
|
Rana T, Behl T, Sehgal A, Sachdeva M, Mehta V, Sharma N, Singh S, Bungau S. Exploring Sonic Hedgehog Cell Signaling in Neurogenesis: Its Potential Role in Depressive Behavior. Neurochem Res 2021; 46:1589-1602. [PMID: 33786718 DOI: 10.1007/s11064-021-03307-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 12/26/2022]
Abstract
Depression is the most prevalent form of neuropsychiatric disorder affecting all age groups globally. As per the estimation of the World Health Organization (WHO), depression will develop into the foremost reason for disability globally by the year 2030. The primary neurobiological mechanism implicated in depression remains ambiguous; however, dysregulation of molecular and signaling transductions results in depressive disorders. Several theories have been developed to explain the pathogenesis of depression, however, none of them completely explained all aspects of depressive-pathogenesis. In the current review, we aimed to explore the role of the sonic hedgehog (Shh) signaling pathway in the development of the depressive disorder and its potential as the therapeutic target. Shh signaling has a crucial function in neurogenesis and neural tube patterning during the development of the central nervous system (CNS). Shh signaling performs a basic function in embryogenesis and hippocampal neurogenesis. Moreover, antidepressants are also known to enhance neurogenesis in the hippocampus, which further suggests the potential of Shh signaling. Furthermore, there is decreased expression of a glioma-associated oncogene (Gli1) and Smoothened (Smo) in depression. Moreover, antidepressants also regulate brain-derived neurotrophic factor (BDNF) and wingless protein (Wnt) signaling, therefore, Shh may be implicated in the pathogenesis of the depressive disorder. Deregulation of Shh signaling in CNS results in neurological disorders such as depression.
Collapse
Affiliation(s)
- Tarapati Rana
- Government Pharmacy College, Seraj, Distt. Mandi, Himachal Pradesh, India.,Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Monika Sachdeva
- Fatimah College of Health Sciences, Al Ain, United Arab Emirates
| | - Vineet Mehta
- Government College of Pharmacy, Rohru, Distt. Shimla, Himachal Pradesh, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
3
|
Skoda AM, Simovic D, Karin V, Kardum V, Vranic S, Serman L. The role of the Hedgehog signaling pathway in cancer: A comprehensive review. Bosn J Basic Med Sci 2018; 18:8-20. [PMID: 29274272 DOI: 10.17305/bjbms.2018.2756] [Citation(s) in RCA: 476] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022] Open
Abstract
The Hedgehog (Hh) signaling pathway was first identified in the common fruit fly. It is a highly conserved evolutionary pathway of signal transmission from the cell membrane to the nucleus. The Hh signaling pathway plays an important role in the embryonic development. It exerts its biological effects through a signaling cascade that culminates in a change of balance between activator and repressor forms of glioma-associated oncogene (Gli) transcription factors. The components of the Hh signaling pathway involved in the signaling transfer to the Gli transcription factors include Hedgehog ligands (Sonic Hh [SHh], Indian Hh [IHh], and Desert Hh [DHh]), Patched receptor (Ptch1, Ptch2), Smoothened receptor (Smo), Suppressor of fused homolog (Sufu), kinesin protein Kif7, protein kinase A (PKA), and cyclic adenosine monophosphate (cAMP). The activator form of Gli travels to the nucleus and stimulates the transcription of the target genes by binding to their promoters. The main target genes of the Hh signaling pathway are PTCH1, PTCH2, and GLI1. Deregulation of the Hh signaling pathway is associated with developmental anomalies and cancer, including Gorlin syndrome, and sporadic cancers, such as basal cell carcinoma, medulloblastoma, pancreatic, breast, colon, ovarian, and small-cell lung carcinomas. The aberrant activation of the Hh signaling pathway is caused by mutations in the related genes (ligand-independent signaling) or by the excessive expression of the Hh signaling molecules (ligand-dependent signaling - autocrine or paracrine). Several Hh signaling pathway inhibitors, such as vismodegib and sonidegib, have been developed for cancer treatment. These drugs are regarded as promising cancer therapies, especially for patients with refractory/advanced cancers.
Collapse
Affiliation(s)
- Ana Marija Skoda
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
4
|
Downregulation of the Sonic Hedgehog/Gli pathway transcriptional target Neogenin-1 is associated with basal cell carcinoma aggressiveness. Oncotarget 2017; 8:84006-84018. [PMID: 29137400 PMCID: PMC5663572 DOI: 10.18632/oncotarget.21061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 09/03/2017] [Indexed: 12/24/2022] Open
Abstract
Basal Cell Carcinoma (BCC) is one of the most diagnosed cancers worldwide. It develops due to an unrestrained Sonic Hedgehog (SHH) signaling activity in basal cells of the skin. Certain subtypes of BCC are more aggressive than others, although the molecular basis of this phenomenon remains unknown. We have previously reported that Neogenin-1 (NEO1) is a downstream target gene of the SHH/GLI pathway in neural tissue. Given that SHH participates in epidermal homeostasis, here we analyzed the epidermal expression of NEO1 in order to identify whether it plays a role in adult epidermis or BCC. We describe the mRNA and protein expression profile of NEO1 and its ligands (Netrin-1 and RGMA) in human and mouse control epidermis and in a broad range of human BCCs. We identify in human BCC a significant positive correlation in the levels of NEO1 receptor, NTN-1 and RGMA ligands with respect to GLI1, the main target gene of the canonical SHH pathway. Moreover, we show via cyclopamine inhibition of the SHH/GLI pathway of ex vivo cultures that NEO1 likely functions as a downstream target of SHH/GLI signaling in the skin. We also show how Neo1 expression decreases throughout BCC progression in the K14-Cre:Ptch1lox/lox mouse model and that aggressive subtypes of human BCC exhibit lower levels of NEO1 than non-aggressive BCC samples. Taken together, these data suggest that NEO1 is a SHH/GLI target in epidermis. We propose that NEO1 may be important in tumor onset and is then down-regulated in advanced BCC or aggressive subtypes.
Collapse
|
5
|
Autosomal recessive ichthyosis with limb reduction defect: A simple association and not CHILD syndrome. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2016. [DOI: 10.1016/j.ejmhg.2015.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
6
|
Chen X, Fu J, Wang A. Expression of genes involved in progesterone receptor paracrine signaling and their effect on litter size in pigs. J Anim Sci Biotechnol 2016; 7:31. [PMID: 27231548 PMCID: PMC4881214 DOI: 10.1186/s40104-016-0090-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 05/05/2016] [Indexed: 11/25/2022] Open
Abstract
Background Embryonic mortality during the period of implantation strongly affects litter size in pigs. Progesterone receptor (PGR) paracrine signaling has been recognized to play a significant role in embryonic implantation. IHH, NR2F2, BMP2, FKBP4 and HAND2 were proved to involve in PGR paracrine signaling. The objective of this study was to evaluate the expression of IHH, NR2F2, BMP2, FKBP4 and HAND2 in endometrium of pregnant sows and to further investigate these genes’ effect on litter size in pigs. Real-time PCR, western blot and immunostaining were used to study target genes/proteins expression in endometrium in pigs. RFLP-PCR was used to detect single nucleotide polymorphisms (SNPs) of target genes. Results The results showed that the mRNA and protein expression levels of IHH, NR2F2 and BMP2 were up-regulated during implantation period (P < 0.05 or P < 0.01). All target proteins were mainly observed in luminal epithelium and glandular epithelium. Interestingly, the staining of NR2F2 and HAND2 was also strong in stroma. SNPs detection revealed that there was a -204C > A mutation in promoter region of NR2F2 gene. Three genotypes were found in Large White, Landrace and Duroc sows. A total of 1847 litter records from 625 sows genotyped at NR2F2 gene were used to analyze the total number born (TNB) and number born alive (NBA). The study of the effect on litter size suggested that sows with genotype CC tend to have higher litter size. Conclusions These results showed the expression patterns of genes/proteins involved in PGR paracrine signaling over implantation time. And the candidate gene for litter size was identified from genes involved in this signaling. This study could be a resource for further studies to identify the roles of these genes for embryonic implantation in pigs. Electronic supplementary material The online version of this article (doi:10.1186/s40104-016-0090-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiao Chen
- College of Animal Sciences and Technology, National Engineering Laboratory for Animal Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, China Agricultural University, Beijing, 100193 People's Republic of China ; Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093 People's Republic of China
| | - Jinluan Fu
- College of Animal Sciences and Technology, National Engineering Laboratory for Animal Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, China Agricultural University, Beijing, 100193 People's Republic of China
| | - Aiguo Wang
- College of Animal Sciences and Technology, National Engineering Laboratory for Animal Breeding & Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, China Agricultural University, Beijing, 100193 People's Republic of China
| |
Collapse
|
7
|
Khan AA, Harrison CN, McLornan DP. Targeting of the Hedgehog pathway in myeloid malignancies: still a worthy chase? Br J Haematol 2015; 170:323-35. [PMID: 25892100 DOI: 10.1111/bjh.13426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Deregulated Hedgehog (Hh) signalling activity may be associated with a broad range of cancer types and hence has become an attractive target for therapeutic intervention. Although initial haematological interest focused on the therapeutic targeting of this pathway in chronic myeloid leukaemia), small molecule inhibitors targeting the Hh pathway are now being tested in a range of other myeloid disorders, including myelofibrosis, myelodysplasia and acute myeloid leukaemia. In this review we will evaluate the rationale for targeting of the Hh pathway in myeloid diseases and discuss the novel agents that have entered the clinical arena. We will discuss pre-clinical models, emerging clinical trial data, and suggest how these targeted therapies may address current unmet medical needs. Finally, we will explore potential limitations of these therapies due to the emergence of secondary resistance mechanisms and speculate on future developments within this arena.
Collapse
Affiliation(s)
- Alesia A Khan
- Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Claire N Harrison
- Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Donal P McLornan
- Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London, UK.,Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
8
|
Suh HN, Han HJ. Sonic hedgehog increases the skin wound-healing ability of mouse embryonic stem cells through the microRNA 200 family. Br J Pharmacol 2014; 172:815-28. [PMID: 25257936 DOI: 10.1111/bph.12947] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 09/03/2014] [Accepted: 09/13/2014] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND AND PURPOSE To use stem cell therapy effectively, it is important to enhance the therapeutic potential of stem cells with soluble factors. Although sonic hedgehog (shh) is important in maintaining the stem cell, the recovery effect of mouse embryonic stem cells (mESCs) with shh has not yet been elucidated. The present study investigated the effect of mESCs with shh in skin recovery in vivo as well as the related intracellular signal pathways in vitro. EXPERIMENTAL APPROACH The healing effect of mESCs with shh on skin wounds was examined in vivo in ICR mice. The involvement of Smads, the microRNA (miR)-200 family, zinc finger E-box-binding homeobox (ZEBs) and E-cadherin on shh-induced mESC migration and self-renewal was determined in vitro. KEY RESULTS The mESCs with shh increased re-epithelialization and VEGF expression in skin wounds. Shh-treated mESCs increased both secreted and intracellular levels of VEGF. Shh induced dephosphorylation of glycogen synthase kinase 3β through the Smoothened receptor and increased the phosphorylation of Smad1 and Smad2/3 in mESCs. Shh-induced decrease of the mmu-miR-141, -200c, -200a, -200b and -429 expression levels was significantly reversed by Smad4 siRNA. Shh increased nuclear expression of ZEB1/ZEB2 and decreased E-cadherin expression while increasing cell migration and skin wound healing. Both these effects were reversed by mmu-miR-141 and -200b mimics. CONCLUSIONS AND IMPLICATIONS Mouse ESCs accelerated skin wound healing by shh through down-regulating E-cadherin, an effect dependent on mmu-miR-141 and -200b. Our data provides evidence for the effectiveness of shh in stem cell-based therapy in vivo.
Collapse
Affiliation(s)
- Han Na Suh
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, South Korea
| | | |
Collapse
|
9
|
Abstract
The hedgehog (Hh) signaling pathway is well established as being evolutionarily conserved across vertebrates, and is involved in organogenesis, hematopoiesis, embryogenesis and homeostasis of adult tissues. At a microscopic level, the Hh signaling pathway controls the proliferation, apoptosis, cell-cycle and differentiation programs of stem and progenitor cells. Increasing evidence suggests that aberrant activation of the Hh signaling pathway is related to neoplasm, including solid tumors and hematologic malignancies. Currently the Hh signaling pathway has become one of the most studied potential therapeutic targets in hematological malignancies. In this review, we focus on findings related to Hh signaling in the initiation, maintenance, progression and chemoresistance of hematological malignancies, looking forward to better targeted treatment strategies.
Collapse
Affiliation(s)
- Lingyun Geng
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University , Jinan, Shandong , P. R. China
| | | |
Collapse
|
10
|
Trimeric G protein-CARMA1 axis links smoothened, the hedgehog receptor transducer, to NF-κB activation in diffuse large B-cell lymphoma. Blood 2013; 121:4718-28. [PMID: 23632891 DOI: 10.1182/blood-2012-12-470153] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid malignancy in adults. Aberrant activation of Hedgehog (Hh) and nuclear factor (NF)-κB pathways is ubiquitously observed and known to mediate tumor growth, survival, and chemoresistance in DLBCL. Here, we find that activation of Hh signaling is positively correlated with NF-κB pathway in DLBCL tumors, and that smoothened (SMO), the signal transducer subunit of Hh pathway, contributes to NF-κB activation through recruiting G protein subunits Gαi and Gα12 to activate PKCβ/CARMA1/TRAF6/NEMO signaling axis followed by assembling of the CARMA1/BCL10/MALT1/TRAF6 complex to SMO. Moreover, functional inhibition of SMO enhances the cytotoxic effects of NF-κB inhibitor. Altogether, our study reveals a noncanonical Hh signaling pathway in which SMO activates trimeric G proteins and CARMA1-associated signaling complex, leading to NF-κB activation. This signaling cascade contributes to the survival of DLBCL and may serve as a potential target for combination therapies in DLBCL.
Collapse
|
11
|
Agarwal NK, Qu C, Kunkalla K, Kunkulla K, Liu Y, Vega F. Transcriptional regulation of serine/threonine protein kinase (AKT) genes by glioma-associated oncogene homolog 1. J Biol Chem 2013; 288:15390-401. [PMID: 23580656 DOI: 10.1074/jbc.m112.425249] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aberrant activation of Hedgehog signaling has been described in a growing number of cancers, including malignant lymphomas. Here, we report that canonical Hedgehog signaling modulates the transcriptional expression of AKT genes and that AKT1 is a direct transcriptional target of GLI1. We identified two putative binding sites for GLI1 in the AKT1 promoter region and confirmed their functionality using chromatin immunoprecipitation, luciferase reporter, and site-directed mutagenesis assays. Moreover, we provide evidence that GLI1 contributes to the survival of diffuse large B-cell lymphoma (DLBCL) cells and that this effect occurs in part through promotion of the transcription of AKT genes. This finding is of interest as constitutive activation of AKT has been described in DLBCL, but causative factors that explain AKT expression in this lymphoma type are not completely known. In summary, we demonstrated the existence of a novel cross-talk at the transcriptional level between Hedgehog signaling and AKT with biological significance in DLBCL.
Collapse
Affiliation(s)
- Nitin K Agarwal
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
12
|
Ramirez E, Singh RR, Kunkalla K, Liu Y, Qu C, Cain C, Multani AS, Lennon PA, Jackacky J, Ho M, Dawud S, Gu J, Yang S, Hu PC, Vega F. Defining causative factors contributing in the activation of hedgehog signaling in diffuse large B-cell lymphoma. Leuk Res 2012; 36:1267-73. [PMID: 22809693 DOI: 10.1016/j.leukres.2012.06.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/19/2012] [Accepted: 06/30/2012] [Indexed: 01/23/2023]
Abstract
Hedgehog (Hh) signaling pathway is activated in diffuse large B-cell lymphoma (DLBCL). Genetic abnormalities that explain activation of Hh signaling in DLBCL are unknown. We investigate the presence of amplifications of Hh genes that might result in activation of this pathway in DLBCL. Our data showed few extra copies of GLI1 and SMO due to chromosomal aneuploidies in a subset of DLBCL cell lines. We also showed that pharmacologic inhibition of PI3K/AKT and NF-κB pathways resulted in decreased expression of GLI1 and Hh ligands. In conclusion, our data support the hypothesis that aberrant activation of Hh signaling in DLBCL mainly results from integration of deregulated oncogenic signaling inputs converging into Hh signaling.
Collapse
Affiliation(s)
- Elisa Ramirez
- Molecular Genetic Technology Program, School of Health Sciences, The University of Texas M D Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Glioma-associated oncogene homologue 3, a hedgehog transcription factor, is highly expressed in Hodgkin and Reed-Sternberg cells of classical Hodgkin lymphoma. Hum Pathol 2011; 42:1643-52. [PMID: 21531006 DOI: 10.1016/j.humpath.2010.12.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 12/22/2010] [Accepted: 12/23/2010] [Indexed: 12/21/2022]
Abstract
The hedgehog signaling pathway has been shown to play a pathogenic role in diffuse large B-cell lymphoma and anaplastic large cell lymphoma, but has not been assessed in classical Hodgkin lymphoma. Glioma-associated oncogene homologues 1, 2, and 3 are transcriptional effectors of the hedgehog pathway. In this study, we first used real-time quantitative polymerase chain reaction to investigate the expressions of GLI1, GLI2, and GLI3 in 3 classical Hodgkin lymphoma cell lines. GLI1 and GLI2 were variably expressed, but GLI3 was highly expressed in all cell lines. We then used immunohistochemistry to assess glioma-associated oncogene homologues 1, 2, and 3 in 39 classical Hodgkin lymphoma patient samples. Glioma-associated oncogene homologues 1 and 2 were weakly to variably expressed in a subset of classical Hodgkin lymphoma patient samples. In contrast, glioma-associated oncogene homologue 3 showed strong, uniform nuclear expression in virtually all Hodgkin/Reed-Stenberg cells. We then performed an immunohistochemical survey of glioma-associated oncogene homologue 3 expression in 13 cases of nodular lymphocyte predominant Hodgkin lymphoma and 218 non-Hodgkin lymphomas. Most other lymphoma types showed variable or no expression of glioma-associated oncogene homologue 3, with a minor subset of cases of nodular lymphocyte predominant Hodgkin lymphoma, ALK-positive and ALK-negative anaplastic large cell lymphoma, and B-cell lymphoma, unclassifiable with features intermediate between diffuse large B-cell lymphoma and classical Hodgkin lymphoma showing a glioma-associated oncogene homologue 3 staining pattern indistinguishable from classical Hodgkin lymphoma. Our data provide a rationale to further investigate the biologic significance of glioma-associated oncogene homologue 3 in classical Hodgkin lymphoma biology.
Collapse
|
14
|
Singh RR, Kim JE, Davuluri Y, Drakos E, Cho-Vega JH, Amin HM, Vega F. Hedgehog signaling pathway is activated in diffuse large B-cell lymphoma and contributes to tumor cell survival and proliferation. Leukemia 2010; 24:1025-36. [PMID: 20200556 DOI: 10.1038/leu.2010.35] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hedgehog (HH) signaling is important in the pathogenesis of several malignancies. Recently, we described that HH signaling proteins are commonly expressed in diffuse large B-cell lymphoma (DLBCL); however, the functional role of HH pathway in DLBCL has not been explored. Here, we assessed the possibility that HH pathway activation contributes to the survival of DLBCL. We found that HH signaling inhibition induces predominantly cell-cycle arrest in DLBCL cells of germinal center (GC) B-cell type, and apoptosis in DLBCL cells of activated B-cell (ABC) type. Apoptosis after HH signaling inhibition in DLBCL cells of ABC type was associated with downregulation of BCL2; however HH inhibition was not associated with BCL2 downregulation in DLBCL of GC type. Functional inhibition of BCL2 significantly increased apoptosis induced by HH inhibition in DLBCL cells of both types. We also showed that DLBCL cells synthesize, secrete and respond to endogenous HH ligands, providing support for the existence of an autocrine HH signaling loop. Our findings provide novel evidence that dysregulation of HH pathway is involved in the biology of DLBCL and have significant therapeutic implications as they identify HH signaling as a potential therapeutic target in DLBCL, in particular for those lymphomas expressing the HH receptor smoothened.
Collapse
Affiliation(s)
- R R Singh
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Tsen C, Iltis M, Kaur N, Bayer C, Delcros JG, von Kalm L, Phanstiel O. A Drosophila Model To Identify Polyamine−Drug Conjugates That Target the Polyamine Transporter in an Intact Epithelium. J Med Chem 2007; 51:324-30. [DOI: 10.1021/jm701198s] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chung Tsen
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816-2366, Department of Biology, University of Central Florida, Orlando, Florida 32816-2368, and Groupe Cycle Cellulaire, UMR CNRS 6061 Génétique et Développement, IFR 97 Génomique Fonctionnelle et Santé, Faculté de Médecine, Université Rennes 1, 2 Avenue du Pr Leon Bernard, CS 34317, F-35043 Rennes Cédex, France
| | - Mark Iltis
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816-2366, Department of Biology, University of Central Florida, Orlando, Florida 32816-2368, and Groupe Cycle Cellulaire, UMR CNRS 6061 Génétique et Développement, IFR 97 Génomique Fonctionnelle et Santé, Faculté de Médecine, Université Rennes 1, 2 Avenue du Pr Leon Bernard, CS 34317, F-35043 Rennes Cédex, France
| | - Navneet Kaur
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816-2366, Department of Biology, University of Central Florida, Orlando, Florida 32816-2368, and Groupe Cycle Cellulaire, UMR CNRS 6061 Génétique et Développement, IFR 97 Génomique Fonctionnelle et Santé, Faculté de Médecine, Université Rennes 1, 2 Avenue du Pr Leon Bernard, CS 34317, F-35043 Rennes Cédex, France
| | - Cynthia Bayer
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816-2366, Department of Biology, University of Central Florida, Orlando, Florida 32816-2368, and Groupe Cycle Cellulaire, UMR CNRS 6061 Génétique et Développement, IFR 97 Génomique Fonctionnelle et Santé, Faculté de Médecine, Université Rennes 1, 2 Avenue du Pr Leon Bernard, CS 34317, F-35043 Rennes Cédex, France
| | - Jean-Guy Delcros
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816-2366, Department of Biology, University of Central Florida, Orlando, Florida 32816-2368, and Groupe Cycle Cellulaire, UMR CNRS 6061 Génétique et Développement, IFR 97 Génomique Fonctionnelle et Santé, Faculté de Médecine, Université Rennes 1, 2 Avenue du Pr Leon Bernard, CS 34317, F-35043 Rennes Cédex, France
| | - Laurence von Kalm
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816-2366, Department of Biology, University of Central Florida, Orlando, Florida 32816-2368, and Groupe Cycle Cellulaire, UMR CNRS 6061 Génétique et Développement, IFR 97 Génomique Fonctionnelle et Santé, Faculté de Médecine, Université Rennes 1, 2 Avenue du Pr Leon Bernard, CS 34317, F-35043 Rennes Cédex, France
| | - Otto Phanstiel
- Department of Chemistry, University of Central Florida, Orlando, Florida 32816-2366, Department of Biology, University of Central Florida, Orlando, Florida 32816-2368, and Groupe Cycle Cellulaire, UMR CNRS 6061 Génétique et Développement, IFR 97 Génomique Fonctionnelle et Santé, Faculté de Médecine, Université Rennes 1, 2 Avenue du Pr Leon Bernard, CS 34317, F-35043 Rennes Cédex, France
| |
Collapse
|
16
|
Kiselyov AS, Tkachenko SE, Balakin KV, Ivachtchenko AV. Small-molecule modulators of Hh and Wnt signaling pathways. Expert Opin Ther Targets 2007; 11:1087-101. [PMID: 17665980 DOI: 10.1517/14728222.11.8.1087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hedgehog (Hh) and Wnt signaling pathways play key roles in growth and patterning during embryonic development and in the postembryonic regulation of stem cell number in the epithelia. Numerous studies link aberrant modulation of these pathways to specific human diseases. This article focuses on general aspects of Hh and Wnt signal transduction and biologic molecules involved in the respective signaling cascades. Specifically, the authors summarize small-molecule modulators of both pathways that show promise as therapeutic modalities.
Collapse
Affiliation(s)
- Alex S Kiselyov
- Small Molecule Drug Discovery, ChemDiv, Inc., San Diego, CA 92121, USA.
| | | | | | | |
Collapse
|
17
|
Ruiz-Gómez A, Molnar C, Holguín H, Mayor F, de Celis JF. The cell biology of Smo signalling and its relationships with GPCRs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:901-12. [PMID: 17094938 DOI: 10.1016/j.bbamem.2006.09.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Revised: 09/20/2006] [Accepted: 09/25/2006] [Indexed: 12/11/2022]
Abstract
The Smoothened (Smo) signalling pathway participates in many developmental processes, contributing to the regulation of gene expression by controlling the activity of transcription factors belonging to the Gli family. The key elements of the pathway were identified by means of genetic screens carried out in Drosophila, and subsequent analysis in other model organisms revealed a high degree of conservation in both the proteins involved and in their molecular interactions. Recent analysis of the pathway, using a combination of biochemical and cell biological approaches, is uncovering the intricacies of Smo signalling, placing its elements in particular cellular compartments and qualifying the molecular processes involved. These include the synthesis, secretion and diffusion of the ligand, the activation of the receptor and the modifications in the activity of nuclear effectors. In this review we discuss recent advances in understanding biochemical and cellular aspects of Smo signalling, with particular focus in the similarities in the mechanism of signal transduction between Smo and other transmembrane proteins belonging to the G-Protein coupled receptors superfamily (GPCR).
Collapse
Affiliation(s)
- Ana Ruiz-Gómez
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | | | | | | | | |
Collapse
|
18
|
Abstract
AIM: To determine the role of Sonic hedgehog (Shh) pathway in colorectal adenocarcinomas through analysis of the expression of Shh pathway-related molecules, Shh, Ptch1, hedgehog-interacting protein (Hip), Gli1, Gli3 and PDGFRα.
METHODS: Expression of Shh in 25 colorectal adeno-carcinomas was detected by RT-PCR, in situ hybridization and immunohistochemistry. Expression of Ptch1 was observed by in situ hybridization and immunohistochemistry. Expression of Hip, Gli1, Gli3 and PDGFRα was analyzed by in situ hybridization.
RESULTS: Expression of cytokeratin AE1/AE3 was observed in the cytoplasm of colorectal crypts. Members of the Hh signaling pathway were expressed in colorectal epithelium. Shh was expressed in cytoplasm of dysplastic epithelial cells, while expression of Ptch1, Hip and Gli1 were mainly detected in the malignant crypts of adenocarcinomas. In contrast, PDGFRα was expressed highly in aberrant crypts and moderately in the stroma. Expression of Gli3 could not be detected in colorectal adenocarcinomas.
CONCLUSION: These data suggest that Shh-Ptch1-Gli1 signaling pathway may play a role in the progression of colorectal tumor.
Collapse
Affiliation(s)
- Yue-Hong Bian
- Institute of Developmental Biology, College of Life Science, Shandong University, Jinan 250010, Shandong Province, China
| | | | | | | | | | | |
Collapse
|
19
|
Semevolos SA, Nixon AJ, Fortier LA, Strassheim ML, Haupt J. Age-related expression of molecular regulators of hypertrophy and maturation in articular cartilage. J Orthop Res 2006; 24:1773-81. [PMID: 16788989 DOI: 10.1002/jor.20227] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to determine changes in the expression of regulatory molecules in normal equine articular cartilage throughout development up to 18 months of age. The hypothesis was that expression of these regulatory molecules would decrease from birth to postpubescence. Cartilage was harvested from normal femoropatellar or scapulohumeral joints from 34 fresh horse cadavers. Horses were placed in four age groups [prenatal (n = 5); prepubertal, 0-6 months (n = 11); pubertal, 7-14 months (n = 13); and postpubertal, 15-18 months (n = 5)]. Indian hedgehog (Ihh), Gli1, Gli3, Patched1 (Ptc1), Smoothened (Smo), Noggin, bone morphogenetic protein-6 (BMP-6), BMP-2, parathyroid hormone-related peptide (PTHrP), and PTH/PTHrP receptor mRNA expression levels were evaluated by real-time quantitative PCR. Spatial tissue mRNA and protein expression was determined by in situ hybridization and immunohistochemistry. The expression of PTHrP decreased (p = 0.002) in the pubertal group, while PTH/PTHrP receptor expression significantly increased (p = 0.001). No significant difference was found between groups for Ihh (p = 0.6) or Smo (p = 0.3) expression. In contrast, there was significantly increased expression of Ptc1 (p = 0.006), Gli1 (p = 0.04), and Gli3 (p = 0.007) in the pubertal group, and Gli3 (p = 0.007) remained elevated in the postpubertal group. The expression of BMP-6 significantly increased from prenatal to postnatal groups (p = 0.03) while BMP-2 expression increased during puberty and postpuberty (p = 0.03). The changes in expression of hedgehog and BMP signaling molecules in articular cartilage during postnatal development have not been shown previously. The increased expression of hedgehog receptor and transcription factors during puberty may indicate maturation of the deep articular layer during this time period.
Collapse
Affiliation(s)
- Stacy A Semevolos
- Department of Clinical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, USA.
| | | | | | | | | |
Collapse
|
20
|
Doles J, Cook C, Shi X, Valosky J, Lipinski R, Bushman W. Functional compensation in Hedgehog signaling during mouse prostate development. Dev Biol 2006; 295:13-25. [PMID: 16707121 DOI: 10.1016/j.ydbio.2005.12.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 11/23/2005] [Accepted: 12/01/2005] [Indexed: 01/04/2023]
Abstract
Studies of hedgehog signaling in prostate development using anti-Shh antibodies, chemical inhibitors of hedgehog signaling and Shh(-/-) mutant mice have yielded conflicting data regarding the requirements of hedgehog signaling for normal ductal budding and glandular morphogenesis. We used transgenic mouse models in combination with chemical inhibitors and renal grafting to clarify the role of Hh signaling in prostate development. These studies showed that genetic loss of Shh is accompanied by an up-regulation of Indian Hedgehog (Ihh) and maintenance of Hh pathway activity. We found that while neither Gli1 nor Gli3 are required for normal prostate ductal budding, the urogenital sinus (UGS) of the Gli2(-/-) mutant mouse displays aberrant ductal budding in utero. When grown as a subcapsular graft, the Gli2(-/-) UGS exhibited prostatic differentiation but also displayed areas of focal epithelial hyperplasia. Functional redundancy between the three Gli transcription factors appears to mitigate the effect of Gli2 LOF as evidenced by residual Hh pathway activity in the E14 Gli2(-/-) UGS that could be inhibited by cyclopamine treatment. Together, these studies reveal a surprising degree of functional redundancy operating both at the level of the ligand and at the level of transcriptional regulation that effectively mitigates phenotypes associated with Hh-signaling perturbations.
Collapse
Affiliation(s)
- Jason Doles
- Department of Surgery, University of Wisconsin-Madison, Box 3236 Clinical Science Center-G5, 600 Highland Avenue, Madison, WI 53792, USA
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Congenital hemidysplasia with ichthyosiform naevus and limb defects (CHILD) syndrome is a rare X-linked dominant disorder. The first case of squamous cell carcinoma arising within the affected ichthyosiform skin in a 33-year-old woman is reported.
Collapse
Affiliation(s)
- W K Jacyk
- Department of Dermatology, University of Pretoria, Pretoria, Republic of South Africa.
| | | |
Collapse
|
22
|
Deshpande G, Schedl P. HMGCoA reductase potentiates hedgehog signaling in Drosophila melanogaster. Dev Cell 2006; 9:629-38. [PMID: 16256738 DOI: 10.1016/j.devcel.2005.09.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Revised: 06/10/2005] [Accepted: 09/09/2005] [Indexed: 11/20/2022]
Abstract
Drosophila HMGCoA reductase (hmgcr) catalyzes the biosynthesis of a mevalonate precursor for isoprenoids and has been implicated in the production of a signal by the somatic gonadal precursor cells (SGPs) that attracts migrating germ cells. Here, we show that hmgcr functions in the hedgehog (hh) signaling pathway. When hmgcr activity is reduced, high levels of Hh accumulate in hh-expressing cells in each parasegment, while the adjacent "Hh-receiving" cells cannot sustain wg expression and fail to relocalize the Smoothened (Smo) receptor. Conversely, ectopic Hmgcr upregulates Hh signaling when it is produced in hh-expressing cells, but has no effect when produced in the receiving cells. These findings suggest that Hmgcr might orchestrate germ cell migration by promoting the release and/or transport of Hh from the SGPs. Consistent with this model, there are substantial germ cell migration defects in trans combinations between hmgcr and mutations in different components of the hh pathway.
Collapse
Affiliation(s)
- Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08540, USA.
| | | |
Collapse
|
23
|
Lin SL, Chang SJE, Ying SY. Transcriptional control of Shh/Ptc1 signaling in embryonic development. Gene 2005; 367:56-65. [PMID: 16330160 DOI: 10.1016/j.gene.2005.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 09/06/2005] [Accepted: 09/08/2005] [Indexed: 11/26/2022]
Abstract
In vivo profiling of signal-directed gene expression patterns is a major bottleneck in studying developmental biology. A signal molecule initiates its specific gene expression pattern through the activation of certain transcription factor (TF); however, tissue heterogeneity often masks this pattern due to intercellular complexity of other signal transduction pathways. To decipher the synergistic regulation of signal-directed gene expression in the tissue level, we report here a unique transcriptional responsive element (TRE) existing in the 5'-upstream promoter regions (5'-UPR) of the genes responding to the Shh/Ptc1 signal transduction pathway during feather placode development in chicken embryos. By locating the TRE homologue and its interactive TF, we were able to reveal the gene expression pattern of the Shh/Ptc1 signaling. We firstly demonstrated that homology profiling of the 5'-UPR of the genes, Gli1, TGF-beta2 and Msx2, responding to the Shh/Ptc1 signaling showed a more than 70% conserved region. Computer alignment of the consensus sequences in the conserved region revealed a 37-nucleotide TRE sequence, containing two regulatory elements homologous to human and mouse Gli-binding sites. Activation of this newly identified Shh/Ptc1-responsive TRE by active Smo signaling in chicken hepatoepithelial carcinoma cells elicited a strong synergistic expression of the Shh/Ptc1-downstream genes. Based on previous bioinformatics and the present experimental findings, we successfully established an in vivo signaling model for the Shh/Ptc1-directed embryonic feather morphogenesis.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Binding Sites
- Blotting, Western
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cell Line, Tumor
- Chick Embryo
- Consensus Sequence
- Conserved Sequence
- Enzyme-Linked Immunosorbent Assay
- Feathers/embryology
- Gene Expression Regulation, Developmental
- Genes, Reporter
- Green Fluorescent Proteins/metabolism
- Hedgehog Proteins
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Models, Biological
- Molecular Sequence Data
- Promoter Regions, Genetic
- Protein Binding
- Regulatory Elements, Transcriptional/genetics
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
- Signal Transduction
- Trans-Activators/chemistry
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Transcriptional Activation
Collapse
Affiliation(s)
- Shi-Lung Lin
- Department of Cell and Neurobiology, BMT-403, 1333 San Pablo Street, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | |
Collapse
|
24
|
Hay ED. The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 2005; 233:706-20. [PMID: 15937929 DOI: 10.1002/dvdy.20345] [Citation(s) in RCA: 453] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review centers on the role of the mesenchymal cell in development. The creation of this cell is a remarkable process, one where a tightly knit, impervious epithelium suddenly extends filopodia from its basal surface and gives rise to migrating cells. The ensuing process of epithelial-mesenchymal transformation (EMT) creates the mechanism that makes it possible for the mesenchymal cell to become mobile, so as to leave the epithelium and move through the extracellular matrix. EMT is now recognized as a very important mechanism for the remodeling of embryonic tissues, with the power to turn an epithelial somite into sclerotome mesenchyme, and the neural crest into mesenchyme that migrates to many targets. Thus, the time has come for serious study of the underlying mechanisms and the signaling pathways that are used to form the mesenchymal cell in the embryo. In this review, I discuss EMT centers in the embryo that are ready for such serious study and review our current understanding of the mechanisms used for EMT in vitro, as well as those that have been implicated in EMT in vivo. The purpose of this review is not to describe every study published in this rapidly expanding field but rather to stimulate the interest of the reader in the study of the role of the mesenchymal cell in the embryo, where it plays profound roles in development. In the adult, mesenchymal cells may give rise to metastatic tumor cells and other pathological conditions that we will touch on at the end of the review.
Collapse
Affiliation(s)
- Elizabeth D Hay
- Harvard Medical School, Department of Cell Biology, Boston, Massachusetts 02115, USA.
| |
Collapse
|
25
|
Semevolos SA, Strassheim ML, Haupt JL, Nixon AJ. Expression patterns of hedgehog signaling peptides in naturally acquired equine osteochondrosis. J Orthop Res 2005; 23:1152-9. [PMID: 16140195 DOI: 10.1016/j.orthres.2005.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 01/05/2005] [Accepted: 01/28/2005] [Indexed: 02/04/2023]
Abstract
Hypertrophic differentiation and endochondral ossification of growth cartilage are regulated by a complex array of signaling peptides, including parathyroid hormone-related protein (PTH-rP), Indian hedgehog (Ihh), and bone morphogenetic proteins (BMPs). This study investigated the expression of Ihh, Patched1 and 2 (Ptc1, Ptc2), Smoothened (Smo), Gli1, and Gli3, in naturally acquired articular osteochondrosis, using an equine model. Cartilage was harvested from osteochondrosis (OC) affected femoropatellar or scapulohumeral joints from immature horses and normal control horses of similar age. Ihh, Ptc1, Smo, Gli1, and Gli3 mRNA expression levels were evaluated by real-time quantitative PCR. Spatial tissue expression was determined by in situ hybridization for Ihh and Smo and immunohistochemistry for Ptc1 and Ptc2. The expression of Ihh was significantly increased in OC cartilage compared to normal control cartilage and was localized mainly to the deep layer of articular cartilage, just above the calcified zone, with some mild expression also present in the middle cartilage layer. The expression of Gli1 was significantly decreased in OC samples, but there was no significant difference in expression of Gli3, Ptc1 and Smo in OC cartilage compared to normal cartilage. The expression of Ptc1 protein was present at the junction of deep and calcified layers, while Ptc2 protein was expressed throughout the middle, deep, and calcified cartilage layers. Spatial expression of Smo was variable between animals and confined mainly to the middle and deep layers when present. Half of the OC samples displayed areas of moderate to strong Smo expression compared to mild or minimal expression in normal controls. The increased Ihh expression in OC suggests a role of Ihh in diseased cartilage, although it is not known if a PTH-rP/Ihh feedback cycle exists in articular cartilage. The disparity between increased Ihh expression and decreased Gli1 expression in OC cartilage suggests a different primary transcription factor for Ihh or the presence of an elevated Ihh inhibitor in these tissues.
Collapse
Affiliation(s)
- Stacy A Semevolos
- Comparative Orthopaedics Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
26
|
Oniscu A, James RM, Morris RG, Bader S, Malcomson RDG, Harrison DJ. Expression of Sonic hedgehog pathway genes is altered in colonic neoplasia. J Pathol 2004; 203:909-17. [PMID: 15258993 DOI: 10.1002/path.1591] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Hedgehog (Hh) signalling pathway is crucial for normal development and patterning of numerous human organs including the gut. Hh proteins are also expressed during gastric gland development and gastric epithelial differentiation in adults. Recently, dysregulation of these developmentally important genes has been implicated in cancer, leading to the present study of the expression of Hh signalling proteins in colon cancer. In this study, normal colon and colonic lesions (hyperplastic polyp, adenoma, and colonic adenocarcinoma) were examined by immunohistochemistry using antibodies against Hh signalling molecules: the secreted protein Sonic hedgehog (SHH), its receptor Patched (PTCH), and the PTCH-associated transmembrane protein Smoothened (SMOH). The study shows that Hh signalling pathway members are expressed in normal colonic epithelium. SHH was expressed at the top of the crypts and in a few basally located cells, while PTCH was detected in the neuroendocrine cells and SMOH at the brush border of superficial epithelium. RT-PCR analysis of laser-microdissected crypts from normal human colon confirmed that mRNAs encoding these proteins were expressed in colonic epithelium. Expression of SHH, PTCH, and SMOH was up-regulated in hyperplastic polyps, adenomas, and adenocarcinomas of the colon, and SHH expression correlated with increased expression of the proliferation marker Ki-67 in all lesions examined. To address whether the Hh signalling pathway is functional in the gut, the effect of Shh on epithelial cells in vitro was explored by treating primary murine colonocytes with either Shh peptide or neutralizing anti-Shh antibody. The proportion of cells in the S-phase was assessed by bromodeoxyuridine (BrdU) incorporation. It was found that exogenous Shh promotes cell proliferation in colonocytes, while anti-Shh inhibits proliferation, suggesting that Shh is required during proliferation of epithelial cells in vitro. It is suggested that SHH is required during epithelial proliferation in the colon and that there is a possible role for Hh signalling in epithelial colon tumour progression in vivo.
Collapse
Affiliation(s)
- Anca Oniscu
- Sir Alastair Currie Cancer Research UK Laboratories, Division of Pathology, Molecular Medicine Centre, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | | | | | | | | | | |
Collapse
|
27
|
Ng D, Johnston JJ, Turner JT, Boudreau EA, Wiggs EA, Theodore WH, Biesecker LG. Gonadal mosaicism in severe Pallister-Hall syndrome. Am J Med Genet A 2004; 124A:296-302. [PMID: 14708104 DOI: 10.1002/ajmg.a.20338] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pallister-Hall syndrome (PHS, MIM #146510) is characterized by central and postaxial polydactyly, hypothalamic hamartoma (HH), bifid epiglottis, imperforate anus, renal abnormalities, and pulmonary segmentation anomalies. It is inherited in an autosomal dominant pattern. Here, we describe a family with two affected children manifesting severe PHS with mental retardation, behavioral problems, and intractable seizures. Both parents are healthy, with normal intelligence, and have no malformations on physical, laryngoscopic, and cranial MRI exam. The atypical presentation of these children and the absence of parental manifestations suggested an autosomal recessive mode of inheritance or gonadal mosaicism. Sequencing of GLI3 revealed a two nucleotide deletion in exon 15 (c.3385_3386delTT) predicting a frameshift and premature stop at codon 1129 (p.F1129X) in the children while both parents have wild type alleles. Genotyping with GLI3 intragenic markers revealed that both children inherited the abnormal allele from their mother thus supporting gonadal mosaicism as the underlying mechanism of inheritance (paternity was confirmed). This is the first reported case of gonadal mosaicism in PHS. The severe CNS manifestations of these children are reminiscent of children with non-syndromic HH who often have progressive mental retardation with behavioral problems and intractable seizures. We conclude that the phenotypic spectrum of PHS can include severe CNS manifestations and that recurrence risks for PHS should include a proviso for gonadal mosaicism, though the frequency cannot be calculated from a single case report. Published 2003 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- David Ng
- Genetic Disease Research Branch, National Human Genome Research Institute, NIH, Bethesda, Maryland 20892-4472, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Successful implantation is the result of reciprocal interactions between the implantation-competent blastocyst and receptive uterus. Although various cellular aspects and molecular pathways of this dialogue have been identified, a comprehensive understanding of the implantation process is still missing. The receptive state of the uterus, which lasts for a limited period, is defined as the time when the uterine environment is conducive to blastocyst acceptance and implantation. A better understanding of the molecular signals that regulate uterine receptivity and implantation competency of the blastocyst is of clinical relevance because unraveling the nature of these signals may lead to strategies to correct implantation failure and improve pregnancy rates. Gene expression studies and genetically engineered mouse models have provided valuable clues to the implantation process with respect to specific growth factors, cytokines, lipid mediators, adhesion molecules, and transcription factors. However, a staggering amount of information from microarray experiments is also being generated at a rapid pace. If properly annotated and explored, this information will expand our knowledge regarding yet-to-be-identified unique, complementary, and/or redundant molecular pathways in implantation. It is hoped that the forthcoming information will generate new ideas and concepts for a process that is essential for maintaining procreation and solving major reproductive health issues in women.
Collapse
Affiliation(s)
- S K Dey
- Department of Pediatrics, Vanderbilt University Medical Center, MCN D4100, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Mistretta CM, Liu HX, Gaffield W, MacCallum DK. Cyclopamine and jervine in embryonic rat tongue cultures demonstrate a role for Shh signaling in taste papilla development and patterning: fungiform papillae double in number and form in novel locations in dorsal lingual epithelium. Dev Biol 2003; 254:1-18. [PMID: 12606278 DOI: 10.1016/s0012-1606(02)00014-3] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
From time of embryonic emergence, the gustatory papilla types on the mammalian tongue have stereotypic anterior and posterior tongue locations. Furthermore, on anterior tongue, the fungiform papillae are patterned in rows. Among the many molecules that have potential roles in regulating papilla location and pattern, Sonic hedgehog (Shh) has been localized within early tongue and developing papillae. We used an embryonic, tongue organ culture system that retains temporal, spatial, and molecular characteristics of in vivo taste papilla morphogenesis and patterning to study the role of Shh in taste papilla development. Tongues from gestational day 14 rat embryos, when papillae are just beginning to emerge on dorsal tongue, were maintained in organ culture for 2 days. The steroidal alkaloids, cyclopamine and jervine, that specifically disrupt the Shh signaling pathway, or a Shh-blocking antibody were added to the standard culture medium. Controls included tongues cultured in the standard medium alone, and with addition of solanidine, an alkaloid that resembles cyclopamine structurally but that does not disrupt Shh signaling. In cultures with cyclopamine, jervine, or blocking antibody, fungiform papilla numbers doubled on the dorsal tongue with a distribution that essentially eliminated inter-papilla regions, compared with tongues in standard medium or solanidine. In addition, fungiform papillae developed on posterior oral tongue, just in front of and beside the single circumvallate papilla, regions where fungiform papillae do not typically develop. The Shh protein was in all fungiform papillae in embryonic tongues, and tongue cultures with standard medium or cyclopamine, and was conspicuously localized in the basement membrane region of the papillae. Ptc protein had a similar distribution to Shh, although the immunoproduct was more diffuse. Fungiform papillae did not develop on pharyngeal or ventral tongue in cyclopamine and jervine cultures, or in the tongue midline furrow, nor was development of the single circumvallate papilla altered. The results demonstrate a prominent role for Shh in fungiform papilla induction and patterning and indicate differences in morphogenetic control of fungiform and circumvallate papilla development and numbers. Furthermore, a previously unknown, broad competence of dorsal lingual epithelium to form fungiform papillae on both anterior and posterior oral tongue is revealed.
Collapse
Affiliation(s)
- Charlotte M Mistretta
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
30
|
Lamm ML, Catbagan WS, Laciak RJ, Barnett DH, Hebner CM, Gaffield W, Walterhouse D, Iannaccone P, Bushman W. Sonic hedgehog activates mesenchymal Gli1 expression during prostate ductal bud formation. Dev Biol 2002; 249:349-66. [PMID: 12221011 DOI: 10.1006/dbio.2002.0774] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ductal budding in the developing prostate is a testosterone-dependent event that involves signaling between the urogenital sinus epithelium (UGE) and urogenital sinus mesenchyme (UGM). We show here that ductal bud formation is associated with focused expression of Sonic hedgehog (Shh) in the epithelium of nascent prostate buds and in the growing tips of elongating prostate ducts. This pattern of localized Shh expression occurs in response to testosterone stimulation. The gene for the Shh receptor, Ptc1, is expressed in the UGM, as are the members of the Gli gene family of transcriptional regulators (Gli1, Gli2, and Gli3). Expression of Ptc1, Gli1, and Gli2 is localized primarily to mesenchyme surrounding prostate buds, whereas Gli3 is expressed diffusely throughout the UGM. A strong dependence of Gli1 (and Ptc1) expression on Shh signaling is demonstrated by induction of expression in both the intact urogenital sinus and the isolated UGM by exogenous SHH peptide. A similar dependence of Gli2 and Gli3 expression on Shh is not observed. Nonetheless, the chemical inhibitor of Shh signaling, cyclopamine, produced a graded inhibition of Gli gene expression (Gli1>Gli2>Gli3) in urogenital sinus explants that was paralleled by a severe inhibition of ductal budding.
Collapse
Affiliation(s)
- Marilyn L Lamm
- Department of Urology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rabinow L. The proliferation of Drosophila in cancer research: a system for the functional characterization of tumor suppressors and oncogenes. Cancer Invest 2002; 20:531-56. [PMID: 12094549 DOI: 10.1081/cnv-120002154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Leonard Rabinow
- Laboratoire de Signalisation, Développement et Cancer, CNRS UPRES-A 8080, Bâtiment 445, Université de Paris XI, 91405 Orsay, France.
| |
Collapse
|
32
|
Matsumoto H, Zhao X, Das SK, Hogan BLM, Dey SK. Indian hedgehog as a progesterone-responsive factor mediating epithelial-mesenchymal interactions in the mouse uterus. Dev Biol 2002; 245:280-90. [PMID: 11977981 DOI: 10.1006/dbio.2002.0645] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genes encoding components of the hedgehog signaling pathway are dynamically expressed in the mouse uterus preparing for implantation. Indian hedgehog (Ihh), patched (Ptc), and Gli3 are expressed at low levels in the endometrial epithelium on day 1 of pregnancy. Transcription of Ihh increases dramatically in the luminal epithelium and glands from day 3, reaching very high levels on day 4. Over the same period, Ptc, Gli1, Gli2, and noggin are strongly upregulated in the underlying mesenchymal stroma. Transcription of Ihh in ovariectomized mice is induced by progesterone but not by estrogen. Lower induction of Ihh, Ptc, and Hoxa10 is seen in response to progesterone in the uteri of Pgr(-/-) mutant mice lacking progesterone nuclear steroid receptor. This finding suggests that the hormone may regulate Ihh through both nuclear receptor-dependent and -independent pathways. We describe a method for culturing uterine explants in the absence of epithelium. Under these conditions, recombinant N-SHH protein promotes the proliferation of mesenchyme cells and the expression of noggin. We propose that IHH made by the epithelium normally functions as a paracrine growth factor for stromal cells during the early stages of pregnancy.
Collapse
Affiliation(s)
- Hiromichi Matsumoto
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160-7336, USA
| | | | | | | | | |
Collapse
|
33
|
Dicker AJ, Serewko MM, Russell T, Rothnagel JA, Strutton GM, Dahler AL, Saunders NA. Isolation (from a basal cell carcinoma) of a functionally distinct fibroblast-like cell type that overexpresses Ptch. J Invest Dermatol 2002; 118:859-65. [PMID: 11982765 DOI: 10.1046/j.1523-1747.2002.01739.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study we report on the isolation and characterization of a nonepithelial, nontumorigenic cell type (BCC1) derived from a basal cell carcinoma from a patient. The BCC1 cells share many characteristics with dermal fibroblasts, such as the expression of vimentin, lack of expression of cytokeratins, and insensitivity to agents that cause growth inhibition and differentiation of epithelial cells; however, significant differences between BCC1 cells and fibroblasts also exist. For example, BCC1 cells are stimulated to undergo DNA synthesis in response to interferon-gamma, whereas dermal fibroblasts are not. More over, BCC1 cells overexpress the basal cell carcinoma-specific genes ptch and ptch2. These data indicate that basal cell carcinomas are associated with a functionally distinct population of fibroblast-like cells that overexpress known tumor-specific markers (ptch and ptch2).
Collapse
Affiliation(s)
- Anthony J Dicker
- Epithelial Pathobiology Group, Center for Immunology & Cancer Research, University of Queensland, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
34
|
Koike C, Mizutani T, Ito T, Shimizu Y, Yamamichi N, Kameda T, Michimukai E, Kitamura N, Okamoto T, Iba H. Introduction of wild-type patched gene suppresses the oncogenic potential of human squamous cell carcinoma cell lines including A431. Oncogene 2002; 21:2670-8. [PMID: 11965540 DOI: 10.1038/sj.onc.1205370] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2001] [Revised: 01/24/2002] [Accepted: 01/31/2002] [Indexed: 11/08/2022]
Abstract
Defects in a developmental signaling pathway involving the mammalian homologue of the Drosophila segment polarity gene, patched are associated with human tumors such as basal cell carcinoma, medulloblastoma and squamous cell carcinoma. Loss of heterozygosity (LOH) in some of these tumor cells suggests that patched functions as a tumor suppressor gene. To evaluate the biological significance of patched mutations in human sporadic tumor cells, we constructed a VSV-G pseudotyped retrovirus vector carrying the wild-type patched gene and transduced it into two human squamous cell carcinoma (SCC) cell lines, A431 and KA, that express only mutant patched mRNA. When SSC cells were transduced with Ptc virus, colony forming activity in soft agar was drastically reduced and these cells recovered anchorage independent growth when Sonic hedgehog (Shh), the ligand of Patched (Ptc), was added into the soft agar culture. Expression of exogenous patched, however, had no effect on anchorage independent growth of Ras-transformed NIH3T3 cells or SCC cell line, NA, which expresses wild-type patched mRNA. Cyclopamine, a specific inhibitor of the Shh/Ptc/Smo signaling pathway, efficiently suppressed anchorage independent growth of A431 and KA cells. These results indicate that loss of patched function plays a major role in the acquisition of oncogenic potential in these SCCs and further that Ptc virus would be an effective reagent for suppressing tumorigenicity of such SCCs.
Collapse
Affiliation(s)
- Chika Koike
- Department of Microbiology and Immunology, Division of Host-Parasite Interaction, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai Minato-ku Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Monnier V, Ho KS, Sanial M, Scott MP, Plessis A. Hedgehog signal transduction proteins: contacts of the Fused kinase and Ci transcription factor with the kinesin-related protein Costal2. BMC DEVELOPMENTAL BIOLOGY 2002; 2:4. [PMID: 11914126 PMCID: PMC101406 DOI: 10.1186/1471-213x-2-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2001] [Accepted: 03/19/2002] [Indexed: 12/21/2022]
Abstract
BACKGROUND Hedgehog signaling proteins play important roles in development by controlling growth and patterning in various animals including Drosophila and mammals. Hedgehog signaling triggers changes in responsive cells through a novel transduction mechanism that ultimately controls the transcription of specific target genes via the activity of zinc finger transcription factors of the Cubitus interruptus/GLI family. In flies, key Hedgehog signal transduction components have been identified including the kinesin-related protein Costal2, the serinethreonine kinase Fused, and the PEST-containing protein Suppressor of Fused. These proteins control Cubitus interruptus cleavage, nucleo-cytoplasmic localization and activation. In fly embryos, Costal2, Fused, Suppressor of Fused and Cubitus interruptus are associated in at least one cytoplasmic complex, which interacts with the microtubules in a Hedgehog-dependent manner. RESULTS Here we identified and mapped direct interactions between Cos2, Fu, and Ci using an in vitro affinity assay and the yeast two-hybrid system. CONCLUSIONS Our results provide new insights into the possible mechanism of the cytosolic steps of Hedgehog transduction.
Collapse
Affiliation(s)
- Véronique Monnier
- Laboratoire de génétique et évolution, Institut Jacques Monod, 2 Place Jussieu, 75005 ,Paris, France
| | - Karen S Ho
- Departments of Developmental Biology and Genetics, Howard Hughes Medical Institute, 279 Campus Drive, Stanford University, School of Medicine, Stanford, California, USA
| | - Matthieu Sanial
- Laboratoire de génétique et évolution, Institut Jacques Monod, 2 Place Jussieu, 75005 ,Paris, France
| | - Matthew P Scott
- Departments of Developmental Biology and Genetics, Howard Hughes Medical Institute, 279 Campus Drive, Stanford University, School of Medicine, Stanford, California, USA
| | - Anne Plessis
- Laboratoire de génétique et évolution, Institut Jacques Monod, 2 Place Jussieu, 75005 ,Paris, France
| |
Collapse
|
36
|
Abstract
VACTERL represents a non-random association of congenital anomalies in humans of poorly known etiology and pathogenesis. From our mutant analysis of Gli genes, which encode transcription factors mediating Sonic hedgehog (Shh) signal transduction, we observed that defective Shh signaling leads to a spectrum of developmental anomalies in mice strikingly similar to those of VACTERL. In this review, we will discuss the function of the three Gli transcription factors in Shh signaling and mammalian development. We propose that VACTERL could be caused by defective Shh signaling during human embryogenesis and suggest that the Gli mutant mice can serve as useful models for studying the pathogenesis of VACTERL.
Collapse
Affiliation(s)
- J Kim
- Program in Developmental Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
37
|
Mina M. Regulation of mandibular growth and morphogenesis. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2002; 12:276-300. [PMID: 11603502 DOI: 10.1177/10454411010120040101] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The development of the vertebrate face is a dynamic process that starts with the formation of facial processes/prominences. Facial processes are small buds made up of mesenchymal masses enclosed by an epithelial layer that surround the primitive mouth. The 2 maxillary processes, the 2 lateral nasal processes, and the frontonasal processes form the upper jaw. The lower jaw is formed by the 2 mandibular processes. Although the question of the embryonic origin of facial structures has received considerable attention, the mechanisms that control differential growth of the facial processes and patterning of skeletal tissues within these structures have been difficult to study and still are not well-understood. This has been partially due to the lack of readily identifiable morphologically discrete regions in the developing face that regulate patterning of the face. Nonetheless, in recent years there has been significant progress in the understanding of the signaling network controlling the patterning and development of the face (for review, see Richman et al., 1991; Francis-West et al., 1998). This review focuses on current understanding of the processes and signaling molecules that are involved in the formation of the mandibular arch.
Collapse
Affiliation(s)
- M Mina
- Department of Pediatric Dentistry, School of Dental Medicine, University of Connecticut Health Center, Farmington 06030, USA.
| |
Collapse
|
38
|
Affiliation(s)
- Marek Mlodzik
- Mount Sinai School of Medicine, Department of Molecular, Cell and Developmental Biology, Annenberg Bldg. 18-92, Box 1007, One Gustave L. Levy Place, New York, New York 10029, USA
| |
Collapse
|
39
|
Callahan CA, Oro AE. Monstrous attempts at adnexogenesis: regulating hair follicle progenitors through Sonic hedgehog signaling. Curr Opin Genet Dev 2001; 11:541-6. [PMID: 11532396 DOI: 10.1016/s0959-437x(00)00230-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Epithelial organs such as the vertebrate hair control periodic self-renewal by regulating the growth of progenitor cells. Recent studies implicate Sonic hedgehog target gene induction in the growth of multipotent hair follicle epithelium and the development of a variety of hair follicle tumors such as basal cell carcinomas. These studies suggest Sonic hedgehog signaling may regulate progenitor cells in other organs.
Collapse
Affiliation(s)
- C A Callahan
- Program in Epithelial Biology, Stanford University, CCSR Building, Room 2145, 269 Campus Drive, Stanford, CA 94305-5168, USA
| | | |
Collapse
|
40
|
Baron MH. Molecular regulation of embryonic hematopoiesis and vascular development: a novel pathway. JOURNAL OF HEMATOTHERAPY & STEM CELL RESEARCH 2001; 10:587-94. [PMID: 11672504 DOI: 10.1089/152581601753193797] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In all vertebrate animals, the first blood and vascular endothelial cells are formed during gastrulation, a process in which the mesoderm of the embryo is induced and then patterned by molecules whose identity is still largely unknown. Clusters of developing blood cells surrounded by a layer of endothelial cells comprise the "blood islands" and form in the visceral yolk sac, external to the developing embryo proper. Despite the identification of genes, such as Flk1, SCL/tal-1, Cbfa2/Runx1/AML1, and CD34, that are expressed during the induction of primitive hematopoiesis and vasculogenesis, the early molecular and cellular events involved in these processes are not well understood. Recent work has demonstrated that extracellular signals secreted by a layer of visceral endoderm surrounding the embryo are essential for the initiation of these events. A member of the Hedgehog family of signaling molecules is produced by visceral endoderm and is required for formation of blood and endothelial cells in explant cultures. Hedgehog proteins also stimulate proliferation of definitive hematopoietic stem/progenitor cells. Therefore, these findings may have important medical implications for regulating hematopoiesis and vascular development for therapeutic purposes and for the development of new sources of hematopoietic stem cells for transplantation and as targets for gene therapy.
Collapse
Affiliation(s)
- M H Baron
- Department of Medicine, Ruttenberg Cancer Center, and Institute for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
41
|
Baron M. Induction of embryonic hematopoietic and endothelial stem/progenitor cells by hedgehog-mediated signals. Differentiation 2001; 68:175-85. [PMID: 11776470 DOI: 10.1046/j.1432-0436.2001.680405.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Blood and vascular endothelial cells form in all vertebrates during gastrulation, a process in which the mesoderm of the embryo is induced and then patterned by molecules whose identity is still largely unknown. Blood islands' of primitive hematopoietic cell clusters surrounded by a layer of endothelial cells form in the yolk sac, external to the developing embryo proper. These lineages arise from a layer of extraembryonic mesoderm that is closely apposed with a layer of primitive (visceral) endoderm. Despite the identification of genes such as Flk1, SCL/tal-1, Cbfa2/Runx1/AML1 and CD34 that are expressed during the induction of primitive hematopoiesis and vasculogenesis, the early molecular and cellular events involved in these processes are not well understood. Recent work has demonstrated that extracellular signals secreted by visceral endoderm surrounding the embryo are essential for the initiation of these events. A member of the Hedgehog family of signaling molecules (Indian hedgehog) is produced by visceral endoderm, can induce formation of blood and endothelial cells in explant cultures and can reprogram prospective neurectoderm along hematopoietic and endothelial cell lineages. Hedgehog proteins also stimulate proliferation of definitive hematopoietic stem/progenitor cells. These findings may have important implications for regulating hematopoiesis and vascular development for therapeutic purposes in humans and for the development of new sources of stem cells for transplantation and gene therapy.
Collapse
Affiliation(s)
- M Baron
- Department of Medicine, Ruttenberg Cancer Center, and Institute for Gene Therapy and Molecular Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
42
|
Abstract
The primitive gonad of the Drosophila embryo is formed from two cell types, the somatic gonad precursor cells (SGPs) and the germ cells, which originate at distant sites. To reach the SGPs the germ cells must undergo a complex series of cell movements. While there is evidence that attractive and repulsive signals guide germ cell migration through the embryo, the molecular identity of these instructive molecules has remained elusive. Here, we present evidence suggesting that hedgehog (hh) may serve as such an attractive guidance cue. Misexpression of hh in the soma induces germ cells to migrate to inappropriate locations. Conversely, cell-autonomous components of the hh pathway appear to be required in the germline for proper germ cell migration.
Collapse
Affiliation(s)
- G Deshpande
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | | | | | | |
Collapse
|
43
|
Pathi S, Pagan-Westphal S, Baker DP, Garber EA, Rayhorn P, Bumcrot D, Tabin CJ, Blake Pepinsky R, Williams KP. Comparative biological responses to human Sonic, Indian, and Desert hedgehog. Mech Dev 2001; 106:107-17. [PMID: 11472839 DOI: 10.1016/s0925-4773(01)00427-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A comprehensive comparison of Sonic (Shh), Indian (Ihh), and Desert (Dhh) hedgehog biological activities has not previously been undertaken. To test whether the three higher vertebrate Hh proteins have distinct biological properties, we compared recombinant forms of the N-terminal domains of human Shh, Ihh, and Dhh in a variety of cell-based and tissue explant assays in which their activities could be assessed at a range of concentrations. While we observed that the proteins were similar in their affinities for the Hh-binding proteins; Patched (Ptc) and Hedgehog-interacting protein (Hip), and were equipotent in their ability to induce Islet-1 in chick neural plate explant; there were dramatic differences in their potencies in several other assays. Most dramatic were the Hh-dependent responses of C3H10T1/2 cells, where relative potencies ranged from 80nM for Shh, to 500nM for Ihh, to >5microM for Dhh. Similar trends in potency were seen in the ability of the three Hh proteins to induce differentiation of chondrocytes in embryonic mouse limbs, and to induce the expression of nodal in the lateral plate mesoderm of early chick embryos. However, in a chick embryo digit duplication assay used to measure polarizing activity, Ihh was the least active, and Dhh was almost as potent as Shh. These findings suggest that a mechanism for fine-tuning the biological actions of Shh, Ihh, and Dhh, exists beyond the simple temporal and spatial control of their expression domains within the developing and adult organism.
Collapse
Affiliation(s)
- S Pathi
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Dyer MA, Farrington SM, Mohn D, Munday JR, Baron MH. Indian hedgehog activates hematopoiesis and vasculogenesis and can respecify prospective neurectodermal cell fate in the mouse embryo. Development 2001; 128:1717-30. [PMID: 11311154 DOI: 10.1242/dev.128.10.1717] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During gastrulation in the mouse, mesoderm is induced and patterned by secreted signaling molecules, giving rise first to primitive erythroblasts and vascular endothelial cells. We have demonstrated previously that development of these lineages requires a signal(s) secreted from the adjacent primitive endoderm. We now show that Indian hedgehog (Ihh) is a primitive endoderm-secreted signal that alone is sufficient to induce formation of hematopoietic and endothelial cells. Strikingly, as seen with primitive endoderm, Ihh can respecify prospective neural ectoderm (anterior epiblast) along hematopoietic and endothelial (posterior) lineages. Downstream targets of the hedgehog signaling pathway (the genes encoding patched, smoothened and Gli1) are upregulated in anterior epiblasts cultured in the presence of Ihh protein, as is Bmp4, which may mediate the effects of Ihh. Blocking Ihh function in primitive endoderm inhibits activation of hematopoiesis and vasculogenesis in the adjacent epiblast, suggesting that Ihh is an endogenous signal that plays a key role in the development of the earliest hemato-vascular system. To our knowledge, these are the earliest functions for a hedgehog protein in post-implantation development in the mouse embryo.
Collapse
Affiliation(s)
- M A Dyer
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
45
|
Abstract
The elaborate branching pattern of the Drosophila tracheal system originates from ten tracheal placodes on both sides of the embryo, each consisting of about 80 cells. Simultaneous cell migration from each tracheal pit in six different directions gives rise to the stereotyped branching pattern. Each branch contains a fixed number of cells. Previous work has shown that in the dorsoventral axis, localized activation of the Dpp, Wnt and EGF receptor (DER) pathways, subdivides the tracheal pit into distinct domains. We present the role of the Hedgehog (Hh) signaling system in patterning the tracheal branches. Hh is expressed in segmental stripes abutting the anterior border of the tracheal placodes. Induction of patched expression, which results from activation by Hh, demonstrates that cells in the anterior half of the tracheal pit are activated. In hh-mutant embryos migration of all tracheal branches is absent or stalled. These defects arise from a direct effect of Hh on tracheal cells, rather than by indirect effects on patterning of the ectoderm. Tracheal cell migration could be rescued by expressing Hh only in the tracheal cells, without rescuing the ectodermal defects. Signaling by several pathways, including the Hh pathway, thus serves to subdivide the uniform population of tracheal cells into distinct cell types that will subsequently be recruited into the different branches.
Collapse
Affiliation(s)
- L Glazer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
46
|
Abstract
Growth and cell fate in the anterior-posterior (A/P) axis of the developing wing of Drosophila melanogaster are controlled by a stripe of cells bisecting the axis called the A/P organizer. Hedgehog (Hh) signaling from posterior to anterior cells induces the organizer. Several Hh-responsive genes expressed by cells of the organizer mediate its patterning activity. The Hh-signaling pathway controls the post-translational modification of the transcription factor Cubitus-interruptus (Ci) and the resulting local activation of Ci is required for the correct location of the A/P organizer.
Collapse
Affiliation(s)
- W J Brook
- Department of Biochemistry & Molecular Biology, University of Calgary, AB, Canada.
| |
Collapse
|
47
|
Abstract
Zebrafish skeletal muscles are composed of two major types of muscle fibers, broadly classified as fast or slow fibers. Recent studies have demonstrated that members of the Hedgehog (Hh) family induce the formation of slow muscle fibers. Hedgehog signals are secreted proteins that function through the transcription factor Glis. We report here the characterization of a zebrafish Gli2 expression in slow and fast muscle cells and the study of the roles of Hedgehogs and Gli2 in zebrafish muscle development using two mutant strains; sonic-you (syu) and you-too (yot), respective for sonic hedgehog (shh) and Gli2 mutation. We have demonstrated that Shh and Gli2 mutation causes similar defects in slow muscle formation. There is, however, a difference in the degree of defect between these two mutants. In yot mutant embryos, development of slow muscles was completely blocked, whereas in syu mutant embryos, a small number of slow muscle cells could still form, suggesting that other Hhs were also involved in slow muscle induction. Induction of slow muscles by other Hhs appeared to require Gli2, because ectopic expression of Echidna hedgehog (Ehh) and Tiggy-winkle hedgehog (Twhh) failed to induce slow muscles in yot mutant embryos. Together, these data suggest that further Hhs, other than Shh, are also involved in the induction and differentiation of slow muscle cells and that Gli2 is required by Shh, Twhh, and Ehh, thus playing a key role in the induction and differentiation of slow muscle cells.
Collapse
Affiliation(s)
- S J Du
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, 710 E. Pratt St., Baltimore, MD 21202, USA.
| | | |
Collapse
|
48
|
Treier M, O'Connell S, Gleiberman A, Price J, Szeto DP, Burgess R, Chuang PT, McMahon AP, Rosenfeld MG. Hedgehog signaling is required for pituitary gland development. Development 2001; 128:377-86. [PMID: 11152636 DOI: 10.1242/dev.128.3.377] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Pituitary gland development serves as an excellent model system in which to study the emergence of distinct cell types from a common primordium in mammalian organogenesis. We have investigated the role of the morphogen Sonic hedgehog (SHH) in outgrowth and differentiation of the pituitary gland using loss- and gain-of-function studies in transgenic mice. Shh is expressed throughout the ventral diencephalon and the oral ectoderm, but its expression is subsequently absent from the nascent Rathke's pouch as soon as it becomes morphologically visible, creating a Shh boundary within the oral epithelium. We used oral ectoderm/Rathke's pouch-specific 5′ regulatory sequences (Pitx1(HS)) from the bicoid related pituitary homeobox gene (Pitx1) to target overexpression of the Hedgehog inhibitor Hip (Huntingtin interacting protein) to block Hedgehog signaling, finding that SHH is required for proliferation of the pituitary gland. In addition, we provide evidence that Hedgehog signaling, acting at the Shh boundary within the oral ectoderm, may exert a role in differentiation of ventral cell types (gonadotropes and thyrotropes) by inducing Bmp2 expression in Rathke's pouch, which subsequently regulates expression of ventral transcription factors, particularly Gata2. Furthermore, our data suggest that Hedgehog signaling, together with FGF8/10 signaling, synergizes to regulate expression of the LIM homeobox gene Lhx3, which has been proved to be essential for initial pituitary gland formation. Thus, SHH appears to exert effects on both proliferation and cell-type determination in pituitary gland development.
Collapse
Affiliation(s)
- M Treier
- Howard Hughes Medical Institute, School and Department of Medicine, UCSD, CMMW, Room 345, La Jolla, CA 92093-0648, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wang XQ, Rothnagel JA. Post-transcriptional regulation of the gli1 oncogene by the expression of alternative 5' untranslated regions. J Biol Chem 2001; 276:1311-6. [PMID: 11032829 DOI: 10.1074/jbc.m005191200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oncogene GLI1 is involved in the formation of basal cell carcinoma and other tumor types as a result of the aberrant signaling of the Sonic hedgehog-Patched pathway. In this study, we have identified alternative GLI1 transcripts that differ in their 5' untranslated regions (UTRs) and are generated by exon skipping. These are denoted alpha-UTR, beta-UTR, and gamma-UTR according to the number of noncoding exons possessed (three, two, and one, respectively). The alpha- and beta-UTR forms represent the major Gli1 transcripts expressed in mouse tissues, whereas the gamma-UTR is present at relatively low levels but is markedly induced in mouse skin treated with 12-O-tetradecanoylphorbol 13-acetate. Transcripts corresponding to the murine beta and gamma forms were identified in human tissues, but significantly, only the gamma-UTR form was present in basal cell carcinomas and in proliferating cultures of a keratinocyte cell line. Flow cytometry analysis determined that the gamma-UTR variant expresses a heterologous reporter gene 14-23-fold higher than the alpha-UTR and 5-13-fold higher than the beta-UTR in a variety of cell types. Because expression of the gamma-UTR variant correlates with proliferation, consistent with a role for GLI1 in growth promotion, up-regulation of GLI1 expression through skipping of 5' noncoding exons may be an important tumorigenic mechanism.
Collapse
Affiliation(s)
- X Q Wang
- Department of Biochemistry and the Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
| | | |
Collapse
|
50
|
Capdevila J, Izpisúa Belmonte JC. Perspectives on the evolutionary origin of tetrapod limbs. THE JOURNAL OF EXPERIMENTAL ZOOLOGY 2000; 288:287-303. [PMID: 11144278 DOI: 10.1002/1097-010x(20001215)288:4<287::aid-jez2>3.0.co;2-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The study of the origin and evolution of the tetrapod limb has benefited enormously from the confluence of molecular and paleontological data. In the last two decades, our knowledge of the basic molecular mechanisms that control limb development has grown exponentially, and developmental biologists now have the possibility of combining molecular data with many available descriptions of the fossil record of vertebrate fins and limbs. This synthesis of developmental and evolutionary biology has the potential to unveil the sequence of molecular changes that culminated in the adoption of the basic tetrapod limb plan.
Collapse
Affiliation(s)
- J Capdevila
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | | |
Collapse
|