1
|
Batho-Samblas C, Smith J, Keavey L, Clancy N, McTeir L, Davey MG. Characterisation of the avascular mesenchyme during digit outgrowth. Dev Biol 2025; 523:99-110. [PMID: 40210155 DOI: 10.1016/j.ydbio.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
The avascular mesenchyme at the tip of the developing digit contributes to digit outgrowth and patterning, however, it has been poorly characterised. Using newly developed fate mapping approaches, tissue manipulation and single-cell mRNA sequencing data, we explore the transcriptional nature and developmental potential of this tissue. We find that the avascular mesenchyme is essential to normal segmental patterning of the digit and has a distinct transcriptional identity. In addition, we uncover an unexpected relationship between the unspecified tissue of the avascular mesenchyme and the committed phalanx forming region, which controls patterning, but not outgrowth of the digit. This multifaceted approach provides insights into the mechanics and genetic pathways that regulate digit outgrowth and patterning.
Collapse
Affiliation(s)
- Cameron Batho-Samblas
- Functional Genetics, The Roslin Institute & R(D)SVS, University of Edinburgh, EH25 9RG, UK
| | - Jonathan Smith
- Functional Genetics, The Roslin Institute & R(D)SVS, University of Edinburgh, EH25 9RG, UK; MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Lois Keavey
- Functional Genetics, The Roslin Institute & R(D)SVS, University of Edinburgh, EH25 9RG, UK; UK Dementia Research Institute, University of Edinburgh, EH16 4SB, UK
| | - Noah Clancy
- Functional Genetics, The Roslin Institute & R(D)SVS, University of Edinburgh, EH25 9RG, UK
| | - Lynn McTeir
- Functional Genetics, The Roslin Institute & R(D)SVS, University of Edinburgh, EH25 9RG, UK
| | - Megan G Davey
- Functional Genetics, The Roslin Institute & R(D)SVS, University of Edinburgh, EH25 9RG, UK; RICE- Roslin Institute Chicken Embryology, UK.
| |
Collapse
|
2
|
Wilson AC, Pountney DL, Khoo TK. Therapeutic Mechanisms of Exercise in Parkinson's Disease. Int J Mol Sci 2025; 26:4860. [PMID: 40429998 PMCID: PMC12112306 DOI: 10.3390/ijms26104860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/15/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Despite being the second-most common neurodegenerative disease, the etiology of Parkinson's disease (PD) remains uncertain with current knowledge suggestive of multiple risk factors. Furthermore, curative treatment does not yet exist, and treatment is primarily symptomatic in nature. For this reason, supportive therapies such as exercise are a crucial tool in PD management. It is useful to better understand how exercise affects the brain and body in the context of PD to guide clinical decision-making and determine the optimal exercise intensity and modality for PD patients. This review outlines the various mechanisms by which exercise can be beneficial as a therapeutic option in PD.
Collapse
Affiliation(s)
- Alice C. Wilson
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia
| | - Dean L. Pountney
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast, QLD 4222, Australia
| | - Tien K. Khoo
- School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4222, Australia
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2500, Australia
- Northern New South Wales Local Health District, NSW Health, Lismore, NSW 2480, Australia
| |
Collapse
|
3
|
Amin MA, Zehravi M, Sweilam SH, Shatu MM, Durgawale TP, Qureshi MS, Durgapal S, Haque MA, Vodeti R, Panigrahy UP, Ahmad I, Khan SL, Emran TB. Neuroprotective potential of epigallocatechin gallate in Neurodegenerative Diseases: Insights into molecular mechanisms and clinical Relevance. Brain Res 2025; 1860:149693. [PMID: 40350140 DOI: 10.1016/j.brainres.2025.149693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 05/08/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis pose significant challenges due to their complex pathophysiology and lack of effective treatments. Green tea, rich in the epigallocatechin gallate (EGCG) polyphenolic component, has demonstrated potential as a neuroprotective agent with numerous medicinal applications. EGCG effectively reduces tau and Aβ aggregation in ND models, promotes autophagy, and targets key signaling pathways like Nrf2-ARE, NF-κB, and MAPK. This review explores the molecular processes that underlie EGCG's neuroprotective properties, including its ability to regulate mitochondrial dysfunction, oxidative stress, neuroinflammation, and protein misfolding. Clinical research indicates that EGCG may enhance cognitive and motor abilities, potentially inhibiting disease progression despite absorption and dose optimization limitations. The substance has been proven to slow the amyloidogenic process, prevent protein aggregation, decrease amyloid cytotoxicity, inhibit fibrillogenesis, and restructure fibrils for synergistic therapeutic effects. The review highlights the potential of EGCG as a natural, multi-targeted strategy for NDs but emphasizes the need for further clinical trials to enhance its therapeutic efficacy.
Collapse
Affiliation(s)
- Md Al Amin
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo 11829, Egypt
| | - Mst Maharunnasa Shatu
- Department of Botany, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Trupti Pratik Durgawale
- Department of Pharmaceutical Chemistry, Krishna Institute of Pharmacy, Krishna Vishwa Vidyapeeth (Deemed to be University), Karad, Maharashtra 415539, India
| | - Mohammad Shamim Qureshi
- Department of Pharmacognosy & Phytochemistry, Anwarul Uloom College of Pharmacy, New Mallepally, Hyderabad 500001, India
| | - Sumit Durgapal
- Department of Pharmaceutics, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Premnagar, Dehradun 248007, Uttarakhand, India
| | | | | | - Uttam Prasad Panigrahy
- Faculty of Pharmaceutical Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sharuk L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa 413520, Maharashtra, India
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka 1216, Bangladesh.
| |
Collapse
|
4
|
Rezaee Z. Guidelines for animal models of endurance and resistance exercise. J Neurosci Methods 2025; 416:110362. [PMID: 39832624 DOI: 10.1016/j.jneumeth.2025.110362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/07/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND This mini-review details the guideline for implementing the most common exercise patterns in small laboratory rodents (mice/rats) and the advantages and disadvantages of each, in ways that are comparable to humans. Also, criteria for targeted selection and control of workload and intensity of activity are proposed in different exercise programs. NEW METHOD As an available and low-cost intervention in physiological, biochemical and cellular-molecular assessments, different exercise programs can be effective in the prevention/treatment of many skeletal-structural, behavioral and neurodegenerative disorders. Exercise tolerance/intolerance is an indicator of the complex function of the physiological, metabolic, neuromuscular, cardiovascular and respiratory systems, and in this sense, animal models of exercise are of interest to researchers by creating a controllable and precise environment. RESULTS Considering the different species of laboratory animals and various exercise paradigms, selecting the type, intensity and duration of the program in an optimal manner is a difficult task, especially in conditions such as old age or illness, and if necessary, existing research tools and protocols should be reviewed. In fact, one of the most attractive applications of exercise models is the discovery of preventive/therapeutic strategies for many disorders, which necessitates more knowledge about exercise protocols. CONCLUSIONS Animal models of endurance/resistance exercise on land/water make it possible to evaluate physiological/pathological conditions. However, to obtain optimal and reproducible results in human samples, the effectiveness of anesthetic drugs, surgical procedures, and the stress caused by exercise tools and equipment must be carefully controlled.
Collapse
Affiliation(s)
- Zeinab Rezaee
- Department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, HezarJerib Ave., Azadi Sq, Isfahan P.O. Box 81799-54359, Iran.
| |
Collapse
|
5
|
Antal M. Molecular Anatomy of Synaptic and Extrasynaptic Neurotransmission Between Nociceptive Primary Afferents and Spinal Dorsal Horn Neurons. Int J Mol Sci 2025; 26:2356. [PMID: 40076973 PMCID: PMC11900602 DOI: 10.3390/ijms26052356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
Sensory signals generated by peripheral nociceptors are transmitted by peptidergic and nonpeptidergic nociceptive primary afferents to the superficial spinal dorsal horn, where their central axon terminals establish synaptic contacts with secondary sensory spinal neurons. In the case of suprathreshold activation, the axon terminals release glutamate into the synaptic cleft and stimulate postsynaptic spinal neurons by activating glutamate receptors located on the postsynaptic membrane. When overexcitation is evoked by peripheral inflammation, neuropathy or pruritogens, peptidergic nociceptive axon terminals may corelease various neuropeptides, neurotrophins and endomorphin, together with glutamate. However, in contrast to glutamate, neuropeptides, neurotrophins and endomorphin are released extrasynaptically. They diffuse from the site of release and modulate the function of spinal neurons via volume transmission, activating specific extrasynaptic receptors. Thus, the released neuropeptides, neurotrophins and endomorphin may evoke excitation, disinhibition or inhibition in various spinal neuronal populations, and together with glutamate, induce overall overexcitation, called central sensitization. In addition, the synaptic and extrasynaptic release of neurotransmitters is subjected to strong retrograde control mediated by various retrogradely acting transmitters, messengers, and their presynaptic receptors. Moreover, the composition of this complex chemical apparatus is heavily dependent on the actual patterns of nociceptive primary afferent activation in the periphery. This review provides an overview of the complexity of this signaling apparatus, how nociceptive primary afferents can activate secondary sensory spinal neurons via synaptic and volume transmission in the superficial spinal dorsal horn, and how these events can be controlled by presynaptic mechanisms.
Collapse
Affiliation(s)
- Miklós Antal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
6
|
Singh AA, Katiyar S, Song M. Phytochemicals Targeting BDNF Signaling for Treating Neurological Disorders. Brain Sci 2025; 15:252. [PMID: 40149774 PMCID: PMC11939912 DOI: 10.3390/brainsci15030252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Neurological disorders are defined by a deterioration or disruption of the nervous system's structure and function. These diseases, which include multiple sclerosis, Alzheimer's disease, Parkinson's disease, Huntington's disease, and schizophrenia, are caused by intricate pathological processes that include excitotoxicity, neuroinflammation, oxidative stress, genetic mutations, and compromised neurotrophic signaling. Although current pharmaceutical treatments relieve symptoms, their long-term efficacy is limited due to adverse side effects and weak neuroprotective properties. However, when combined with other neuroprotective drugs or adjunct therapy, they may offer additional benefits and improve treatment outcomes. Phytochemicals have emerged as attractive therapeutic agents due to their ability to regulate essential neurotrophic pathways, especially the brain-derived neurotrophic factor (BDNF) signaling cascade. BDNF is an important target for neurodegenerative disease (ND) treatment since it regulates neuronal survival, synaptic plasticity, neurogenesis, and neuroprotection. This review emphasizes the molecular pathways through which various phytochemicals-such as flavonoids, terpenoids, alkaloids, and phenolic compounds-stimulate BDNF expression and modulate its downstream signaling pathways, including GSK-3β, MAPK/ERK, PI3K/Akt/mTOR, CREB, and Wnt/β-catenin. This paper also highlights how phytochemical combinations may interact to enhance BDNF activity, offering new therapeutic options for ND treatment. Despite their potential for neuroprotection, phytochemicals face challenges related to pharmacokinetics, blood-brain barrier (BBB) permeability, and absorption, highlighting the need for further research into combination therapies and improved formulations. Clinical assessment and mechanistic understanding of BDNF-targeted phytotherapy should be the main goals of future studies. The therapeutic efficacy of natural compounds in regulating neurotrophic signaling is highlighted in this review, providing a viable approach to the prevention and treatment of NDs.
Collapse
Affiliation(s)
- Alka Ashok Singh
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Shweta Katiyar
- Department of Botany, SBN Government PG College, Barwani 451551, MP, India;
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
7
|
Gong H, Liu J, Chen N, Zhao H, He B, Zhang H, Wang W, Tian Y. EDN1 and NTF3 in keloid pathogenesis: computational and experimental evidence as novel diagnostic biomarkers for fibrosis and inflammation. Front Genet 2025; 16:1516451. [PMID: 40051702 PMCID: PMC11882859 DOI: 10.3389/fgene.2025.1516451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/24/2025] [Indexed: 03/09/2025] Open
Abstract
Objective To investigate the roles of oxidative stress-related differentially expressed genes (OSRDEGs) in keloid formation and explore their potential value in diagnosis and treatment. Methods Gene expression data from the GEO database, including GSE145725 and GSE44270 as training sets and GSE7890 as a validation set, were utilized. OSRDEGs were identified, followed by Weighted Gene Co-expression Network Analysis (WGCNA), GO/KEGG enrichment analysis, and Gene Set Enrichment Analysis (GSEA). Key genes were further screened through protein-protein interaction (PPI) network analysis and receiver operating characteristic (ROC) curve analysis. miRNA targets, transcription factors (TF), and potential drug targets of these genes were predicted. Immune cell infiltration analysis was performed to assess the association between OSRDEGs and immune cells, which was validated using GSE7890. Finally, the expression of key genes was experimentally validated using quantitative PCR (qPCR), immunohistochemistry (IHC), and hematoxylin-eosin (HE) staining. Results A total of 13 OSRDEGs were identified. WGCNA and functional enrichment analyses revealed that these genes were primarily involved in fibrosis and inflammatory processes in keloids, such as the MAPK signaling pathway, lymphocyte and monocyte proliferation, and inflammatory pathways involving IL-18 and IL-23. PPI network analysis, ROC analysis, and immune infiltration results identified Endothelin-1 (EDN1) and Neurotrophin-3(NTF3) as key genes with high sensitivity and specificity. These genes were positively and negatively correlated with activated mast cells, respectively, suggesting their dual regulatory roles in fibrosis and inflammation. External dataset validation, qPCR, correlation analysis, HE staining, and IHC results demonstrated that EDN1 and NTF3 were highly expressed in keloid tissues and were associated with excessive collagen deposition and immune cell infiltration. Conclusion EDN1 and NTF3, as OSRDEGs, play critical roles in the pathogenesis and progression of keloids. They may contribute to fibrosis and inflammation through the regulation of oxidative stress, the MAPK signaling pathway, and mast cell activation. These findings highlight EDN1 and NTF3 as potential diagnostic biomarkers and therapeutic targets, providing novel insights into the pathogenesis and treatment strategies for keloids.
Collapse
Affiliation(s)
- Hui Gong
- Department of Dermatology and Medical Aesthetics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Liu
- Department of Pathogen Biology, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Nanji Chen
- Center of Medical Cosmetology, The People’s Hospital of Wusheng, Chongqing, China
| | - Hengguang Zhao
- Department of Dermatology and Medical Aesthetics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Bailin He
- Department of Dermatology and Medical Aesthetics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongpei Zhang
- Department of Dermatology and Medical Aesthetics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenping Wang
- Department of Dermatology and Medical Aesthetics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yi Tian
- Department of Dermatology and Medical Aesthetics, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
K Soman S, Swain M, Dagda RK. BDNF-TrkB Signaling in Mitochondria: Implications for Neurodegenerative Diseases. Mol Neurobiol 2025; 62:1756-1769. [PMID: 39030441 PMCID: PMC11909598 DOI: 10.1007/s12035-024-04357-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 07/09/2024] [Indexed: 07/21/2024]
Abstract
Brain-derived neurotrophic factor (BDNF) plays a pivotal role in neuronal development, synaptic plasticity, and overall neuronal health by binding to its receptor, tyrosine receptor kinase B (TrkB). This review delves into the intricate mechanisms through which BDNF-TrkB signaling influences mitochondrial function and potentially influences pathology in neurodegenerative diseases. This review highlights the BDNF-TrkB signaling pathway which regulates mitochondrial bioenergetics, biogenesis, and dynamics, mitochondrial processes vital for synaptic transmission and plasticity. Furthermore, we explore how the BDNF-TrkB-PKA signaling in the cytosol and in mitochondria affects mitochondrial transport and distribution and mitochondrial content, which is crucial for supporting the energy demands of synapses. The dysregulation of this signaling pathway is linked to various neurodegenerative diseases, including Alzheimer's and Parkinson's disease, which are characterized by mitochondrial dysfunction and reduced BDNF expression. By examining seminal studies that have characterized this signaling pathway in health and disease, the present review underscores the potential of enhancing BDNF-TrkB signaling to mitigate mitochondrial dysfunction in neurodegenerative diseases, offering insights into therapeutic strategies to enhance neuronal resilience and function.
Collapse
Affiliation(s)
- Smijin K Soman
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Maryann Swain
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA
| | - Ruben K Dagda
- Department of Pharmacology, University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV, 89557, USA.
| |
Collapse
|
9
|
Rabago-Barajas BV, Macías-Islas MÁ, Saldaña-Cruz AM, Arana-Yepez JE, Olivas-Flores EM, Aguayo-Arelis A. Association of the Val66Met Polymorphism of the BDNF Gene with the Depression in a Mexican Population with Multiple Sclerosis. Life (Basel) 2025; 15:213. [PMID: 40003622 PMCID: PMC11856127 DOI: 10.3390/life15020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune pathology that affects the nervous system. It is characterized by inflammatory lesions that cause axonal damage with neurodegeneration. The signs and symptoms present in this pathology include among others, psychiatric disorders. In MS, depression is the most frequent psychiatric disorder, with prevalence levels of 40 to 60%; to date, the cause is unknown. The brain-derived neurotrophic factor (BDNF) is a neurotrophin related to neuroplasticity. The single-nucleotide polymorphism Val66Met, encoded by the BDNF gene, has been associated with various effects, including the presence of neuropsychiatric disorders. The purpose of our study was to evaluate the association between the BDNF Val66Met polymorphism and depression in MS patients. METHODS Study design, cases, and controls: Mexican mestizo MS patients. CASES Patients diagnosed with depression. CONTROLS Patients without depression diagnosis. MEASUREMENTS For depression, the Beck Depression Inventory; for polymorphism, real-time PCR. RESULTS No statistically significant differences were found in sociodemographic and disease variables between the case and control groups. qPCR analysis showed that 68% of the participants were Val/Val wild-type homozygotes, 29% were Val/Met polymorphism heterozygotes, and 3% were Met/Met polymorphism homozygotes. The presence of the BDNF gene rs6265 polymorphism was associated with a 5.6-fold increase in the probability of depression in the cases compared to the controls. CONCLUSIONS The BDNF Val66Met Polymorphism is associated with depression in Mexican mestizo patients diagnosed with MS.
Collapse
Affiliation(s)
- Brenda Viridiana Rabago-Barajas
- Department of Applied Psychology, University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Miguel Ángel Macías-Islas
- Department of Neurosciences, University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Ana Miriam Saldaña-Cruz
- Institute of Experimental and Clinical Therapeutics, Department of Physiology, University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - Jesús Emmanuel Arana-Yepez
- Pharmacology and Behavior Laboratory, Neuroscience Institute, University Center for Biological and Agricultural Sciences (CUCBA), University of Guadalajara, Guadalajara 44130, Jalisco, Mexico;
| | - Eva Maria Olivas-Flores
- Department of Anesthesiology, Specialty Hospital, National Medical Center of the West, IMSS, Guadalajara 44340, Jalisco, Mexico;
| | - Adriana Aguayo-Arelis
- Department of Applied Psychology, University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| |
Collapse
|
10
|
Hou SM, Cheng CY, Chen WL, Chang EM, Lin CY. NGF-TrkA Axis Enhances PDGF-C-Mediated Angiogenesis in Osteosarcoma via miR-29b-3p Suppression: A Potential Therapeutic Strategy Using Larotrectinib. Life (Basel) 2025; 15:99. [PMID: 39860039 PMCID: PMC11766545 DOI: 10.3390/life15010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Angiogenesis plays a critical role in osteosarcoma (OS) growth and metastasis. While nerve growth factor (NGF) is implicated in cancer progression, its role in OS angiogenesis remains unclear. This study explored NGF's effects on angiogenesis and the underlying molecular mechanisms. Analysis of GEO (GSE16088) data identified five angiogenesis markers significantly upregulated in OS tissues. In vitro experiments demonstrated that NGF enhanced HUVEC tube formation by upregulating platelet-derived growth factor C (PDGF-C) expression and suppressing microRNA-29b-3p (miR-29b-3p). The results of tube formation assays confirmed that NGF stimulation significantly increased the angiogenic capacity of MG63/NGF cells compared to MG63 cells. Furthermore, larotrectinib, a TrkA inhibitor, effectively reduced the migration and invasion abilities of MG63/NGF cells in a dose-dependent manner. These findings suggest that the NGF-TrkA axis promotes PDGF-C-mediated angiogenesis by inhibiting miR-29b-3p signaling. Larotrectinib could serve as a potential therapeutic agent targeting NGF-mediated angiogenesis in OS, offering a promising avenue for treatment.
Collapse
Affiliation(s)
- Sheng-Mou Hou
- Department of Research, Taiwan Blood Services Foundation, Taipei 111, Taiwan;
- The Director’s Office, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
| | - Ching-Yuan Cheng
- Division of Chest Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan;
| | - Wei-Li Chen
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan;
| | - En-Ming Chang
- Department of Respiratory Care, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan;
| | - Chih-Yang Lin
- Translational Medicine Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 111, Taiwan
| |
Collapse
|
11
|
Cuello AC, Do Carmo S. The dependence of basal forebrain cholinergic neurons on NGF: The case in Alzheimer pathology. HANDBOOK OF CLINICAL NEUROLOGY 2025; 211:95-122. [PMID: 40340070 DOI: 10.1016/b978-0-443-19088-9.00010-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
This chapter discusses the dependency of basal forebrain cholinergic neurons (BFCNs) on endogenous nerve growth factor (NGF) for the structural and physiologic maintenance of the neuronal cell somata, axonal projections, and terminal synapses. It covers the discovery of NGF and the occurrence of a CNS neurotrophin family and their cognate receptors and their signaling mechanisms. It concludes with a description of the NGF metabolic pathway and its dysregulation in Alzheimer disease (AD) and Down syndrome pathology, explaining the progressive atrophy of BFCNs, which starts at preclinical stages and is reflected in body fluid biomarkers.
Collapse
Affiliation(s)
- A Claudio Cuello
- Department of Pharmacology & Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, Canada; Department of Pharmacology, Oxford University, Oxford, United Kingdom.
| | - Sonia Do Carmo
- Department of Pharmacology & Therapeutics, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Fan Y, Luan X, Wang X, Li H, Zhao H, Li S, Li X, Qiu Z. Exploring the association between BDNF related signaling pathways and depression: A literature review. Brain Res Bull 2025; 220:111143. [PMID: 39608613 DOI: 10.1016/j.brainresbull.2024.111143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
Depression is a debilitating mental disease that inflicts significant harm upon individuals and society, yet effective treatment options remain elusive. At present, the pathogenesis of multiple depression is not fully clear, but its occurrence can be related to biological or environmental pathways, among which Brain-derived neurotrophic factor (BDNF) can unequivocally act on two downstream receptors, tyrosine kinase receptor (TrkB) and the p75 neurotrophin receptor (p75NTR), then affect the related signal pathways, affecting the occurrence and development of depression. Accumulating studies have revealed that BDNF-related pathways are critical in the pathophysiology of depression, and their interaction can further influence the efficacy of depression treatment. In this review, we mainly summarized the signaling pathways associated with BDNF and classified them according to different receptors and related molecules, providing promising insights and future directions in the treatment of depression.
Collapse
Affiliation(s)
- Yuchen Fan
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Xinchi Luan
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Xuezhe Wang
- Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Hongchi Li
- Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Hongjiao Zhao
- Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Sheng Li
- Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Xiaoxuan Li
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Zhenkang Qiu
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
13
|
Lu MN, Wang D, Ye CJ, Yan GJ, Song JF, Shi XY, Li SS, Liu LN, Zhang HX, Dong XH, Hu T, Wang XY, Xiyang YB. Navβ2 Intracellular Fragments Contribute to Aβ1-42-Induced Cognitive Impairment and Synaptic Deficit Through Transcriptional Suppression of BDNF. Mol Neurobiol 2025; 62:1165-1183. [PMID: 38965172 DOI: 10.1007/s12035-024-04317-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/17/2024] [Indexed: 07/06/2024]
Abstract
A pathological hallmark of Alzheimer's disease (AD) is the region-specific accumulation of the amyloid-beta protein (Aβ), which triggers aberrant neuronal excitability, synaptic impairment, and progressive cognitive decline. Previous works have demonstrated that Aβ pathology induced aberrant elevation in the levels and excessive enzymatic hydrolysis of voltage-gated sodium channel type 2 beta subunit (Navβ2) in the brain of AD models, accompanied by alteration in excitability of hippocampal neurons, synaptic deficits, and subsequently, cognitive dysfunction. However, the mechanism is unclear. In this research, by employing cell models treated with toxic Aβ1-42 and AD mice, the possible effects and potential mechanisms induced by Navβ2. The results reveal that Aβ1-42 induces remarkable increases in Navβ2 intracellular domain (Navβ2-ICD) and decreases in both BDNF exons and protein levels, as well as phosphorylated tropomyosin-related kinase B (pTrkB) expression in cells and mice, coupled with cognitive impairments, synaptic deficits, and aberrant neuronal excitability. Administration with exogenous Navβ2-ICD further enhances these effects induced by Aβ1-42, while interfering the generation of Navβ2-ICD and/or complementing BDNF neutralize the Navβ2-ICD-conducted effects. Luciferase reporter assay verifies that Navβ2-ICD regulates BDNF transcription and expression by targeting its promoter. Collectively, our findings partially elucidate that abnormal enzymatic hydrolysis of Navβ2 induced by Aβ1-42-associated AD pathology leads to intracellular Navβ2-ICD overload, which may responsible to abnormal neuronal excitability, synaptic deficit, and cognition dysfunction, through its transcriptional suppression on BDNF. Therefore, this work supplies novel evidences that Navβ2 plays crucial roles in the occurrence and progression of cognitive impairment of AD by transcriptional regulatory activity of its cleaved ICD.
Collapse
Affiliation(s)
- Min-Nan Lu
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
- Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Dan Wang
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Chen-Jun Ye
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Guo-Ji Yan
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Jing-Feng Song
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xin-Ying Shi
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Shan-Shan Li
- Experimental Teaching Center, Basic Medical College, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Li-Na Liu
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Hui-Xiang Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Xiao-Han Dong
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Tao Hu
- Department of Laboratory Medicine, The Third People's Hospital of Yunnan Province, Kunming, 650000, Yunnan, China
| | - Xu-Yang Wang
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yan-Bin Xiyang
- Institute of Neuroscience, Kunming Medical University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
14
|
Krishnamurthy R, Krishnamoorthy C, Dietsch AM, Natarajan SK. Molecular biomarkers of dysphagia targeted exercise induced neuroplasticity: A review of mechanistic processes and preliminary data on detraining effects. Brain Res 2025; 1846:149287. [PMID: 39437875 DOI: 10.1016/j.brainres.2024.149287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/27/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
While molecular adaptations accompanying neuroplasticity during physical exercises are well-established, little is known about adaptations during dysphagia-targeted exercises. This research article has two primary purposes. First, we aim to review the existing literature on the intersection between resistance (strength) training, molecular markers of neuroplasticity, and dysphagia rehabilitation. Specifically, we discuss the molecular mechanisms of two potential molecular markers: brain-derived neurotrophic factor (BDNF) and insulin-like growth factor-1 (IGF-1) in exercise-induced neuroplasticity. Second, we present preliminary data on the effects of two weeks of detraining on circulating serum BDNF, IGF-1 levels, and expiratory muscle strength. This subset is a part of our more extensive studies related to dysphagia-targeted resistance exercise and neuroplasticity. Five young adult males underwent four weeks of expiratory muscle strength training, followed by two weeks of detraining. We measured expiratory strength, circulating levels of BDNF, and IGF-1 at post-training and detraining conditions. Our results show that expiratory muscle strength, serum BDNF, and IGF-1 levels decreased after detraining; however, this effect was statistically significant only for serum BDNF levels. Oropharyngeal and upper airway musculature involved in swallowing undergoes similar adaptation patterns to skeletal muscles during physical exercise. To fully comprehend the mechanisms underlying the potential neuroplastic benefits of targeted exercise on swallowing functions, mechanistic studies (models) investigating neuroplasticity induced by exercises addressing dysphagia are critical. Such models would ensure that interventions effectively and efficiently achieve neuroplastic benefits and improve patient outcomes, ultimately advancing our understanding of dysphagia-targeted exercise-induced neuroplasticity.
Collapse
Affiliation(s)
- Rahul Krishnamurthy
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, United States; Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, United States.
| | - Chandan Krishnamoorthy
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, United States
| | - Angela M Dietsch
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, United States; Center for Brain, Biology, and Behavior, University of Nebraska-Lincoln, Lincoln, United States
| | - Sathish Kumar Natarajan
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, United States
| |
Collapse
|
15
|
Shishmanova-Doseva M, Barbutska D. BDNF/Cyclin D1 Signaling System and Cognitive Performance After Perampanel and Lacosamide Treatment Singly or in Combination in an Experimental Model of Temporal Lobe Epilepsy. Curr Issues Mol Biol 2024; 46:14010-14032. [PMID: 39727966 PMCID: PMC11727337 DOI: 10.3390/cimb46120838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Epilepsy is a common brain function disorder. The present study aims to evaluate the long-term effect of perampanel (PRM) and lacosamide (LCM), administered singly in a high-dose or in a low-dose combination of both, on comorbid anxiety, cognitive impairment, BDNF, and Cyclin D1 hippocampal expression in an experimental model of temporal lobe epilepsy with lithium-pilocarpine. PRM (3 mg/kg, p.o.)/LCM (30 mg/kg, p.o.) or PRM+LCM (0.5 mg/kg + 3 mg/kg, p.o.) treatments were administered three hours after the lithium-pilocarpine-induced status epilepticus and continued for up to ten weeks in adult Wistar rats. Our study demonstrated that perampanel and lacosamide administered singly in high doses improved epilepsy-associated cognitive impairment through ameliorating anxiety and facilitating passive learning and memory, with spatial and recognition memory measured in the elevated plus maze, step-through, Y-maze, and object recognition tests, respectively. In addition, the combination of both drugs in low doses demonstrated similar anxiolytic and cognitive-improving effects compared to the singly administered drugs. Moreover, the three experimental groups enhanced the hippocampal expression of the neurotrophic factor BDNF and mitigated the increased levels of the apoptotic factor Cyclin D1. These beneficial effects could be essential mechanisms through which administered anticonvulsants preserve neuronal survival and homeostasis in the CNS and especially in the hippocampus.
Collapse
Affiliation(s)
- Michaela Shishmanova-Doseva
- Department of Pharmacology, Toxicology and Pharmacotherapy, Pharmacy Faculty, Medical University Plovdiv, 4002 Plovdiv, Bulgaria
- Research Institute, Medical University Plovdiv, 4002 Plovdiv, Bulgaria
| | - Darina Barbutska
- Department of Anatomy, Histology and Embryology, Medical Faculty, Medical University Plovdiv, 4002 Plovdiv, Bulgaria
| |
Collapse
|
16
|
Liang C, Wei S, Ji Y, Lin J, Jiao W, Li Z, Yan F, Jing X. The role of enteric nervous system and GDNF in depression: Conversation between the brain and the gut. Neurosci Biobehav Rev 2024; 167:105931. [PMID: 39447778 DOI: 10.1016/j.neubiorev.2024.105931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Depression is a debilitating mental disorder that causes a persistent feeling of sadness and loss of interest. Approximately 280 million individuals worldwide suffer from depression by 2023. Despite the heavy medical and social burden imposed by depression, pathophysiology remains incompletely understood. Emerging evidence indicates various bidirectional interplay enable communication between the gut and brain. These interplays provide a link between intestinal and central nervous system as well as feedback from cortical and sensory centers to enteric activities, which also influences physiology and behavior in depression. This review aims to overview the significant role of the enteric nervous system (ENS) in the pathophysiology of depression and gut-brain axis's contribution to depressive disorders. Additionally, we explore the alterations in enteric glia cells (EGCs) and glial cell line-derived neurotrophic factor (GDNF) in depression and their involvement in neuronal support, intestinal homeostasis maintains and immune response activation. Modulating ENS function, EGCs and GDNF level could serve as novel strategies for future antidepressant therapy.
Collapse
Affiliation(s)
- Chuoyi Liang
- School of Nursing, Jinan University, Guangzhou, China
| | - Sijia Wei
- School of Nursing, Jinan University, Guangzhou, China
| | - Yelin Ji
- School of Nursing, Jinan University, Guangzhou, China
| | - Jiayi Lin
- School of Nursing, Jinan University, Guangzhou, China
| | - Wenli Jiao
- School of Nursing, Jinan University, Guangzhou, China
| | - Zhiying Li
- School of Nursing, Jinan University, Guangzhou, China
| | - Fengxia Yan
- School of Nursing, Jinan University, Guangzhou, China.
| | - Xi Jing
- School of Nursing, Jinan University, Guangzhou, China; Guangdong-Hong Kong-Macau Great Bay Area Geoscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
17
|
Qiu R, Sun W, Su Y, Sun Z, Fan K, Liang Y, Lin X, Zhang Y. Irisin's emerging role in Parkinson's disease research: A review from molecular mechanisms to therapeutic prospects. Life Sci 2024; 357:123088. [PMID: 39357796 DOI: 10.1016/j.lfs.2024.123088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/18/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder characterized by impaired motor function, is typically treated with medications and surgery. However, recent studies have validated physical exercise as an effective adjunct therapy, significantly improving both motor and non-motor symptoms in PD patients. Irisin, a myokine, has garnered increasing attention for its beneficial effects on the nervous system. Research has shown that irisin plays a crucial role in regulating metabolic balance, optimizing autophagy, maintaining mitochondrial quality, alleviating oxidative stress and neuroinflammation, and regulating cell death-all processes intricately linked to the pathogenesis of PD. This review examines the mechanisms through which irisin may counteract PD, provides insights into its biological effects, and considers its potential as a target for therapeutic strategies.
Collapse
Affiliation(s)
- Ruqing Qiu
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Weilu Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yana Su
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Zhihui Sun
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Kangli Fan
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Yue Liang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Xiaoyue Lin
- Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Ying Zhang
- Department of Neurology, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
18
|
Xie L, Zhuang Z, Guo B, Huang Y, Shi X, Huang Z, Xu Z, Chen Y, Cao Y, Zheng Y, Wu R, Ma S. Ketamine induced gut microbiota dysbiosis and barrier and hippocampal dysfunction in rats. iScience 2024; 27:111089. [PMID: 39493883 PMCID: PMC11530865 DOI: 10.1016/j.isci.2024.111089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/02/2024] [Accepted: 09/27/2024] [Indexed: 11/05/2024] Open
Abstract
The microbiota-gut-brain axis (MGBA) plays a pivotal role in drug addiction. However, the pathophysiological mechanism of MGBA in ketamine addiction remains elusive. The present study investigated the ketamine-induced gut microbiota disorders, intestinal barrier dysfunction, and the alterations in brain function, using a conditioned place preference (CPP) model of ketamine addiction in rats. Compared with the control group, ketamine induced decreased amplitude of low-frequency fluctuation (ALFF) values in the hippocampus, and pyknotic nuclei and concentrated cytoplasm in hippocampal neurons, as well as alterations in gut microbiota composition, shortened ileum villi, and thinner colonic mucosa. We also found that the abundance of gut microbiota exhibited correlations with CPP score, hippocampal ALFF value, length of ileum villi, and thickness of colonic mucosa. Our findings provide evidence for abnormal alterations in the MGBA of ketamine-addicted rats, which improves our understating of the mechanism of ketamine addiction and the potential for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Lei Xie
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Laboratory of Molecular Imaging & Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Zelin Zhuang
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Laboratory of Molecular Imaging & Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Baowen Guo
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Laboratory of Molecular Imaging & Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Yuehua Huang
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Laboratory of Molecular Imaging & Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Xiaoyan Shi
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Zikai Huang
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Laboratory of Molecular Imaging & Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Ziquan Xu
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Laboratory of Molecular Imaging & Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Yanbin Chen
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Laboratory of Molecular Imaging & Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Yuyin Cao
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Laboratory of Molecular Imaging & Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Yanmin Zheng
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Laboratory of Molecular Imaging & Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Renhua Wu
- Department of Radiology, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, China
| | - Shuhua Ma
- Department of Radiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
- Laboratory of Molecular Imaging & Laboratory of Molecular Cardiology, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
19
|
Petrella C, Ferraguti G, Tarani L, Tarani F, Messina MP, Fiore M. Nerve Growth Factor and Brain-Derived Neurotrophic Factor in COVID-19. BIOLOGY 2024; 13:907. [PMID: 39596862 PMCID: PMC11591877 DOI: 10.3390/biology13110907] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024]
Abstract
Neurotrophins (NTs) constitute a family of small protein messengers that play a fundamental role in both the central and peripheral nervous systems. In particular, the nerve growth factor (NGF) and the brain-derived neurotrophic factor (BDNF) play a subtle role in the survival, differentiation, and functioning of neuronal populations, as well as in the fine regulation of immune functions. The SARS-CoV-2 infection was characterized by a sequela of symptoms (serious respiratory pathology, inflammatory storm, neurological discomfort, up to the less serious flu-like symptoms), which caused, at the end of 2023, more than 7 million deaths worldwide. Despite the official end of the pandemic, the physical and psychological consequences are currently the object of scientific research, both acute and chronic/long-lasting (Long-COVID-19). Given the multifactorial nature of the outcomes of SARS-CoV-2 infection in adults and children, several studies have investigated the potential involvement of the NGF and BDNF systems in the pathology. This narrative review aims to summarize the most recent evidence on this crucial topic.
Collapse
Affiliation(s)
- Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Via E. Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy;
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy; (L.T.); (F.T.); (M.P.M.)
| | - Francesca Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy; (L.T.); (F.T.); (M.P.M.)
| | - Marisa Patrizia Messina
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy; (L.T.); (F.T.); (M.P.M.)
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Via E. Ramarini, 32, Monterotondo Scalo, 00015 Rome, Italy
| |
Collapse
|
20
|
Madhubala D, Mahato R, Khan MR, Bala A, Mukherjee AK. Neurotrophin peptidomimetics for the treatment of neurodegenerative diseases. Drug Discov Today 2024; 29:104156. [PMID: 39233307 DOI: 10.1016/j.drudis.2024.104156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Neurotrophins, such as nerve growth factor and brain-derived neurotrophic factor, play an essential role in the survival of neurons. However, incorporating better features can increase their therapeutic efficacy in neurodegenerative diseases (NDs). Peptidomimetics, which mimic these neurotrophins, show potential for treating NDs. This study emphasizes the use of peptidomimetics from neurotrophins for treating NDs and their benefits. By improving bioavailability and stability, these molecules can completely transform the therapy for NDs. This in-depth review guides researchers and pharmaceutical developers, providing insight into the changing field of neurodegenerative medicine.
Collapse
Affiliation(s)
- Dev Madhubala
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India
| | - Rosy Mahato
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; Faculty of Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Mojibur R Khan
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; Faculty of Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Asis Bala
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; Faculty of Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; Faculty of Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
21
|
Abbasi M, Gupta V, Chitranshi N, Moustardas P, Ranjbaran R, Graham SL. Molecular Mechanisms of Glaucoma Pathogenesis with Implications to Caveolin Adaptor Protein and Caveolin-Shp2 Axis. Aging Dis 2024; 15:2051-2068. [PMID: 37962455 PMCID: PMC11346403 DOI: 10.14336/ad.2023.1012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
Glaucoma is a common retinal disorder characterized by progressive optic nerve damage, resulting in visual impairment and potential blindness. Elevated intraocular pressure (IOP) is a major risk factor, but some patients still experience disease progression despite IOP-lowering treatments. Genome-wide association studies have linked variations in the Caveolin1/2 (CAV-1/2) gene loci to glaucoma risk. Cav-1, a key protein in caveolae membrane invaginations, is involved in signaling pathways and its absence impairs retinal function. Recent research suggests that Cav-1 is implicated in modulating the BDNF/TrkB signaling pathway in retinal ganglion cells, which plays a critical role in retinal ganglion cell (RGC) health and protection against apoptosis. Understanding the interplay between these proteins could shed light on glaucoma pathogenesis and provide potential therapeutic targets.
Collapse
Affiliation(s)
- Mojdeh Abbasi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping Sweden.
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| | - Nitin Chitranshi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| | - Petros Moustardas
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping Sweden.
| | - Reza Ranjbaran
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Stuart L. Graham
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia.
| |
Collapse
|
22
|
Yılmaz E, Baltaci SB, Mogulkoc R, Baltaci AK. The impact of flavonoids and BDNF on neurogenic process in various physiological/pathological conditions including ischemic insults: a narrative review. Nutr Neurosci 2024; 27:1025-1041. [PMID: 38151886 DOI: 10.1080/1028415x.2023.2296165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
OBJECTIVE Ischemic stroke is the leading cause of mortality and disability worldwide with more than half of survivors living with serious neurological sequelae thus, it has recently attracted considerable attention in the field of medical research. Neurogenesis is the process of formation of new neurons in the brain, including the human brain, from neural stem/progenitor cells [NS/PCs] which reside in neurogenic niches that contain the necessary substances for NS/PC proliferation, differentiation, migration, and maturation into functioning neurons which can integrate into a pre-existing neural network.Neurogenesis can be modulated by many exogenous and endogenous factors, pathological conditions. Both brain-derived neurotrophic factor, and flavonoids can modulate the neurogenic process in physiological conditions and after various pathological conditions including ischemic insults. AIM This review aims to discuss neurogenesis after ischemic insults and to determine the role of flavonoids and BDNF on neurogenesis under physiological and pathological conditions with a concentration on ischemic insults to the brain in particular. METHOD Relevant articles assessing the impact of flavonoids and BDNF on neurogenic processes in various physiological/pathological conditions including ischemic insults within the timeline of 1965 until 2023 were searched using the PubMed database. CONCLUSIONS The selected studies have shown that ischemic insults to the brain induce NS/PC proliferation, differentiation, migration, and maturation into functioning neurons integrating into a pre-existing neural network. Flavonoids and BDNF can modulate neurogenesis in the brain in various physiological/pathological conditions including ischemic insults. In conclusion, flavonoids and BDNF may be involved in post-ischemic brain repair processes through enhancing endogenous neurogenesis.
Collapse
Affiliation(s)
- Esen Yılmaz
- Selcuk University, Medical Faculty, Department of Physiology, Konya, Turkey
| | | | - Rasim Mogulkoc
- Selcuk University, Medical Faculty, Department of Physiology, Konya, Turkey
| | | |
Collapse
|
23
|
von Bohlen Und Halbach O, Klausch M. The Neurotrophin System in the Postnatal Brain-An Introduction. BIOLOGY 2024; 13:558. [PMID: 39194496 DOI: 10.3390/biology13080558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024]
Abstract
Neurotrophins can bind to and signal through specific receptors that belong to the class of the Trk family of tyrosine protein kinase receptors. In addition, they can bind and signal through a low-affinity receptor, termed p75NTR. Neurotrophins play a crucial role in the development, maintenance, and function of the nervous system in vertebrates, but they also have important functions in the mature nervous system. In particular, they are involved in synaptic and neuronal plasticity. Thus, it is not surprisingly that they are involved in learning, memory and cognition and that disturbance in the neurotrophin system can contribute to psychiatric diseases. The neurotrophin system is sensitive to aging and changes in the expression levels correlate with age-related changes in brain functions. Several polymorphisms in genes coding for the different neurotrophins or neurotrophin receptors have been reported. Based on the importance of the neurotrophins for the central nervous system, it is not surprisingly that several of these polymorphisms are associated with psychiatric diseases. In this review, we will shed light on the functions of neurotrophins in the postnatal brain, especially in processes that are involved in synaptic and neuronal plasticity.
Collapse
Affiliation(s)
- Oliver von Bohlen Und Halbach
- Institut für Anatomie und Zellbiologie, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23c, 17489 Greifswald, Germany
| | - Monique Klausch
- Institut für Anatomie und Zellbiologie, Universitätsmedizin Greifswald, Friedrich Loeffler Str. 23c, 17489 Greifswald, Germany
| |
Collapse
|
24
|
Lei X, Xie XN, Yang JX, Li YM. The emerging role of extracellular vesicles in the diagnosis and treatment of autism spectrum disorders. Psychiatry Res 2024; 337:115954. [PMID: 38744180 DOI: 10.1016/j.psychres.2024.115954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/22/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental conditions characterized by restricted, repetitive behavioral patterns and deficits in social interactions. The prevalence of ASD has continued to rise in recent years. However, the etiology and pathophysiology of ASD remain largely unknown. Currently, the diagnosis of ASD relies on behavior measures, and there is a lack of reliable and objective biomarkers. In addition, there are still no effective pharmacologic therapies for the core symptoms of ASD. Extracellular vesicles (EVs) are lipid bilayer nanovesicles secreted by almost all types of cells. EVs play a vital role in cell-cell communications and are known to bear various biological functions. Emerging evidence demonstrated that EVs are involved in many physiological and pathological processes throughout the body and the content in EVs can reflect the status of the originating cells. EVs have demonstrated the potential of broad applications for the diagnosis and treatment of various brain diseases, suggesting that EVs may have also played a role in the pathological process of ASD. Besides, EVs can be utilized as therapeutic agents for their endogenous substances and biological functions. Additionally, EVs can serve as drug delivery tools as nano-sized vesicles with inherent targeting ability. Here, we discuss the potential of EVs to be considered as promising diagnostic biomarkers and their potential therapeutic applications for ASD.
Collapse
Affiliation(s)
- Xue Lei
- Clinical Nursing Teaching and Research Section, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; School of Public Health, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Xue-Ni Xie
- Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Jia-Xin Yang
- Clinical Nursing Teaching and Research Section, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China
| | - Ya-Min Li
- Clinical Nursing Teaching and Research Section, the Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, PR China.
| |
Collapse
|
25
|
Cheng J, Yuan L, Yu S, Gu B, Luo Q, Wang X, Zhao Y, Gai C, Li T, Liu W, Wang Z, Liu D, Ho RCM, Ho CSH. Programmed cell death factor 4-mediated hippocampal synaptic plasticity is involved in early life stress and susceptibility to depression. Behav Brain Res 2024; 468:115028. [PMID: 38723677 DOI: 10.1016/j.bbr.2024.115028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Early life stress (ELS) increases the risk of depression later in life. Programmed cell death factor 4 (PDCD4), an apoptosis-related molecule, extensively participates in tumorigenesis and inflammatory diseases. However, its involvement in a person's susceptibility to ELS-related depression is unknown. To examine the effects and underlying mechanisms of PDCD4 on ELS vulnerability, we used a "two-hit" stress mouse model: an intraperitoneal injection of lipopolysaccharide (LPS) into neonatal mice was performed on postnatal days 7-9 (P7-P9) and inescapable foot shock (IFS) administration in adolescent was used as a later-life challenge. Our study shows that compared with mice that were only exposed to the LPS or IFS, the "two-hit" stress mice developed more severe depression/anxiety-like behaviors and social disability. We detected the levels of PDCD4 in the hippocampus of adolescent mice and found that they were significantly increased in "two-hit" stress mice. The results of immunohistochemical staining and Sholl analysis showed that the number of microglia in the hippocampus of "two-hit" stress mice significantly increased, with morphological changes, shortened branches, and decreased numbers. However, knocking down PDCD4 can prevent the number and morphological changes of microglia induced by ELS. In addition, we confirmed through the Golgi staining and immunohistochemical staining results that knocking down PDCD4 can ameliorate ELS-induced synaptic plasticity damage. Mechanically, the knockdown of PDCD4 exerts neuroprotective effects, possibly via the mediation of BDNF/AKT/CREB signaling. Combined, these results suggest that PDCD4 may play an important role in the ELS-induced susceptibility to depression and, thus, may become a therapeutic target for depressive disorders.
Collapse
Affiliation(s)
- Jiao Cheng
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Lin Yuan
- Department of Clinical Laboratory, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250012, PR China
| | - Shuwen Yu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Bing Gu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Qian Luo
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Xixi Wang
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Yijing Zhao
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Chengcheng Gai
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Tingting Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| | - Weiyang Liu
- Jinan Xicheng Experimental High School, Dezhou Road, Jinan, Shandong 1999, PR China
| | - Zhen Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China.
| | - Dexiang Liu
- Department of Medical Psychology and Ethics, School of Basic Medicine Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China.
| | - Roger C M Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Institute of Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore
| | - Cyrus S H Ho
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
26
|
Bafkar N, Zeraattalab-Motlagh S, Jayedi A, Shab-Bidar S. Efficacy and safety of omega-3 fatty acids supplementation for anxiety symptoms: a systematic review and dose-response meta-analysis of randomized controlled trials. BMC Psychiatry 2024; 24:455. [PMID: 38890670 PMCID: PMC11186166 DOI: 10.1186/s12888-024-05881-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND/OBJECTIVES There is uncertainty about the optimum dose of omega-3 fatty acids for anxiety symptoms. We aimed to find the dose-dependent effect of omega-3 supplementation on anxiety symptoms. METHODS We systematically reviewed PubMed, Scopus, and Web of Science until December 2022 to find randomized trials that assessed the effects of omega-3 fatty acids supplementation on anxiety symptoms in adults. Investigators performed the literature search and screened the titles/abstracts and full-texts and between-reviewer agreement was assessed as Cohen's kappa coefficient. We conducted a random-effects dose-response meta-analysis to estimate standardized mean differences (SMD) and 95% confidence intervals (CIs) and assessed the certainty of evidence using the GRADE framework. RESULTS A total of 23 trials with 2189 participants were included. Each 1 gram per day supplementation with omega-3 fatty acids resulted in a moderate decrease in anxiety symptoms (SMD: -0.70, 95%CI: -1.17, -0.22; GRADE = low). The non-linear dose-response analysis indicated the greatest improvement at 2 g/d (SMD: -0.93, 95%CI: -1.85, -0.01), and that supplementation in a dose lower than 2 g/d did not affect anxiety symptoms. Omega-3 fatty acids did not increase adverse events (odds ratio: 1.20, 95%CI: 0.89, 1.61; GRADE = moderate). CONCLUSIONS The present dose-response meta-analysis suggested evidence of very low certainty that supplementation with omega-3 fatty acids may significantly improve anxiety symptoms, with the greatest improvements at 2 g/d. More trials with better methodological quality are needed to reach more robust evidence. PROTOCOL REGISTRATION PROSPERO (CRD42022309636).
Collapse
Affiliation(s)
- Negar Bafkar
- Department of Community Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Jayedi
- Social Determinants of Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Sakineh Shab-Bidar
- Department of Community Nutrition, School of Nutritional Science and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
27
|
Hu Y, Hao R, Li D, Lu Y, Yu G. Experimental verification about treatment of Bu-Shen-Yi-Jing-Fang in Alzheimer's disease by the analysis of the feasible signaling pathway of network pharmacology. BMC Complement Med Ther 2024; 24:222. [PMID: 38851758 PMCID: PMC11162075 DOI: 10.1186/s12906-024-04527-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/29/2024] [Indexed: 06/10/2024] Open
Abstract
CONTEXT Bu-shen-yi-jing-fang (BSYJF) has been reported to reduce amyloid-β (Aβ)1-42 deposition in the brain of APP/PS1 mice and ameliorate cognitive function. However, its neuroprotective mechanism remains unclear. OBJECTIVE This study aims to investigate whether BSYJF exerts a protective effect on Aβ1-42-induced oxidative stress injury and explore its possible mechanism. MATERIALS AND METHODS The platform databases TCMSP, Swiss, TTD, DrugBank, and GeneCards were used to mine the targets of Alzheimer's disease (AD) and BSYJF. The platform databases STRING and Metascape were used to build the interaction network of the target protein, and Cytoscape software was used to analyze this network and screen out the key pathways. Aβ1-42-treated SKNMC cells were established to verify the mechanism of BSYJF and the key proteins. The downstream proteins and antioxidants as well as apoptosis and ferroptosis of the PI3K/AKT/Nrf2 signaling pathway were validated using an in vitro SKNMC cell model experiment. The expression levels of related proteins were detected using Western blotting. Flow cytometry and immunofluorescence staining were used to analyze apoptosis and ferroptosis. RESULTS Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis considered the key signal pathways, mainly involving the PI3K/AKT signaling pathway. Experimental validation demonstrated that BSYJF treatment markedly increased the activity of the PI3K/AKT pathway, which could exert anti-AD effects. CONCLUSIONS Our data provided compelling evidence that the protective effects of BSYJF might be associated with their regulation of the PI3K/AKT/Nrf2 signaling pathway. These studies offered a potential therapy for natural herbal medicine treatment of AD.
Collapse
Affiliation(s)
- Yingchao Hu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210001, China
| | - Renjuan Hao
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210001, China
| | - Deyu Li
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210001, China
| | - Yunwei Lu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210001, China
| | - Guran Yu
- Department of Neurology, Jiangsu Province Hospital of Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 210001, China.
| |
Collapse
|
28
|
Pavlidis P, Tseriotis VS, Papadopoulou K, Karachrysafi S, Sardeli C, Gouveris H, Malliou F, Kavvadas D, Papamitsou T, Sioga A, Anastasiadou P, Kouvelas D. Role of Memantine in Limiting Cochleotoxicity in Rats. Indian J Otolaryngol Head Neck Surg 2024; 76:2464-2473. [PMID: 38883494 PMCID: PMC11169147 DOI: 10.1007/s12070-024-04521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/08/2024] [Indexed: 06/18/2024] Open
Abstract
Οur aim was to test whether amikacin's well-known cochleotoxic effects could be suppressed, depending on whether an NMDA-antagonist (memantine) was administered simultaneously with or after amikacin treatment. Forty Wistar rats were used in this experiment. Ten rats acted as controls and received no medication (group A). Amikacin (200 mg/kg) was administered intraperitoneally (i.p.) once daily for 14 days to 10 animals in group B; amikacin (200 mg/kg) was administered concurrently with memantine (10 mg/kg, i.p., once daily) to the same 10 animals in group C. Group D was given intraperitoneal memantine (10 mg/kg, once daily) for 14 days following a 2-week amikacin treatment. The cochlear activity of the right ear was tested using DPOAE in conscious animals. All animals were sacrificed at the conclusion of the experiment and both cochleae were collected for histological and immunohistochemical analysis. All groups treated with amikacin showed decreased cochlear activity, as testified by decreased DPOAE-amplitudes compared to the pre-treatment state. In the rats of group B, the DPOAE reduction was more pronounced. On histologic exam, the cochlear structures of group C rats and, although to a lesser extent, group D rats showed less severe cochlea damage. Memantine plays a protective role, resulting in restoring partially cochlear structures when administered either simultaneously with or after completion of amikacin i.p. treatment in rats.
Collapse
Affiliation(s)
- Pavlos Pavlidis
- Department of Otorhinolarhingology / Head & Neck Surgery, University Medical Center Mainz, Mainz, Germany
- Laboratory for Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University Thessaloniki, Thessaloniki, Greece
| | - Vasilis Spyridon Tseriotis
- Laboratory for Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University Thessaloniki, Thessaloniki, Greece
| | - Kyriaki Papadopoulou
- Laboratory of Histology-Embryology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sophia Karachrysafi
- Laboratory of Histology-Embryology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Chrysanthi Sardeli
- Laboratory for Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University Thessaloniki, Thessaloniki, Greece
| | - Haralampos Gouveris
- Department of Otorhinolarhingology / Head & Neck Surgery, University Medical Center Mainz, Mainz, Germany
| | - Faye Malliou
- Laboratory for Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Kavvadas
- Laboratory of Histology-Embryology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Theodora Papamitsou
- Laboratory of Histology-Embryology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonia Sioga
- Laboratory of Histology-Embryology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Penelope Anastasiadou
- Department of Oral Medicine/Pathology, School of Dentistry, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Kouvelas
- Laboratory for Clinical Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
29
|
Rodríguez-Blanque R, Nielsen LM, Piqueras-Sola B, Sánchez-García JC, Cortés-Martín C, Reinoso-Cobo A, Cortés-Martín J. A Systematic Review of Congenital Insensitivity to Pain, a Rare Disease. J Pers Med 2024; 14:570. [PMID: 38929791 PMCID: PMC11204641 DOI: 10.3390/jpm14060570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
INTRODUCTION Pain perception, far from being a pathological mechanism, is a crucial protective stimulus to prevent additional injuries. Any disturbance in this complex system poses significant risks to individuals, affecting their quality of life and even their survival. OBJECTIVE This review aims to explore congenital insensitivity to pain, an extremely rare genetic disorder with an autosomal recessive pattern that results in the inability to perceive pain. We will focus on the well-known subtype, congenital insensitivity to pain with anhidrosis (CIPA). Our research seeks to update existing knowledge through a comprehensive literature review. METHODOLOGY The review employs a systematic literature review, analyzing various sources and scientific documents, primarily emphasizing CIPA. The review follows the PROSPERO protocol, registered under CRD42023394489. The literature search was performed on the Scopus, PubMed, and Cinahl databases. RESULTS Our review reveals secondary complications associated with CIPA, such as recurrent bone fractures, temperature insensitivity, self-mutilation, and, occasionally, intellectual disabilities. The limited available information underscores the need for expanding our knowledge. CONCLUSIONS In summary, CIPA, particularly, presents a significant medical challenge with adverse impacts on quality of life. Early diagnosis, education for families and healthcare professionals, and appropriate nursing care are essential for effective management. This review highlights the necessity of further research and awareness to enhance support for those affected.
Collapse
Affiliation(s)
- Raquel Rodríguez-Blanque
- San Cecilio University Hospital, 18071 Granada, Spain;
- Department of Nursing, Faculty of Health Sciences, University of Granada, 18071 Granada, Spain; (C.C.-M.); (J.C.-M.)
| | - Laura Maria Nielsen
- Department of Nursing and Podiatry, Faculty of Health Sciences, University of Malaga—Teatinos, Arquitecto Francisco Peñalosa 3, 29071 Malaga, Spain; (L.M.N.); (A.R.-C.)
| | | | - Juan Carlos Sánchez-García
- Department of Nursing, Faculty of Health Sciences, University of Granada, 18071 Granada, Spain; (C.C.-M.); (J.C.-M.)
| | - Celia Cortés-Martín
- Department of Nursing, Faculty of Health Sciences, University of Granada, 18071 Granada, Spain; (C.C.-M.); (J.C.-M.)
| | - Andrés Reinoso-Cobo
- Department of Nursing and Podiatry, Faculty of Health Sciences, University of Malaga—Teatinos, Arquitecto Francisco Peñalosa 3, 29071 Malaga, Spain; (L.M.N.); (A.R.-C.)
| | - Jonathan Cortés-Martín
- Department of Nursing, Faculty of Health Sciences, University of Granada, 18071 Granada, Spain; (C.C.-M.); (J.C.-M.)
| |
Collapse
|
30
|
Jiao L, Junfang Z, Yanna L, Caixia J, Chen Z, Song J, Jie X, Xiaoli Y, Xin G, Libo X, Feng W, lixia L, Chunli X, Lei X. miR-153 promotes neural differentiation by activating the cell adhesion/Ca 2+ signaling pathway and targeting ion channel activity in HT-22 cells by bioinformatic analysis. Heliyon 2024; 10:e30204. [PMID: 38694121 PMCID: PMC11061740 DOI: 10.1016/j.heliyon.2024.e30204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
MicroRNAs have been studied extensively in neurodegenerative diseases. In a previous study, miR-153 promoted neural differentiation and projection formation in mouse hippocampal HT-22 cells. However, the pathways and molecular mechanism underlying miR-153-induced neural differentiation remain unclear. To explore the molecular mechanism of miR-153 on neural differentiation, we performed RNA sequencing on miR-153-overexpressed HT-22 cells. Based on RNA sequencing, differentially expressed genes (DEGs) and pathways in miR-153-overexpressed cells were identified. The Database for Annotation, Visualization and Integrated Discovery and Gene Set Enrichment Analysis were used to perform functional annotation and enrichment analysis of DEGs. Targetscan predicted the targets of miR-153. The Search Tool for the Retrieval of Interacting Genes and Cytoscape, were used to construct protein-protein interaction networks and identify hub genes. Q-PCR was used to detect mRNA expression of the identified genes. The expression profiles of the identified genes were compared between embryonic days 9.5 (E9.5) and E11.5 in the embryotic mouse brain of the GDS3442 dataset. Cell Counting Kit-8 assay was used to determine cell proliferation and cellular susceptibility to amyloid β-protein (Aβ) toxicity in miR-153-overexpressed cells. The results indicated that miR-153 increased cell adhesion/Ca2+ (Cdh5, Nrcam, and P2rx4) and Bdnf/Ntrk2 neurotrophic signaling pathway, and decreased ion channel activity (Kcnc3, Kcna4, Clcn5, and Scn5a). The changes in the expression of the identified genes in miR-153-overexpressed cells were consistent with the expression profile of GDS3442 during neural differentiation. In addition, miR-153 overexpression decreased cellular susceptibility to Aβ toxicity in HT-22 cells. In conclusion, miR-153 overexpression may promote neural differentiation by inducing cell adhesion and the Bdnf/Ntrk2 pathway, and regulating electrophysiological maturity by targeting ion channels. MiR-153 may play an important role in neural differentiation; the findings provide a useful therapeutic direction for neurodegenerative diseases.
Collapse
Affiliation(s)
- Li Jiao
- Teaching Laboratory Center, Tongji University School of Medicine, Shanghai, China
| | - Zhang Junfang
- Teaching Laboratory Center, Tongji University School of Medicine, Shanghai, China
| | - Li Yanna
- Teaching Laboratory Center, Tongji University School of Medicine, Shanghai, China
| | - Jin Caixia
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Zhang Chen
- Department of Laboratory Research Center, Tongji University School of Medicine, Shanghai, China
| | - Jia Song
- Teaching Laboratory Center, Tongji University School of Medicine, Shanghai, China
| | - Xu Jie
- Teaching Laboratory Center, Tongji University School of Medicine, Shanghai, China
| | - Yan Xiaoli
- Teaching Laboratory Center, Tongji University School of Medicine, Shanghai, China
| | - Gui Xin
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Xing Libo
- School of Life Science and Technology, Tongji University, Shanghai, China
| | - Wang Feng
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu lixia
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| | - Xu Chunli
- Department of Neurology, The Seventh People's Hospital of Integrated Traditional Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Lei
- Department of Biochemistry and Molecular Biology, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Jiang S, Li W, Song M, Liang J, Liu G, Du Q, Wang L, Meng H, Tang L, Yang Y, Zhang B. CXCL1-CXCR2 axis mediates inflammatory response after sciatic nerve injury by regulating macrophage infiltration. Mol Immunol 2024; 169:50-65. [PMID: 38493581 DOI: 10.1016/j.molimm.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Macrophages play a crucial role in the inflammatory response following sciatic nerve injury. Studies have demonstrated that C-X-C motif chemokine (CXCL) 1 recruit macrophages by binding to C-X-C chemokine receptor (CXCR) 2 and participates in the inflammatory response of various diseases. Based on these findings, we aimed to explore the role of the CXCL1-CXCR2 axis in the repair process after peripheral nerve injury. Initially, we simulated sciatic nerve injury and observed an increased expression of CXCL1 and CXCR2 in the nerves of the injury group. Both in vivo and in vitro experiments confirmed that the heightened CXCL1 expression occurs in Schwann cells and is secreted, while the elevated CXCR2 is expressed by recruited macrophages. In addition, in vitro experiments demonstrated that the binding of CXCL1 to CXCR2 can activate the NLRP3 inflammasome and promote the production of interleukin-1 beta (IL-1β) in macrophages. However, after mice were subjected to sciatic nerve injury, the number of macrophages and the expression of inflammatory factors in the sciatic nerve were reduced following treatment with the CXCR2 inhibitor SB225002. Simultaneously, we evaluated the sciatic nerve function index, the expression of p75 neurotrophic factor receptor (p75NTR), and myelin proteins, and all of these results were improved with the use of SB225002. Thus, our results suggest that after sciatic nerve injury, the CXCL1-CXCR2 axis mediates the inflammatory response by promoting the recruitment and activation of macrophages, which is detrimental to the repair of the injured nerves. In contrast, treatment with SB225002 promotes the repair of injured sciatic nerves.
Collapse
Affiliation(s)
- Suli Jiang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Wei Li
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Meiying Song
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Jie Liang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Guixian Liu
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Qiaochu Du
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Luoyang Wang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Haining Meng
- School of Emergency Medicine, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Lei Tang
- Department of Special Medicine, School of Basic Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Yanyan Yang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China
| | - Bei Zhang
- Department of Immunology, Medical College of Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
32
|
Boukhatem I, Fleury S, Jourdi G, Lordkipanidzé M. The intriguing role of platelets as custodians of brain-derived neurotrophic factor. Res Pract Thromb Haemost 2024; 8:102398. [PMID: 38706782 PMCID: PMC11066552 DOI: 10.1016/j.rpth.2024.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 05/07/2024] Open
Abstract
A State of the Art lecture titled "Platelets and neurotrophins" was presented at the International Society on Thrombosis and Haemostasis Congress in 2023. Neurotrophins, a family of neuronal growth factors known to support cognitive function, are increasingly recognized as important players in vascular health. Indeed, along with their canonical receptors, neurotrophins are expressed in peripheral tissues, particularly in the vasculature. The better-characterized neurotrophin in vascular biology is the brain-derived neurotrophic factor (BDNF). Its largest extracerebral pool resides within platelets, partly inherited from megakaryocytes and also likely internalized from circulation. Activation of platelets releases vast amounts of BDNF into their milieu and interestingly leads to platelet aggregation through binding of its receptor, the tropomyosin-related kinase B, on the platelet surface. As BDNF is readily available in plasma, a mechanism to preclude excessive platelet activation and aggregation appears critical. As such, binding of BDNF to α2-macroglobulin hinders its ability to bind its receptor and limits its platelet-activating effects to the site of vascular injury. Altogether, addition of BDNF to a forming clot facilitates not only paracrine platelet activation but also binding to fibrinogen, rendering the resulting clot more porous and plasma-permeable. Importantly, release of BDNF into circulation also appears to be protective against adverse cardiovascular and cerebrovascular outcomes, which has been reported in both animal models and epidemiologic studies. This opens an avenue for platelet-based strategies to deliver BDNF to vascular lesions and facilitate wound healing through its regenerative properties. Finally, we summarize relevant new data on this topic presented during the 2023 International Society on Thrombosis and Haemostasis Congress.
Collapse
Affiliation(s)
- Imane Boukhatem
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Samuel Fleury
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| | - Georges Jourdi
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
- Université Paris Cité, Institut National de la Santé Et de la Recherche Médicale, Innovative Therapies in Haemostasis, Paris, France
- Service d’Hématologie Biologique, Assistance Publique : Hôpitaux de Paris, Hôpital Lariboisière, Paris, France
| | - Marie Lordkipanidzé
- Research Center, Montreal Heart Institute, Montreal, Quebec, Canada
- Faculty of Pharmacy, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
33
|
Al‐kuraishy HM, Al‐Gareeb AI, Albuhadily AK, Elewa YHA, AL‐Farga A, Aqlan F, Zahran MH, Batiha GE. Sleep disorders cause Parkinson's disease or the reverse is true: Good GABA good night. CNS Neurosci Ther 2024; 30:e14521. [PMID: 38491789 PMCID: PMC10943276 DOI: 10.1111/cns.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative brain disease due to degeneration of dopaminergic neurons (DNs) presented with motor and non-motor symptoms. PD symptoms are developed in response to the disturbance of diverse neurotransmitters including γ-aminobutyric acid (GABA). GABA has a neuroprotective effect against PD neuropathology by protecting DNs in the substantia nigra pars compacta (SNpc). It has been shown that the degeneration of GABAergic neurons is linked with the degeneration of DNs and the progression of motor and non-motor PD symptoms. GABA neurotransmission is a necessary pathway for normal sleep patterns, thus deregulation of GABAergic neurotransmission in PD could be the potential cause of sleep disorders in PD. AIM Sleep disorders affect GABA neurotransmission leading to memory and cognitive dysfunction in PD. For example, insomnia and short sleep duration are associated with a reduction of brain GABA levels. Moreover, PD-related disorders including rigidity and nocturia influence sleep patterns leading to fragmented sleep which may also affect PD neuropathology. However, the mechanistic role of GABA in PD neuropathology regarding motor and non-motor symptoms is not fully elucidated. Therefore, this narrative review aims to clarify the mechanistic role of GABA in PD neuropathology mainly in sleep disorders, and how good GABA improves PD. In addition, this review of published articles tries to elucidate how sleep disorders such as insomnia and REM sleep behavior disorder (RBD) affect PD neuropathology and severity. The present review has many limitations including the paucity of prospective studies and most findings are taken from observational and preclinical studies. GABA involvement in the pathogenesis of PD has been recently discussed by recent studies. Therefore, future prospective studies regarding the use of GABA agonists in the management of PD are suggested to observe their distinct effects on motor and non-motor symptoms. CONCLUSION There is a bidirectional relationship between the pathogenesis of PD and sleep disorders which might be due to GABA deregulation.
Collapse
Affiliation(s)
- Hayder M. Al‐kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali K. Albuhadily
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Yaser Hosny Ali Elewa
- Department of Histology and Cytology, Faculty of Veterinary MedicineZagazig UniversityZagazigEgypt
- Faculty of Veterinary MedicineHokkaido UniversitySapporoJapan
| | - Ammar AL‐Farga
- Biochemistry Department, College of SciencesUniversity of JeddahJeddahSaudia Arbia
| | - Faisal Aqlan
- Department of Chemistry, College of SciencesIbb UniversityIbb GovernorateYemen
| | | | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhur UniversityDamanhurEgypt
| |
Collapse
|
34
|
P A, Rengarajan S, Venkatachalam S, Pattabi S, Jones S, K P, Krishna V, Prasanth K. Neuroprotection by Cerebrolysin and Citicoline Through the Upregulation of Brain-Derived Neurotrophic Factor (BDNF) Expression in the Affected Neural Cells: A Preliminary Clue Obtained Through an In Vitro Study. Cureus 2024; 16:e54665. [PMID: 38524067 PMCID: PMC10960614 DOI: 10.7759/cureus.54665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
OBJECTIVES Citicoline and cerebrolysin are two unique yet contentious medications because of inconsistencies in efficacy as well as the mystery surrounding their mode of action. The current study aimed to re-validate the neuroprotective benefits of these medications and investigate the possible molecular mechanism. METHODS Neuro-2A cells were exposed to tert-butyl hydroperoxide, a consistent in vitro model of neuronal damage caused by oxidative stress. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, acridine orange/ethidium bromide (AO-EtBr) staining, and phase-view examinations were utilized to evaluate cell survival and cytotoxicity. Real-time reverse transcription-polymerase chain reaction (RT-PCR)-based gene expression studies were conducted. KEY FINDING Observations revealed that these two medications had modest but considerable neuroprotective effects. While the majority of the genes' expressions remained unchanged, cerebrolysin upregulated Neuregulin 1, and both upregulated brain-derived neurotrophic factor (BDNF) expression. CONCLUSION The findings of the current study may be the first to suggest that citicoline and cerebrolysin may increase host cells' defense mechanisms (secretion neurotrophic factors) rather than carrying nutrients for cell survival. Because of its simplicity, the current study can readily be repeated to learn more about these two disputed medications for treating ischemic stroke.
Collapse
Affiliation(s)
- Anandan P
- Department of General Medicine, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education and Research, Chennai, IND
| | - Santhanam Rengarajan
- Department of Neurosurgery, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education and Research, Chennai, IND
| | - Sankar Venkatachalam
- Department of Anatomy, Dr. A.L.M. PG Institute of Basic Medical Sciences, University of Madras, Chennai, IND
| | - Sasikumar Pattabi
- Department of Surgery, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education and Research, Chennai, IND
| | - Sumathi Jones
- Department of Pharmacology and Therapeutics, Sree Balaji Dental College and Hospital, Bharath Institute of Higher Education and Research, Chennai, IND
| | - Prabhu K
- Department of Anatomy, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education and Research, Chennai, IND
| | - Vani Krishna
- Department of Anatomy, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education and Research, Chennai, IND
| | - Krishna Prasanth
- Department of Community Medicine, Sree Balaji Medical College and Hospital, Bharath Institute of Higher Education and Research, Chennai, IND
| |
Collapse
|
35
|
Rani N, Sahu M, Ambasta RK, Kumar P. Triaging between post-translational modification of cell cycle regulators and their therapeutics in neurodegenerative diseases. Ageing Res Rev 2024; 94:102174. [PMID: 38135008 DOI: 10.1016/j.arr.2023.102174] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/24/2023]
Abstract
Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and Huntington's disease, present challenges in healthcare because of their complicated etiologies and absence of healing remedies. Lately, the emerging role of post-translational modifications (PTMs), in the context of cell cycle regulators, has garnered big interest as a potential avenue for therapeutic intervention. The review explores the problematic panorama of PTMs on cell cycle regulators and their implications in neurodegenerative diseases. We delve into the dynamic phosphorylation, acetylation, ubiquitination, SUMOylation, Glycation, and Neddylation that modulate the key cell cycle regulators, consisting of cyclins, cyclin-dependent kinases (CDKs), and their inhibitors. The dysregulation of these PTMs is related to aberrant cell cycle in neurons, which is one of the factors involved in neurodegenerative pathologies. Moreover, the effect of exogenous activation of CDKs and CDK inhibitors through PTMs on the signaling cascade was studied in postmitotic conditions of NDDs. Furthermore, the therapeutic implications of CDK inhibitors and associated alteration in PTMs were discussed. Lastly, we explored the putative mechanism of PTMs to restore normal neuronal function that might reverse NDDs.
Collapse
Affiliation(s)
- Neetu Rani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042
| | - Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042; Department of Biotechnology and Microbiology, SRM University, Sonepat, Haryana, India.
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042.
| |
Collapse
|
36
|
Dadkhah M, Baziar M, Rezaei N. The regulatory role of BDNF in neuroimmune axis function and neuroinflammation induced by chronic stress: A new therapeutic strategies for neurodegenerative disorders. Cytokine 2024; 174:156477. [PMID: 38147741 DOI: 10.1016/j.cyto.2023.156477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/14/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
Neurodegenerative disorders account for a high proportion of neurological diseases that significantly threaten public health worldwide. Various factors are involved in the pathophysiology of such diseases which can lead to neurodegeneration and neural damage. Furthermore, neuroinflammation is a well-known factor in predisposing factors of neurological and especially neurodegenerative disorders which can be strongly suppressed by "anti-inflammatory" actions of brain-derived neurotrophic factor (BDNF). Stress has has also been identified as a risk factor in developing neurodegenerative disorders potentially leading to increased neuroinflammation in the brain and progressive loss in neuronal structures and impaired functions in the CNS. Recently, more studies have increasingly been focused on the role of neuroimmune system in regulating the neurobiology of stress. Emerging evidence indicate that exposure to chronic stress might alter the susceptibility to neurodegeneration via influencing the microglia function. Microglia is considered as the first responding group of cells in suppressing neuroinflammation, leading to an increased inflammatory cytokine signaling that promote the synaptic plasticity deficiencies, impairment in neurogenesis, and development of neurodegenerative disorders. In this review we discuss how exposure to chronic stress might alter the neuroimmune response potentially leading to progress of neurodegenerative disorders. We also emphasize on the role of BDNF in regulating the neuroimmune axis function and microglia modulation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Milad Baziar
- Student Research Committee, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran 1419733151, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education Research Network (USERN), Tehran, Iran
| |
Collapse
|
37
|
Kim EB, Song JH, Le LNH, Kim H, Koh JW, Seo Y, Jeong HR, Kim HT, Ryu S. Characterization of exosomal microRNAs in preterm infants fed with breast milk and infant formula. Front Nutr 2024; 11:1339919. [PMID: 38304545 PMCID: PMC10830786 DOI: 10.3389/fnut.2024.1339919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
Breastfeeding not only reduces infection-related morbidity, but also increases growth of preterm infants. Advantages of breast milk (BM) for preterm infants are significant. They continue to be studied. However, because not all preterm infants can receive breastfeeding, bovine-based infant formula (IF) is used as an alternative, which may increase the risk of several preterm complications. Exosomes isolated from biofluids are emerging as biomarkers in research of various diseases. Here, we characterized miRNA contents of exosomes in urine and serum samples of preterm infants who were BM and IF fed and performed transcriptomic analysis of small RNA libraries. We identified significantly up-regulated 6 miRNAs and 10 miRNAs, respectively. Gene Ontology (GO) analysis revealed that target genes of these miRNAs might participate in neuronal development, immunity modulation, detoxification of reactive oxygen species, and transmembrane exchange. Our data suggest that exosome-based systemic screening for preterm infants with breastfeeding might be a screening tool for identifying target molecules involved in therapy for preterm infants in neonatal intensive care unit (NICU) and for future application as nutraceutical formulations or pharmaceuticals.
Collapse
Affiliation(s)
- Eun-Bit Kim
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Jun Hwan Song
- Soonchunhyang University Cheonan Hospital, College of Medicine, Soon-chunhyang University, Cheonan, Republic of Korea
| | - Linh Nguy-Hoang Le
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
| | - Ho Kim
- Soonchunhyang University Cheonan Hospital, College of Medicine, Soon-chunhyang University, Cheonan, Republic of Korea
| | - Ji Won Koh
- Soonchunhyang University Cheonan Hospital, College of Medicine, Soon-chunhyang University, Cheonan, Republic of Korea
| | - Yekyeng Seo
- Soonchunhyang University Cheonan Hospital, College of Medicine, Soon-chunhyang University, Cheonan, Republic of Korea
| | - Hwal Rim Jeong
- Department of Pediatrics, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hyun-Taek Kim
- Soonchunhyang Institute of Med-bio Science (SIMS), Soonchunhyang University, Cheonan, Republic of Korea
| | - Seongho Ryu
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan, Republic of Korea
| |
Collapse
|
38
|
Zhong Y, Du Q, Wang Z, Zheng Q, Yang M, Hu P, Yang Q, Xu H, Wu Z, Huang X, Li H, Tang M, Zeng H, Zhu L, Ren G, Cao M, Liu Y, Wang H. Antidepressant effect of Perilla frutescens essential oil through monoamine neurotransmitters and BDNF/TrkB signal pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116840. [PMID: 37355083 DOI: 10.1016/j.jep.2023.116840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medicine posits that affect-mind ill-being is the primary cause of depression, with Qi movement stagnation as its pathogenesis. As such, clinical treatment for depression should prioritize regulating Qi and relieving depressive symptoms. The pharmacological properties of traditional Chinese medicine indicate that Perilla frutescens may have potential therapeutic effects on depression and other neuropsychiatric diseases due to its ability to regulate Qi and alleviate depressive symptoms. Although previous studies have reported the antidepressant effects of Perilla frutescens, the mechanism underlying PFEO inhalation-mediated antidepressant effect remains unclear. AIM OF THE STUDY The aim of this investigation is to elucidate the antidepressant mechanisms of PFEO by examining its effects on monoamine neurotransmitters and the BDNF/TrkB signaling pathway. MATERIALS AND METHODS The CUMS rat model of depression was established, and the depressive state of the animals was assessed through sucrose preference and forced swim tests. ELISA assays were conducted to determine monoamine neurotransmitter levels in the hippocampus and cerebral cortex of rats. Immunohistochemistry, western blotting, and RT-PCR experiments were employed to investigate the BDNF/TrkB signaling pathway's regulation of depression via PFEO inhalation. RESULTS It has been observed that inhalation administration of PFEO can significantly enhance the preference for sugar water in CUMS rats and reduce their immobility time during forced swimming. Additionally, there was an increase in the levels of monoamine transmitters in both the hippocampus and cerebral cortex of these rats. Furthermore, there was an upregulation in the expression levels of BDNF and TrkB positive cells as well as BDNF and TrkB proteins within both regions, along with increased BDNF mRNA and TrkB mRNA expression levels. CONCLUSION The antidepressant effect of PFEO via inhalation administration is speculated to be mediated through the monoamine neurotransmitters and BDNF/TrkB signaling pathway.
Collapse
Affiliation(s)
- Yu Zhong
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Qing Du
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Ziqian Wang
- Jiangxi Drug Inspection Center, Nanchang, 330000, China
| | - Qin Zheng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Pengyi Hu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Qiyue Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Huanhua Xu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Xiaoying Huang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Huiting Li
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Mingxia Tang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Huiming Zeng
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Liyun Zhu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Guilin Ren
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Ming Cao
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Yu Liu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| | - Hongbo Wang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, State Key Lab.of Innovation Drug and Effcient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, 330004, China
| |
Collapse
|
39
|
Tuszynski MH. Growth Factor Gene Therapy for Alzheimer's Disease. J Alzheimers Dis 2024; 101:S433-S441. [PMID: 39422960 DOI: 10.3233/jad-240545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Nervous system growth factors are natural proteins of the brain that influence neuronal survival and function throughout life, from embryonic development to old age. In animal models of Alzheimer's disease (AD), the growth factor brain derived neurotrophic factor (BDNF) prevents neuronal death, activates neuronal function, builds new synapses and improves learning and memory. Accordingly, we are determining whether gene delivery of BDNF in patients with AD will slow disease progression and improve memory. In a previous clinical trial of nerve growth factor (NGF) gene therapy in AD patients (NCT00017940, June 2001), we learned that growth factors can unequivocally elicit classic trophic responses from degenerating neurons in AD. Experience gained from the earlier NGF gene therapy trial is guiding our effort to optimize gene delivery of BDNF in our present clinical program (NCT05040217, June 2021).
Collapse
Affiliation(s)
- Mark H Tuszynski
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs Medical Center, San Diego, CA, USA
| |
Collapse
|
40
|
Jang K, Garraway SM. A review of dorsal root ganglia and primary sensory neuron plasticity mediating inflammatory and chronic neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 15:100151. [PMID: 38314104 PMCID: PMC10837099 DOI: 10.1016/j.ynpai.2024.100151] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/06/2024]
Abstract
Pain is a sensory state resulting from complex integration of peripheral nociceptive inputs and central processing. Pain consists of adaptive pain that is acute and beneficial for healing and maladaptive pain that is often persistent and pathological. Pain is indeed heterogeneous, and can be expressed as nociceptive, inflammatory, or neuropathic in nature. Neuropathic pain is an example of maladaptive pain that occurs after spinal cord injury (SCI), which triggers a wide range of neural plasticity. The nociceptive processing that underlies pain hypersensitivity is well-studied in the spinal cord. However, recent investigations show maladaptive plasticity that leads to pain, including neuropathic pain after SCI, also exists at peripheral sites, such as the dorsal root ganglia (DRG), which contains the cell bodies of sensory neurons. This review discusses the important role DRGs play in nociceptive processing that underlies inflammatory and neuropathic pain. Specifically, it highlights nociceptor hyperexcitability as critical to increased pain states. Furthermore, it reviews prior literature on glutamate and glutamate receptors, voltage-gated sodium channels (VGSC), and brain-derived neurotrophic factor (BDNF) signaling in the DRG as important contributors to inflammatory and neuropathic pain. We previously reviewed BDNF's role as a bidirectional neuromodulator of spinal plasticity. Here, we shift focus to the periphery and discuss BDNF-TrkB expression on nociceptors, non-nociceptor sensory neurons, and non-neuronal cells in the periphery as a potential contributor to induction and persistence of pain after SCI. Overall, this review presents a comprehensive evaluation of large bodies of work that individually focus on pain, DRG, BDNF, and SCI, to understand their interaction in nociceptive processing.
Collapse
Affiliation(s)
- Kyeongran Jang
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| | - Sandra M. Garraway
- Department of Cell Biology, Emory University, School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
41
|
Ricci V, de Berardis D, Martinotti G, Maina G. Neurotrophic Factors in Cannabis-induced Psychosis: An Update. Curr Top Med Chem 2024; 24:1757-1772. [PMID: 37644743 DOI: 10.2174/1568026623666230829152150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Cannabis is the most widely used illicit substance. Numerous scientific evidence confirm the strong association between cannabis and psychosis. Exposure to cannabis can induce the development of psychosis and schizophrenia in vulnerable individuals. However, the neurobiological processes underlying this relationship are unknown. Neurotrophins are a class of proteins that serve as survival factors for central nervous system (CNS) neurons. In particular, Nerve Growth Factor (NGF) plays an important role in the survival and function of cholinergic neurons while Brain Derived Neurotrophic Factor (BDNF) is involved in synaptic plasticity and the maintenance of midbrain dopaminergic and cholinergic neurons. Glial Cell Derived Neurotrophic Factor (GDNF) promotes the survival of midbrain dopaminergic neurons and Neuregulin 1 (NrG- 1) contributes to glutamatergic signals regulating the N-methyl-D-aspartate (NMDA). They have a remarkable influence on the neurons involved in the Δ-9-THC (tethra-hydro-cannabinol) action, such as dopaminergic and glutamatergic neurons, and can play dual roles: first, in neuronal survival and death, and, second, in activity-dependent plasticity. METHODS In this brief update, reviewing in a narrative way the relevant literature, we will focus on the effects of cannabis on this class of proteins, which may be implicated, at least in part, in the mechanism of the psychostimulant-induced neurotoxicity and psychosis. CONCLUSION Since altered levels of neurotrophins may participate in the pathogenesis of psychotic disorders which are common in drug users, one possible hypothesis is that repeated cannabis exposure can cause psychosis by interfering with neurotrophins synthesis and utilization by CNS neurons.
Collapse
Affiliation(s)
- Valerio Ricci
- Psychiatric Service for Diagnosis and Treatment, San Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Turin, Italy
| | - Domenico de Berardis
- NHS, Department of Mental Health, Psychiatric Service for Diagnosis and Treatment, Hospital "G. Mazzini", ASL 4, 64100, Teramo, Italy
| | - Giovanni Martinotti
- Department of Neurosciences, Imaging and Clinical Sciences, University of Chieti-Pescara, 66100, Chieti, Italy
| | - Giuseppe Maina
- Department of Neurosciences "Rita Levi Montalcini", University of Turin, Italy
| |
Collapse
|
42
|
Mirzahosseini G, Adam JM, Nasoohi S, El-Remessy AB, Ishrat T. Lost in Translation: Neurotrophins Biology and Function in the Neurovascular Unit. Neuroscientist 2023; 29:694-714. [PMID: 35769016 DOI: 10.1177/10738584221104982] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The neurovascular unit (NVU) refers to the functional building unit of the brain and the retina, where neurons, glia, and microvasculature orchestrate to meet the demand of the retina's and brain's function. Neurotrophins (NTs) are structural families of secreted proteins and are known for exerting neurotrophic effects on neuronal differentiation, survival, neurite outgrowth, synaptic formation, and plasticity. NTs include several molecules, such as nerve growth factor, brain-derived neurotrophic factor, NT-3, NT-4, and their precursors. Furthermore, NTs are involved in signaling pathways such as inflammation, apoptosis, and angiogenesis in a nonneuronal cell type. Interestingly, NTs and the precursors can bind and activate the p75 neurotrophin receptor (p75NTR) at low and high affinity. Mature NTs bind their cognate tropomyosin/tyrosine-regulated kinase receptors, crucial for maintenance and neuronal development in the brain and retina axis. Activation of p75NTR results in neuronal apoptosis and cell death, while tropomysin receptor kinase upregulation contributes to differentiation and cell growth. Recent findings indicate that modulation of NTs and their receptors contribute to neurovascular dysfunction in the NVU. Several chronic metabolic and acute ischemic diseases affect the NVU, including diabetic and ischemic retinopathy for the retina, as well as stroke, acute encephalitis, and traumatic brain injury for the brain. This work aims to review the current evidence through published literature studying the impact of NTs and their receptors, including the p75NTR receptor, on the injured and healthy brain-retina axis.
Collapse
Affiliation(s)
- Golnoush Mirzahosseini
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Justin Mark Adam
- Department of Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Sanaz Nasoohi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Tauheed Ishrat
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
43
|
Kropf E, Shekari A, Jaberi S, Puri A, Wu C, Fahnestock M. Age-induced nitrative stress decreases retrograde transport of proNGF via TrkA and increases proNGF retrograde transport and neurodegeneration via p75 NTR. Front Mol Neurosci 2023; 16:1241420. [PMID: 38025269 PMCID: PMC10679388 DOI: 10.3389/fnmol.2023.1241420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Axonal transport of pro nerve growth factor (proNGF) is impaired in aged basal forebrain cholinergic neurons (BFCNs), which is associated with their degeneration. ProNGF is neurotrophic in the presence of its receptor tropomyosin-related kinase A (TrkA) but induces apoptosis via the pan-neurotrophin receptor (p75NTR) when TrkA is absent. It is well established that TrkA is lost while p75NTR is maintained in aged BFCNs, but whether aging differentially affects transport of proNGF via each receptor is unknown. Nitrative stress increases during aging, but whether age-induced nitrative stress differentially affects proNGF transport via TrkA versus p75NTR has not yet been studied. Answering these questions is essential for developing an accurate understanding of the mechanisms contributing to age-induced loss of proNGF transport and BFCN degeneration. Methods In this study, fluorescence microscopy was used to analyze axonal transport of quantum dot labeled proNGF in rat BFCNs in vitro. Receptor specific effects were studied with proNGF mutants that selectively bind to either TrkA (proNGF-KKE) or p75NTR (proNGF-Δ9-13). Signaling factor activity was quantified via immunostaining. Results Young BFCNs transported proNGF-KKE but not proNGF-Δ9-13, and proNGF transport was not different in p75NTR knockout BFCNs compared to wildtype BFCNs. These results indicate that young BFCNs transport proNGF via TrkA. In vitro aging increased transport of proNGF-Δ9-13 but decreased transport of proNGF-KKE. Treatment with the nitric oxide synthase inhibitor L-NAME reduced retrograde transport of proNGF-Δ9-13 in aged BFCNs while increasing retrograde transport of proNGF-KKE but did not affect TrkA or p75NTR levels. ProNGF-Δ9-13 induced greater pro-apoptotic signaling and neurodegeneration and less pro-survival signaling relative to proNGF-KKE. Discussion Together, these results indicate that age-induced nitrative stress decreases proNGF transport via TrkA while increasing proNGF transport via p75NTR. These transport deficits are associated with decreased survival signaling, increased apoptotic signaling, and neurodegeneration. Our findings elucidate the receptor specificity of age-and nitrative stress-induced proNGF transport deficits. These results may help to rescue the neurotrophic signaling of proNGF in aging to reduce age-induced loss of BFCN function and cognitive decline.
Collapse
Affiliation(s)
- Erika Kropf
- Neuroscience Program, McMaster University, Hamilton, ON, Canada
| | - Arman Shekari
- Neuroscience Program, McMaster University, Hamilton, ON, Canada
| | - Sama Jaberi
- Neuroscience Program, McMaster University, Hamilton, ON, Canada
| | - Anish Puri
- Neuroscience Program, McMaster University, Hamilton, ON, Canada
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
44
|
Tringali G, Pizzoferrato M, Lisi L, Marinelli S, Buccarello L, Falsini B, Cattaneo A, Navarra P. A Vicious NGF-p75 NTR Positive Feedback Loop Exacerbates the Toxic Effects of Oxidative Damage in the Human Retinal Epithelial Cell Line ARPE-19. Int J Mol Sci 2023; 24:16237. [PMID: 38003427 PMCID: PMC10671591 DOI: 10.3390/ijms242216237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
In spite of its variety of biological activities, the clinical exploitation of human NGF (hNGF) is currently limited to ocular pathologies. It is therefore interesting to test the effects of hNGF in preclinical models that may predict their efficacy and safety in the clinical setting of ocular disorders and compare the effects of hNGF with those of its analogs. We used a human retinal pigment cell line, ARPE-19 cells, to investigate the effects of hNGF and its analogs, mouse NGF (mNGF) and painless NGF (pNGF), on cell viability under basal conditions and after exposure to oxidative stimuli, i.e., hydrogen peroxide (H2O2) and ultraviolet (UV)-A rays. The effects of hNGF and pNGF were also tested on the gene expression and protein synthesis of the two NGF receptor subtypes, p75 neurotrophic receptors (p75NTR) and tyrosine kinase A (TrkA) receptors. We drew the following conclusions: (i) the exposure of ARPE-19 cells to H2O2 or UV-A causes a dose-dependent decrease in the number of viable cells; (ii) under baseline conditions, hNGF, but not pNGF, causes a concentration-dependent decrease in cell viability in the range of doses 1-100 ng/mL; (iii) hNGF, but not pNGF, significantly potentiates the toxic effects of H2O2 or of UV-A on ARPE-19 cells in the range of doses 1-100 ng/mL, while mNGF at the same doses presents an intermediate behavior; (iv) 100 ng/mL of hNGF triggers an increase in p75NTR expression in H2O2-treated ARPE-19 cells, while pNGF at the same dose does not; (v) pNGF, but not hNGF (both given at 100 ng/mL), increases the total cell fluorescence intensity for TrkA receptors in H2O2-treated ARPE-19 cells. The present findings suggest a vicious positive feedback loop through which NGF-mediated upregulation of p75NTR contributes to worsening the toxic effects of oxidative damage in the human retinal epithelial cell line ARPE-19. Looking at the possible clinical relevance of these findings, one can postulate that pNGF might show a better benefit/risk ratio than hNGF in the treatment of ocular disorders.
Collapse
Affiliation(s)
- Giuseppe Tringali
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (M.P.)
| | - Michela Pizzoferrato
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (M.P.)
| | - Lucia Lisi
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (M.P.)
| | - Silvia Marinelli
- European Brain Research Institute-Fondazione Rita Levi Montalcini, 00161 Rome, Italy (L.B.)
| | - Lucia Buccarello
- European Brain Research Institute-Fondazione Rita Levi Montalcini, 00161 Rome, Italy (L.B.)
| | - Benedetto Falsini
- UOC Ophtalmology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Department of Ophthalmology, Bambino Gesù IRCCS Children’s Hospital, 00133 Rome, Italy
| | - Antonino Cattaneo
- European Brain Research Institute-Fondazione Rita Levi Montalcini, 00161 Rome, Italy (L.B.)
- Bio@SNS Laboratory, Scuola Normale Superiore, 56124 Pisa, Italy
| | - Pierluigi Navarra
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy (M.P.)
| |
Collapse
|
45
|
Trybus M, Hryniewicz-Jankowska A, Wójtowicz K, Trombik T, Czogalla A, Sikorski AF. EFR3A: a new raft domain organizing protein? Cell Mol Biol Lett 2023; 28:86. [PMID: 37880612 PMCID: PMC10601247 DOI: 10.1186/s11658-023-00497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Membrane rafts play a crucial role in the regulation of many important biological processes. Our previous data suggest that specific interactions of flotillins with MPP1 are responsible for membrane raft domain organization and regulation in erythroid cells. Interaction of the flotillin-based protein network with specific membrane components underlies the mechanism of raft domain formation and regulation, including in cells with low expression of MPP1. METHODS We sought to identify other flotillin partners via the immobilized recombinant flotillin-2-based affinity approach and mass spectrometry technique. The results were further confirmed via immunoblotting and via co-immunoprecipitation. In order to study the effect of the candidate protein on the physicochemical properties of the plasma membrane, the gene was knocked down via siRNA, and fluorescence lifetime imaging microscopy and spot-variation fluorescence correlation spectroscopy was employed. RESULTS EFR3A was identified as a candidate protein that interacts with flotillin-2. Moreover, this newly discovered interaction was demonstrated via overlay assay using recombinant EFR3A and flotillin-2. EFR3A is a stable component of the detergent-resistant membrane fraction of HeLa cells, and its presence was sensitive to the removal of cholesterol. While silencing the EFR3A gene, we observed decreased order of the plasma membrane of living cells or giant plasma membrane vesicles derived from knocked down cells and altered mobility of the raft probe, as indicated via fluorescence lifetime imaging microscopy and spot-variation fluorescence correlation spectroscopy. Moreover, silencing of EFR3A expression was found to disturb epidermal growth factor receptor and phospholipase C gamma phosphorylation and affect epidermal growth factor-dependent cytosolic Ca2+ concentration. CONCLUSIONS Altogether, our results suggest hitherto unreported flotillin-2-EFR3A interaction, which might be responsible for membrane raft organization and regulation. This implies participation of this interaction in the regulation of multiple cellular processes, including those connected with cell signaling which points to the possible role in human health, in particular human cancer biology.
Collapse
Affiliation(s)
- Magdalena Trybus
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Anita Hryniewicz-Jankowska
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Karolina Wójtowicz
- Department of Biotransformation, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383, Wroclaw, Poland
| | - Tomasz Trombik
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodzki 1, 20-093, Lublin, Poland
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a, 50-383, Wroclaw, Poland.
| | - Aleksander F Sikorski
- Research and Development Center, Regional Specialist Hospital, Kamienskiego73a, 51-154, Wroclaw, Poland.
| |
Collapse
|
46
|
Chen ZG, Shi X, Zhang XX, Yang FF, Li KR, Fang Q, Cao C, Chen XH, Peng Y. Neuron-secreted NLGN3 ameliorates ischemic brain injury via activating Gαi1/3-Akt signaling. Cell Death Dis 2023; 14:700. [PMID: 37880221 PMCID: PMC10600254 DOI: 10.1038/s41419-023-06219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/27/2023]
Abstract
We here tested the potential activity and the underlying mechanisms of neuroligin-3 (NLGN3) against ischemia-reperfusion-induced neuronal cell injury. In SH-SY5Y neuronal cells and primary murine cortical neurons, NLGN3 activated Akt-mTOR and Erk signalings, and inhibited oxygen and glucose deprivation (OGD)/re-oxygenation (OGD/R)-induced cytotoxicity. Akt activation was required for NLGN3-induced neuroprotection. Gαi1/3 mediated NLGN3-induced downstream signaling activation. NLGN3-induced Akt-S6K1 activation was largely inhibited by Gαi1/3 silencing or knockout. Significantly, NLGN3-induced neuroprotection against OGD/R was almost abolished by Gαi1/3 silencing or knockout. In vivo, the middle cerebral artery occlusion (MCAO) procedure induced NLGN3 cleavage and secretion, and increased its expression and Akt activation in mouse brain tissues. ADAM10 (A Disintegrin and Metalloproteinase 10) inhibition blocked MCAO-induced NLGN3 cleavage and secretion, exacerbating ischemic brain injury in mice. Neuronal silencing of NLGN3 or Gαi1/3 in mice also inhibited Akt activation and intensified MCAO-induced ischemic brain injury. Conversely, neuronal overexpression of NLGN3 increased Akt activation and alleviated MCAO-induced ischemic brain injury. Together, NLGN3 activates Gαi1/3-Akt signaling to protect neuronal cells from ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Zhi-Guo Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Shi
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xian-Xian Zhang
- Department of Neurology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, China
| | - Fang-Fang Yang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ke-Ran Li
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Cong Cao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Institute of Neuroscience, Soochow University, Suzhou, China.
| | - Xiong-Hui Chen
- Department of Emergency Surgery, First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Ya Peng
- Department of Neurosurgery, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
47
|
Dąbkowska M, Stukan I, Kowalski B, Donerowicz W, Wasilewska M, Szatanik A, Stańczyk-Dunaj M, Michna A. BDNF-loaded PDADMAC-heparin multilayers: a novel approach for neuroblastoma cell study. Sci Rep 2023; 13:17939. [PMID: 37864014 PMCID: PMC10589271 DOI: 10.1038/s41598-023-45045-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/15/2023] [Indexed: 10/22/2023] Open
Abstract
Biomaterial science has contributed tremendously to developing nanoscale materials for delivering biologically active compounds, enhancing protein stability, and enabling its therapeutic use. This paper presents a process of formation of polyelectrolyte multilayer (PEM) prepared by sequential adsorption of positively charged polydiallyldimethylammonium chloride (PDADMAC) and negatively charged heparin sodium salt (HP), from low polyelectrolyte concentration, on a solid substrate. PEM was further applied as a platform for the adsorption of a brain-derived growth factor (BDNF), which is a protein capable of regulating neuronal cell development. The multilayers containing BDNF were thoroughly characterized by electrokinetic (streaming potential measurements, SPM) and optical (optical waveguide lightmode spectroscopy, OWLS) techniques. It was found that BDNF was significantly adsorbed onto polyelectrolyte multilayers terminated by HP under physiological conditions. We further explore the effect of established PEMs in vitro on the neuroblastoma SH-SY5Y cell line. An enzyme-linked immunosorbent assay (ELISA) confirmed that BDNF was released from multilayers, and the use of the PEMs intensified its cellular uptake. Compared to the control, PEMs with adsorbed BDNF significantly reduced cell viability and mitochondrial membrane polarization to as low as 72% and 58%, respectively. HPLC analysis showed that both PDADMAC-terminated and HP-terminated multilayers have antioxidative properties as they almost by half decreased lipid peroxidation in SH-SY5Y cells. Finally, enhanced formation of spheroid-like, 3D structures was observed by light microscopy. We offer a well-characterized PEM with antioxidant properties acting as a BDNF carrier, stabilizing BDNF and making it more accessible to cells in an inhomogeneous, dynamic, and transient in vitro environment. Described multilayers can be utilized in future biomedical applications, such as boosting the effect of treatment by selective anticancer as adjuvant therapy, and in biomedical research for future development of more precise neurodegenerative disease models, as they enhance cellular 3D structure formation.
Collapse
Affiliation(s)
- Maria Dąbkowska
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University, Rybacka 1, 70-204, Szczecin, Poland.
| | - Iga Stukan
- Department of General Pathology, Pomeranian Medical University, Rybacka 1, 70-204, Szczecin, Poland
| | - Bogusław Kowalski
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University, Rybacka 1, 70-204, Szczecin, Poland
| | - Wiktoria Donerowicz
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University, Rybacka 1, 70-204, Szczecin, Poland
| | - Monika Wasilewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland
| | - Alicja Szatanik
- Independent Laboratory of Pharmacokinetic and Clinical Pharmacy, Pomeranian Medical University, Rybacka 1, 70-204, Szczecin, Poland
| | | | - Aneta Michna
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239, Kraków, Poland
| |
Collapse
|
48
|
Numakawa T, Kajihara R. Involvement of brain-derived neurotrophic factor signaling in the pathogenesis of stress-related brain diseases. Front Mol Neurosci 2023; 16:1247422. [PMID: 37781095 PMCID: PMC10537938 DOI: 10.3389/fnmol.2023.1247422] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Neurotrophins including brain-derived neurotrophic factor, BDNF, have critical roles in neuronal differentiation, cell survival, and synaptic function in the peripheral and central nervous system. It is well known that a variety of intracellular signaling stimulated by TrkB, a high-affinity receptor for BDNF, is involved in the physiological and pathological neuronal aspects via affecting cell viability, synaptic function, neurogenesis, and cognitive function. As expected, an alteration of the BDNF/TrkB system is suspected to be one of the molecular mechanisms underlying cognitive decline in cognitive diseases and mental disorders. Recent evidence has also highlighted a possible link between the alteration of TrkB signaling and chronic stress. Furthermore, it has been demonstrated that downregulation of the BDNF/TrkB system and chronic stress have a role in the pathogenesis of Alzheimer's disease (AD) and mental disorders. In this review, we introduce current evidence showing a close relationship between the BDNF/TrkB system and the development of cognition impairment in stress-related disorders, and the possible contribution of the upregulation of the BDNF/TrkB system in a therapeutic approach against these brain diseases.
Collapse
Affiliation(s)
- Tadahiro Numakawa
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Ryutaro Kajihara
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Department of Biomedical Laboratory Sciences, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
49
|
Araghi M, Mannani R, Heidarnejad maleki A, Hamidi A, Rostami S, Safa SH, Faramarzi F, Khorasani S, Alimohammadi M, Tahmasebi S, Akhavan-Sigari R. Recent advances in non-small cell lung cancer targeted therapy; an update review. Cancer Cell Int 2023; 23:162. [PMID: 37568193 PMCID: PMC10416536 DOI: 10.1186/s12935-023-02990-y] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 07/12/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer continues to be the leading cause of cancer-related death worldwide. In the last decade, significant advancements in the diagnosis and treatment of lung cancer, particularly NSCLC, have been achieved with the help of molecular translational research. Among the hopeful breakthroughs in therapeutic approaches, advances in targeted therapy have brought the most successful outcomes in NSCLC treatment. In targeted therapy, antagonists target the specific genes, proteins, or the microenvironment of tumors supporting cancer growth and survival. Indeed, cancer can be managed by blocking the target genes related to tumor cell progression without causing noticeable damage to normal cells. Currently, efforts have been focused on improving the targeted therapy aspects regarding the encouraging outcomes in cancer treatment and the quality of life of patients. Treatment with targeted therapy for NSCLC is changing rapidly due to the pace of scientific research. Accordingly, this updated study aimed to discuss the tumor target antigens comprehensively and targeted therapy-related agents in NSCLC. The current study also summarized the available clinical trial studies for NSCLC patients.
Collapse
Affiliation(s)
- Mahmood Araghi
- Department of Pathology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Mannani
- Vascular Surgeon, Department of Surgery, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Adel Hamidi
- Razi Vaccine and Serum Research Institute, Arak Branch, karaj, Iran
| | - Samaneh Rostami
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | - Fatemeh Faramarzi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sahar Khorasani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safa Tahmasebi
- Student Research Committee, Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warsaw, Poland
| |
Collapse
|
50
|
Feinberg K, Tajdaran K, Mirmoeini K, Daeschler SC, Henriquez MA, Stevens KE, Mulenga CM, Hussain A, Hamrah P, Ali A, Gordon T, Borschel GH. The Role of Sensory Innervation in Homeostatic and Injury-Induced Corneal Epithelial Renewal. Int J Mol Sci 2023; 24:12615. [PMID: 37628793 PMCID: PMC10454376 DOI: 10.3390/ijms241612615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
The cornea is the window through which we see the world. Corneal clarity is required for vision, and blindness occurs when the cornea becomes opaque. The cornea is covered by unique transparent epithelial cells that serve as an outermost cellular barrier bordering between the cornea and the external environment. Corneal sensory nerves protect the cornea from injury by triggering tearing and blink reflexes, and are also thought to regulate corneal epithelial renewal via unknown mechanism(s). When protective corneal sensory innervation is absent due to infection, trauma, intracranial tumors, surgery, or congenital causes, permanent blindness results from repetitive epithelial microtraumas and failure to heal. The condition is termed neurotrophic keratopathy (NK), with an incidence of 5:10,000 people worldwide. In this report, we review the currently available therapeutic solutions for NK and discuss the progress in our understanding of how the sensory nerves induce corneal epithelial renewal.
Collapse
Affiliation(s)
- Konstantin Feinberg
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Kiana Tajdaran
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Kaveh Mirmoeini
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Simeon C. Daeschler
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Hospital, Department of Plastic and Hand Surgery, University of Heidelberg, 67071 Ludwigshafen, Germany
| | - Mario A. Henriquez
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Katelyn E. Stevens
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chilando M. Mulenga
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Arif Hussain
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Pedram Hamrah
- Cornea Service, New England Eye Center, Tufts Medical Center, Department of Ophthalmology, Tufts University School of Medicine, Boston, MA 02111, USA
- Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Asim Ali
- Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON M5T 3A9, Canada
| | - Tessa Gordon
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Gregory H. Borschel
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|